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*is article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering
optimization problems. *e complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization
algorithm (SOA).*ese strategies enhance the individuals’ diversity, enhance the local search, avert falling into the local optimum,
and are the influential global optimization strategies. *is article chooses fifteen benchmark functions, four proportional integral
derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental
results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization
of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic
algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker
optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.

1. Introduction

Recently, the heuristic algorithm has received a lot of at-
tention. Such algorithms create random methods for many
optimization problems. Since the no free lunch (NFL)
theorem, no one optimization solution can optimize overall
questions [1]. *erefore, researchers pose new algorithms or
enhance the current algorithms to deal with optimization
problems. *e current algorithms are the genetic algorithm
(GA) [2], particle swarm optimization (PSO) [3], simulated
annealing (SA) [4], harmony search (HS) [5], gravitational
search algorithm (GSA) [6], moth-flame optimization
(MFO) [7], sine cosine algorithm (SCA) [8], multiverse
optimizer (MVO) [9], seeker optimization algorithm (SOA)
[10], monarch butterfly optimization (MBO) [11], slime
mould algorithm (SMA) [12], moth search algorithm (MSA)
[13], hunger games search (HGS) [14], Runge–Kutta method
(RUN) [15], and Harris hawks optimization (HHO) [16].

However, some optimization algorithms are still not very
successful in many optimization problems.*e optimization

problems include the following: being premature, issues with
low optimization precision, having only a local optimal
solution, slow convergence speed, and insufficient robust-
ness. To better overcome the issues of common optimization
precision, prematurity, having only a local optimal solution,
slow convergence rate, and poor robustness, some improved
algorithms have proven to be feasible optimization algo-
rithms and have been used in practical engineering. For
instance, the evolutionary algorithms are improved by the
adaptive parameter control methods [17]. *e simulated
annealing algorithm based on the particle swarm algorithm
is adopted to optimize the extracting multiple tests [18]. A
whale optimization algorithm based on hybrid algorithm
framework with learning and complementary is used in
function optimization and engineering design problems
[19]. A multilayered gravitational search algorithm is used in
function optimization and real-world problems [20]. An
artificial bee colony algorithm search is improved by scale-
free networks [21]. *e chaotic local search-based differ-
ential evolution algorithm is applied to optimize the
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function optimization and the real-world optimization
problems [22].

Also, the complex-valued encoding heuristic algorithms
have been proposed according to the characteristics of some
algorithms. *ese complex-valued encoding intelligent
optimization algorithms have proven to be feasible opti-
mization algorithms and have been used in practical engi-
neering. For instance, the complex-valued encoding
dragonfly algorithm optimized the power systems [23]. A
gray wolf optimization based on plural encoding optimized
the filter model [24]. *e complex-valued encoding satin
bowerbird optimization algorithm solved the benchmark
functions [25]. *e complex-valued encoding-driven opti-
mization optimized the 0-1 knapsack problem [26]. *e
complex-valued encoding symbiotic organism search al-
gorithm was proposed for the overall optimization [27]. *e
complex-valued encoding flower pollination algorithm
optimized the constrained engineering optimization prob-
lems [28]. A comprehensive survey was offered for the
complex-valued encoding metaheuristic optimization al-
gorithm [24].

Dai et al. proposed SOA in 2006 [29]; the goal is to mimic
the seekers’ behavior and the way they exchange information
and solve practical application optimization problems. Re-
cently, SOA has been used in many fields, such as in un-
constrained optimization problems [30], optimal reactive
power dispatch [31], a challenging set of benchmark problems
[32], the design of a digital filter [33], optimizing parameters
of artificial neural networks [34], the optimizing model and
structures of fuel cell [35], the novel human group optimizer
algorithm [36], and several practical applications [37].

However, in the initial stage of dealing with optimization
problems, the SOA converges faster than others. When all
individuals are near to the best individual for solving the
optimization problem, the individuals will lose diversity and
fall into prematurity.

To overcome the shortcomings of the SOA, there are
various strategies for improving the SOA, such as the best
empirical parameter strategy, the dynamic adaptive
Gaussian variation of empirical parameter strategy, the
Chebyshev chaos of order three strategy, the real coding
double-link strategy, the complex-valued encoding strategy,
and the complex-valued encoding multichain strategy. After
improving the SOA with the above strategies and making an
experimental comparison, this paper selects several im-
proved strategies with better results to improve the SOA
together. In this article, complex number coding and a
multichain strategy are used to enhance the global opti-
mization and the local search. We propose the complex-
valued encoding multichain seeker optimization algorithm
(CMSOA). *e multichain strategy includes the complex-
valued multichain and the stochastic complex multichain
strategy. *e CMSOA has been tested on fifteen benchmark
functions, four PID control parameter optimizations, and six
engineering optimizations taken from the literature. In
comparison with PSO, SA_GA, GSA, SCA, MVO, and SOA,
the CMSOA can find better values to solving the questions,
and the precision and robustness of the CMSOA are better.
*e complex-valued encoding and the multichain methods

enhance the diversity of the individuals and avert premature
convergence. *e CMSOA overcomes the premature con-
vergence of the SOA. *e advantages of the CMSOA are
summed up as follows:

(1) CMSOA is proposed to enhance the precision and
robustness of optimization.

(2) With the complex-coded multichain strategy, in
complex-valued coding, the real part, imaginary part,
and real number are used as parallel individual
variables to solve the objective function problem.

(3) *e stochastic multichain strategy is introduced in
the SOA. According to the initial solution generation
rule of the complex number coding, the real part, the
imaginary part, and the real number are randomly
generated as the parallel individual variables to solve
the objective function.

(4) *e complex-coded strategy, the multichain strategy,
and the stochastic multichain strategy can improve
the diversity of individuals, enhance local search, and
avert premature convergence.

*e rest of the article is organized as follows. Section 2
presents the SOA and the algorithm improvement strategies.
Section 3 describes the CMSOA. Section 4 shows the al-
gorithm optimization experiments, the results, and the
analyses. At last, Section 5 gives some conclusions.

2. The Basic SOA and Algorithm
Improvement Strategies

*e SOA carries out in-depth research on human search
behavior. It considers optimization as a search for an
optimal solution by a search team in search space, taking
search team as population and the site of the searcher as
task method. Using “experience gradient” to determine the
search direction, we use uncertain reasoning to resolve the
search step measurement, through the scout direction and
search step size to complete the searchers’ position in the
search interspace update, to attain the optimization of the
solution.

2.1. Key Update Points for SOA. *e SOAs have three main
updating steps. In this section, i is the ith searcher individual
and j represents the individual dimension. s is the total number
of individuals; D is the total number of dimensions of the
variable; tmeans the current algebra; and itermax represents the
maximum optimization algebra. xij(t) and xij(t+1), respec-
tively, represent the searchers’ site at algebras t and (t+1).

2.1.1. Search Direction. *e forward orientation of a search
is defined by the experience gradient obtained from the
individuals’ movement and the evaluation of other indi-
viduals’ search historical position. *e egoistic direction
f
→

i,e(t), altruistic direction f
→

i,a(t), and preemptive direc-
tion f

→
i,p(t) of the ith individual in any dimension can be

obtained.
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f
→

i,e(t) � p
→

i,best − x
→

i(t),

f
→

i,a(t) � g
→

i,best − x
→

i(t),

f
→

i,p(t) � x
→

i t1( 􏼁 − x
→

i t2( 􏼁.

(1)

*e searcher uses the method of a random weighted
average to obtain the search orientation.

f
→

i(t) � sign ωf
→

i,p(t) + φ1 f
→

i,e(t) + φ2 f
→

i,a(t)􏼒 􏼓, (2)

where t1, t2 ∈ {t, t − 1, t − 2}; x
→

i(t1) and x
→

i(t2) are the best
advantages of x

→
i(t − 2), x

→
i(t − 1), x

→
i(t)􏼈 􏼉 separately;

gi,best is the historical optimal location in the neighborhood
where the ith search factor is located; pi,best is the optimal
locality from the ith search factor to the current locality; ψ1
and ψ1 are random numbers in [0, 1]; and ω is the weight of
inertia.

2.1.2. Search Step Size. *e SOA refers to the reasoning of
the fuzzy approximation ability. *e SOA, through the
computer language, describes some of the human natural
languages that can simulate human intelligence reasoning
search behavior. If the algorithm expresses a simple fuzzy
rule, it adapts to the best approximation of the objective
optimization problems. Greater search step length is more
important. However, the smaller fitness corresponds to the
smaller search step length. *e Gaussian distribution
function is adopted to describe the search stepmeasurement.

