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Density peaks clustering (DPC) is a well-known density-based clustering algorithm that can deal with nonspherical clusters well.
However, DPC has high computational complexity and space complexity in calculating local density ρ and distance δ, which
makes it suitable only for small-scale data sets. In addition, for clustering high-dimensional data, the performance of DPC still
needs to be improved. High-dimensional data not only make the data distribution more complex but also lead to more
computational overheads. To address the above issues, we propose an improved density peaks clustering algorithm, which
combines feature reduction and data sampling strategy. Specifically, features of the high-dimensional data are automatically
extracted by principal component analysis (PCA), auto-encoder (AE), and t-distributed stochastic neighbor embedding (t-SNE).
Next, in order to reduce the computational overhead, we propose a novel data sampling method for the low-dimensional feature
data. Firstly, the data distribution in the low-dimensional feature space is estimated by the Quasi-Monte Carlo (QMC) sequence
with low-discrepancy characteristics. /en, the representative QMC points are selected according to their cell densities. Next, the
selected QMC points are used to calculate ρ and δ instead of the original data points. In general, the number of the selected QMC
points is much smaller than that of the initial data set. Finally, a two-stage classification strategy based on the QMC points
clustering results is proposed to classify the original data set. Compared with current works, our proposed algorithm can reduce
the computational complexity from O(n2) to O(Nn), where N denotes the number of selected QMC points and n is the size of
original data set, typically N≪ n. Experimental results demonstrate that the proposed algorithm can effectively reduce the
computational overhead and improve the model performance.

1. Introduction

With the advent of the era of big data, the importance of data
mining is increasingly prominent [1]. As an unsupervised
learning method, clustering is widely used in many different
fields including image processing, medicine, and archaeol-
ogy./ere are various classical clustering algorithms, such as
K-means [2], DBSCAN [3], and AP [4]. According to dif-
ferent standards, clustering algorithms are classified into
different categories. Generally speaking, clustering algo-
rithms are divided into partition-based methods, hierarchy-

based methods, density-based methods, and grid-based
methods.

In recent years, a new density peaks clustering (DPC)
algorithm has been proposed [5]. It is a typical density-based
clustering algorithm with excellent advantages. One ad-
vantage is that the DPC relies on the decision graph to select
the clustering center. Specifically, DPC draws the decision
graph of the data set by defining local density ρ and distance
δ. /en, DPC determines the cluster centers based on the
decision graph. /e obtained cluster centers have two
characteristics: (1) /e local density of the cluster centers is
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large and the density of its neighborhood is not greater than
itself. (2) /e distance between the cluster centers and other
data points with a higher density is relatively large. Hence,
the cluster centers are data points with high local density and
high distance, which are called density peaks. Another ad-
vantage is that DPC can not only deal with clusters of ar-
bitrary shape but also does not need to determine the
number of categories in advance.

Although DPC has achieved good performance in many
situations, it still has some drawbacks. Firstly, DPC needs to
calculate the local density and distance of each data point,
which makes the computational complexity O(n2). /e
expensive computational overhead limits the application of
DPC in large-scale data sets. To address this issue, the study
in [6] proposed a distributed density peaks clustering al-
gorithm (EDDPC). EDDPC aggregates large-scale data sets
into MapReduce and integrates local results to approximate
the final results. However, EDDPC is a distributed algorithm
and is not suitable for single CPU scenarios. /e study in [7]
proposed a density-based and grid-based clustering algo-
rithm (DGB). Instead of calculating distances between all
data, only a smaller number of grid points are calculated.
However, DGB is only suitable for dealing with high-di-
mensional data set. In general, the data distribution in high-
dimensional space may be more complex and contain more
noise. Although [8, 9] are proposed to filter the noise, ad-
ditional operations increase the computational overhead.

To address the above problems, an improved density
peaks clustering algorithm combining feature reduction and
data sampling strategy is proposed in this paper. Firstly, the
original data feature space is compressed by some classical
feature reduction methods. /en, the low-dimensional
feature data are sampled by super-uniformly Quasi-Monte
Carlo sequence, and the selected high-density Quasi-Monte
Carlo points are used to replace the original data points for
clustering. Finally, we perform a two-stage strategy to de-
termine the category for the original data. /e proposed
method has the following advantages:

(1) /e proposed algorithm reduces the computational
complexity from O(n2) to O(Nn), where N and n

represent the number of selected QMC points and
the size of original data set, respectively. In general,
there is N≪ n

(2) /rough feature reduction, the proposed algorithm
reduces the noise form the original data and de-
creases the complexity of high-dimensional feature
space

(3) Extensive experiments have demonstrated the ef-
fectiveness of our proposed algorithm in terms of
computational overhead and model performance

2. Related Work

2.1. FeatureReduction. Feature reduction indicates mapping
the data from the high-dimensional feature space to a low-
dimensional space. /e features of the high-dimensional
data will be extracted by linear or nonlinear transformation.

Hence, efficient low-dimensional features of the original
data set can be obtained by various feature reduction
methods. An ideal low-dimensional feature should retain the
classification information as much as possible and filter the
noise.

Generally speaking, feature reduction can be divided
into linear and nonlinear feature reduction methods.
Principal component analysis (PCA) is a classical linear
feature reduction method [10]. PCA transforms a group
of variables that may correlate with linearly uncorrelated
variables by orthogonal transformation. Auto-encoder
(AE) and t-distributed stochastic neighbor embedding (t-
SNE) are nonlinear feature reduction methods. AE can be
regarded as a self-supervised manner that consists of the
encoder and the decoder [11]. /e input data will be
mapped to the hidden layer by the encoder, while the
decoder transforms the hidden layer features back to the
input. Its goal is to combine some high-order features to
reconstruct itself. /e t-SNE is a machine learning
method basing stochastic neighbor embedding (SNE) for
feature reduction [12]. t-SNE maps high-dimensional
data to two or more dimensions and alleviates the
congestion problem in the process of feature reduction.
All the above methods have been applied in many fields
[13–15].

