
Research Article
An Intrusion Detection Method Based on Fully Connected
Recurrent Neural Network

Yuhong Wu 1 and Xiangdong Hu 2

1College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
2School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China

Correspondence should be addressed to Xiangdong Hu; huxd@cqupt.edu.cn

Received 11 July 2022; Revised 23 August 2022; Accepted 1 September 2022; Published 26 September 2022

Academic Editor: Lianhui Li

Copyright © 2022 Yuhong Wu and Xiangdong Hu. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Now, the use of deep learning technology to solve the problems of the lowmulticlassi�cation task detection accuracy and complex
feature engineering existing in traditional intrusion detection technology has become a research hotspot. In all kinds of deep
learning, recurrent neural networks (RNN) are very important. �e RNN processes 41 feature attributes and maps them to a 122-
dimensional high-dimensional feature space. To detect multiclassi�cation tasks, this study proposes an intrusion detection
method based on fully connected recurrent neural networks and compares its performance with previous machine learning
methods on benchmark datasets. �e research results show that the intrusion detection system (IDS) model based on fully
connected recurrent neural network is very suitable for classi�cation of intrusion detection. Classi�cation methods, especially in
multiclassi�cation tasks, have high detection accuracy, signi�cantly improve the detection performance of detection attacks and
DoS attacks, and it provides a new research direction for the future attempts of intrusion detection methods for industrial
control systems.

1. Introduction

With the achievements of deep learning in image recogni-
tion, speech recognition, etc, it also provides a new method
and idea for researchers in the �eld of intrusion detection to
carry out related work.

Recurrent neural networks (RNN) were important. In
2007, Rachid et al. applied RNN and standard neural net-
work to the �eld of intrusion detection and conducted
experiments on the constructed small sample dataset. �e
experimental results showed that the detection and classi-
�cation performance based on the RNN was relatively
general on the small sample dataset, which was lower than
the neural network under the same conditions. In 2010,
Mansour et al., considering the complexity of the fully
connected neural network structure, constructed a partially
connected RNN, and the features between groups were
constructed into a fully connected recurrent neural network,
and there was no information between the features between

groups [1–3]. Contact feedback to reduce model training
time and achieve better detection results on the datasets you
build. Although the locally connected recurrent neural
network structure shortens the training time, the features
were arti�cially classi�ed, and the connections and roles
between di�erent groups of features were not considered.

After in-depth analysis, this study proposes an intrusion
detection model based on fully connected recurrent neural
network. Forty one feature attributes were processed and
mapped into a 122-dimensional high-dimensional feature
space, and features were no longer grouped and classi�ed.
Considering the relationship between features, this study
investigates the detection ability of fully connected recurrent
neural networks under multiclassi�cation tasks.

2. Recurrent Neural Network (RNN)

Currently, recurrent neural networks (RNN) are mainly
used to solve dynamic system problems involving time series

Hindawi
Scientific Programming
Volume 2022, Article ID 7777211, 11 pages
https://doi.org/10.1155/2022/7777211

mailto:huxd@cqupt.edu.cn
https://orcid.org/0000-0003-0692-440X
https://orcid.org/0000-0001-5496-6685
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7777211

of events. Structurally, a RNN includes a hidden layer, an
input layer, and an output layer [4–6]. *e current output is
related to the previous output, and the nodes of each hidden
layer are no longer disconnected. *erefore, the main work
is achieved through the loop of the hidden layer itself. Es-
sentially, an RNN is a unidirectional information flow from
the input layer to the hidden layer, combined with a uni-
directional information flow from the last sequential hidden
layer to the current hidden layer. Figure 1 visually compares
the differences between traditional neural networks and
RNN.

Figure 2 shows the structure of the RNN after expansion.
All states before time series twill be represented as outputs at
time series t-1 and affect the time series t. *erefore, a RNN
is a learning model with a dynamic deep structure. If the
hidden unit is regarded as the storage space of the entire
network, when the RNN is expanded according to the time
series, it can be considered that the RNN has memorized all
the information so far, which is a typical end-to-end learning
method. *eoretically, a RNN can learn arbitrarily long
sequence information and can remember end-to-end in-
formation, reflecting the “depth” of deep learning.

Obviously, in training, the training of RNN includes
forward pass and backward pass. Similar to the traditional
neural network training algorithm, the forward pass is
output according to the time sequence, and the reverse pass
is to pass the accumulated residuals of the previous period
back through the RNN. During forward propagation, the
hidden layer output (ht) is

ht � σ Wxt + Uht−1 + bh(, (1)

where σ is the activation function, xt is the input vector of the
time series t, ht is the output of the hidden layer, W is the
weight matrix, U is the self-circulating weight matrix, and bh
is hidden layer bias.

