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With the rapid development of short video, the mode of sports marketing has diversified, and the difficulty of accurately detecting
marketing videos has increased. Identifying certain key images in the video is the focus of detection, and then, analysis can
effectively detect sports marketing videos. -e research of video key image detection based on deep neural network is proposed to
solve the problem of unclear and unrecognizable boundaries of key images for multiscene recognition. First, the key image
detection model of the feedback network is proposed, and ablation experiments are conducted on a simple test set of DAVSOD.
-e experimental results show that the proposed model achieves better performance in both quantitative evaluation and visual
effects and can accurately capture the overall shape of significant objects.-e hybrid loss function is also introduced to identify the
boundaries of key images, and the experimental results show that the proposedmodel outperforms or is comparable to the current
state-of-the-art video significant object detection models in terms of quantitative evaluation and visual effects.

1. Introduction

Vision is themain way humans receive information from the
outside world, and according to research in the field of
neuroscience, about 108 to 109 bytes of data enter the human
eye every second [1]. -is is because of the selective role of
the visual attention mechanism, which allows the visual
system to selectively ignore irrelevant information and pay
attention to relevant information, just like separating the
grains of wheat from the husk. In this Internet era where the
amount of data is exploding, how to get the information of
people’s concern from the huge amount of information in a
labor and material-saving way has gained a lot of attention.
-erefore, introducing attention mechanisms into data
processing tasks and prioritizing the allocation of data
processing resources to more critical information can help
improve the efficiency of processing information [2–6].

In 1998, Borji and Itti [7] proposed the first computa-
tional model of visual saliency based on Koch et al.’s theory
and the classical feature integration theory of cognitive
psychology [8] and the pointing search model [9], whose

algorithmic process contains three main steps: extraction of
three primary visual features: color, luminance, and ori-
entation. -ree types of key features are computed at
multiple scales using central-peripheral contrast (key feature
extraction); the feature maps are normalized and then
synthesized (feature fusion), and the key targets in the
images are labeled using the WTA mechanism. -e algo-
rithm has had a significant impact on subsequent research
on computational models of visual criticality in the field of
computer vision, especially since mainstream criticality
detection algorithms used a similar framework before deep
learning techniques were used on a large scale.

Early image salient object detection models [10] were
mainly based on a bottom-up approach using different
underlying visual features, such as color, edges. Since salient
object detection is closely related to the human eye attention
detection task and both model the human visual attention
mechanism, the early salient object detection models also
borrowed some basic theories of the human visual attention
mechanism, including the classical contrast assumption,
center-surround assumption. For example, both
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assumptions were used by Liu et al. [11] and Achanta et al.
[12], and a similar assumption was used by Cheng et al. [10],
who considered color contrast information on both local
and global scales, and the algorithm was concise and
straightforward and received wide attention from the aca-
demic community. In addition, Yan et al. [13] proposed to
complete the apparently consistent image representation at
different scales by over-segmenting the image at different
scales and to extract and fuse the salient features at different
scales for optimization to obtain the final salient object
detection results. Visual center bias is also a commonly used
hypothesis based on human attentional mechanisms [13].
-e hypothesis is based on the phenomenon that the human
visual system has a tendency to assign higher attentional
weights to the center of the scene when observing the scene.
After that, the popular hypothesis is the background prior
hypothesis, which was proposed by Wei et al. [14] in 2012.
Unlike the center-periphery hypothesis and the visual center
shift hypothesis, which attempt to define “what is more likely
to be the salient region,” this hypothesis attempts to define
“what is more likely to be the background.” -is assumption
is based on the observation that in most scenes, the parts
around the edges of the image have a higher probability of
belonging to the background. -is assumption can be
considered as a further development of the visual center bias
assumption. Before the large-scale application of deep
learning techniques, the background prior assumption was
the most effective assumption in the field of saliency de-
tection, and the majority of high-performingmodels [15–19]
were based on this assumption.-ese works focus on how to
further improve the accuracy of the background prior as-
sumption and how to apply more advanced one-class
classifiers. By the background prior assumption, which is
equivalent to obtaining a class of (background) samples, the
problem can be considered as a one-class classifier giving
only one class of samples.