μ(α) � e
− α2/2δ2

, (3)

whereα andδ are parameters of a membership function.
According to equation (3), the probability of the

output variable exceeding [− 3δ, 3δ] is less than 0.0111.
*erefore, μmin � 0.0111. Under normal circumstances,
the optimal position of an individual has μmax � 1.0 and
the worst place is 0.0111. However, to accelerate the
convergence speed and get the optimal individual to have
an uncertain step size, μmax is set as 0.9 in this paper. Select
the following function as the fuzzy variable with a “small”
target function value:

μi � μmax −
s − Ii

s − I
μmax − μmin( 􏼁, i � 1, 2, . . . , s, (4)

μij � rand μi, 1( 􏼁, j � 1, 2, . . . , D, (5)

where μij is determined by equations (4) and (5) and Ii is the
count of the sequence xi(t) of the current individuals
arranged from high to low by function value. *e function
rand(μi, 1) is the real number in any partition [μi, 1]. It can be
seen from equation (4) that it simulates the random search
behavior of human beings. Step measurement of j-dimen-
sional search interspace is determined by

αij � δij −

�������

− ln μij􏼐 􏼑

􏽱

, (6)

where δij is a parameter of the Gaussian distribution
function, which is defined by

ω �
itermax − t( 􏼁

itermax
, (7)

δij � ω x
→

min − x
→

max
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (8)

where ω is the weight of inertia. As the evolutionary algebra
increases, ω decreases linearly from 0.9 to 0.1. x

→
min and

x
→

max are, respectively, the variate of the minimum value and
maximum value of the function.

2.1.3. Individual Location Updates. After obtaining the
scout direction and scout step measurement of the indi-
vidual, the location update is represented by

xij(t + 1) � xij(t) + αij(t)fij(t), i � 1, 2, . . . , s; j � 1, 2, . . . , D.

(9)

fij(t) and αij(t), respectively, represent the searchers’
search direction and search step size at time t.

2.2. 
e Algorithm Improvement Strategies. Five strategies
for improving the algorithm are listed in this paper.

2.2.1. 
e Best Empirical Parameter Strategy. *e first
strategy is an empirical parameter change strategy. In the
basic SOA, equation (8) is changed to equation (10), and the
empirical value C is changed to a fixed empirical value.
*rough a large number of experimental tests, the empirical
value is C� 0.2. *e individual position update is still the
same as equation (9).

δij � ω x
→

min − C × rand(1, D)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (10)

where δij is a parameter of the Gaussian membership
function [38, 39] and x

→
min is the variate of the minimum

value of the function.

2.2.2. 
e Dynamic Adaptive Gaussian Variation of Em-
pirical Parameter. In the SOA, equation (8) is changed to
equation (11), and the empirical value C1 is changed to an
adaptive empirical value that varies between 0.1 and 0.5 with
the change of optimization algebra according to equation
(12). *e individual position update is still the same as
equation (9).

δij � ω x
→

min − C1 × rand(1, D)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (11)

C1 � 0.5 − t
0.1

itermax
􏼠 􏼡, (12)

where δij is a parameter of the Gaussian membership
function [38, 39] and x

→
min is the variate of the minimum

value of the function.

2.2.3. 
e Chebyshev Chaos of Order 
ree. *e Chebyshev
map of order ω is defined as
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x
∗
ij � cos ω · arccos xij􏼐 􏼑, − 1≤xij ≤ 1, (13)

xij(t + 1) � xij(t) + x
∗
ij(t), i � 1, 2, . . . , s; j � 1, 2, . . . , D,

(14)

where when ω≥ 2, xij is chaotic and ergodic and has or-
thogonality. In this case, no matter how close different initial
values are, the sequences derived from multiple iterations
are not correlated with each other.

2.2.4. 
e Multichain Strategy/the Double-Chain Strategy.
*e multichain strategy includes taking the real and the
imaginary parts of the plural as separate parallel solutions
and the randomly generating parallel solutions according to
the complex number coding law.

In this paper, the meaning of the multichain strategy is
that a single individual variable in the original SOA is
converted into six parallel individual parameters when the
CMSOA optimizes a problem. In complex-valued coding,
there are real part XR, imaginary part XI, and real number
XK. In each iterative loop optimization, XR, XI, and XK are
adjusted to the variables that meet the scope of X
(Xmin �Ak, Xmax �Bk). XR, XI, and XK were taken as the
relative optimal solution variables, respectively, to solve
the objective function problem. Secondly, a group of
variables that randomly generate XR_Random, XI_Random,
and XK_Random according to formulas (9)–(11) and meet
the scope of X (Xmin �Ak, Xmax �Bk) should be added in
each cycle optimization and taken as the relative optimal
solution variable to solve the objective function, respec-
tively. At the end individual of the single solution, the
respective optimal solutions are saved, and the global
optimal value is saved as the current optimal value after
the comparison of each optimal solution. *e optimal
solution variables of the next generation of XR, XI, and XK
are changed according to formulas (13)–(15). *e next
generation optimal solution variables of XR_Random,
XI_Random, and XK_Random are generated randomly
according to formulas (9)–(11). In other words, a single
individual variable X in the original SOA is converted to
six individual variables XR, XI, XK, XR_Random, XI_Random,
and XK_Random when solved by the CMSOA, and this is
shown in Figure 1. So, instead of solving for one main
chain, we are solving for six parallel chains. A multichain
strategy is used in the CMSOA; the strategy adds the
variety of the individual, enhances the local scout, and
averts premature convergence.

For the SOA of real number coding, the real number
coding is one chain, and the random generation of real
number population is another chain. So, a double-chain is
made up of a real number coding chain and a random
generation of real number chain.

2.2.5. 
e Complex-Valved Encoding

(1) Initial Population Generation. In light of the variable
interval [Ak, Bk], k� 1, 2, . . ., 2s − 1, 2s, the modules ρk, the
phase angles θk, and the plural are produced [40] as follows:

ρk �
Ak,Bk

2
× rand ∈ 0,

Ak,Bk

2
􏼢 􏼣, k � 1,2, . . . ,2s − 1,2s, (15)

θk � 4π(rand − 0.5) ∈ [− 2π,2π], k � 1,2, . . . ,2s − 1,2s,

(16)

XRk + iXIk � ρk cos θk + i sin θk( 􏼁, k � 1,2, . . . ,2s − 1,2s.

(17)

(2) Individual Location Updates. *e real part is updated by

XR(t + 1) � XR(t) + αR(t)fR(t), (18)

where αR represents the scout direction of the real parts, fR is
the scout step measurement of the real parts, and XR rep-
resents the location of the real number parts.

*e imaginary part is updated by

XI(t + 1) � XI(t) + αI(t)fI(t), (19)

where αI represents the scout direction of the imaginary part,
fI is the scout stepmeasurement of the imaginary part, andXI
represents the location of the imaginary number part.

(3) Fitness Evaluation Method. When calculating fitness
values using the SOA, we convert plural to real numbers.*e
formula is as follows.

(1) Take the plural mathematical module as real number:

ρk �

���������

X
2
Rk + X

2
Ik

􏽱

, k � 1, 2, . . . , s − 1, s. (20)

(2) Define the sign according to the phase angle:

Xk � ρksgn sin
XIk

ρk

􏼠 􏼡􏼠 􏼡
Bk + Ak

2
, k � 1, 2, . . . , s − 1, s,

(21)

where Xk is the real number.

3. The CMSOA Process

*e chromosomes of complex organisms are regarded as
double-stranded or multistranded construction. Since a
complex value is made up of the real part and the imaginary
part [26, 41–43], the complex value is represented as a

�e CMSOA individual variables

�e SOA individual
variable

X

XI

XR

XK

XR_Random

XI_Random

XK_Random

Figure 1: Multichain strategy of the CMSOA.
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double-chain. A double-chain represents a chromosome
pair, and the individuals that make up the double-chain have
the same length. *e two-body framework enhances the
variety of individuals and makes the algorithm have better
searching and calculation capacity.

*e CMSOA is based on a multiple population evolution
model, three populations evolved by the SOA, and three
other populations evolved from random generation. *e
individual groups use the information-sharing mechanisms
to realize coevolution. Algorithm 1 shows the primary
process of the CMSOA.

4. Experimental Results

4.1. Experimental Setup. *e algorithms used in the ex-
periment in this paper were run under MATLAB R2016a.
*e computer is configured as Intel (R) Core (TM) i7-7500U
CPU @2.7GHz 2.9GHz processor with 8GB of memory,
and the operating system is Windows 10.

4.2. Algorithm Performance Comparison in Benchmark
Functions. To ensure that the comparison of these algo-
rithms is fair, the population number of algorithms is 30, and
the evolutionary algebra is 1000. At the same time, for
further ensuring the fairness of algorithm comparison and
reducing the effect of randomness, the results of the seven
algorithms after 30 independent runs were selected for
comparison.

4.2.1. 
e Benchmark Functions. In this field, it is common
to base the capability of algorithms onmathematic functions
that are known to be globally optimal. Fifteen benchmark
functions in the literature are used as the comparative test
platform [7, 10, 44–46]. Table 1 shows the functions in the
experiment. Variables are set to one thousand.

4.2.2. Algorithm Performance Comparison of the SOA with
Different Improvement Methods. In this paper, the SOA is
improved by six different methods: the parameter changing
SOA (PCSOA), the parameter adaptive Gaussian transform
SOA (PAGTSOA), the SOA based on the Chebyshev chaos
of order three (CCSOA), the SOA based on real coding
double-link (DSOA), the SOA based on complex-valued
encoding (CSOA), and the complex-valued encoding mul-
tichain seeker optimization algorithm (CMSOA).

