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Audio processing has become an inseparable part of modern applications in domains ranging from health care to speech-
controlled devices. In automated audio segmentation, deep learning plays a vital role. In this article, we are discussing audio
segmentation based on deep learning. Audio segmentation divides the digital audio signal into a sequence of segments or frames
and then classifies these into various classes such as speech recognition, music, or noise. Segmentation plays an important role in
audio signal processing. The most important aspect is to secure a large amount of high-quality data when training a deep learning
network. In this study, various application areas, citation records, documents published year-wise, and source-wise analysis are
computed using Scopus and Web of Science (WoS) databases. The analysis presented in this paper supports and establishes the
significance of the deep learning techniques in audio segmentation.

1. Introduction

The fundamental goal of audio segmentation is to divide an
audio signal into small segments so that the entities may be
easily identified. Each segment contains audio data from a
certain acoustic category, such as speech, animal voices,
music, human activity sounds, environmental sounds, and
so on [1]. The level of abstraction in audio class analysis
varies depending on the deployment. For example, the radio
broadcast audio signal segmentation has focused on
detecting speech, silence, and other noise disturbances [2].
The general concept and process of audio segmentation are
given in Figure 1. The audio stream is fed into an audio

segmentation architecture, which is an open form of ar-
chitecture that can take many various kinds [3]. Tradi-
tionally, to produce meaningful and quality segments, audio
signal is passed through several stages of processing, as
shown in Figure 1. The output stream, which contains an
adjunct data series of segment-level labels, is then trans-
mitted to a routing switch, where each audio form is routed
to the proper type of post-processing [4]. Speech parts are
driven into automatic speech recognizers for linguistic or
speaker role processing in broadcast transmissions, while
music parts are driven into a sound effect collection library
[5]. For each audio sequence, segmentation is performed by
computing multiple features [6]. These characteristics are
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FIGUure 1: Audio segmentation process.

calculated on an audio segment, a frame, or a set of samples
that is a subset of the audio segment.

In recent years, audio segmentation and deep learning
have received widespread attention for research focus.
Several countries and researchers have successfully applied
audio segmentation techniques in various fields like speech
recognition, music, or noise removal with different deep
learning algorithms [7]. A study analysis literature review
method was employed by analyzing articles and conferences
published from 2005 to 2021 using the VOS viewer software.
One hundred seventy documents were downloaded in
(.CSV) file format using two keywords, “Audio Segmenta-
tion” and “Deep Learning,” from the Scopus database.

1.1. Audio Data Analysis. A sound is represented as an audio
signal in which the frequency, bandwidth, decibel, and so on
are the parameters. A typical audio signal can be represented
as a function of Amplitude and Time [8]. Several digital
devices help in the audio recording and then represent these
sounds in a computer-readable way. These are some in-
stances of these formats:

(i) mp3 (MPEG-1 Audio Layer 3) format
(ii) wav (Waveform Audio File) format
(iii) WMA (Windows Media Audio) format

The extraction of acoustics features relevant to the task at
hand is involved a typical audio data processing procedure
followed by decision-making techniques, including detec-
tion and classification. As a result, audio data analysis is used
to analyze and comprehend audio signals captured by digital
equipment, with various applications in healthcare, pro-
duction, and enterprise [9]. Among these, applications are
customer intelligence analysis from user service calls, social-
media content analysis, medical aids, patient-care systems,
and public safety.

1.2. Related Work. 1In the task of audio segmentation, several
authors have devised a segmentation approach by a classi-
fication system based on neural networks. A multilayer
perceptron trained using genetic algorithms to achieve
multiclass audio segmentation is an example of a feed-
forward network. Many data are needed to train deep neural
networks for reliable predictions [10]. Some studies have
used data augmentation approaches to expand the quantity
of data to overcome these problems. To tackle the data
shortage problem, Raza used two approaches to enhance the
amount of the dataset.

The authors suggested that the noise injection method
effectively covers data shortage. Normally, data is audio data
that has augmented to prevent overfitting by deliberately
injecting noise; it adds random noise to the audio signal and
performs audio transformation that slightly deforms the
pitch and tempo [11]. When data augmentation is per-
formed, the standard quality of the source data has a vital
influence. High-quality data mean a clear signal without any
other type of noise in the audio signal. However, noise is
unavoidable during recordings, and every sound recording
has a different length [12]. For effective analysis, noise re-
moval is very important, and normalizing and generalizing
the raw dataset is also required.

A study showed an improvement in performance by
conducting denoising in the preprocessing step [13]. The
authors mentioned the importance and effect of data
generalization [14]. It is important to extract appropriate
features for each label to classify the data according to the
class. There are several methods for extracting the data,
like MFCC, spectrogram, and using a deep learning
network.