2.2. Density Peaks Clustering. Density peaks clustering
(DPC) is proposed in [5], and it can efficiently deal with
arbitrary shape data sets without specifying the cluster
number k in advance./e cluster center selected by DPC has
two characteristics: (1) the local density of the cluster center
should be larger than the local density of its neighbors; (2)
Data points with low local density should be far away from
other data points with high local density. To describe these
characteristics, DPC defines two concepts for each data point
xi: the local density ρi and the minimum distance δi. /e
local density ρi is formulated as

ρi � 􏽘
j

X dij − dc􏼐 􏼑,

X(x) �
1 x< 0

0 x≥ 0
,􏼨

(1)

where dij represents the distance between xi and xj. dc is the
intercept, which is the only artificially defined parameter in
DPC. In the code provided by [5], dc is formulated as

dc � dNd
× 2%, (2)

where dNd
is the size of the distance matrix, which defines

the distance between any data point pairs. When the data set
is small, the Gaussian kernel function is used to calculate ρi.
ρi is formulated as

ρi � 􏽘
j

exp −
d
2
ij

d
2
c

⎛⎝ ⎞⎠, (3)
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In addition, δi is formulated as

δi �
minj: pj >pi

dij ∃j s.t.pj >pi

maxj : dij otherwise
.

⎧⎨

⎩ (4)

DPC draws the decision graph based on ρi and δi. /en,
DPC selects the data points with both ρi and δi as the cluster
centers and assigns the remaining data points to the nearest
class. DPC is a simple and efficient algorithm, and a series of
works have been carried out [16–22]. However, DPC re-
quires a huge computational overhead. /e computational
complexity of the DPC is O(n2), which makes it unsuitable
for large-scale data set. To address this problem, a feasible
strategy is to sample the data set [23]. Our work is based on
the sampling strategy to reduce the computational overhead.

2.3. Quasi-Monte Carlo. As a statistical test method, the
Monte Carlo method has been widely used in machine
learning. /e Quasi-Monte Carlo method is similar to the
Monte Carlo method, but there are theoretical differences
between them. /e superiority of the Quasi-Monte Carlo
method is to generate the deterministic super-uniformly
distributed sequence (called low-discrepancy sequence in
mathematics) instead of the pseudo-random sequence
generated by the Monte Carlo method. /e Quasi-Monte
Carlo method has been widely used in the field of machine
learning [24, 25]. Specifically, the study in [24] utilizes the
Quasi-Monte Carlo method to reduce the computational
overhead that occurs in the parameter optimization process
of neural networks. /e study in [25] generates the Quasi-
Monte Carlo sequence to perform the feature map and
obtains the low-rank features. Similarity, we generate Quasi-
Monte Carlo sequence for data sampling. Next, we briefly
describe the Quasi-Monte Carlo sequence.

/e Quasi-Monte Carlo Random sequence is a deter-
ministic super-uniformly distributed sequence with low de-
viation. It has the property that any long subsequences are
uniformly distributed in the feature space. Recently, the most
widely used Quasi-Monte Carlo Random sequence mainly
includes Halton sequence [26], Faure sequence [27], and
Niederreiter’s (t, s) sequence [28]. In our work, the Halton
sequence is selected to perform the sampling strategy.

/e Halton sequence is one of the standard low-dis-
crepancy sequences, which is used to generate super-uni-
formly distributed random numbers. Compared with
pseudo-random numbers generated by the Monte Carlo
method, it is mathematically proved that the volatility of the
Halton sequence is smaller. Specifically, the approximate
error of the Halton sequence is determined by the degree of
difference of the sequence x1, . . . , xN􏼈 􏼉. /e approximate
error is formulated as the following equation:

1
N

􏽘

N

k�1
f xk( 􏼁 − 􏽚

Is

f(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤V(f)DN, (5)

where |1/N 􏽐
N
k�1 f(xk) − 􏽒

Is f(x)dx| is the error term, V(f)

is the Hardy-Krause variation of the function f, and DN is
the deviation of (x1 · · · xN).

Because the order of DN is O((log N)s− 1/N), the ap-
proximate error order of the Quasi-Monte Carlo method is
O(1/N). Similarly, the error order of the pseudo-random
sequence is O(1/

��
N

√
). Compared with the above error

orders, the error order of the Quasi-Monte Carlo method is
smaller than that of the Monte Carlo method. Note that the
above discussion only gives the upper limit of approximate
error. In fact, the convergence rate of the Halton sequence is
much faster than the rate obtained by the upper limit.
Generally speaking, the Quasi-Monte Carlo method greatly
speeds up the convergence compared with the Monte Carlo
method, and the random numbers generated by the Quasi-
Monte Carlo method are more uniform.

/e Monte Carlo method generates the pseudo-random
numbers, and the Quasi-Monte Carlo method generates the
quasi-random numbers. Figure 1 shows the comparison
between the quasi-random numbers and the pseudo-ran-
dom numbers on a two-dimensional plane. As shown in
Figure 1, the pseudo-random numbers are not uniformly
distributed in some places. However, the Halton sequence is
highly uniformly distributed in the whole space. Intuitively,
the Quasi-Monte Carlo method may be more comprehen-
sive, while the Monte Carlo method has more blank areas.
Hence, this paper adopts the Halton sequence to sample the
original data and further proposes a new density peaks
clustering algorithm.

3. Description of the Algorithm

In this section, a novel improved density peaks clustering
algorithm based on the Quasi-Monte Carlo method (QMC-
DPC) is proposed to improve the performance of DPC.
Specifically, the proposed method includes two components:
the feature reduction module and the data sampling module.

3.1. 2e Feature Reduction Module. In this module, we aim
to reduce the feature dimension of data sets. /e original
data set X ∈ Rn×m will be transformed to X′ ∈ Rn×d by
various feature reduction methods, where d≤m. Our goal is
to retain the original information as much as possible while
reducing the dimension of the data.

In practice, we utilize linear and nonlinear feature re-
duction methods, including PCA, AE, and t-SNE, respec-
tively. Firstly, we perform the zero-mean normalization for
X. For x1, x2, . . . , xn ∈ X, we calculate the mean
x � 1/n 􏽐

n
i�1 xi and the standard deviation

s �

������������������

1/n − 1􏽐
n
i�1 (xi − x)2

􏽱

. Hence, we can obtain the nor-
malized numbers 􏽥xi � xi − x/s, i ∈ 1, . . . , n. /en, PCA, AE,
and t-SNE are implemented on the normalized data set 􏽥X.
For PCA, we choose the number of principal components
that are smaller than the original dimension of the data set
(except for the two-dimension data set). We keep the
original dimension for the two-dimension data set. For AE,
we set the AE with three layers, including an encoder, a
decoder, and a hidden layer. /e dimension of encoder and
decoder is equivalent to d and the number of hidden layer
units is equivalent to d. For the input data X, we select the



hidden layer features as the X′. For t-SNE, the similarity
between data points is measured by probability instead of
Euclidean distance. Specifically, the similarity of data points in
the original feature space is calculated by Gaussian joint
probability, while the heavy-tailed student t-distribution is
used in the low-dimension tomeasure the similarity./en, we
minimize the KL divergence to obtain the reduced features
X′. Figure 2 shows the obtained two-dimensional features of
PCA, AE, and t-SNE onWaveform and Landsat. /e original
dimensions of Waveform and Landsat are more than 20.
From Figure 2, it can be seen that the low-dimensional
features that map from higher-dimensional data are distin-
guishable. In Section 4, we will discuss how to select the
feature reduction method by experimental analysis.