(1) Parameter Setting of SOA with Different Improvement
Methods. *is section will introduce the parameter setting of
the improved SOAs used in the experiment in this paper. Dai
et al. have done a lot of research on the parameter set of the
SOA [33], and we did a lot of practice tests and comparative
studies about the parameters. *e specific parameters of the
improved SOA are shown in Table 2. In the next section, we
use these improved SOAs for experimental comparison and
choose a relatively optimal improved algorithm to compare
with other advanced intelligent algorithms.

(2) Improved Algorithm Performance Comparison in the
Benchmark Functions. *e SOA is improved in six different
ways: the parameter changing SOA (PCSOA), the parameter
adaptive Gaussian transform SOA (PAGTSOA), the SOA
based on the Chebyshev chaos of order three (CCSOA), the
SOA based on real coding double-link (DSOA), the SOA
based on complex-valued encoding (CSOA), and the
complex-valued encoding multichain seeker optimization
algorithm (CMSOA). To test the performance, each im-
proved algorithm was optimized for the fifteen functions in
Table 1. Each algorithm and each function were run inde-
pendently 30 times. *e performance of the SOA and the six
improved SOAs in fifteen function optimizations was
compared by the mean (Mean), standard deviation (Std.),
best fitness (Best), the program running time (Time), and the
best fitness rank (Rank) of 30 running results. *e optimal
fitness reflects the optimization accuracy of the algorithm,
the average value and standard deviation reflect the ro-
bustness of the algorithms, and the running time reflects the
time of the program. *e results of functions f1–f15 are
displayed in Table 3. *e values in bold and italics indicate
that the optimal result is better.

Based on Table 3, for the benchmark functions f1–f15, the
comparison between the seven improved SOAs in this paper
and the original SOA shows that the optimization result of
the CMSOA is the best value. *e mean (Mean), standard
deviation (Std.), best fitness (Best), and best fitness rank
(Rank) of the CMSOA were the best after 30 independent
runs. *e total program running time of f1–f15 ranks fifth
among the seven algorithms compared in this paper. *e
running time of the CMSOA is longer than that of others
algorithms. From the perspective of optimization accuracy
and robustness, the CMSOA has the best optimization
performance than these improved SOAs in this paper.
Section 4.2.3 compares the CMSOA with other intelligent
optimization algorithms widely used today.

(3) Search History of the CMSOA. Figure 2 shows the graph
of the optimized function f1, the convergence curves, the
initial population’s positions, and the search history; the
search history behaviors of the search seekers are marked
with red mark +. Based on Figure 2, for the benchmark
function f1, the convergence curve of the CMSOA is fast.
From the search history of the CMSOA, the search seekers of
the CMSOA extensively move towards promising search
regions in the search space; the search seekers searched the
given search space by the moment in the change search step
size and different search directions; this gives the way to
increase local search, escape local optima, and avoid pre-
mature convergence.

Similarly, Figure 3 shows the graph of the optimized
function f10, the convergence curves, the initial population’s
positions, and the search history; the search history be-
haviors of the search seekers are marked with red mark +.
Based on Figure 3, for the benchmark function f10, the
convergence curve of the CMSOA is fast. From the search
history of the CMSOA, the search seekers of the CMSOA
extensively move towards promising search regions in the
search space; the search seekers searched the given search
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space by the moment in the change search step size and
different search directions; this gives the way to increase
local search, escape local optima, and avoid premature
convergence.

Similarly, Figure 4 shows the graph of the optimized
function f14, the convergence curves, the initial population’s
positions, and the search history; the search history be-
haviors of the search seekers are marked with red mark +.
Based on Figure 4, for the benchmark function f14, the
convergence curve of the CMSOA is the fast. From the
search history of the CMSOA, the search seekers of the
CMSOA extensively move towards promising search regions
in the search space; the search seekers searched the given
search space by the moment in the change search step size
and different search directions; this gives the way to increase
local search, escape local optima, and avoid premature
convergence.

4.2.3. 
e Algorithm Performance Comparison of Different
Algorithms in the Benchmark Functions. To test the per-
formance of the CMSOA, the CMSOA is compared with the
PSO, SA-GA, GSA, SCA, MVO, and SSA, using fifteen
benchmark functions [7, 10, 44–46] in Table 1, which have
been widely used in the test.

(1) 
e Parameter Setting of Different Algorithms. In this
section, the parameter set of the PSO [47], SA_GA [48], GSA
[6], SCA [8], MVO [9], SOA [29], and CMSOA is presented.
According to references [6, 8, 23, 29, 47, 48], we did a lot of
practice tests and comparative studies for the parameter set.
*e parameters of the seven algorithms depend on the real
experience to take the right value. Table 4 lists the param-
eters in the test.

(2) 
e Result Comparison of Different Algorithms in
Benchmark Functions. *is section uses the same fifteen
functions as in Table 1, but we have expanded the di-
mension of the variables to 1000 dimensions. *e mean
values, standard deviation, best fitness, and best fitness rank
of the algorithms of 30 all-alone runs and the data of
optimization results of functions f1–f15 are shown in Ta-
ble 5.*e values in bold and italics indicate that the optimal
outcome is better.

For the benchmark functions f1–f15, based on Table 5,
except f4, f7, f9, f10, f11, f14, and f15, the optimal value of the
CMSOA is better than that of the others. To f9, the optimal
value of the CMSOA has reached the theoretical best value,
although the optimal fitness value of the CMSOA is inferior
to that of the PSO and the GSA. For f7 function, the optimal
value of the CMSOA is only worse than that of the PSO

(1) t← 0
(2) Initialization: generate initial species group based on formulas (15)–(17).
(3) Convert plural into real numbers based on formulas (20) and (21).
(4) Determine the range of XR_CMSOA,G, XI_CMSOA,G, and XCMSOA,G to satisfy the range of X.
(5) Evaluate each seeker. Compute the fitness.
(6) While stopping condition is not satisfied

(6.1) Running process of the CMSOA
(6.1.1) Renew the real parts by formula (18), XR_CMSOA,G.
(6.1.2) Renew the imaginary parts based on formula (19), XI_CMSOA,G.
(6.1.3) Convert plural into real number based on formulas (20) and (21), XCMSOA,G.
(6.1.4) Determine the range of XR_CMSOA,G, XI_CMSOA,G, and XCMSOA,G to satisfy the range of X.
(6.1.5) Scout strategy giving scout direction and scout range.
(6.1.6) Calculate the fitness (XR_CMSOA,G), (XI_CMSOA,G), (XCMSOA,G).
(6.1.7) Identify the best solution XCMSOAbest,G

FCMSOA,G �min[f(XR_CMSOA,G) f(XI_CMSOA,G) f(XCMSOA,G)]
XCMSOAbest,G �min(FCMSOA,G)

(6.2) Random generation and calculation
(6.2.1) Generate Initial population according to formulas (15)–(17).
(6.2.2) Convert complex numbers into real numbers according to formulas (20) and (21).
(6.2.3) Determine the XR_Random,G, XI_Random,G, and XRandom,G to satisfy the range of X.
(6.2.4) Calculate the fitness (XR_Random,G), (XI_Random,G), (XRandom,G).
(6.2.5) Identify the best value XRandombest,G

FRandom,G �min[f(XR_Random,G) f(XI_Random,G) f(XRandom,G)]
XRandombest,G �min(FRandom,G)

(6.3) Confirm the global best value Xbest
If (XCMSOAbest,G)≤ (XRandombest,G)

Xbest �XCMSOAbest,G
else Xbest �XRandombest,G
end if

(7) t� t+ 1
(8) if t< itermax, then jump to 3; Else Stop.

ALGORITHM 1: CMSOA.
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Table 2: Parameter settings of the SOA with different improvement methods.

Algorithm Parameters and values

SOA [5] *e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, and the minimum inertia weight value: Wmin � 0.1

PCSOA *e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, and the empirical value: W� 0.2

PAGTSOA *e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, and the empirical value: W� 0.1–0.5

CCSOA *e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, and the empirical value: W� 0.2

DSOA *e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, and the empirical value: W� 0.2

CSOA *e maximum membership degree value: Umax� 0.95, the minimum membership degree value: Umin� 0.0111, the
maximum inertia weight value: Wmax� 0.9, the minimum inertia weight value: Wmin� 0.1, and the empirical value:W� 0.2

CMSOA *e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, and the empirical value: W� 0.2

Table 3: Performance comparison of the SOA improved by different strategies.