2. Research Trends in Web of Science
Database for Audio Segmentation Based on
Deep Learning

In Figure 2, we have presented the Source-Wise Analysis of
audio segmentation and deep learning research trends using
the Web of Science Database [15]. The experiment was
conducted based on the data collected and analyzed from the
Web of Science database using two keywords, “Audio
Segmentation” and “Deep Learning,” from 1999-2021. Se-
venty-five publications selected from the Web of Science
Core Collection are shown in Figure 2. Figure 2 represents
the sources or the fields where the audio segmentation is
used with deep learning. In Engineering Electrical Elec-
tronic, the audio segmentation has 36 publication records,
the maximum values in the Web of Science Database. The
second highest records are 22 documents in Computer
Science Artificial Intelligence. Also, in Acoustics, the audio
segmentation has 16 documents and 14 in Computer Science
Information Systems [16].

In Figure 3, we represent the research work related to
audio segmentation that started majorly in 2005. Until a
decade, there was a very slow increase in this type of re-
search, but post-2016, there was a sharp rise in this area of
research [17]. The exponential increase in research trends
can be seen in audio segmentation-related research since
2017.
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FIGURE 3: Trend analysis of audio segmentation.

It replicates that audio segmentation and deep learning
field is becoming an attractive research area in the steady
research zone progressively as citation number is growing
previous five years [18]. It is undoubtedly realized that there
is the maximum number of publications accomplished in
2019 out of the last fifteen years (2005 to 2021) in this area of
research. In the current year, 2021 has witnessed consid-
erable confidence amongst researchers regarding its appli-
cation in this domain for research, that is why most
publications related to this field have been published [19]. As
per the trend analysis, there is a very high potential for
research in this domain, as shown by the cumulative rising
pattern of research for audio segmentation methods [20].

2.1. Keywords Related to Audio Segmentation and Deep
Learning. There are six different clusters of keywords in the

co-occurrence network, which can be created using the VOS
viewer software. In this network visualization, each cluster
has a different colour [21]. This analysis considers the
keywords that appeared in at least three collected docu-
ments. From 1310 keywords, only 119 have met the
threshold represented in co-occurrence network visualiza-
tion to compose the critical areas of audio segmentation and
deep learning, as shown in Figure 4.

The colours red, blue, and green are shown in Figure 4 to
represent co-occurrence in the related keywords. The shades
of purple, orange, and so on show that the co-occurrence is a
combination of two or more two domains.

2.2.  Year-Wise Publications and Research Trends.
Figure 5 shows the publication variations published from
2005 to 2021, showing the gradual increase in the number of
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FiGUure 4: Co-occurrence keyword network on audio segmentation and deep learning.
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FIGURE 5: A graphical representation of the publication’s year-wise.

publications in audio segmentation based on deep learning
techniques [22].

Figure 5 shows the distribution of documents pub-
lished by year related to the application of audio seg-
mentation with deep learning techniques [23]. The
research related to this domain started from 2005 to 2012
gradually. Furthermore, since 2016, the number of pub-
lications dealing with audio segmentation methods
has continuously increased trends in research. In this
sense, it is evident that many documents have been
published during the last two years (2019 and 2020), with

used to evaluate efficiency [25]. Researchers have worked
globally in implementing various audio segmentation ap-
plications, as shown in Figure 6.

Table 1 shows the top 20 countries, the number of re-
search documents related to audio segmentation, and ci-
tations. Figure 6 shows the Density Visualization for global
research analysis of audio segmentation researchers based
on the Scopus database [26]. As we can see, those two
countries the United States and China have strong links by
comparing to other countries [27]. So, their clustering is
highest among the other countries [28].

As described in the given table, maximum number of
publications was published in the United States [29]. These
data are extracted from the Scopus database having a
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FIGURE 6: Global research trends for audio segmentation.