3.2. 2e Data Sampling Module. Although we compress the
feature dimension of data sets through the feature reduction
module, the computational complexity of the DPC is still
O(n2). In this module, we aim to reduce the time overhead of
DPC. Hence, an improved Density Peaks Clustering algo-
rithm based on super-uniformly Quasi-Monte Carlo se-
quence (QMC-DPC) is proposed. In summary, we utilize the
super-uniformly Quasi-Monte Carlo sequence to sample the
low-dimensional feature space of the data set. /en, the
representative Quasi-Monte Carlo points are used to cal-
culate δi and ρi instead of the original data. Generally
speaking, the number of selected Quasi-Monte Carlo points
is much smaller than the size of original data set n. /e
detailed description of QMC-DPC is given in the following.

Specifically, we first define two basic concepts as follows:

(1) Circular data unit C: the circle with the Quasi-Monte
Carlo points as the center and radius r

(2) Unit density Cu d: the number of data points con-
tained in circular data unit c

Assume that X′ � x1′, x2′, . . . , xn
′􏼈 􏼉, X′εRn×d is the low-

dimensional feature data set obtained by the feature re-
duction module. We randomly generate N0 Quasi-Monte
Carlo points in the feature space. With the Quasi-Monte
Carlo points as the centers, the corresponding C are
determined under the appropriate r (When d is small, the
parameter r � d/2

���
N0

􏽰
after experiments). /en,

according to whether C contains data points or not, the
circular data units are divided into two categories: non-
empty unit set and empty unit set, where a nonempty unit
set Cne � C|Cu d > 0􏼈 􏼉 and empty unit set Ce � C|Cu d � 0􏼈 􏼉.
Next, since the empty unit set indicates that it does not
contain any data, empty unit set and corresponding
Quasi-Monte Carlo points are eliminated. /e effect is
shown in Figure 3.

As shown in Figure 3, the remaining nonempty Quasi-
Monte Carlo points are distributed around the sample
points, while the removed empty Quasi-Monte Carlo
points are far from the sample points. Hence, the distri-
bution of the original data set can be sampled by nonempty
Quasi-Monte Carlo points. Furthermore, the local density
of the original data set can be estimated by the unit density
Cu d. /erefore, it is reasonable to utilize the nonempty
Quasi-Monte Carlo points to calculate local density ρ and
minimum distance δ instead of the original data points.
Next, for all the nonempty Quasi-Monte Carlo points
(assuming that the number of the nonempty Quasi-Monte
Carlo points are N, there is generally N≪N0), the distance
of the nonempty Quasi-Monte Carlo point pairs is cal-
culated to obtain the distance matrix A:

A �

d11 · · · d1N

⋮ ⋱ ⋮

dN1 · · · dNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0 · · · d1N

⋮ ⋱ ⋮

dN1 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)
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Figure 1: 500 random points of pseudo-random numbers and the quasi-random numbers. (a) Quasi-random numbers (Halton sequence).
(b) Pseudo-random numbers.
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whereAεRN×N is a symmetric matrix with diagonal elements
that are zero. dN is the ascending order of all elements in A.
When N is too small, the dc � dN × 2% may be zero which
indicates that the function of intercept dc is eliminated.
Hence, we remove the zero elements in A and take the first
2% distance from the remaining N2 − N elements as the dc.
/en, we use equations (3) and (4) to calculate ρi and δi of
each nonempty Quasi-Monte Carlo point and draw the
decision graph. Figure 4 shows the decision graph of QMC-
DPC and DPC on Waveform.

As shown in Figure 4, the density peaks obtained by
QMC-DPC are easier to distinguish than that of DPC, es-
pecially on the low-dimensional features generated by AE
and t-SNE. Meanwhile, the number of data points in the
decision graph of QMC-DPC is smaller than DPC. Spe-
cifically, QMC-DPC (PCA), QMC-DPC (AE), and

QMC-DPC (t-SNE), respectively, calculate 2742, 2499, and
2989 data points in the decision graph, while DPC calculates
5000 data points in the decision graph./e above discussion
further proves the effectiveness of the Quasi-Monte Carlo
sampling method. Specifically, it can be summarized as the
following three aspects: (1) Combined with the super uni-
formity of the Quasi-Monte Carlo sequence, the data
sampling is more comprehensive, so as to reduce the bias.
/is conclusion is described by Figure 1. (2) /e number of
selected nonempty Quasi-Monte Carlo points is small,
which greatly reduces the time and space overhead. /is
conclusion is described in Figure 3. (3) Based on δ and ρ,
data points located in dense areas are difficult to distinguish,
because their δ and ρ are similar. On the contrary, Quasi-
Monte Carlo points essentially sample the local density, and
the distinction between selected nonempty Quasi-Monte

PCA AE t-SNE

(a)

PCA AE t-SNE

(b)

Figure 2: /e obtained two-dimensional features of PCA, AE, and t-SNE. (a) /e two-dimensional features of waveform. (b) /e two-
dimensional features of Landsat.
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Carlo points is enlarged. Finally, according to the nearest
distance principle, we propose a two-stage classification
strategy:

(i) /e density peaks are selected as the class centers,
and the remaining nonempty Quasi-Monte Carlo
points are assigned to the nearest density peak. /e
first step obtains the clustering results of all non-
empty Quasi-Monte Carlo points.

(ii) /e data points of X′ are assigned to the nearest
nonempty Quasi-Monte Carlo point. As the feature
mapping is unique, the classification result of X is
equivalent to the classification result of X′. /e
second step obtains the final clustering results of all
data points of X.

After the above discussion, QMC-DPC is depicted in
Algorithm 1 and the whole process is shown in Figure 5.

3.3. Algorithm Complexity Analysis. /e key of DPC is to
draw the decision graph based on ρi and δi. Our work retains
the idea of choosing cluster centers, but QMC-DPC only
calculates ρi and δi for N nonempty Quasi-Monte Carlo
points after the screening, making the computational
complexity far less than DPC.