2.1. Intrusion Detection System (IDS) Based on Fully Con-
nected Recurrent Neural Network. *e overall framework of
the intrusion detection model is shown in Figure 3, which
mainly includes five steps [7–10].

Obviously, the training of the FCRNN-IDS has two
aspects: forward propagation and weight fine-tuning. *e
forward propagation was responsible for the operation of the
output data, and the fine-tuning of the weights was to update
the weights by passing the accumulated residuals [11], which
was no different from ordinary neural network training. *e
training was divided into two steps: first, the forward
propagation algorithm was used to calculate its output value
for each training sample of the input model. *en, using the
weight fine-tuning algorithm, the entire model parameters
were fine-tuned through backpropagation, and finally, a
complete fully connected RNN classification model was
obtained.

According to Figure 2, Algorithm 1 is a forward
propagation algorithm, and Algorithm 2 is a weight update
algorithm, respectively. Calculate the output yi of each
instance xi using the forward propagation algorithm.

3. Experiment

3.1. Data Sources. *e dataset used in the experiment is a
new benchmark dataset NSL-KDD [12–15]. *is dataset is
widely used.

3.2. Data Feature Extraction and Selection. Each connection
record in the NSL-KDD contains 41 feature attributes
[16–19]. Among them, 41 features can be divided into 4
categories:

(i) Basic features (9 types in total, numbered 1 to 9)
(ii) Content features (13 types in total, serial numbers

10 to 22)
(iii) Time-based network traffic statistics (9 types in

total, serial numbers 23∼31)
(iv) Host-based network traffic statistics (10 types in

total, serial numbers 32∼41)

3.3. Data Preprocessing. Using the NSL-KDD dataset, each
connection record consists of 41 feature attributes, including
3 non-numeric feature attributes. Data preprocessing mainly
includes two parts: numericalization of nonnumerical fea-
ture attributes. After one-hot encoding, the attribute feature
’protocol_type’ corresponds to the binary feature vectors (1,
0, 0), (0, 1, 0), and (0, 0, 1). *e other two nonnumerical
attribute properties “service” and “flag” have 70 and 11
values, respectively. After such digital processing, the
original 41-dimensional feature vector was converted into a
122-dimensional high-dimensional feature vector. On the
one hand, one-hot encoding solves the problem of non-
numerical data conversion, making the calculation of
“distance” between features more reasonable.

0

1

2

3

4 5

6

7

8

9

10

i1

i2

i3

Input Output

State

Hidden inputs

Bias node

Figure 1: RNN structure.

2 Scientific Programming

=A A A A A

Xt

ht h0 h1 h2 ht

X0 X1 X2 Xt...

Figure 2: Unrolled RNN.

Digitize

Normalized

Data preprocessing

Model training

Weight fine-tuning

Forward propagation

Training set

Test set

Detection
classification

Classification
model

Figure 3: Framework of intrusion detection system based on fully connected recurrent neural network (IDS-FCRNN).

Input: the training sample was xi (i� l, 2, m), the weight matrix was Whx, Whh, and Wyh, the bias was bh and by, the activation
function e uses the sigmoid function, and the classification function g uses the SoftMax function.
Output: the output value yi corresponding to the training sample Xi

(1) for xi from 1 to m do
(2) ti � Whxxi + Whhhi−1 + bh

(3) hi � sigmoi d(ti)

(4) si � Wyhhi + by

(5) yi � SoftMax(si)

(6) End for

ALGORITHM 1: Forward propagation algorithm.

Input: the training sample was (x1,y1) (i� 1, 2, ..., m).
Initialization: the initialization model parameter was θ� {Whx,Whh,Wyh,bh,by}
Output: the fine-tuned model parameter was θ� {Whx,Whh,Wyh,bh,by}

(1) For each sample xi, input a fully connected RNN, the output yi of xi was calculated by Algorithm 2.1
(2) Calculate the cross-entropy L(y:yi) between the output value of each sample and the label value:

L(y: yi)← − iiyijlog (yij) + (1 − yij)log (1 − yij)

(3) For each network model parameter θi in θ, calculate the partial derivative δi: δi←dL/dθi

(4) Make the error propagate back along the network and update each network model parameter θi in θ:
θi←θi + ηδi

(5) If t� k, save the model parameters and the algorithm ends
(6) If t< k, then t� t+ 1, turn to 1.

ALGORITHM 2: Weight fine-tuning algorithm.

Scientific Programming 3

*e first step was that the data value space was too large.
Feature attributes such as “duration[0, 58329],” “dst_bytes
[0,1.3×109],” and “src_bytes[0,1.3 × 109],” which were
correspondingly scaled by the logarithmic correction
method as “duration[0, 4.77],” “dst_bytes[0, 9.11],” and
“src_bytes[0, 9.11];” then, make each instance lie on the same
order of magnitude on this feature. *e second step was to
normalize the data to the [0, 1] value range according to the
following formula:

xi �
xi − Min

Max − Min
, (2)

where xiwas the attribute eigenvalue, Min was the minimum
value, and Max was the maximum value.