Function Result
Algorithms

SOA PCSOA PAGSOA CCSOA DSOA CSOA CMSOA

f1 (D� 100)

Mean 1.0524957 10.651095 5.8792970 0.3009934 0.3532587 0.1116982 0.2077269
Std. 0.2051906 49.006900 26.483115 0.2488472 0.2958520 0.4738650 0.1376184
Best 0.6215967 0.0194690 0.0126392 0.0042290 0.0461541 0.0088426 0.0016885
Time 45.50061 55.33285 53.03482 59.300793 309.13098 367.64198 389.55755
Rank 7 5 4 2 6 3 1

f2 (D� 100)

Mean 13.002085 0.8551306 1.1247211 0.8780035 0.7974362 0.6564412 0.6368774
Std. 2.0008395 0.3078019 0.1241726 0.1928515 0.1878251 0.0956433 0.1775901
Best 9.4729280 0.3884975 0.8443990 0.5441874 0.5156629 0.3976921 0.3978455
Time 54.16754 51.23705 49.17031 64.507580 365.14220 353.13727 363.79830
Rank 7 1 6 5 4 2 3

f3 (D� 100)

Mean 9.869e+ 03 3.392e+ 03 3.452e+ 03 2.622e+ 03 2.7367e+ 3 6.6670 + 3 1.1027e + 3
Std. 3.472e+ 03 1.658e+ 03 1.959e+ 03 2.016e+ 03 2.0207e+ 3 3.7306e+ 3 8.3009e + 2
Best 3.318e+ 03 4.645e+ 02 37.813122 2.3714625 1.7054e+ 2 14.746709 6.4672568
Time 423.27283 393.18358 468.54936 491.11858 4151.7979 1620.2993 1260.7060
Rank 7 6 4 1 5 3 2

f4 (D� 100)

Mean 21.743821 18.412017 18.418584 17.524233 17.793596 31.7111918 16.484619
Std. 5.6809434 6.8890641 6.6275327 7.6897380 6.5363678 2.5395843 5.5082548
Best 2.9045088 0.2149959 0.5369130 0.2588117 0.7984465 26.660747 2.6256219
Time 47.98446 55.85934 49.86405 52.858896 325.71654 370.6040 431.75863
Rank 6 1 3 2 4 7 5

f5 (D� 100)

Mean 7.093e+ 02 1.334e+ 02 1.082e+ 02 1.017e+ 02 2.4188e+ 3 98.533551 1.0088e+ 2
Std. 1.675e+ 02 1.489e+ 02 14.576662 7.7724141 1.2306e+ 4 3.0082579 11.123575
Best 2.789e+ 02 96.133568 97.022113 96.548173 96.290670 96.158695 95.869293

Time 54.515291 62.169550 50.996834 63.045733 439.86830 452.46103 416.64079
Rank 7 2 6 5 4 3 1

f6 (D� 100)

Mean 1.1365348 10.241728 8.3207707 9.4211577 15.867512 7.0792797 9.8327363
Std. 0.1751583 7.3068384 4.9997548 4.0535203 14.622004 4.5554408 2.4321441
Best 0.7992740 0.2161040 0.0424130 0.4878507 1.3808158 0.3954699 2.3988934
Time 47.876927 52.583180 46.059290 58.970068 401.34745 473.79587 366.27538
Rank 5 2 1 4 6 3 7

f7 (D� 100)

Mean 3.4645595 0.0979540 0.1900503 0.0921230 0.1046785 0.1017466 0.0909504
Std. 0.9443482 0.0295516 0.0493722 0.0295674 0.0303486 0.0279235 0.0250917
Best 2.0472780 0.0497600 0.0989682 0.0423312 0.0625095 0.0665980 0.0546596
Time 90.52067 95.46660 85.11105 159.51879 966.15743 671.42939 531.30085
Rank 7 2 6 1 4 5 3
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algorithm. *e optimal fitness value result of the CMSOA to
f4 is worse than that of the PSO, GSA, and SOA.*e optimal
fitness value results of the CMSOA for f15 function are only
worse than those of the PSO algorithm, the optimal fitness
value result of the CMSOA for f14 function is worse than that
of the PSO and SOA, the optimal fitness value result of the
CMSOA for f11 function is worse only than that of the SCA
algorithm, and the result of the CMSOA for f10 is worse than
that of the SOA and the MVO.

For the benchmark functions f1–f15, based on Table 5,
except f2, f3, f4, f7, f9, f10, f11, f12, and f14, the standard de-
viation results of the CMSOA are better than those of the
others. *e standard deviation results of the CMSOA for f9

are only worse than those of the PSO algorithm, the result of
the CMSOA for f7 is worse than that of the PSO, GSA, and
SOA, the result of the CMSOA for f4 is worse than that of the
SCA, GSA, SA_GA, PSO, and the MVO, the result of the
CMSOA for f3 is worse than that of the MVO and SOA, and
the result of the CMSOA for f2 is only worse than that of the
SOA. To f2 function, the standard deviation results of the
PSO, SA_GA, and the SCA algorithm have no solution, and
the GSA and the MVO algorithm have an infinite standard
deviation. *e CMSOA is better than the others. For f14, the
CMSOA is worse than the PSO and the GSA. For f11 and f12,
the CMSOA is worse than the PSO, SA_GA, GSA, MVO,
and SOA, and the standard deviation results of the CMSOA

Table 3: Continued.

Function Result
Algorithms

SOA PCSOA PAGSOA CCSOA DSOA CSOA CMSOA

f8 (D� 100)

Mean 1.391e+ 02 0.3830840 1.2523149 0.5511988 0.4522278 0.269201 0.2693774
Std. 33.925547 0.1176738 0.2579516 0.5240817 0.3370242 0.079379 0.0710191
Best 79.288776 0.2063376 0.7213791 0.1941864 0.1860271 0.125793 0.1116089
Time 55.51168 51.83529 47.67628 64.360044 394.86795 410.81844 273.29456
Rank 7 5 6 4 3 2 1

f9 (D� 100)

Mean 1.471e − 05 2.988e − 08 1.597e − 07 4.0858e − 8 2.3918e − 08 5.8221e − 08 1.7706e − 8
Std. 1.279e − 05 1.944e − 08 1.098e − 07 2.8308e − 8 1.8113e − 08 3.8119e − 08 1.2641e − 8
Best 6.318e − 07 4.835e − 09 9.134e − 09 3.6158e − 9 4.6751e − 09 1.7833e − 08 1.4250e − 9
Time 102.88770 105.16369 94.27801 131.1281 1015.2811 536.45466 411.95393
Rank 7 5 4 2 3 6 1

f10 (D� 100)

Mean − 2.324e+ 4 − 2.184e+ 4 − 2.296e+ 4 − 2.302e+ 4 − 2.2314e+ 4 − 2.2379e+ 4 − 3.125e + 4
Std. 3.396e+ 3 3.105e+ 3 3.478e+ 3 2.2286e + 3 3.5627e+ 3 3.0105e+ 3 3.8419e+ 3
Best − 3.174e+ 4 − 2.906e+ 4 − 3.383e+ 4 − 2.787e+ 4 − 3.7082e+ 4 − 2.8728e+ 4 − 4.127e + 4
Time 60.474337 64.865537 69.718244 85.194918 542.92266 410.10538 335.93689
Rank 4 5 3 7 2 6 1

f11 (D� 100)

Mean 4.147e+ 02 40.408968 1.671e+ 02 31.424385 22.010136 27.498996 12.314455
Std. 47.133648 58.557280 52.557303 44.425051 31.162826 41.300447 11.507374
Best 3.230e+ 02 0.1867154 49.014907 0.3522364 0.2567124 0.1969691 0.2647166
Time 59.59937 70.80121 53.881313 63.770943 410.67985 400.34173 344.88583
Rank 7 1 6 5 3 2 4

f12 (D� 100)

Mean 2.4523846 0.4491129 0.2960575 0.3149221 0.5812064 0.1151882 0.1668715
Std. 0.3106584 0.6639778 0.5909855 0.9299543 0.9919764 0.1091937 0.0811535
Best 1.9634230 0.0154282 0.0320302 0.0160403 0.0232704 0.0168475 0.0230998
Time 64.89326 68.48468 56.26708 68.939722 481.161501 426.233718 309.17212
Rank 7 1 6 2 5 3 4

f13 (D� 100)

Mean 0.5354222 0.9578562 0.143592 0.2880654 0.4551868 0.0607244 0.0334294
Std. 0.3343660 3.0280038 0.336573 0.5765596 1.0663812 0.1861735 0.1280935
Best 0.0806019 0.0020953 0.007806 0.0021233 0.0016367 0.0024141 0.0017944
Time 63.67314 65.48267 60.59472 88.145403 525.980833 517.816804 386.16642
Rank 7 3 6 4 1 5 2

f14 (D� 100)

Mean 20.231984 11.239536 13.286278 15.089459 11.896348 15.510852 5.3014263
Std. 8.8688013 6.6059206 8.0516954 8.2104226 7.1902974 6.5123009 5.7168081
Best 8.9451797 0.3752616 0.2490416 0.4653713 0.1050871 1.6355938 0.0700603
Time 165.94752 214.22263 158.94344 188.54280 2343.8473 1101.5058 639.49732
Rank 7 4 3 5 2 6 1

f15 (D� 100)

Mean 1.301e+ 02 1.080e+ 02 95.968154 82.716420 82.827205 82.843043 44.937907
Std. 62.979168 78.512763 75.121239 70.432659 70.510311 61.171959 49.375729
Best 1.7998261 9.9178264 9.7032945 9.0159025 9.8337273 9.9984043 9.1050026
Time 166.65126 164.31928 159.80885 187.79078 1834.4237 759.75083 576.75249
Rank 1 6 4 2 5 7 3

Average rank 6.2 3.266666667 4.533333333 3.4 3.8 4.2 2.6
Overall rank 7 2 6 3 4 5 1
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for f10 function are worse than those of the PSO, SA_GA,
GSA, SCA, and the MVO algorithm.