For the data set X′, the DPC takes the space complexity
of O(n2) to store the distance matrix. /e space complexity
of QMC-DPC mainly includes: O(N0) is required to gen-
erate Quasi-Monte Carlo points, O(N) is required to retain
nonempty Quasi-Monte Carlo points, and O(N2) is re-
quired to store the distance matrix of nonempty Quasi-
Monte Carlo point pairs./erefore, the spatial complexity of
QMC-DPC is O(N0 + N + N2). When n is large, there is
O(N0 + N + N2)<O(n2) in general. However, when n is
relatively small, the space complexity of QMC-DPC

becomes larger due to generating N0 Quasi-Monte Carlo
points.

When calculating ρi and δi, DPC needs to calculate the
distance matrix with the time complexity of O(n2). After
selecting the cluster centers, the time complexity of
classifying data points is also (n × k). /erefore, the time
complexity of DPC algorithm is O(n2) + nk. /e time
complexity of QMC-DPC mainly includes O(n × N0) to
calculate the unit density of Quasi-Monte Carlo points,
O(N2) is required to calculate the ρi and δi of nonempty
Quasi-Monte Carlo points, and O(N × k) is required to
classify the nonempty Quasi-Monte Carlo points and
O(n × N) when classifying data points. /erefore, the time
complexity of QMC-DPC algorithm is O(n × N + N2). In
general, there are always N≪N0 and N0≪ n, making the
time complexity of the QMC-DPC less than that of the
DPC. However, when n is relatively small, the time cost of
QMC-DPC is more than that of DPC. In the experiment,
we will further prove that even with the addition of the
feature reduction module, the proposed algorithm still has
time superiority.

4. Experiment and Analysis

4.1. Experimental Setup. To verify the performance of QMC-
DPC, the proposed method is compared with related
clustering algorithms, including DPC-KNN-PCA [17],
SNN-DPC [18], DLORE-DP [16], DPC [5], AP [4],
DBSCAN [3], and K-means [2]. /e nearest neighbor
number is set to 4 in SNN-DPC. /e ratio of low-density
points in DLORE-DP is set to 0.2. For DBSCAN, the pa-
rameter Min Pts is set to 3 and ε is empty. K-means needs to
specify the number of classes in advance. /e data sets
adopted in this section include two major categories: un-
labeled data sets and labeled data sets. /e details of these
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Figure 4: /e decision graph on waveform. (a) QMC-DPC (PCA). (b) QMC-DPC (AE). (c) QMC-DPC (t-SNE). (d) DPC.



data sets are listed in Table 1. In labeled data sets, all data sets
are UCI data sets. In unlabeled data sets, Flame, Aggrega-
tion, and S2 are Synthetic data sets. KDD is a biological data
set, which is used to verify the superiority of our proposed
algorithm on large-scale and high-dimensional feature data
sets.

Four evaluation criteria are adopted to evaluate the
model performance on labeled data sets, i.e, the Accuracy
(Acc) and F-measure (F), Normalized mutual information
(NMI), and Adjusted rand index (ARI). /ese evaluation
criteria are described as follows: Assume that
X � x1, x2, . . . , xn􏼈 􏼉 is the data set. Y � y1, y2, . . . , yn􏼈 􏼉 and
􏽥Y � 􏽥y1, 􏽥y2, . . . , 􏽥yn􏼈 􏼉 represent the real labels and the pre-
dicted labels, respectively. Acc is denoted as

Acc � 􏽘
n

i�1

δ yi,map 􏽥yi( 􏼁( 􏼁

n
, (7)

where map(.) is a permutation mapping function, which
uses Hungarian algorithm to match the predicted labels with
the real labels.

/e F-measure is a harmonic mean of precision (prec)
and recall (rec). Prec is the ratio between the number of
correct positive results and the number of all positive results
returned by the classifier. Rec is the ratio between the
number of correct positive results and the number of all data
that should have been identified as positive. Ui is the set of
the number of all data that should have been classified as
positive. Vj is the set of the number of all positive results

Data Preprocessing
(Data Normalization)

Input Data
Feature Reduction Module

Data Sampling Module

Calculate correlation coefficient matrix Determine network structure and hyperparameters Set parameters

Computer pairwise affinities

Iterative updating solution

Model training

Output hidden layer features

Generate Quasi–Monte Carlo sequence

Calculate unit density Cud and Select non–empty unit set Cne

Calculate distance matrix A (see eq.(6))

Draw the decision graph

Perform the two-stage classification

Clustering results

Calculate δi and ρi for
non–empty Quasi–Monte Carlo points (see eq.(3-4))

Calculate eigenvalues and eigenvectors

Calculate and Select principal component score

or or or

PCA AE t-SNE

Figure 5: /e work flow of the overall QMC-DPC.

Input:
/e Data set: X � x1, x2, . . . , xn􏼈 􏼉

Output:
Clustering results Y

Steps:
(1) Perform feature reduction on X to obtain low-dimensional feature data X′;
(2) Generate N0 Quasi-Monte Carlo points and determine circular data unit C on X′;
(3) Count the density for each circular data unit C and generate Cne and Ce;
(4) Calculate the matrix A based on Cne and remove the zero elements in A. Sort the remaining elements and determine the

intercept dc;
(5) Calculate the δi and ρi for each nonempty Quasi-Monte Carlo points by equations (3) and (4);
(6) Draw the decision graph to select cluster centers and determine the number of k;
(7) According to the principle of nearest distance, assign the remaining nonempty Quasi-Monte Carlo Points;
(8) Assign the data points to the class of the nearest nonempty Quasi-Monte Carlo Points;
(9) Return the clustering results Y.

ALGORITHM 1: QMC-DPC.
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identified by the classifier. Prec, Rec, and F-measure are
defined by the following equations:

prec Ui, Vj􏼐 􏼑 �
Ui ∩Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

rec Ui, Vj􏼐 􏼑 �
Ui ∩Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Uj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

(8)

F Ui, Vj􏼐 􏼑 �
β2 + 1􏼐 􏼑prec · rec

β2prec+rec
, (9)

where β is a nonnegative real number that is set to 1. For the
Ui divided by each real label, the nearest one in Vj is selected
as its F value:

F Ui( 􏼁 � max
1≤j≤C

F Ui, Vj􏼐 􏼑. (10)

/en, we use the weighted average of F(Ui) to get the
final F value:

F � 􏽘
R

i�1
ωi · F Ui( 􏼁,ωi �

Ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n
. (11)

/e Normalized Mutual Information (NMI) measures
the information that the predicted labels 􏽥Y share with the
ground truth Y. NMI is defined as the following equation:

NMI �
I(􏽥Y, Y)

����������
H(􏽥Y)H(Y)

􏽰 , (12)

where I(􏽥Y, Y) is the mutual information between clustering
result and ground truth. H(􏽥Y) and H(Y) denote the entropy
of clustering result and ground truth, respectively.