With the great success of deep learning techniques in
image classification problems, the focus of research in the
field of significant object detection has gradually shifted to
deep learning-based models. Slightly earlier work used deep
learning features as a more effective key representation and
trained using fully convolutional neural networks. Lee et al.
[20] used depth features as high-level information and
Gabor-filtered response and color histogram as bottom-level
features to fuse different levels of significant information for
significant prediction. -ese models achieve better perfor-
mance but have some drawbacks, such as the large number
of parameters and loss of spatial information due to the use
of fully connected layer-based classification networks and
the high computational cost of these algorithms due to the
need for significant/insignificant classification of each
superpixel or target object alternative.

With the rise of fully convolutional neural networks, in
recent years, significant object detection efforts based on
deep learning have used or adapted full convolutional neural
networks for pixel-level critical prediction. -ere is some
work [21] inspired by the pixel-level semantic segmentation
task, proposing the fusion of features from different neural
network layers for critical object detection. Since the

shallower layers of deep neural networks can retain more
fine-grained underlying visual features, and the deeper layers
can extract higher-level, semantic-level features, the fusion
of features from different neural network layers can retain
the original underlying spatial information and obtain
higher-level semantic information. Currently, the main
research focus of the work on significant object detection
based on deep learning techniques is to explore more effi-
cient network structures that can retain more spatial details.
Wang et al. [22] proposed an ASNet model for detecting
visually salient objects by means of visual attention prior.
-e model treats visual attention as a high-level under-
standing of the whole scene, which is learned through
higher-level neural network layers, and the salient object
detection task is considered as a more fine-grained, object-
level saliency detection, with visual attention providing top-
down guidance. -e ASNet model is based on a stacked
convolutional long and short-term memory neural network,
which has a unique recurrent structure that can iteratively
optimize saliency detection results. -is work provides a
deeper understanding of the visual attentionmechanism and
reveals the correlation between salient object detection and
human eye attention detection. As a whole, the deep
learning-based salient object detection model achieves much
better performance than traditional models [23–26].

In response to the current research status, this paper
investigates video salient object detection based on deep
neural networks as follows, extracting richer spatial saliency
information and better capturing the overall shape of salient
objects. In this paper, an attention feedback network-based
video salient object detection model is proposed. To further
obtain clearer bounds, a new hybrid loss function is in-
troduced in this paper based on the video salient object
detection model and the attentional feedback network.

2. Deep Neural Networks

2.1. Convolutional Neural Network. When people read or
watch a video, they perceive and understand the current
content based on the text or images they have already ob-
served before and do not completely forget what they have
observed before, and their brain goes blank to understand
the content that follows. Traditional neural networks cannot
predict salient information in later frames based on the
salient object regions in the previous video frames. -e
emergence of recurrent neural networks makes the network
memorable, and its network structure is shown in Figure 1.
Assuming that {Xt}t�0t is a set of inputs with (t+ 1) time steps
and {Ht}t�0t is the corresponding output of the network,
network N receives at time step t not only Xt but also the
value of the first (t− 1) value of the hidden state at a time
step, that is, the network processes the current input with
reference to the previous memory.

However, when the video sequence is long, the interval
between the current video frame to be processed and the
related video frame may be large, and at this time, the RNN
may lose the memory of distant video frames due to
problems such as gradient disappearance. To address the
problem of long-term dependence, Hochreiter et al. [27]
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proposed a long-term and short-term memory network, as
shown in Figure 2, where the contents of the three stages
indicate the forgetting phase, updating state phase, and
output phase, respectively.

All three stages contain a sigmoid layer that maps the
input information to between [0, 1] and then selectively
filters the useful information and forgets the useless infor-
mation by a per-bit multiplication operation.

-e forgetting stage is used to filter the useful infor-
mation and forget the useless information.-e current input
is xt, connecting xt with the hidden state ℎt-1 of the previous
moment, denoted as Jt, and ※ denotes the connection
operation, as shown as follows:

ht ※xt � Jt. (1)

-e sigmoid layer is then used to map Jt to between [0, 1]
to obtain the output gate ft, where Wf and bf denote the
weight and bias vector of the network layer, respectively, and
σ denotes the sigmoid operation, as shown as follows:

ft � σ Wf · Jt + bf . (2)

-en, the corresponding element multiplication opera-
tion (∴) is performed with the cell state Ct−1, thus selectively
filtering the useful information and forgetting the useless
information, and the cell state at this point is noted as C∗t .