For the benchmark functions f1–f15, based onTable 5, except
f3, f4, f7, f9, f10, and f14, themean values of the CMSOA are better
than those of the others. For f9, the mean test results of the
CMSOA have reached the theoretical best value; although the
mean test result of the CMSOA is worse than that of the PSO,
the result of the CMSOA for f7 is worse than that of the PSO, the
result of the CMSOA for f4 is worse than that of the PSO, GSA,
and SOA, and the result of the CMSOA for f3 is only worse than
that of theGSA and SOA.*eCMSOA is better than the others,
for f10, the CMSOA is worse than the MVO and SOA, and for
f14, the CMSOA is only worse than the PSO algorithm.

According to the optimal fitness value mean rank and all
rank results fromTable 5, the CMSOA can find solutions and
has strong optimization ability and strong robustness to
benchmark function.

(3) Convergence Curve Comparison of Algorithms in the
Benchmark Functions. Figure 5 shows the fitness curves of the
best fitness for the benchmark functions f1–f15 (D� 1000). As
seen from Figure 5, the CMSOA is compared to the other six

algorithms; the convergence of the CMSOA is faster, and the
precision of the CMSOA is better, except f4, f7, f9, f10, f14, and f15.
Although the CMSOA for f9 is worse than the PSO in terms of
convergence and the precision, the CMSOA has reached the
theoretical best value, for f7, the CMSOA is only worse than the
PSO, and for f4, the CMSOA is worse than the PSO, GSA, and
SOA.*e CMSOA for f15 is only worse than the SOA in terms
of convergence and precision, for f14, theCMSOA is worse than
the SOA and the PSO, and for f10, the CMSOA is worse than
the MVO and SOA. Because of the multichain strategy to
augment the individuals’ diversity and local scout intensity, the
CMSOA has better optimization property.

(4) ANOVA Test Comparison of Algorithms in Benchmark
Functions. Figure 6 shows the ANOVAof the global best values
for benchmark functions f1–f15 (D� 1000). As seen from
Figure 6, the CMSOA is the most robust, except f3, f4, f7, f10, f12,
and f14. *e ANOVA test results of the CMSOA for f7 are only
worse than those of the PSO algorithm, the result of the
CMSOA for f4 is worse than that of the PSO, GSA, and SOA,
and the result of the CMSOA for f3 function is only worse than
that of the GSA and SOA. *e ANOVA test results of the

F1
 (X

1,X
2)

X2

X 2

X1

X1

Test function

×104

2

1.5

1

0.5

0
100

50
0

-50
-100 -100

-50
0

50
100

0 200 400 600 800 1000
Number of Iterations

Global Best Fitness CMSOA Minimum valve=1.2525e-11

G
lo

ba
l F

itn
es

s i
n 

lo
g 

sc
al

e

CMSOAlteration=0 Best fitness=368.5143
100

80

60

40

20

0

-20

-40

-60

-80

-100
-100 -50 0 50 100

X 2

X1

100

80

60

40

20

0

-20

-40

-60

-80

-100
-100 -50 0 50 100

CMSOA Search history Best fitness=1.2525e-11

400

350

300

250

200

150

100

50

0

200

6

4

2

400 600 800 1000

×10-5 Enlarged image

Figure 2: *e graph of f1, convergence curve, initial population’s positions, and the search history.
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CMSOA for f10 function are only worse than those of theMVO
algorithm, and the results of f12 and f14 are worse than that of
the PSO and SOA. *e CMSOA showed better robustness.

4.2.4. Complexity Analysis. *e calculation complexity of
the basic SOA is O (N.D.M), where N is the total indi-
vidual count, D is the dimension count, and M is the
maximum count of algebras. *e computational com-
plexity of the first phase of the SOA stage is O (N.D.M).
*e complex coding strategy is introduced to calculate the
O (N.D.M) value. *e introduced multichain strategy’s
calculational complexity value is O (N.D.M). So, the
overall complexity of the CMSOA is O
(N.D.M +N.D.M +N.D.M). Based on the principle of Big-
O representation [49], if the count of algebras is high
(M≫N, D), the calculational complexity is O ((N.D.M).
*erefore, the overall calculational complexity of the
CMSOA is almost the same as the basic SOA.

4.2.5. Run Time Comparison of Algorithms in Benchmark
Functions. In this section, we recorded the running time of
each algorithm under the same conditions: population number
30, evolution algebra 1000, and 30 independent runs of the
above fifteen benchmark functions f1–f15 (D� 1000). *en, the
running time of the fifteen functions is added to obtain the sum
of the 30 independent running times of each algorithm for the
fifteen functions listed in this paper and the ranking of the total
time, as shown in Table 6. As seen from Table 6, the PSO
algorithm has the most minor program running time, followed
by the SCA algorithm, which has more minor program
running time, and the CMSOA ranks sixth, which has relatively
more program running time. At the bottom of the list is the
SA_GA algorithm, which takes the most running time.

To learn more about the program running time of the
seven algorithms in the fifteen functions, a bar chart (Figure 7)
was made for the total time of each algorithm after 30 inde-
pendent runs. From Figure 7, the program running time of the
PSO is the least, while that of the SA_GA algorithm is themost,
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and the program running time of the CMSOA is less than half
of that of the SA_GA algorithm, which is relatively large.

4.2.6. Exploration and Exploitation in Benchmark Functions.
According to [50–52], formulas (22)–(25) represent the
exploration and development capability of an algorithm.

Divj �
1
n

􏽘

n

i�1
median x

j
􏼐 􏼑 − x

j

i , (22)

Div �
1
D

􏽘

D

i�1
Divj, (23)

Xpl% �
Div

Divmax
× 100, (24)

Xpt% �
Div − Divmax

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Divmax
× 100, (25)

where median xj is the median of dimension j in whole
swarm, xj

i is the dimension j of the swam individual i, n is the
size of swarm, Divj is the average for all the individuals, Div
is the diversity of swarm in an iteration, Divmax is the
maximum diversity in all iterations, and Xpl% and Xpt% are
the exploration and exploitation percentages for an iteration,
respectively.

Figure 8 shows the exploration and exploitation abilities
of the CMSOA as the number of iterations increases in the
benchmark functions f1–f15. As observed from the plotted
curves shown in Figure 8, the CMSOA maintains good
balance between the exploration and exploitation ratios as
the number of iterations increases.

4.2.7. Performance Profiles of Algorithms in Benchmark
Functions. *e average fitness was selected as the capability
index. *e algorithmic capability is expressed in perfor-
mance profiles, which are calculated by the following
formulas:
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Table 4: *e parameter set of algorithms.

Algorithm Parameters and values
PSO [47] Constant inertia: 0.9∼0.4, the two acceleration coefficients: 1.4962

SA_GA [48] Select probability: 0.6, crossover probability: 0.7, mutation scale factor: 0.05, original temperature: 100, temperature
reduction parameter: 0.98

GSA [6] *e gravitational constant: G0�100, α� 20
SCA [8] *e random numbers: r1� 0∼2, r2� 0∼2π, r3� 0∼2, r4� 0∼1

MVO [9] Probability of wormhole existence: WEP_Max� 1, WEP_Min� 0.2, travelling distance rate: TDR� 0∼1, the random
numbers: r1� 0∼1, r2� 0∼1, r3� 0∼1

SOA [29] *e membership degree value: MDV_Max� 0.95, MDV_Min� 0.0111, the inertia weight value: IWV_Max� 0.9,
IWV_Min� 0.1

CMSOA *e membership degree value: MDV_Max� 0.95, MDV_Min� 0.0111, the inertia weight value: IWV_Max� 0.9,
IWV_Min� 0.1

Table 5: Performance comparison of algorithms for benchmark functions.