/e Adjusted Rand Index (ARI) is the extension of Rand
Index (RI). ARI is defined as the following equation:

ARI �
RI − E[RI]

max(RI) − E[RI]
, (13)

where RI � (uv + uv)/(uv + uv + uv + uv), uv denotes the
data pairs which are in the same class in U and in the same
class in V, uv denotes the data pairs which are in different
classes in U and in different classes in V. uv denotes the data
pairs which are in different classes in U and in the same class
in V. uv denotes the data pairs which are in the same class in
U and in different classes in V. /e value of ARI is in the
range [− 1, 1]. /e upper bound of these evaluation crite-
rions is 1. /e larger these criterions are, the better the
clustering results are.

In the feature reductionmodule, some parameters are set
in advance. For t-SNE, the learning rate is 500, the number
of perplexity is 30, and the number of epochs is 800. For AE,
the learning rate is 0.01, optimizer is Adam, and the number
of epochs is 300.

4.2. Experimental Results on Labeled Data Sets. In this sec-
tion, 9 UCI data sets in Table 1 are used to verify the
performance of QMC-DPC. All data are normalized to
between [0, 1]. To avoid extreme cases, each algorithm runs
10 times and records the average results. /e values of
evaluation criteria are shown in Table 2 and the best values
are highlighted in bold. /e relevant parameters of the
QMC-DPC are recorded in Table 3.

As shown in Table 2, our proposed algorithm is superior
to other algorithms on the whole. Acc indicates the ratio of
the number of correct predicted samples to the number of
total samples. In terms of Acc, QMC-DPC achieves the
highest performance on all data sets except Waveform and
Landsat. In particular, QMC-DPC is 33.6% and 34.3%
higher than DPC on Zoo and Pima, respectively. F-measure
indicates the matching degree between the predicted labels
and the true labels of the data set, which is the weighted
harmonic mean of precision and recall. In terms of
F-measure, QMC-DPC achieves the highest performance on
nearly half the data set. NMI quantifies the similarity be-
tween the predicted labels and the true labels, which mea-
sures the robustness of the algorithm. In terms of NMI,
QMC-DPC achieves the highest performance on all data sets
except Landsat, Pima, and Zoo. In particular, QMC-DPC is

Table 1: /e unlabeled data sets and labeled data sets.

Data set Samples Attributes Categories Source
Unlabeled data sets
Flame 240 2 3 [29]
Aggregation 788 2 7 [31]
S2 5000 2 15 [32]
KDD 145 751 74 2000 [33]
Labeled data sets
Iris 150 4 3 [30]
Wine 178 13 3 [30]
Segment 2310 18 7 [30]
Waveform 5000 21 3 [30]
Wpbc 198 33 2 [30]
Breast 277 9 2 [30]
Landsat 2000 36 9 [30]
Pima 768 8 2 [30]
Zoo 101 16 7 [30]



21.4% higher than DPC on Waveform. ARI is used to
measure the degree of coincidence of the two data distri-
butions. In terms of ARI, QMC-DPC achieves the highest
performance on all data sets except Breast and Landsat. /e
ARI value of QMC-DPC is 73.2% higher than DPC on Zoo.
In addition, the evaluation criterion values of QMC-DPC
(PCA), QMC-DPC (AE), and QMC-DPC (t-SNE) are
similar, and the model performance is better than that of
DPC on the whole. /e above results indicate that the
combination of the feature reduction module and the
feature sampling module can improve the model
performance.

4.3. Experimental Results of Unlabeled Data Sets. Since there
are no real labels for the unlabeled data sets, the evaluation
criteria Acc, F-measure, NMI, and ARI cannot be applied to

the unlabeled data sets. To compare the performance on the
unlabeled data sets, the evaluation criteria Silhouette Co-
efficient (SC) and Calinski-Harabasz (CH) are defined. For
SC, we first calculate the silhouette coefficient for each data
point i:

s(i) �
b(i) − a(i)

max a(i), b(i){ }
, (14)

where a(i) is average dissimilarity between data point i and
other data points in the same class, b(i) is the minimum
value of the average dissimilarity between data point i and
other categories. Next, we obtain the silhouette coefficient
for data set based on s(i):

SC �
1
n

􏽘

n

i�1
s(i), (15)

Table 2: /e comparison of all algorithms in terms of Acc, F, NMI, and ARI on UCI data sets.

Algorithm Acc F NMI ARI Acc F NMI ARI Acc F NMI ARI
Iris Wine Segment

QMC-DPC (PCA) 0.860 0.760 0.677 0.742 0.528 0.648 0.523 0.345 0.681 0.611 0.751 0.539
QMC-DPC (AE) 0.883 0.785 0.787 0.771 0.516 0.611 0.588 0.406 0.616 0.578 0.612 0.562
QMC-DPC (t-SNE) 0.906 0.795 0.730 0.762 0.588 0.661 0.517 0.671 0.610 0.525 0.529 0.439
DPC-KNN-PCA 0.046 0.626 0.620 0.467 0.418 0.562 0.479 0.234 0.643 0.377 0.482 0.539
DLORE-DP 0.790 0.798 0.777 0.744 0.537 0.586 0.578 0.178 0.631 0.475 0.549 0.540
SNN-DPC 0.600 0.740 0.689 0.557 0.442 0.568 0.526 −0.005 0.617 0.374 0.016 0.429
DPC 0.886 0.785 0.783 0.719 0.465 0.610 0.486 0.353 0.617 0.534 0.701 0.539
DBSCAN 0.680 0.775 0.733 0.568 0.331 0.577 0.009 −0.002 0.442 0.377 0.431 0.227
AP 0.807 0.769 0.618 0.376 0.428 0.460 0.526 0.268 0.670 0.328 0.586 0.502
K-means 0.667 0.699 0.593 0.514 0.361 0.589 0.478 0.384 0.643 0.572 0.625 0.493