3.4. Test Plan. *is study adopts the comparative test
method to detect the accuracy of FCRNN-IDS.

3.4.1. Comparative Experiment 1: Comparison with Tradi-
tional Machine Learning Methods. Using the same dataset
NSL-KDD, the detection accuracy of seven traditional
machine learning algorithms [20–33] such as decision tree,
Naive Bayes, Naive Bayes tree, random tree, random forest,
support vector machine, multilayer perceptron, and the
detection accuracy of the FCRNN-IDS model in the case of
2-class (normal, abnormal) and 5-class (normal, probe, Dod,
R2L and U2R) were studied and compared.

In [5], the authors investigated the anomaly detection
performance of the above 7 classification algorithm models
on the NSL-KDD benchmark dataset using Weka machine
learning and data mining tools. Under the 2-class task,
Figures 4 and 5 show the detection accuracy of KDDTest+
and KDDTest-21 by seven traditional machine learning
methods, respectively.*is study takes the research results of
[5] as one of the comparative experiments; under the 2-class
task, it was compared with the detection model based on
fully connected recurrent neural network.

3.4.2. Comparative Experiment 2: Comparison with Recent
Similar Literature. Wang and Cai [8] studied the perfor-
mance of artificial intrusion detection systems under two
and five types of tasks based on the same benchmark dataset
NSL-KDD. *e experimental results show that, under the
dataset KDDTest+, the highest detection rate of the model
was 81.2% under the 2-class classification; the highest de-
tection rate of the model was 79.9% under the 5-class
classification.

Deng et al. [9] proposed three-layer partially connected
recurrent neural network architecture with 41 features as
input and 4 intrusion categories and normal category as
output. Taking the KDD99 dataset as the benchmark, some
connection records were selected as the training set and the
test set, respectively. *e results show that the highest de-
tection accuracy of the model was 94.1%. On the test set, the
training time was set at 1383 seconds.

4. Results’ Analysis

4.1. Experimental Results of 2-Class Tasks. As mentioned
earlier, the 41-dimensional feature vector was mapped to a
122-dimensional feature vector, so in the 2-class experiment.
Figure 6 shows the detection accuracy of the FCRNN-IDS
model on the training set with different structures and
Learningrates.

As shown in Figure 7, it shows the detection accuracy of
the FCRNN-IDS model on the test set KDDTest+ with
different structures and Learningrates. As can be seen from
Figure 7, when the Learningrate was 0.1 and the number of
HiddenNodes was 80, the detection accuracy of the model
on the test set KDDTest+ was 83.28%.

Figure 8 shows the detection accuracy of the FCRNN-
IDS model on KDDTest-21 with different structures and
Learningrates. As can be seen from Figure 8, when the
Learningrate was 0.1 and the hidden node was 80, the model
has the highest detection accuracy on KDDTest-21, which
was 68.55%.

*e experimental results were as follows.
As shown in Table 1, the number of HiddenNodes was 80

and the Learningrate was 0.1, which obtains high detection
accuracy. Figure 9 details the variation in detection accuracy
of the FCRNN-IDS model iteratively trained on the
KDDTrain+, KDDTest+, and KDDTest-21.

Ashfaq e al. [5] studied the detection accuracy of clas-
sification algorithms such as J48, Multilayer Perception,
Naive Bayes, Support Vector Machine, and Random Forest.
*e results are shown in Figures 4 and 5; the artificial neural
network algorithm has the highest detection accuracy on the
test set KDDTest+ in the 2-class task, reaching 81.2%, which
was the latest literature on the application of related algo-
rithms. *e above model experimental results were all based
on the dataset NSL-KDD, so they had similar comparison
conditions.

As shown in Figure 10, the three algorithm models
showed good classification and detection performance, es-
pecially the Naive Bayesian tree on the test sets, KDDTest+
and KDDTest-21. Better classification and detection per-
formance: the detection accuracy of this method was high,
82.02% and 66.16%, respectively.

Compared with the detection method based on artificial
neural network proposed in [8], FCRNN-IDS has the highest
detection accuracy under the 2-class task, which was 81.2%,
and the detection accuracy under the 2-class task was also
higher. Table 2 shows the confusion matrix of the ANN-
based detection model on the test set KDDTest +when
performing the 2-class task. Table 3 presents the confusion
matrix of FCRNN-IDS on KDDTest + under the 2-class task.

*erefore, when performing 2-class tasks, FCRNN-IDS
further improved the detection ability of attack behavior,
improved the accuracy, and reduced the false positive rate.