C
∗
t � ft∴Ct−1. (3)

-e update cell state phase allows the control cell state to
selectively absorb relevant information from J. Jt passes
through the sigmoid layer and generates the input gate it.

it � σ Wi · Jt + bi( . (4)

-e information obtained by multiplying the feature
obtained by Jt after the tanh layer with the corresponding
element of it is the information added to the cell state, and
the new cell state C∗t is obtained by adding this information
to the Ct obtained in the forgetting phase by bits.

Ct � C
∗
t + it∴ tanh Wc · Jt + bc( . (5)

-e output phase controls what information is output at
the current moment. Jt is inputted into the sigmoid layer to
get an output gate Ot.

Ot � σ Wo · Jt + bo( . (6)

Let Ot and the current cell state Ct be multiplied bitwise
by the features obtained through the tanh layer to obtain the
output at the current moment Ht.

Ht � Ot∴ tanh Ct( . (7)

2.2. Loss Function. When performing pixel-level salient
object detection, it can be viewed as a binary partitioning
problem, where pixels belonging to the salient object are
labeled as 1 and pixels belonging to the background are
labeled as 0. Assume that yi denotes the label of sample xi, the
desired output, and y denotes the probability value of yi � 1
for a given sample xi.

yi � P yi � 1|xi( . (8)

1− y denotes the probability value of yi � 0 given sample
xi.

1 − yi � P yi � 0|xi( . (9)

When xi occurs, the probability of yi occurrence can be
expressed by P(yi | xi). From the perspective of maximum
likelihood, P(yi|xi) can be expressed in the following form.

P yi|xi(  � y
yi · (1 − y)

1− yi . (10)

When the real mark yi � 0, 1, and take the logarithm
operation. Since the smaller the value of the loss function,
the more favorable it is, and the log takes a negative value,
and the loss function is calculated as follows:

h0 h1 ht

X0 X1 Xt

Figure 1: Network structure.
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Figure 2: Memory network.
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N

i�1
− yilogy + 1 − yi( log(1 − y) . (11)

2.3. Feedback Network. In order to reduce the loss of nec-
essary visual criticality information due to repetitive stride
and pooling operations and to learn richer static criticality
information, AFNet is used as the main skeleton of the static
criticality module. Stimuli in Figure 3 show the input image
frames, and the encoding and decoding networks consist of
five convolutional blocks of VGG16 (denoted as Ei and Di,
respectively, i ∈ {1, 2, 3, 4, 5}), where the information transfer
between the corresponding convolutional blocks is con-
trolled by the attention feedback module.

3. Design of Deep Neural Network

3.1. Feedback Network Detection Model. -e NHM model is
proposed to capture richer spatial criticality information and
thus better capture the overall shape of key images. -e NHM
model uses the attentional feedback network as the backbone of
the static criticality module to reduce the loss of visually critical
information caused by scale-space issues and to guide the
correct fusion of multiscale features from coarse to fine scales.
-e multiscale feature maps extracted from the five decoding
blocks of the attentional feedback network are then fused and
fed to the pyramidal expansion convolution module to retain
more spatial visual critical information. After that, the time-
critical information is captured using a key object transfer-
aware convolutional long short-term memory network in
consideration of attention-aware transfer, and finally, the pa-
rameters of the model are optimized by gradually reducing the
value of the loss function through continuous iterations. -e
algorithm is divided into three parts: extraction of multiscale
spatial features, integration of spatio-temporal critical infor-
mation, and loss minimization.