Wpbc Waveform Breast
QMC-DPC (PCA) 0.715 0.699 0.036 0.042 0.522 0.498 0.207 0.155 0.472 0.644 0.073 0.017
QMC-DPC (AE) 0.779 0.573 0.053 0.022 0.495 0.513 0.368 0.263 0.505 0.639 0.062 0.017
QMC-DPC (t-SNE) 0.681 0.672 0.027 0.022 0.472 0.630 0.431 0.437 0.523 0.654 0.068 0.014
DPC-KNN-PCA 0.762 0.797 0.015 0.012 0.506 0.561 0.260 0.247 0.285 0.764 0.027 0.020
DLORE-DP 0.673 0.650 0.020 −0.061 0.595 0.587 0.382 0.333 0.303 0.741 0.052 0.004
SNN-DPC 0.752 0.786 0.019 −0.013 0.375 0.530 0.068 0.016 0.213 0.685 0.071 0.016
DPC 0.642 0.691 0.015 −0.007 0.222 0.546 0.217 0.216 0.516 0.541 0.000 0.004
DBSCAN 0.752 0.786 0.009 −0.013 0.331 0.577 0.000 0.025 0.353 0.438 0.059 0.015
AP 0.415 0.221 0.025 0.005 0.213 0.105 0.231 0.016 0.086 0.178 0.059 0.012
K-means 0.550 0.567 0.029 0.003 0.314 0.508 0.374 0.259 0.491 0.538 0.041 0.003

Landsat Pima Zoo
QMC-DPC (PCA) 0.630 0.551 0.492 0.421 0.690 0.735 0.061 0.124 0.693 0.792 0.811 0.808
QMC-DPC (AE) 0.618 0.503 0.539 0.382 0.634 0.758 0.004 0.022 0.684 0.789 0.796 0.796
QMC-DPC (t-SNE) 0.612 0.517 0.458 0.370 0.390 0.687 0.007 0.027 0.712 0.813 0.822 0.803
DPC-KNN-PCA 0.617 0.456 0.381 0.141 0.347 0.738 0.004 0.002 0.589 0.786 0.689 0.731
DLORE-DP 0.635 0.546 0.540 0.358 0.352 0.709 0.002 0.011 0.029 0.739 0.690 0.644
SNN-DPC 0.517 0.463 0.267 0.089 0.651 0.736 0.000 0.001 0.049 0.856 0.831 0.713
DPC 0.636 0.573 0.547 0.411 0.347 0.738 0.004 0.002 0.376 0.352 0.348 0.076
DBSCAN 0.506 0.430 0.000 0.000 0.343 0.733 0.002 0.005 0.693 0.792 0.761 0.691
AP 0.104 0.327 0.504 0.187 0.010 0.159 0.079 0.017 0.267 0.758 0.792 0.573
K-means 0.565 0.647 0.548 0.469 0.622 0.559 0.028 0.054 0.674 0.712 0.743 0.633
/e bold values mean the best results.

Table 3: Parameter settings on all data sets.

Data sets Iris Wine Segment Wpbc Waveform Breast Landsat Pima Zoo KDD Flame Aggregation S2
Feature dimension 2 2 2 2 4 2 4 2 2 3 2 2 2
r 0.35 0.55 0.45 0.35 0.45 0.25 0.40 0.20 0.45 0.35 0.40 0.40 0.35
N0 200 200 2000 1500 2500 700 2000 1700 180 5000 400 1000 2500
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where n is the number of all data points./e value of SC is in
the range [−1, 1]. /e larger the SC value is, the better the
clustering result is.

CH is defined as follows:

CH �
traceB/(k − 1)

traceW/(k − n)
, (16)

where traceB � 􏽐
n
i�1 ni‖ui − u‖2, ni is the number of data

points in class i, ui is the average of data points in class i, and
u is the average of all data points.
traceW � 􏽐

k
j�1 􏽐

n
i�1 ‖xi − uj‖

2, k is the cluster numbers. /e
larger the CH value is, the better the clustering result is.

In this section, three synthetic data sets and KDD are
selected to verify the performance of QMC-DPC. Flame,
Aggregation, and S2 are the classical synthetic data sets.
KDD is a large-scale data set with high-dimensional features.
Table 4 shows the SC and CH of all algorithms on unlabeled
data sets. /e best values are highlighted in bold. /e rel-
evant parameters of the QMC-DPC are recorded in Table 3.

As shown in Table 4, our proposed method obtains the
best clustering results on the whole, especially QMC-DPC
(AE)./e “—” in Table 4 indicates that the algorithm cannot
execute because it exceeds the virtual memory. For the SC,
QMC-DPC (t-SNE) is higher than DPC on Flame. And,
DPC obtains the same results as our proposed method on
Aggregation and S2. DPC-KNN-PCA also obtains the same
results as our proposed method on S2. In general, QMC-
DPC (AE) and QMC-DPC (t-SNE) achieve the better
performance than QMC-DPC (PCA) except KDD. Limited
by the t-SNE method, QMC-DPC (t-SNE) fails to perform
clustering on KDD. In Section 4.6, we will make further
comprehensive analysis. In addition, we visualized the
classification results on synthetic data sets. Figure 6 shows
the classification results on Aggregation ans S2.

4.4. Experimental Results of Running Time. In this subsec-
tion, we further verify that our proposed method can ef-
fectively reduce the computational overhead. We select data
sets with more than 2000 data points and record the running
time in Table 5.

As shown in Table 5, compared with DPC, SNN-DPC,
and AP, QMC-DPC achieves the best performance in terms
of running time. QMC-DPC is at least 34.47%, 61.80%,
25.59%, and 50.85% lower than DPC on Segment, Wave-
form, Landsat, and s2, respectively. Generally speaking, the
larger the data size, the more the time saved. For KDD,
QMC-DPC (PCA) and QMC-DPC (AE) obtain the results,
while QMC-DPC (t-SNE) will exceed memory. /is is
limited by the t-SNE method. In addition, DPC, SNN-DPC,
and AP also exceed memory. /is further confirms the
effectiveness of our method. How to select QMC-DPC
(PCA), QMC-DPC (AE), and QMC-DPC (t-SNE) will be
discussed in Section 4.6. In addition, it can be seen that the
running time of the QMC-DPC (PCA) and QMC-DPC (AE)
is close. However, the computational overhead of QMC-
DPC (t-SNE) is higher than that of QMC-DPC (PCA) and
QMC-DPC (AE). /e reason is that t-SNE requires a huge
computational overhead, while auto-encoder only has a

shallow structure and does not contain a large number of
training parameters. Furthermore, we compare the time
complexity of our proposed method with that of the base-
lines methods. /e results are recorded in Table 6. In this
part, we set the number of data points to n, the number of
cluster categories to k, the number of neighbors to m, the
number of iteration to t, and the number of selected Quasi-
Monte Carlo points to N. Although the time complexity of
QMC-DPC is square, N is much smaller than n in practice.
Hence, the time overhead of QMC-DPC will be significantly
reduced and the conclusion can also be proved in Table 5.