TaBLE 1: Publications and citations (country-wise) and global TaBLE 2: Author-wise citations for audio segmentation research
occurrence analysis. trends along with year and references.
S. no. Country Documents Citations S. no. Document Citations Reference
1 United States 30 220 1 Zhang s. (2018) 94 [17]
2 China 28 247 2 Huang h. (2020) 63 [32]
3 India 11 26 3 Wang z. (2018) 43 [19]
4 Canada 7 58 4 Messner e. (2018) 42 [20]
5 United Kingdom 7 19 5 Leglaive s. (2018) 34 [18]
6 France 6 74 6 Baraldi 1. (2017) 33 [13]
7 Germany 6 12 7 Gwardys g. (2014) 25 [11]
8 Japan 6 87 8 Akbari m. (2019) 24 [24]
9 South Korea 5 24 9 Lim m. (2018) 21 [21]
10 Spain 4 6 10 Leglaive s. (2019) 20 [25]
11 Switzerland 4 11 11 Lu w.-t. (2018) 20 [22]
12 Australia 3 15 12 Deng j. (2016) 16 [12]
13 Taiwan 3 29 13 Wu y. (2019) 15 [26]
14 Austria 2 42 14 Rahmani m.h. (2017) 15 [14]
15 Bangladesh 2 12 15 Min x. (2020) 14 [33]
16 Brazil 2 0 16 Laporte c. (2018) 14 [23]
17 Greece 2 4 17 Valliappan c.a. (2019) 13 [28]
18 Iran 2 15 18 Jati a. (2017) 13 [15]
19 Italy 2 35 19 Guo j. (2019) 12 [27]
20 Netherlands 2 7 20 Hossain s. (2019) 12 [29]
21 Baby a. (2017) 11 [16]
22 Leglaive s. (2020) 10 [34]
minimum of three documents [30]. United States, China, 23 Hesamian m.h. (2019) 10 [30]
and India are the top three countries, respectively, where 24 Li h. (2019) 10 [31]

research on audio segmentation is highest, and the entire
documents and citations are as high. It clearly shows how the
related research is co-related [31].

In this study, India has 11 documents and 26 citations,
indicating that Indian authors are more actively involved in
research based on the audio segmentation field [32]. So,  2.4. Prominent Researchers for Audio Segmentation. The
most researchers are from the United States, China, and  publication searched from the Scopus database using two

India, and a lot of research potential lies in countries like
Canada and the United Kingdom [33].
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FIGURE 7: Author-wise analysis of research trends in audio segmentation.

search keywords, “Audio Segmentation” and “Deep
Learning,” has been cited several times as described in
Table 2. By applying the filter of a minimum of 10 citations
for each document, we got 24 publications [34]. Table 2
represents the citations for 24 publications identified using
the VOS viewer software package.

Figure 7 shows the author-wise analysis of audio seg-
mentation research content based on the Scopus database.
The number mentioned in author’s citations is ninety-four,
the highest number in this research area. From Figure 7, we
can say that Zhang s. (2018) is cited most. Huang h. (2020) is
the second-largest because of the number of citations. The
number of citations of Huang h. (2020) is sixty-three.

3. Application Areas of Audio Segmentation

Audio segmentation is often utilized in various applications,
like Automatic Speech Recognition [35], Automatic

Language Identification, and Automatic Emotion Recog-
nition systems [36]. The audio signal is segmented into a
sequence of frames and classified into several classes like
music [37], speech [38], noise [39], and so on. The noise is
filtered out of the sound signal in this approach because
audio recordings are significant variations, like ratio [40],
audio encoding [41], bandwidth [42], language [43],
speaking styles [44], gender [45], and sound pitch [46],
which are the challenges.

Segmentation provides the most effective method for
splitting multimedia data into digital data by extracting
diverse aspects of multimedia data [47]. This segmentation
yields useful information such as speaker signal and identity
division, as well as automatic indexing and data retrieval of
all instances of a certain speaker [48]. We can do automatic
online speech recognition acoustic models to improve
overall system performance by collecting all segments
produced by the same speaker [49]. Typically, a certain set of
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properties is extracted from each audio frame [50]. Features
are used two ways: with the extracted value or changes over
time [51]. It is feasible to calculate statistical features such as
variance and variance using changes over time [52].

Audio segmentation is used to analyze and understand
the audio recordings, with several applications in healthcare,
production, and enterprise [53]. Among these, applications
are customer intelligence analysis from user service calls,
social-media content analysis [54], medical aids, patient-care
systems, and public safety [55]. In healthcare, with the as-
sistance of audio segmentation, a real-time cardiac arrest
detection system monitors and detects any upcoming heart-
related diseases [56]. It categorized the heart sound re-
cordings into normal and abnormal heart sounds per per-
ceived health risk. The system can provide the potential to
monitor many people at a time and supply fast and effective
warnings to doctors for further treatments [57].

The experiments conducted have major relevance and
contribute to predicting future study domain trends. The
various experiments such as source-wise, author-wise,
country-wise, citation-wise, and so on give us knowledge of
work conducted in this domain and the possible areas of
turther research [58]. The author-wise analysis gives us
information about various authors working in this domain.
Similarly, source-wise information helps us understand the
various sources where information relevant to the work can

be found.

4. Conclusions

As speech technologies’ applications are progressing, audio
segmentation techniques’ significance is also increasing. The
huge surge in the number of research articles on deep
learning-based audio segmentation indicates the paramount
importance of these techniques. This paper highlights the
applications and source-wise research significance of audio
segmentation. The analysis presented in this paper also
exhibits the clear and strong relationship between audio
segmentation and deep learning techniques. This work can
further be extended to include the domain-specific and
contextual analysis of audio segmentation techniques.
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