Functions Result
Algorithm

PSO SA_GA GSA SCA MVO SOA CMSOA

f1 (D� 1000)

Mean 9.7477e+ 3 2.5731e+ 6 9.7519e+ 4 3.5105e+ 5 3.5977e+ 5 1.1631e+ 3 2.7677e + 2
Std. 1.6106e+ 3 5.6740e+ 4 4.9089e+ 3 1.3646e+ 5 1.6121e+ 4 2.1241e+ 3 1.1208e + 3
Best 6.9495e+ 3 2.4536e+ 6 8.7230e+ 4 4.0211e+ 4 3.3044e+ 5 69.63801 13.41123
Rank 3 7 5 4 6 2 1

f2 (D� 1000)

Mean Inf Inf 1.8010e+ 281 Inf 1.3436e+ 273 1.3642e+ 2 84.4833
Std. NaN NaN Inf NaN Inf 5.69798 6.8676
Best 2.9025e+ 2 Inf 4.6083e+ 244 Inf 2.3145e+ 209 1.2392e+ 2 74.4520
Rank 3 6 5 6 4 2 1

f3 (D� 1000)

Mean 3.3245e+ 6 3.3451e+ 7 1.9611e+ 6 2.4026e+ 7 6.1928e+ 6 1.3029e + 6 2.0443e+ 6
Std. 1.4068e+ 6 1.1343e+ 7 8.1529e+ 5 4.7320e+ 6 4.3229e + 5 4.9041e+ 5 7.7353e+ 5
Best 1.6748e+ 6 1.9532e+ 7 9.5585e+ 5 1.3982e+ 7 5.5268e+ 6 1.8272e+ 5 1.7429e + 4
Rank 4 7 3 6 5 2 1

f4 (D� 1000)

Mean 18.3429 99.5440 28.7444 99.5223 97.4126 28.6012 61.3865
Std. 1.3182 0.1918 1.7962 0.1313 0.7405 10.4316 3.1861
Best 16.3774 98.9588 25.8834 99.1965 95.6086 2.3434 53.9155
Rank 2 6 3 7 5 1 4

f5 (D� 1000)

Mean 2.7249e+ 5 1.119e+ 10 1.6750e+ 7 3.2676e+ 9 6.7902e+ 8 2.2675e+ 5 4.8206e + 4
Std. 1.4792e+ 5 3.343e+ 8 1.7268e+ 6 7.0048e+ 8 7.3930e+ 7 1.2833e+ 5 2.7505e + 4
Best 1.2499e+ 5 1.057e+ 10 1.4932e+ 7 2.0841e+ 9 5.4843e+ 8 2.8880e+ 4 1.1542e + 4
Rank 3 7 4 6 5 2 1

f6 (D� 1000)

Mean 1.0284e+ 4 2.5635e+ 6 9.8733e+ 4 4.1315e+ 5 3.5579e5 1.3438e+ 3 2.7896e + 2
Std. 1.3817e+ 3 4.0795e+ 4 4.9212e+ 3 1.2787e+ 5 1.7687e+ 4 2.2562e+ 3 66.6179
Best 6.1887e+ 3 2.4668e+ 6 9.0772e+ 4 1.6278e+ 5 3.1703e+ 5 2.5694e+ 2 2.1193e + 2
Rank 3 7 4 5 6 2 1

f7 (D� 1000)

Mean 1.1474e + 2 1.7871e+ 5 5.2986e+ 3 4.7647e+ 4 8.7236e+ 3 5.1827e+ 3 2.2353e+ 3
Std. 22.2657 6.0811e+ 3 5.8169e+ 2 1.1048e+ 4 771.5517 6.5217e+ 2 7.6850e+ 2
Best 80.9849 1.6720e+ 5 4.37029e+ 3 2.6553e+ 4 7.2739e+ 3 3.7872e+ 3 1.0774e+ 3
Rank 1 7 4 6 5 3 2

f8 (D� 1000)

Mean 4.7291e+ 4 1.2547e+ 7 3.8862e+ 5 1.8012e+ 6 1.5454e+ 6 2.6560e+ 4 7.9139e + 3
Std. 6.6212e+ 3 3.5539e+ 5 2.2329e+ 4 5.5949e+ 5 6.4511e+ 4 3.9984e+ 3 1.4647e + 3
Best 3.6574e+ 4 1.1381e+ 7 3.5017e+ 5 4.5453e+ 5 1.4470e+ 6 1.8651e+ 4 4.4462e + 3
Rank 3 7 4 5 6 2 1

f9 (D� 1000)

Mean 9.7670e − 9 1.5616e+ 92 7.6578e − 5 9.1116e+ 83 1.0103e+ 56 0.3859 2.2868e − 6
Std. 3.3014e − 8 7.3622e+ 92 2.5647e − 4 4.6589e+ 84 5.5321e+ 56 0.6475 1.7299e − 6
Best 5.497e − 16 1.1184e+ 7 1.9892e − 9 9.2943e+ 69 5.6083e+ 38 2.0490e − 5 4.4192e − 7
Rank 1 5 2 7 6 4 3

f10 (D� 1000)

Mean − 1.701e+ 4 − 5.8434e+ 4 − 1.474e+ 4 − 2.2849e+ 4 − 1.339e + 5 − 1.181e+ 5 − 7.995e+ 4
Std. 2.5847e+ 3 3.4159e+ 3 2.3262e+ 3 1.3757e + 3 5.9809e + 3 3.0107e+ 4 1.5591e+ 4
Best − 2.155e+ 4 − 6.7056e+ 4 − 1.844e + 4 − 2.665e+ 4 − 1.467e+ 5 − 2.157e + 5 − 1.178e+ 5
Rank 6 4 7 5 2 1 3
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rf,g �
μf ,g

min μf,g: g G􏽮 􏽯
, (26)

ρg(τ) �
size fF: rf,g ≤ τ􏽮 􏽯

nf

, (27)

where g represents an algorithm, G is the algorithm set, f
represents a function, F is the function set, ng is the number
of algorithms in the experiment, nf is the number of
functions in the experiment, μf,g is the average fitness after
the algorithm g solves function f, rf,g is the capability ratio,
ρg is the algorithmic capability, and τ is a factor of the best
probability [53].

Figure 9 shows the capability ratios of the mean fitness
for the seven algorithms on the benchmark functions f1–f15
(D� 1000). *e results are displayed by a log scale 2. As
shown in Figure 9, the CSMOA has the highest probability.
When τ � 1, the CMSOA is about 0.6, which is better than
others. When τ � 4, the CMSOA is about 0.87, the PSO is
0.53, the SOA is 0.40, the GSA is 0.067, theMVO is 0.067, the
SCA is 0.067, and the SA_GA is 0.067. When τ � 12, the
CMSOA is 0.87, the PSO is 0.73, the SOA is 0.80, the GSA is
0.33, the MVO is 0.33, the SCA is 0.27, and the SA_GA is 0.2.
*e capability curve of the CMSOA lies above others, and
the CMSOA can achieve about 0.87 when τ ≥ 4. *us, the
property of the CMSOA is better than that of other
algorithms.

4.3. Algorithm Performance Comparison in PID Controller
Parameter Optimization Problems. In this section, we use
four test control system models optimizing the PID

parameters to test the capability of the CMSOA. For the
g1 ∼ g3, the population number of all algorithms is 20, the
max number of algebras is 20, the step response time of
g1 ∼ g2 is set to 10 s, and the step response time of g3 is set
to 30 s. For g4, the population number of all algorithms is 50,
the max number of algebras is 50, and the step response time
is set at 50 s.

4.3.1. Control System Models. Equations (28)–(31) show the
test control system models optimizing PID parameters used
in our experiment. Figure 10 shows the process diagram for
optimizing the test control system PID parameters by the
CMSOA. Figure 11 shows the optimization of PID pa-
rameter model structure of the test control system.

g1(s) �
2.6

(2.7s + 1)(0.3s + 1)
, (28)

g2(s) �
5

(2.7s + 1)
e

− 0.5s
, (29)

g3(s) �
3

(2s + 1)
e

− 3s
, (30)

g4(s) �
1

(s + 1)
8. (31)

4.3.2. Result Comparison of Algorithms in PID Controller
Parameter Optimization. For testing the capability of the
CMSOA, the CMSOA is comparedwith the PSO, SA-GA,GSA,

Table 5: Continued.