4.5. Experimental Results of Sensitivity Analysis. In this
section, we conduct parameter sensitivity analysis from
multiple aspects, such as how feature dimensions affect
model performance and running time. Specifically, we first
calculate Acc, F, NMI, and ARI on UCI data sets where the
feature dimension is in the range [16, 24]. /e final results
are recorded in Tables 7–10, respectively.

From Tables 7 to 10, it can be seen that the performance
of the model will decrease slightly with the increase of di-
mension on the whole. /is is limited by the loss of in-
formation caused by the sampling strategy as the dimension
increases. As the dimensions increase, data distribution will
become more complex. To address this issue, there are two
methods to reduce the information loss caused by sampling:
(1) increase the number of Quasi-Monte Carlo points and
(2) appropriately increase the radius r of the circular data
unit. If we adopt the first method, the time complexity of
QMC-DPC in generating and storing Quasi-Monte Carlo
points is O(N0), which increases the time and space
overhead i as the number of Quasi-Monte Carlo points
increases. If the second method is adopted, the selection of
radius r is very important. When r is too large and contains
the entire data set, the QMC-DPC does not perform sam-
pling operation. Since the main purpose of this paper is to
reduce the time overhead of DPC, we give priority to the
second method.

In addition, we further study the impact of feature di-
mension on model performance and running time, where
the feature dimension is extended to [2, 9]. In this part, KDD
is selected and the results are shown in Figure 7. As shown in
Figure 7, QMC-DPC (AE) and QMC-DPC (PCA) achieve
high performance in terms of SC. On the contrary, QMC-
DPC (AE) and QMC-DPC (PCA) have a poor value in terms
of CH when the feature dimension is 7. However, the value
of CH increases heavily when the feature dimension is 9./e
reason is that when we generate more Quasi-Monte Carlo
points to execute sampling strategy, the corresponding
running time also increases to a great extent. /e relevant
parameters on KDD are recorded in Table 11.

4.6. Algorithm Summary. Based on the above experiments,
we have a comprehensive discussion on QMC-DPC. Spe-
cifically, as shown in Tables 2 and 4, it can be found that
QMC-DPC achieves the best performance on the whole. On
the UCI data sets, QMC-DPC (PCA), QMC-DPC (AE), and
QMC-DPC (t-SNE) obtain the highest values of 8, 7, and 9



Table 4: /e comparison of all algorithms in terms of SC and CH on unlabeled data sets.

Algorithm
Flame Aggregation S2 KDD

SC CH SC CH SC CH SC CH
QMC-DPC (PCA) 0.379 153.672 0.461 1032.876 0.452 15 011.749 0.941 5 37 569.031 7
QMC-DPC (AE) 0.303 129.028 0.493 1202.934 0.710 19 744.353 0.944 9 45 484.132 6
QMC-DPC (t-SNE) 0.409 190.938 0.493 1202.934 0.704 19149.117 — —
DPC-KNN-PCA 0.403 178.217 0.281 329.073 0.710 19 744.353 — —
DLORE-DP 0.323 108.244 0.463 883.713 0.611 17 689.904 — —
SNN-DPC 0.132 37.009 0.363 851.953 0.002 1124.993 — —
DPC 0.347 133.615 0.493 1202.934 0.710 19 744.353 — —
DBSCAN 0.295 6.894 0.318 606.285 0.529 3178.635 0.229 18 701.700
AP 0.334 247.017 0.421 660.422 0.496 17 747.519 — —
K-means 0.245 80.406 0.425 967.394 0.539 7293.533 0.694 13 042.686
/e bold values mean the best results.

QMC-DPC (PCA) QMC-DPC (AE) QMC-DPC (AE)QMC-DPC (PCA)

QMC-DPC (t-SNE) DPC-KNN-PCA DPC-KNN-PCAQMC-DPC (t-SNE)

DLORE-DP SNN-DPC SNN-DPCDLORE-DP

DPC DBSCAN DBSCANDPC

AP K-means

(a) (b)

K-meansAP

Figure 6: /e visualization of classification results on aggregation (a) and S2 (b).

12 Scientific Programming



times, respectively. On the unlabeled data sets, QMC-DPC
(PCA), QMC-DPC (AE), and QMC-DPC (t-SNE) obtain the
highest values of 0, 6, and 3 times, respectively. Obviously,

QMC-DPC combined with nonlinear feature reduction
methods achieves better performance, on the whole. In
terms of running time, it is obvious that our proposed

Table 5: /e comparison of running time on Segment, Waveform, Landsat, and S2 (unit: seconds).

Algorithm
Data sets

Segment Waveform Landsat S2 KDD
QMC-DPC (PCA) 17.737 4 75.1601 28.773 8 81.0831 341.018 2
QMC-DPC (AE) 17.563 4 82.8741 30.359 8 80.144 5 368.8371
QMC-DPC (t-SNE) 26.369 4 115.6271 43.406 8 124.259 4 —
DPC 40.241 1 302.698 3 58.3361 252.817 5 —
SNN-DPC 279.264 7 1305.837 4 208.851 8 1208.926 8 —
AP 261.218 3 903.003 6 144.370 3 819.570 3 —
/e bold values mean the best results.

Table 6: /e comparison of time complexity.

Algorithm Time complexity
QMC-DPC O(n × N + N2)

DPC-KNN-PCA O(n2)

DLORE-DP O(n log n)

SNN-DPC O((m + k)n2)

DPC O(n2)

DBSCAN O(n log n) ∼ O(n2)

AP O(n3)

K-means O(nkt)

Table 7: /e comparison of Acc on UCI data sets.

Data sets Dimension
Algorithm

QMC-DPC (PCA) QMC-DPC (AE) QMC-DPC (t-SNE)

Iris
2 0.860 0.883 0.906
3 0.860 0.813 0.913
4 0.843 0.839 0.829

Wine
2 0.528 0.516 0.588
3 0.562 0.556 0.589
4 0.562 0.556 0.519

Segment
2 0.681 0.616 0.610
3 0.544 0.602 0.519
4 0.614 0.615 0.631

Wpbc
2 0.715 0.779 0.681
3 0.684 0.515 0.541
4 0.723 0.530 0.589

Waveform
2 0.565 0.561 0.479
3 0.386 0.333 0.380
4 0.522 0.495 0.472

Breast
2 0.472 0.505 0.523
3 0.523 0.469 0.610
4 0.527 0.568 0.419

Landsat
2 0.613 0.696 0.601
3 0.580 0.624 0.582
4 0.630 0.618 0.612

Pima
2 0.690 0.634 0.390
3 0.653 0.554 0.652
4 0.635 0.677 0.638

Zoo
2 0.693 0.684 0.712
3 0.701 0.653 0.704
4 0.687 0.621 0.695



Table 8: /e comparison of F on UCI data sets.