4.2. Experimental Results of Multiclassification Tasks.
Figure 11 shows the detection accuracy of FCRNN-IDS on
the training set with different structures and

4 Scientific Programming

81.05% 76.56% 82.02% 80.67% 81.59% 77.41%
69.52%

J4
8

N
ai

ve
 B

ay
es

N
B

Tr
ee

Ra
nd

om
 F

or
es

t

Ro
nd

om
 T

re
e

M
ul

til
ay

er
Pe

rc
ep

tro
n

SV
M

0.00

20.00

40.00

60.00

80.00

100.00

Ac
cu

ra
cy

 (%
)

Figure 4: Detection accuracy of traditional machine learning methods in the test set KDDTest+ (2-class).

63.97%
55.77%

66.16% 63.26%
58.51% 57.34%

42.29%

J4
8

N
ai

ve
 B

ay
es

N
B

Tr
ee

Ra
nd

om
 F

or
es

t

Ro
nd

om
 T

re
e

M
ul

til
ay

er
Pe

rc
ep

tro
n

SV
M

0.00

20.00

40.00

60.00

80.00

100.00

Ac
cu

ra
cy

 (%
)

Figure 5: Detection accuracy of traditional machine learning methods on the test set KDDTest-21 (2-class).

20 60 80 120 240
Number of hidden layer nodes

98.90

99.00

99.10

99.20

99.30

99.40

99.50

99.60

99.70

99.80

99.90

100.00

D
et

ec
tio

n
ra

te
 (%

)

Learning rate-0.1
Learning rate-0.1
Learning rate-0.5

Figure 6: *e accuracy of the model on the training set under
different structures and Learningrates (2-class).

20 60 80 120 240
Number of hidden layer nodes

Learning rate-0.01
Learning rate-0.1
Learning rate-0.5

76.00

77.00

78.00

79.00

80.00

81.00

82.00

83.00

84.00

D
et

ec
tio

n
ra

te
 (%

)

Figure 7: Detection rate of the model on KDDTest+ with different
structures and Learningrates (2-class).

Scientific Programming 5

Learningrates. As can be seen from the figure, when the
Learningrate was 0.5 and the hidden node was 60, the
model has the highest detection accuracy on the training
set, which was 99.87%.

As shown in Figure 12, from the detection accuracy of
FCRNN-IDS on the test set KDDTest + under different
structures and Learningrates, it can be seen that the Lear-
ningrate was 0.5 and the hidden node was 80; the model has
the highest detection accuracy in the test set KDDTest+,
which was 81.29%.

As shown in Figure 13, from the detection accuracy of
FCRNN-IDS on the test set KDDTest-21 under different
structures and Learningrates, the Learningrate was 0.5 and
the number of HiddenNodes was 80; the model has the
highest detection accuracy on the test set KDDTest-21,
which was 64.67%.

Table 4 shows the detection accuracy of FCRNN-IDS on
the training set and 2 test sets when performing multiclass
detection tasks with different network structures and dif-
ferent Learningrates. Obviously, the experimental results on
multiclassification tasks show that different network struc-
tures and Learningrates can affect the detection ability of the
FCRNN-IDS. As shown in Table 4, when the hidden layer of
the FCRNN-IDS was set to 80 nodes and the Learningrate
was set to 0.5, the model has higher detection accuracy on
the KDDTest-21 and KDDTest + test sets, which was 81.29%
and 64.67%.

In order to compare the detection accuracy of various
algorithms, similar to the 2-type task experiment, J48,
Naive Bayes, Random Forest, and multilevel models were
established through data mining software Weka and open
source machine learning. Using 10 layers of cross-vali-
dation in the training set KDDTrain+, model training was
performed using 7 machine learning algorithm models
including layer perceptrons and support vector machines,
and then, the model detection accuracy was tested in the

20 60 80 120 240
Number of hidden layer nodes

54.00

56.00

58.00

60.00

62.00

64.00

66.00

68.00

70.00
D

et
ec

tio
n

ra
te

 (%
)

Learning rate-0.01
Learning rate-0.1
Learning rate-0.5

Figure 8: Detection rate of the model on KDDTest-21 under
different structures and Learningrates (2-class).

Table 1: Model detection accuracy (2-class) under different
structures and Learningrates.