Functions Result
Algorithm

PSO SA_GA GSA SCA MVO SOA CMSOA

f11 (D� 1000)

Mean 2.8217e+ 3 1.5245e+ 4 5.7869e+ 3 1.8362e+ 3 1.3788e+ 4 6.3358e+ 3 1.7847e + 3
Std. 1.7027e+ 2 1.3944e + 2 1.5766e+ 2 874.1338 300.8269 5.0727e+ 2 5.5996e+ 2
Best 2.5372e+ 3 1.4955e+ 4 5.4142e + 3 502.646 1.3250e+ 4 5.1713e+ 3 1.0788e+ 3
Rank 3 7 5 1 6 4 2

f12 (D� 1000)

Mean 4.4947 20.7977 10.3286 18.8639 20.9497 3.1246 1.5427
Std. 0.1746 0.0267 0.1538 4.0427 0.0222 0.3837 0.9780
Best 4.2442 20.7492 9.9359 8.4914 20.8992 2.3556 0.9571
Rank 3 6 5 4 7 2 1

f13 (D� 1000)

Mean 1.0210e+ 3 2.3100e+ 4 1.3996e+ 4 3.1433e+ 3 3.2496e+ 3 16.2019 1.6504
Std. 32.8774 5.1266e+ 2 2.1571e+ 2 1.0529e+ 3 169.9815 27.1817 5.2240
Best 9.5388e+ 2 2.1976e+ 4 1.3539e+ 4 1.1471e+ 3 2.8639e+ 3 0.19051 0.0449
Rank 3 7 6 4 5 2 1

f14 (D� 1000)

Mean 3.5824 2.6235e+ 10 3.8689e+ 4 9.5072e+ 9 9.0076e+ 8 2.0865e+ 4 2.0766e+ 4
Std. 0.4677 9.4178e+ 8 2.4728e+ 4 2.0642e+ 9 1.0468e+ 8 4.1982e+ 4 3.6384e+ 4
Best 2.7478 2.4014e+ 10 5.6569e+ 3 5.1822e+ 9 7.1553e+ 8 1.3229 44.7877
Rank 2 7 4 6 5 1 3

f15 (D� 1000)

Mean 1.4226e+ 4 4.9243e+ 10 6.1049e+ 6 1.6105e+ 10 2.2732e+ 9 9.6850e+ 4 8.6561e + 3
Std. 2.2790e+ 4 1.6004e+ 9 1.2137e+ 6 3.5103e+ 9 2.8365e+ 8 1.7378e+ 5 1.2465e + 4
Best 4.0719e + 2 4.6279e+ 10 4.2910e+ 6 8.3903e+ 9 1.8130e+ 9 4.2437e+ 2 1.2094e+ 3
Rank 1 7 4 6 5 3 2

Average rank 2.777778 6.444445 4.472222 5.055556 5.16667 2.194445 1.833334
Overall rank 3 7 4 5 6 2 1
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SCA, MVO, and SOA in the PID controller parameter opti-
mization. *e mean values, standard deviation values, best
fitness values, and best fitness value ranks of the algorithms of 30
all-alone runs, for g1 ∼ g4, are displayed in Table 7. *e values
in bold and italics indicate that the optimal result is better.

For the PID controller parameter optimization prob-
lems, according to Table 7, except g3 and g4, in terms of best
fitness, the CMSOA is better than others. *e optimal fitness
value results of the CMSOA for g3 model are only worse
than those of the SA_GA algorithm; the optimal fitness value
result of the CMSOA for g4 model is only worse than that of
the PSO algorithm. Except for g2 and g3, in terms of
standard deviation results, the CMSOA is better than others,
and the CMSOA is only worse than the SA_GA. In terms of

mean, the CMSOA is better than others. According to the
optimal fitness value mean rank and all rank results from
Table 7, the CMSOA can find solutions and has very strong
robustness for the PID controller parameter optimization
problems.

4.3.3. 
e Convergence Curve Comparison of Algorithms in
PID Controller Parameter Optimization. Figure 12 shows
the fitness curves of PID controller parameter optimization
for g1 ∼ g4. As shown in Figure 12, the CMSOA is com-
pared with the other six algorithms; the convergence of the
CMSOA is fast, and the precision of the CMSOA is best. *e
CMSOA can find the optimal value.
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Figure 6: ANOVA tests for benchmark functions f1–f15 (D� 1000).
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4.3.4. ANOVA Test Comparison of Algorithms in the PID
Controller Parameter Optimization. Figure 13 shows the
ANOVA of the global best values’ PID controller parameter
optimization for g1 ∼ g4. As seen from Figure 13, the
CMSOA is the most robust compared to other algorithms.

4.3.5. 
e Unit Step Functions of PID Controller Parameter
Optimization. Figure 14 shows the unit step functions of
PID controller parameter optimization for g1 ∼ g4. As
seen from Figure 14, by the CMSOA to optimization the
unit step models PID controller parameter for g1 ∼ g4, the
unit step functions tend to stabilize very quickly and
accurately.

*erefore, the CMSOA is an effective and feasible PID
parameter optimization solution for the control system
model.

4.4. Algorithm Performance Comparison in Constrained
Engineering Optimization Problems. We use six engineering
problems to test the capability of the CMSOA further. *e
engineering problems are very popular in the literature. *e
penalty function is used to calculate the constrained
problem.*e parameter set for all of the heuristic algorithms
still adopts the parameter setting from Table 4 of Section
4.2.3. *e formulations of these problems are available in
Appendix.

Table 6: Run time comparison of 30 independent runs for benchmark functions f10–f15 (D� 1000).

Functions (D� 1000)
Run time of algorithms

PSO SA_GA GSA SCA MVO SOA CMSOA
f1 100.719730 880.039134 1238.641454 123.011947 291.672145 151.787862 1240.526227
f2 68.229668 848.231807 1319.453189 158.694010 120.413171 201.005115 1120.092672
f3 2083.966419 59198.227940 3001.030713 1813.227548 1978.830114 6464.103793 19353.182034
f4 55.090061 763.100004 1182.766535 148.610507 282.693611 127.111629 991.587944
f5 59.726643 907.492580 1190.101594 133.724941 347.492206 171.346819 1036.987842
f6 60.136433 768.869660 1321.559282 127.490008 283.733081 137.581005 1054.889547
f7 171.086743 2893.833975 1345.984756 203.877433 366.515217 378.499704 1809.255687
f8 56.468720 824.393464 1361.309649 131.849271 296.880364 141.850056 1226.496492
f9 119.475367 2814.347692 1338.479782 202.890012 270.227397 373.595086 1727.571955
f10 96.665578 1331.028369 1207.890758 162.894968 163.620252 300.359964 1248.552418
f11 67.987998 1166.055564 1200.353798 147.172828 321.039558 243.508636 1135.691572
f12 85.468484 1298.972295 1504.250466 168.363508 421.893238 329.211669 1409.548409
f13 105.918299 1489.631271 1217.56270 147.627982 330.277401 224.838827 1231.581318
f14 227.567551 5817.019363 1364.117264 381.158993 485.116503 782.243419 2873.449473
f15 252.124024 5953.028083 1367.575562 320.156020 494.213399 1149.480076 2800.126364
*e total time 3610.632 86954.27 21161.08 4370.74998 6454.6177 11176.52 40259.54
Overall rank 1 7 5 2 3 4 6
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Figure 8: Continued.
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4.4.1. Welded Beam Design Problem. *is is a least fabri-
cation cost problem, which has four parameters and seven
constraints.*e parameters of the structural system are shown
in Figure 15 [9]. Some of the works come from these kinds of
literature: GSA [6], MFO [7], MVO [9], coevolutionary par-
ticle swarm optimization (CPSO) [54], and harmony search
(HS) [55]. For the problem in this paper, the CMSOA is
compared with the PSO, SA_GA, GSA, SCA, MVO, and SOA,
and it provides the best-obtained values in Table 8.

In Table 8, the CMSOA is better than the GSA, MFO,
MVO, GA, CPSO, and HS algorithms. *e CMSOA is also
better than the PSO, SA_GA, GSA, SCA, MVO, and SOA.
*erefore, the CMSOA is an effective and feasible solution to
the problem.

4.4.2. Pressure Vessel Design Problem. *is is also a least
fabrication cost problem of four parameters and four
constraints. *e parameters of the structural system are
shown in Figure 16 [9]. Some of the works come from the
literature: the MFO [7], the evolution strategies (ESs) [56],
the differential evolution (DE) [57], the ant colony opti-
mization (ACO) [58], and the GA [59]. For the problem, the
CMSOA is compared with the PSO, SA_GA, GSA, SCA,
MVO, and SOA, and it provides the best-obtained values in
Table 9.

In Table 9, the CMSOA is better than the MFO, ES, DE,
ACO, and GA. *e CMSOA is also better than the PSO,
SA_GA, GSA, SCA,MVO, and SOA.*erefore, the CMSOA
is an effective and feasible solution to the problem.
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Figure 8: *e exploration and exploitation abilities of the CMSOA in benchmark functions.
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4.4.3. Cantilever Beam Design Problem. *is is a problem
that is determined by five parameters and is only applied to
the scope of the variables of constraints. *e parameters of
the structural system are shown in Figure 17 [7]. Some of the

works come from these kinds of literature: the MFO [7], the
cuckoo search algorithm (CS) [60], the generalized convex
approximation (GCA) [61], the method of moving as-
ymptotes (MMA) [61], and the symbiotic organism search
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Figure 9: Performance profile of seven algorithms on 15 benchmark functions.
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(SOS) [62]. For the problem, the CMSOA is compared with
the PSO, SA_GA, GSA, SCA, MVO, and SOA, and it
provides the best-obtained values in Table 10.

In Table 10, the CMSOA is better than the MFO, CS,
GCA, MMA, and SOS. *e CMSOA is also better than the
PSO, SA_GA, GSA, SCA, MVO, and SOA. *erefore, the
CMSOA is an effective and feasible solution to the problem.

4.4.4. Gear Train Design Problem. *is is a gear ratio
minimization problem, which has four variables and the
scope of variables of constraints. Figure 18 shows the

schematic diagram [63]. Some of the works come from these
kinds of the literature: the MFO [7], the MVO [9], the CS
[60], the artificial bee colony (ABC) [64], and the mine blast
algorithm (MBA) [64]. In this paper, the CMSOA is com-
pared with the PSO, SA_GA, GSA, SCA, MVO, and SOA,
and it provides the best-obtained values in Table 11.