Data sets Dimension
Algorithm

QMC-DPC (PCA) QMC-DPC (AE) QMC-DPC (t-SNE)

Iris
2 0.760 0.785 0.895
3 0.783 0.709 0.947
4 0.756 0.742 0.595

Wine
2 0.648 0.611 0.661
3 0.614 0.610 0.500
4 0.587 0.645 0.578

Segment
2 0.611 0.578 0.525
3 0.423 0.301 0.412
4 0.347 0.323 0.356

Wpbc
2 0.699 0.573 0.672
3 0.632 0.564 0.576
4 0.733 0.562 0.569

Waveform
2 0.595 0.534 0.479
3 0.515 0.504 0.523
4 0.498 0.513 0.630

Breast
2 0.644 0.639 0.654
3 0.540 0.546 0.639
4 0.539 0.578 0.598

Landsat
2 0.529 0.611 0.543
3 0.475 0.591 0.553
4 0.551 0.503 0.517

Pima
2 0.735 0.758 0.687
3 0.712 0.711 0.626
4 0.587 0.713 0.599

Zoo
2 0.792 0.789 0.813
3 0.801 0.774 0.763
4 0.765 0.752 0.698

Table 9: /e comparison of NMI on UCI data sets.

Data sets Dimension
Algorithm

QMC-DPC (PCA) QMC-DPC (AE) QMC-DPC (t-SNE)

Iris
2 0.677 0.787 0.771
3 0.783 0.709 0.947
4 0.709 0.703 0.362

Wine
2 0.523 0.558 0.517
3 0.437 0.435 0.248
4 0.377 0.470 0.384

Segment
2 0.751 0.612 0.529
3 0.321 0.296 0.468
4 0.013 0.324 0.343

Wpbc
2 0.036 0.053 0.027
3 0.018 0.012 0.023
4 0.733 0.562 0.569

Waveform
2 0.426 0.396 0.323
3 0.515 0.504 0.523
4 0.207 0.368 0.431

Breast
2 0.073 0.062 0.068
3 0.049 0.018 0.058
4 0.021 0.018 0.039

Landsat
2 0.531 0.590 0.555
3 0.430 0.598 0.605
4 0.492 0.539 0.458

Pima
2 0.061 0.004 0.007
3 0.002 0.001 0.002
4 0.035 0.040 0.005

Zoo
2 0.811 0.796 0.822
3 0.784 0.735 0.786
4 0.762 0.713 0.722
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method has superior performance. Especially when dealing
with a large-scale data set, such as KDD, QMC-DPC ach-
ieves good performance, while most other baselines cannot

be executed due to being out of memory./is further verifies
the effectiveness of our method. From Section 4.5, we can
find that the feature dimension has an impact on the model
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Figure 7: Clustering results of KDD under different feature dimensions. (a) /e value of SC on KDD. (b)/e value of CH on KDD. (c) /e
value of time on KDD.

Table 10: /e comparison of ARI on UCI data sets.

Data sets Dimension
Algorithm

QMC-DPC (PCA) QMC-DPC (AE) QMC-DPC (t-SNE)

Iris
2 0.742 0.771 0.762
3 0.670 0.529 0.922
4 0.560 0.563 0.266

Wine
2 0.345 0.406 0.671
3 0.318 0.292 0.149
4 0.288 0.380 0.353

Segment
2 0.539 0.562 0.439
3 0.103 0.129 0.295
4 0.002 0.129 0.197

Wpbc
2 0.042 0.022 0.022
3 −0.040 −0.008 0.028
4 0.030 −0.000 −0.018

Waveform
2 0.300 0.301 0.336
3 0.267 0.255 0.273
4 0.155 0.263 0.437

Breast
2 0.073 0.062 0.068
3 −0.001 −0.004 −0.003
4 −0.000 −0.001 −0.022

Landsat
2 0.428 0.528 0.451
3 0.285 0.488 0.461
4 0.421 0.382 0.370

Pima
2 0.124 0.022 0.027
3 0.010 0.008 0.064
4 0.076 0.059 0.024

Zoo
2 0.808 0.796 0.803
3 0.774 0.722 0.785
4 0.765 0.684 0.752



performance and various evaluation criteria are affected
differently. In general, the model performance will decrease
as the feature dimension increases. /is is due to the loss of
information caused by sampling. In Section 4.5, we propose
two methods to overcome this problem, including gener-
ating more Quasi-Monte Carlo points and increasing the
radius r. /e purpose of both methods is to expand the
sampling area. For our proposed method, we make a trade-
off between running time and model performance, which
generates fewer Quasi-Monte Carlo points and sets fewer
iterations for t-SNE and AE. /e above operations will
reduce the running time while reducing the model per-
formance. In particular, we also increase the radius r to
reduce the information loss.

We summarize the following views on QMC-DPC:

(i) In general, we choose QMC-DPC combined with
nonlinear feature reduction methods, such as QMC-
DPC (AE) and QMC-DPC (t-SNE). When dealing
with a large-scale data set, we prefer QMC-DPC
(AE).

(ii) To reduce information loss, we give priority to
expanding the radius r. Secondly, we consider
adding Quasi-Monte Carlo points.

In addition, there are still exploration directions for our
proposed algorithm in the future, which are summarized as
follows:

(i) How to select feature dimensions is a heuristic work.
In future work, we hope to build a multi-layer auto-
encoder and construct the loss function based on
hidden layer features. We aim to design the auto-
matic encoder as a multi-tasks neural network.

(ii) We hope to propose a more comprehensive sam-
pling method to reduce the loss of information. We
can take the sample point itself as the center for
sampling, and then filter out the data samples in the
sparse area. Finally, we need to have a strategy for
the classification of outliers.

(iii) We hope to propose a more comprehensive sam-
pling method to reduce the loss of information. We
can take the sample point itself as the center for
sampling, and then filter out the data samples in the
sparse area. Finally, we need to have a strategy for
the classification of outliers.

5. Conclusion

In this paper, a new density peaks clustering algorithm with
high computational efficiency is proposed. /e original
feature space is compressed by different feature reduction
methods. We sample the reduced feature space based on the
super-uniformly distributed sequence generated by the

Quasi-Monte Carlo method. Our work can effectively
overcome the high computation overhead of DPC while
improving the model performance. /eoretically, the time
complexity can be reduced from o(n2) to o(Nn), where
N≪ n. /e experimental results show that QMC-DPC
improves the model performance of the DPC while greatly
reducing the time overhead with the increase of data set size.
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