To mitigate the negative effects such as the loss of visual
information generated by the scale-space problem, the
backbone of the static criticality detectionmodule consists of
AFNet and PDC modules connected together. AFNet as a
novel codec forms the design of a fully convolutional net-
work, its encoding and decoding network consists of five
convolutional blocks, and Ei and Di denote the encoder and
decoder blocks, respectively, where i ∈ {1, 2, 3, 4, 5}, indi-
cating that Ei and Di each contain five convolutional blocks,
where each layer of the encoder block transmits its critical
information through the feedback module in AFNet to the
corresponding decoder block. -e feedback module uses a
two-step iterative learning approach, where the time steps
are denoted by i ∈ {1, 2}, which helps to correct inaccurate
predictions generated in the previous network by simulating
a feedback mechanism that multiplies the ternary map pixel
by pixel with the obtained feature map, thus helping to
capture the overall shape of the key object. Facing the global
spatial criticality detection problem, AFNet uses the global
perception module to overcome the problem that the fully
connected operation ignores local information and gener-
ates redundant data. A multiscale segmentation strategy is

used to divide the feature map into 4, 16, and 36 parts, which
are then stacked and reorganized for global convolution
operation to make full use of the global and intraregional
saliency information.

-e key image in the dynamic scene is detected directly
by the image key object detection model. -e key object
detection can only detect the spatial differences of color
contrast, direction contrast, brightness contrast, and so on.
However, in dynamic scenes, the temporal factor is usually
used as an important clue for the criticality detection.
Second, detection only on each individual frame without
reference to the criticality information contained in previous
frames may be highly incoherent, because the target and
background may differ significantly in appearance in dif-
ferent frames, which will lead to incoherent detection results
between frames. Finally, video content often contains sig-
nificant redundancy, as consecutive video frames require
enough similar content to provide a smooth viewing ex-
perience. Simply ignoring content redundancy can lead to
higher computational costs. -erefore, VSOD needs to
consider both temporal and spatial saliency information, so
a dynamic saliency detection module is used to integrate
temporal and spatial saliency information. In order to better
simulate the perceptual function of the human visual system,
temporal saliency information is learned, and the process of
attentional perceptual transfer is captured, and this paper
uses SSLSTM as a dynamic saliency detection module, which
combines the powerful spatio-temporal feature extraction
capability of ConvLSTM with the attentional transfer
mechanism.

Deep neural networks gradually optimize the network by
iteratively minimizing the loss function. -e loss function
measures the difference between the value predicted by the
model and the true value, and the weights of the network are
updated by gradient descent.

L � 
T

t�1
l It(  · l

Att
At, Ft(  + l

VSDD
St, Mt(  . (12)

-e meaning of each symbol is shown in Table 1, because
the video significant object detection dataset contains relatively
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Figure 3: Feedback network model.
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few human eye focus annotations, so lt to indicate whether the
dataset contains human eye focus annotations, when the
dataset does not contain human eye focus annotations, the loss
function at this time does not contain the ltAt term, the error
will not be back-propagated. -e meaning of each symbol is
shown in Table 1. Since the video important target detection
data set contains relatively few eye focus annotations, it is used
to indicate whether the data set contains eye focus annotations.
When the data set does not contain eye focus annotations, the
loss function at this time does not contain ItAt term, and the
error will not be propagated back.

3.2. Loss Function Design. A novel hybrid loss function is
proposed based on the boundary enhancement loss, and the
function consists of the loss La of the predicted attention-
perception feature map, the loss Lv of the final key object
prediction result, and the loss Lv

b of the final predicted target
boundary.

L � ω1 · L
a

+ L
v

(  + ω2 · L
v
b, (13)

where ω1, ω2 are used as the learning rate parameters for
object-level loss and object-boundary loss of the control
target, respectively, and let ω1 :ω2 �1 :10 to emphasize the
learning of the target boundary.

-e dataset used for part of the training does not contain
human eye focus annotations, so the predicted loss La of the
perceptual attention feature map can be divided into two
parts: loss La

f calculated using human eye focus annotations
and loss La

m calculated using salient object annotations.