KDDTrain+ KDDTest+ KDDTest−21

(%)
HiddenNodes� 20,
Learningrate� 0.01 99.40% 79.37% 60.76

HiddenNodes� 20,
Learningrate� 0.1
rate� 0.1

99.79% 83.18% 68.23

HiddenNodes� 20,
Learningrate� 0.5 99.81% 83.09% 67.84

HiddenNodes� 60,
Learningrate� 0.01 99.39% 78.72% 59.54

HiddenNodes� 60,
Learningrate� 0.1 99.79% 81.06% 64.08

HiddenNodes� 60,
Learningrate� 0.5 99.87% 83.11% 67.82

HiddenNodes� 80,
Learningrate� 0.01 99.29% 79.16% 60.34

HiddenNodes� 80,
Learningrate� 0.1 99.81% 83.28% 68.55

HiddenNodes� 80,
Learningrate� 0.5 99.85% 82.66% 66.99

HiddenNodes� 120,
Learningrate� 0.01 99.28% 78.55% 59.25

HiddenNodes� 120,
Learningrate� 0.1 99.79% 82.48% 66.83

HiddenNodes� 120,
Learningrate� 0.5 99.87% 80.97% 63.69

HiddenNodes� 240,
Learningrate� 0.01 99.69% 80.69% 63.28

HiddenNodes� 240,
Learningrate� 0.1 99.69% 80.67% 63.28

HiddenNodes� 240,
Learningrate� 0.5 99.87% 80.97% 63.69

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Ac
cu

ra
cy

0 20 40 60 80 100
Epoch Num

The Accuracy of RNN-IDS in the Binary Classification

Accuracy on KDDTrain+
Accuracy on KDDTest+
Accuracy on KDDTest-21

Figure 9: Detection performance of the model on the dataset (2-
class).

6 Scientific Programming

test set. *e experimental results are shown in Figure 14.
Compared with the previous 2-class task, the detection
accuracy of the traditional classification model generally
drops under the multiclass task. Multilayer perception
has the highest detection accuracy on the test sets
KDDTest+ and KDDTest-21, 78.10% and 58.40%,
respectively.

Under the same conditions, the neural network-based
classification model achieves a detection accuracy of 79.9%
when performing multiclassification tasks. Obviously,
FCRNN-IDS performs better than other neural network-
based detection models when performing multiclassification
tasks.

Tables 5 and 6 show the confusion matrices of the neural
network-based detection model and the fully connected
recurrent neural network-based detection model on the test
set KDDTest+, respectively.

Comparing the detection results in Tables 5 and 6, it
can be seen that, in terms of correctly detecting DoS at-
tacks, detection attacks, and U2R attacks, the detection
model based on the RNN was fully connected to correctly
detect more than 429 and 165 detection models based on
neural networks, respectively, 2 contact records. Of
course, in terms of correctly detecting normal connection
records and R2L attack categories, the detection model

Table 2: Confusion matrix of the detection model based on ar-
tificial neural network on KDDTest+ (2-class).

Actualclass
Predictedclass

Abnormal Normal
Abnormal 8900 3933
Normal 314 9397

J48 Naive
Bayes

NB
Tree

Rando
m

Forest

Rando
m Tree

Multil
ayer

Percep
tron

SVM RNN

83.28%
68.55%

69.52%
42.29%

77.41%
57.34%

81.59%
58.51%

80.67%
63.26%

82.02%
66.16%

76.56%
55.77%

81.05%
63.97%

KDDTest+
KDDTest-21

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

(%
)

KDDTest+
KDDTest-21

Figure 10: Detection accuracy of different models under 2-class tasks.

Table 3: Confusion matrix of model on KDDTest+ (2-class).

Actualclass
Predictedclass

Abnormal Normal
Abnormal 9362(↑) 3471
Normal 298 9413(↑)

100.00

98.00

96.00

94.00

92.00

90.00

88.00

86.00

D
et

ec
tio

n
ra

te
 (%

)

60 80 120 240
Number of hidden layer nodes

Learning rate-0.1
Learning rate-0.5
Learning rate-0.8

Figure 11: Detection rate of the model on the training set
(multiclass).

Scientific Programming 7

based on the fully connected RNN correctly detected 20
and 272 fewer connection records than the neural net-
work, respectively.

*e confusion matrices of the four attack types detected
by the model on the test set KDDTest+ are shown in
Tables 7–10. Table 10 shows that the model false positives
and recalls vary according to the type of attack. Table 11
shows the recall and false positive rates for different attack
types.

In order to compare the detection performance of the
fully connected neural network model and the partially
connected RNN model proposed in [9] for intrusion de-
tection, the training set and test set were constructed

according to the method mentioned in [9], as shown in
Table 12. In the experiments, the model was set to 20
HiddenNodes, the Learningrate was 0.1, and the training
epoch was 50 times. *e detection accuracy of the trained
model on the test dataset reaches 97.09%, which was higher
than 94.1% in the literature.

As shown in the experimental results above, the fully
connected model proposed in this study has stronger feature
space modeling ability and higher accuracy. Of course,
without GPU acceleration, the model training time based on
the fully connected RNN was 1765 seconds, which was
higher than the training time of the model based on the
partially connected RNN at 1383 seconds.

82.00

80.00

78.00

76.00

74.00

72.00

70.00

68.00

66.00

64.00

62.00

D
et

ec
tio

n
ra

te
 (%

)

60 80 120 240
Number of hidden layer nodes

Learning rate-0.1
Learning rate-0.5
Learning rate-0.8

Figure 12: *e detection rate of the model on the test set KDDTest+ (multiclassification).

D
et

ec
tio

n
ra

te
 (%

)

60 80 120 240
Number of hidden layer nodes

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

Learning rate-0.1
Learning rate-0.5
Learning rate-0.8

Figure 13: Detection rate of the model on the test set KDDTest−21 (multiclassification).

8 Scientific Programming

Table 4: Accuracy of models with different structures and Learningrates (multiclassification).

KDDTrain+ KDDTest+ KDDTest−21

(%)
HiddenNodes� 60,
Learningrate� 0.1 99.84% 79.87% 61.98

HiddenNodes� 60,
Learningrate� 0.5 99.87% 77.46% 57.18

HiddenNodes� 60,
Learningrate� 0.8 91.23% 69.29% 41.85

HiddenNodes� 80,
Learningrate� 0.1 99.82% 77.73% 57.84

HiddenNodes� 80,
Learningrate� 0.5 99.53% 81.29% 64.67

HiddenNodes� 80,
Learningrate� 0.8 98.97% 77.09% 56.64

HiddenNodes� 120,
Learningrate� 0.1 99.85% 77.02% 56.55

HiddenNodes� 120,
Learningrate� 0.5 99.87% 79.44% 61.11

HiddenNodes� 120,
Learningrate� 0.8 93.90% 70.32% 45.49

HiddenNodes� 160,
Learningrate� 0.1 99.68% 77.85% 58.05

HiddenNodes� 160,
Learningrate� 0.5 99.80% 78.73% 59.71

HiddenNodes� 160,
Learningrate� 0.8 92.79% 71.15% 45.64

J48 Naive
Bayes

NB
Tree

Random
Forest

Random
Tree

Multil
ayer

Percep
tron

SVM RNN

81.29%

64.67%

74.00%

50.70%

78.10%

58.40%

72.80%

49.70%

74.00%

50.80%

75.40%

55.40%

74.40%

55.77%

74.60%

51.90%

KDDTest+

KDDTest-21

KDDTest+
KDDTest-21

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

(%
)

Figure 14: Detection accuracy of different classification models under 5-class tasks.

Table 5: Confusion matrix of the neural network-based detection model on the test set KDDTest+ for multiclassification tasks.

Actual class
Predicted class

Normal DoS R2L U2R Probe
Normal 9397 65 23 6 220
DoS 1515 5798 0 0 145
R2L 1789 2 952 6 5
U2R 144 6 10 21 19
Probe 403 164 0 0 1854

Scientific Programming 9

5. Conclusion

Compared with traditional machine learning classification
models, fully connected recurrent neural network, as a deep
learning method, has stronger feature representation ability,
can more comprehensively map high-dimensional feature
space into low-dimensional feature representation, and has
the ability to express complex functions. *erefore, the
detection model based on the fully connected RNN can
detect a large number of abnormal attack records in binary
and multiclassification tasks, improve the accuracy of in-
trusion detection, and reduce the false positive rate. For
example, in terms of correctly classifying abnormal records,
the fully connected recurrent neural network-based detec-
tion model correctly detected 462 more records than the
neural network-based detection model when performing a
2-class task [34].

*e main contributions of this study are as follows:

(1) A new intrusion detection system based on fully
connected recurrent neural network (FCRNN-IDS)
was proposed, the training method of the model was
studied, and the detection rate of models with dif-
ferent structures and different Learningrates was
studied.

(2) Using the dataset NSL-KDD, the detection perfor-
mance of seven traditional machine learning
methods in 2-class and multiclass tasks was studied,
respectively. It lays a foundation for FCRNN-IDS
with traditional learning methods.

(3) *e detection accuracy of FCRNN-IDS in 2-class and
multiclassification tasks was studied, the perfor-
mance of FCRNN-IDS in detecting various types of
attacks was deeply analyzed, and the performance of
FCRNN-IDS in detecting various types of attacks
was compared.

Data Availability

*e dataset can be obtained from the corresponding author
upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] P. Torres, W. Lu, C. Catania, S. Garcia, and C. G. Garino, “An
analysis of recurrent neural networks for botnet detection
behavior,” in Proceedings of the 2016 IEEE Biennial Congress of
Argentina (ARGENCON), pp. 1–6, IEEE, Buenos, Aires,
Argentina, June 2016.

[2] S. Kudugunta and E. Ferrara, “Deep neural networks for bot
detection,” Information Science, vol. 467, pp. 312–322, 2018.

[3] M. Tavallaee and S. Garcia, “A Detailed Analysis of the KDD
CUP 99 Data set,” in Proceedings of the 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Ap-
plications, pp. 1–6, IEEE, Ottawa, ON, Canada, July 2009.