L
a

� δ(1) · L
a
f +(1 − δ(1)) · L

a
m, (14)

La � La
f when δ(1)� 0, La � La

m when δ(1)� 1. -e final key
object prediction results are denoted by St.-at is, the loss Lv

can be calculated.
When δ(1)� 0, La � La

f; When δ(1)� 1, La � La
m. St is

used to represent the prediction result of the final key object,
and Mt represents the object level annotation of the key
object. -e loss Lv can be calculated as follows:

L
v

� 
T

t�1
L

VSO D
St, Mt( . (15)

-e average pooling operation P can be used to extract
smooth boundaries. Suppose it is necessary to extract the
boundary B(X) of the image X and take the absolute value
after making a difference between X and P(X). -e final
predicted target boundary loss Lv

b is as follows:

L
v
b � 

T

t�1
L

VSOD
B St( , B Mt( (  . (16)

On the basis of NHM, a mixed loss function for cap-
turing clear boundaries is added. -e loss function is based
on the boundary enhancement loss and is composed of the
attention perception feature map predicted by themodel, the
prediction results of key images, and the prediction results of
key image boundaries. -e model is recorded as LNSM.

4. Experiments and Results

4.1. Experimental Design. -e experiments were run on an
Nvidia GTX1080TI GPU. -e experiments in this paper
were implemented using the Python language on Caffe’s
deep learning framework, and Matlab was used for quan-
titative evaluation of performance. -e training set of
DAVIS, DAVSOD, and FBMS and the validation set of
DAVSODwere also used to train the proposedmodel, where
the weights of the network model were initialised by the
AFNet model, and video was processed per batch, and the
number of time steps for the conLSTM network layer
processing was set to 3. -e training process was set up as
follows: first, the static key model was pretrained with a base
learning rate of 10−9; then, the entire model was trained by
setting the learning rate of the dynamic key module to 10−8

and the learning rate of the static key module to 10−10; fi-
nally, the static key module weights were fixed, and the
dynamic key module was fine-tuned with the learning rate
set to 10−10. -e LNSM module was trained using 32 hours
and 64 k iterations.

4.2. Compare Other Model. In this paper, the proposed
LNSM is compared with four advanced video critical object
detection models, MBNM, PDBM, and SSAV, on datasets
created specifically for the VSOD task (the entire dataset for
ViSal and UVSD, a test set for VOS, and a simple test set for
DAVSOD), and the experimental results of the quantitative
evaluation are shown in Table 1. It can be seen from Table 1
that the three indexes of the model proposed in this paper
are better than other models on DAVSOD and ViSal
datasets. Especially on the simple test set of DAVSOD, the f-
value index and average absolute error based on pixel error
and the structural index measuring the overall structural
difference have improved the performance by 0.06, 0.03, and
0.064, respectively, compared with SSAV; advanced per-
formance has also been achieved on other datasets. More-
over, ViSal is the first test benchmark especially designed for
video key object detection; DAVSOD dataset takes into
account the transfer of visual attention and its selectivity
when labeling and can represent the real attention behavior
of the human visual system in dynamic scene. -ese two

Table 1: Compare other model.

Metric LNSM MBNM PDBM SSAV

ViSal
S 0.993 0.883 0.884 0.933

MAE 0.025 0.01 0.026 0.022
Max f 0.993 0.873 0.866 0.929

DAVSOD
S 0.779 0.627 0.67 0.714

MAE 0.14 0.149 0.097 0.082
Max f 0.68 0.51 0.575 0.593

UVSD
S 0.825 0.688 0.891 0.85

MAE 0.053 0.069 0.008 0.015
Max f 0.701 0.54 0.853 0.791

VOS
S 0.86 0.732 0.794 0.808

MAE 0.122 0.089 0.061 0.063
Max f 0.779 0.66 0.728 0.732
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datasets are very representative. -e experimental results
show that the LNSM model has good performance for
creating datasets especially for VSOD and DAVSOD data-
sets that mark key images according to human eye concerns.

5. Conclusion

-is paper focuses on key image detection based on deep
neural networks to complete the detection of sports mar-
keting videos. For the detection of multiple scenes, a
feedback network-based video off-image detection model
and a hybrid loss function are proposed to solve the de-
tection problem of key images. -e LNSM model proposed
in this paper is compared with the quantitative evaluation
and visualisation results of the three state-of-the-art models
on six representative datasets. -e quantitative results
demonstrate that LNSM outperforms other advanced
models in all three evaluation metrics on the DAVSOD and
ViSal datasets and achieves advanced performance com-
parable to other models on widely used datasets.

Data Availability

-e dataset can be accessed upon request.
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