[4] P. S. Bhattacharjee, A. K. Fujail, and S. A. Begum, “Intrusion
detection system for NSL-KDD data set using victories fitness

Table 6: Confusion matrix of the model on the test set
KDDTest + for multiclassification tasks.

Actual class
Predicted class

Normal DoS R2L U2R Probe
Normal 9377 ⑴ 88 2 6 238
DoS 1011 6227 (f) 125 0 95
R2L 2058 0 680 ⑴ 6 10
U2R 149 0 11 23 (f) 17
Probe 231 166 5 0 2019 (f)

Table 7: DoS type confusion matrix.

Actual class
Predicted class

DoS Others
DoS 6227 1231
Others 254 12099

Table 8: R2L type confusion matrix.

Actual class
Predicted class

R2L Others
R2L 680 2074
Others 143 17646

Table 9: U2R type confusion matrix.

Actual class
Predicted class

U2L Others
U2R 23 177
Others 12 18303

Table 10: Probe type confusion matrix.

Actual class
Predicted class

Probe Others
Probe 2019 402
Others 360 16307

Table 11: Recall and false positive rates for different attack types.

Attack type False positive rate (%) Recall rate (%)
DoS 2.16 83.49
U2R 0.17 11.50
R2L 0.81 24.69
Probe 2.17 83.40

Table 12: Dataset composition.

Class Number of training set samples Number of test set
samples

Normal 19454 12118
DoS 78290 45970
Probe 822 834
U2R 12 48
R2L 226 3238

10 Scientific Programming

function in genetic algorithm,” Advances in Computational
Sciences and Technology, vol. 10, no. 2, pp. 235–246, 2017.

[5] R. A. R. Ashfaq, X. Z. Wang, J. Z. Huang, H. Abbas, and
Y. L. He, “Fuzziness based semi-supervised learning approach
for intrusion detection system,” Information Sciences, vol. 468,
pp. 470–486, 2019.

[6] B. Ingre and A. Yadav, “Performance Analysis of NSL-KDD
Dataset Using ANN,” in Proceedings of the 2015 International
Conference on Signal Processing and Communication Engi-
neering Systems (SPACES), pp. 93–95, IEEE, Guntur, India,
January 2015.

[7] M. Sheikhan, Z. Jadidi, and A Farrokhi, “Intrusion detection
using reduced-size RNN based on feature grouping,” Neural
Computing & Applications, vol. 21, no. 6, pp. 1185–1190, 2012.

[8] Y.Wang andW.. Cai, “A deep learning approach for detecting
malicious JavaScript code,” Security and Communication
Networks, vol. 9, no. 11, pp. 1520–1534, 2016.

[9] L. Deng, D. Li, and X. Yao, “Mobile Network Intrusion
Detection for IotSystem Based on Transfer Learning Algo-
rithm,” Cluster Computing, vol. 22, no. 2, pp. 1–16, 2020.

[10] Z. Li and W. Ou, “Network communication intervention
strategy for probabilistic model detection,” Small Micro
Computer System, vol. 38, no. 6, pp. 1175–1180, 2019.

[11] S. Wang, “Research on computer maintenance methods based
on virus prevention and control[J],” Electronic Components
and Information Technology, vol. 3, no. 08, pp. 108–111, 2019.

[12] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity
in mobile cloud computing: taxonomy and open challenges,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 369–392, 2014.

[13] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J Han,
“When intrusion detection meets blockchain technology: a
review,” IEEE Access, vol. 6, pp. 10179–10188, 2018.

[14] K. Wang, M. Du, S. Maharjan, and Y. Sun, “Strategic hon-
eypot game model for distributed denial of service attacks in
the smart grid,” IEEE Transactions on Smart Grid, vol. 8, no. 5,
pp. 2474–2482, 2017.

[15] X. Liu, P. Zhu, Y. Zhang, and K. Chen, “A collaborative
intrusion detection mechanism against false data injection
attack in advanced metering infrastructure,” IEEE Transac-
tions on Smart Grid, vol. 6, no. 5, pp. 2435–2443, 2015.

[16] Y. Xiao, Research and Analysis of Virus Propagation Model
and Immune Strategy in Complex Network, Southwest Uni-
versity, 2016.

[17] C. Network, Based Application Recognition, 2017, https://
www.cwasco.com/c/en/us/products/ios-nx-os-softwwere/
network-based-application-recognition-nbar/index.html?
dtid�osscdc000283 (MBAR)[EB/OL].

[18] P. Ponmurugan, C. Venkatesh, M. D. Priyadharshini, and
S. Balamurugan, “Intrusion detection strategies in smart
grid,” in Design and Analysis of Security Protocol for Com-
munication, pp. 211–233, Scrivener Publishing, 2020.

[19] K. Song, P. Kim, V. Tyagi, and S. Rajasekaran, “Artificial
Immune System (AIS) Based Intrusion Detection System
(IDS) for Smart Grid Advanced Metering Infrastructure
(AMI) Networks,” CS4624: Multimedia, Hypertext, and In-
formation Access, Virginia Tech, 2018.

[20] Y. Cui, “Modeling of Ideological and Political Education
System in Colleges and Universities Based on Naive Bayes-BP
Neural Network in the Era of Big Data,” Mobile Information
Systems, vol. 2022, Article ID 7609697, 9 pages, 2022.

[21] M. Chen, J. Cheng, G. Ma, L. Tian, X. Li, and Q. Shi, “Service
Composition Recommendation Method Based on Recurrent

Neural Network and Naive Bayes,” Scientific Programming,
vol. 2021, Article ID 1013682, 9 pages, 2021.

[22] L. Li, B. Lei, and C. Mao, “Digital twin in smart
manufacturing,” Journal of Industrial Information Integration,
vol. 26, no. 9, Article ID 100289, 2022.

[23] L. Li, T. Qu, Y. Liu et al., “Sustainability assessment of in-
telligent manufacturing supported by digital twin,” IEEE
Access, vol. 8, pp. 174988–175008, 2020.

[24] Z. Zhang and S. Zhang, “Application of internet of things and
naive Bayes in public health environmental management of
government institutions in China,” Journal of Healthcare
Engineering, vol. 2021, p. 7, 2021.

[25] J. Yang, Y. Huang, R. Zhang, F. Huang, Q. Meng, and S. Feng,
“Study on PPG Biometric Recognition Based on Multifeature
Extraction and Naive Bayes Classifier,” Scientific Program-
ming, vol. 2021, Article ID 5597624, 12 pages, 2021.

[26] Y. Xiong, M. Ye, and C. Wu, “Cancer classification with a
cost-sensitive naive Bayes stacking ensemble,” Computational
and Mathematical Methods in Medicine, vol. 2021, p. 12, 2021.

[27] L. Li, C. Mao, H. Sun, Y. Yuan, and B. Lei, “Digital twin driven
green performance evaluation methodology of intelligent
manufacturing: hybrid model based on fuzzy rough-sets AHP,
multistage weight synthesis, and PROMETHEE II,” Com-
plexity, vol. 2020, no. 6, Article ID 3853925, 24 pages, 2020.

[28] P. Tao, H. Shen, Y. Zhang, P. Ren, J. Zhao, and Y. Jia, “Status
forecast and fault classification of smart meters using
LightGBM algorithm improved by random forest,” Wireless
Communications and Mobile Computing, vol. 2022, p. 11,
2022.

[29] R. Li, W. Zhang, S. Shen et al., “An intelligent heartbeat
classification system based on attributable features with
AdaBoost+Random forest algorithm,” Journal of Healthcare
Engineering, vol. 2021, Article ID 9913127, 19 pages, 2021.

[30] L. Li and C. Mao, “Big data supported PSS evaluation decision
in service-oriented manufacturing,” IEEE Access, vol. 8,
no. 99, pp. 154663–154670, 2020.

[31] P. Fan, “Random Forest Algorithm Based on Speech for Early
Identification of Parkinson’s Disease,” Computational Intel-
ligence and Neuroscience, vol. 2022, Article ID 3287068,
6 pages, 2022.

[32] H. Alla, L. Moumoun, and Y. Balouki, “A Multilayer Per-
ceptron Neural Network with Selective-Data Training for
Flight Arrival Delay Prediction,” Scientific Programming,
vol. 2021, Article ID 5558918, 12 pages, 2021.

[33] F. Sayyahi, S. Farzin, and H. Karami, “Forecasting daily and
monthly reference evapotranspiration in the aidoghmoush
basin using multilayer perceptron coupled with water wave
optimization,” Complexity, vol. 2021, Article ID 6683759,
12 pages, 2021.

[34] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant,
“Predicting domain generation algorithms with long short-
term memory networks,” 2019, https://arxiv.org/abs/1611.
00791.

Scientific Programming 11

https://www.cwasco.com/c/en/us/products/ios-nx-os-softwwere/network-based-application-recognition-nbar/index.html?dtid=osscdc000283
https://www.cwasco.com/c/en/us/products/ios-nx-os-softwwere/network-based-application-recognition-nbar/index.html?dtid=osscdc000283
https://www.cwasco.com/c/en/us/products/ios-nx-os-softwwere/network-based-application-recognition-nbar/index.html?dtid=osscdc000283
https://www.cwasco.com/c/en/us/products/ios-nx-os-softwwere/network-based-application-recognition-nbar/index.html?dtid=osscdc000283
https://arxiv.org/abs/1611.00791
https://arxiv.org/abs/1611.00791