In Table 11, the CMSOA proves to be better than the
MFO, MVO, CS, ABC, and MBA. Except for the SA_GA,
GSA, and PSO, the CMSOA is better than the SCA, MVO,
and SOA. *e optimal fitness value of the CMSOA has
reached the theoretical best value, although the optimal
fitness value of the CMSOA is worse than that of the SA_GA,

× ×
Test transfer

function
g1(s)~g4(s)

Step Output

0.02s+1

Proportion integrals differential
controller

Integrals

Ki (s)

Kd. s

Kp

s
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Differential

Optimization of PID parameters based on the
CMSOA optimization algorithm

-

Figure 11: Optimization of PID parameter model structure of the test control system.

Table 7: Performance comparison of algorithms in PID parameter optimization of 30 independent runs.

Test Result
Algorithm

PSO SA_GA GSA SCA MVO SOA CMSOA

g1

Mean 0.2267 0.3169 0.4571 0.0918 0.2501 0.1917 0.0539
Std. 0.0877 0.0649 0.1569 0.0263 0.0532 0.11226 0.0127
Best 0.0485 0.1002 0.2732 0.0483 0.0513 0.05774 0.0479
Rank 3 6 7 2 4 5 1

g2

Mean 58.4757 62.4599 60.7787 24.8454 59.5805 42.1538 0.8233
Std. 7.75976 0.1216 5.3034 21.5239 7.6556 27.9025 0.6631
Best 36.0409 62.0356 42.7711 0.4898 32.6095 0.39301 0.3299
Rank 5 7 6 3 4 2 1

g3

Mean 1.8481e+ 2 2.7179e+ 2 2.7665e+ 2 29.0458 1.0848e+ 2 2.6269e+ 2 13.0293
Std. 59.6434 0.62334 10.3088 11.9839 56.6750 44.8106 1.7189
Best 32.5445 2.71191 2.7139e+ 2 14.5588 20.0492 26.5763 10.1561
Rank 6 1 7 3 4 5 2

g4

Mean 1.7713e+ 2 55.3556 2.3413e+ 2 85.196656 35.721213 46.10528 34.63334
Std. 4.2182e+ 2 36.00807 2.1754e+ 2 1.0050e+ 2 1.411226 26.992197 0.00686
Best 34.625063 34.6294 58.321733 34.867448 34.643162 34.745734 34.625096
Rank 1 3 7 6 4 5 2

Average rank 3.75 4.25 6.75 3.5 4 4.25 1.5
Overall rank 3 5 7 2 4 5 1
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GSA, and PSO. *e CMSOA finds a new value. *erefore,
the CMSOA can resolve the problem.

4.4.5. 
ree-Bar Truss Design Problem. *is is a weight
minimization problem under stress, which has two variables
and only applies to the scope of the variables of constraints.
*e schematic diagram of the components [63] is shown in
Figure 19 [9].

Some of the works come from these kinds of literatures:
MFO [7], MVO [9], CS [60], MBA [64], and differential
evolution with dynamic stochastic selection (DEDSS) [65].
In this paper, the problem is resolved by the CMSOA. For
the problem, the CMSOA is compared with the PSO,

SA_GA, GSA, SCA, MVO, and SOA, and it provides the
best-obtained values in Table 12.

In Table 12, except MVO and PSO, the CMSOA is better
than the others. *e optimal fitness value of the CMSOA has
reached the theoretical best value, although the optimal
fitness value of the CMSOA is worse than that of the MVO
and the PSO. *erefore, the CMSOA can resolve the
problem.

4.4.6. I-Beam Design Problem. *is is a vertical deflection
minimization problem that has four variables and a
constraint. Figure 20 shows the design diagram [7]. Some
of the works come from these kinds of literatures: MFO
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Table 8: Comparison results of the welded beam design problem.

Algorithm
Optimal values for variables

Optimal cost Rank
h l t b

GSA [6] 0.182129 3.856979 10.0000 0.202376 1.87995 9
MFO [7] 0.2057 3.4703 9.0364 0.2057 1.72452 5
MVO [9] 0.205463 3.473193 9.044502 0.205695 1.72645 6
CPSO [54] 0.202369 3.544214 9.048210 0.205723 1.72802 7
HS [55] 0.2442 6.2231 8.2915 0.2443 2.3807 12
PSO 0.20437461682 3.27746206207 9.03907307954 0.20573458497 1.69700648019 2
SA-GA 0.26572876298 2.77789863579 7.63164040030 0.28853829376 1.99412873170 10
GSA 0.12743403146 5.89076184871 8.05262845397 0.25908004232 2.10212926568 11
SCA 0.20112344041 3.23948182622 9.40574225336 0.20795790595 1.76704865429 8
MVO 0.20397627841 3.28970350716 9.03536739179 0.20582407425 1.69811381975 4
SOA 0.19348578918 3.489546622637 9.027709656861 0.20615302629 1.69714450048 3
CMSOA 0.20568280035 3.25692824444 9.03941142183 0.20578118608 1.69655946036 1

Th

2R

L Ts

Figure 16: Pressure vessel design problem.

Table 9: Comparison results for pressure vessel design problem.

Algorithm
Optimal values for variables

Optimal cost Rank
Ts Th R L

MFO [9] 0.8125 0.4375 42.098445 176.636596 6059.7143 8
ES [56] 0.8125 0.4375 42.098087 176.640518 6059.7456 10
DE [57] 0.8125 0.4375 42.098411 176.637690 6059.7340 9
ACO [58] 0.8125 0.4375 42.103624 176.572656 6059.0888 7
GA [59] 0.8125 0.4375 42.097398 176.654050 6059.9463 11
PSO 0.93627266112 0.41391783346 47.19019859907 123.06285131625 6317.0167340514 12
SA-GA 0.83804097369 0.41223740796 45.10610463950 142.64078515697 5931.2868373440 5
GSA 0.89533101776 0.43654377356 47.89640596198 115.96279725902 6057.9309555313 6
SCA 0.71165237901 0.39215740603 40.39056304889 200.00000000000 5903.0036698882 4
MVO 0.75462696023 0.37830685291 40.94839768196 191.64503059607 5764.4347452930 3
SOA 0.76961590364 41.5284631287 0.388196715944 183.84147207932 5735.1355906012 2
CMSOA 0.74366609133 40.3200509108 0.366463323335 200.00000000000 5735.0844852589 1

6 4 3 2 15 x

constant

Figure 17: Cantilever beam design problem.
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[7], CS [60], SOS [62], the adaptive response surface
method (ARSM) [66], and the improved adaptive re-
sponse surface method (IARSM) [66]. For the problem,
the CMSOA is compared with the PSO, SA_GA, GSA,
SCA, MVO, and SOA, and it provides the best-obtained
values in Table 13.

In Table 13, except MFO, GSA, SOA, and SA-GA, the
CMSOA is better than the others. *e fitness of the MFO is

best. Although the most minor vertical deviation of the
CMSOA is not as good as that of the GSA, SOA, and SA-
GA, it is very close to other relative optimal values.
*erefore, the CMSOA is an effective and feasible solution
to the I-beam design optimization problem.

In brief, the CMSOA proves to be better than the other
algorithms in most actual studies. *e CMSOA can resolve
these practical problems.

Table 10: Comparison results for cantilever beam design problem.

Algorithm
Optimal values for variables

Optimum weight Rank
x1 x2 x3 x4 x5

MFO [7] 5.9848717732 5.3167269243 4.4973325858 3.5136164677 2.1616202934 1.339988086 6
CS [60] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 7
GCA [61] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8
MMA [61] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8
SOS [62] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 3
PSO 6.007219438 5.311747232 4.505611438 3.4904346887 2.158626706 1.339963522 4
SA-GA 6.251285023 5.460509756 4.149903306 3.8032391760 1.974102742 1.350285757 11
GSA 6.020285873 5.305304583 4.512114944 3.4939372220 2.142187864 1.339969652 5
SCA 5.801308754 5.589807963 4.497563735 3.4994713866 2.262668613 1.351011196 12
MVO 6.017944991 5.336576175 4.493102726 3.4797461041 2.146292918 1.340024388 10
SOA 6.014092415 5.315583298 4.484154000 3.5033360363 2.156331174 1.339957455 2
CMSOA 6.013067642 5.292274798 4.491025571 3.5095364396 2.167826747 1.339954592 1

C
A DB

Figure 18: Gear train design problem.

Table 11: Comparison results of the gear train design problem.

Algorithm
Optimal values for variables

Optimal gear ratio Rank
nA nB nC nD

MFO [7] 43 19 16 49 2.7009e − 012 7
MVO [9] 43 16 19 49 2.7009e − 012 7
CS [60] 43 16 19 49 2.7009e − 012 7
ABC [64] 49 16 19 43 2.7009e − 012 7
MBA [64] 43 16 19 49 2.7009e − 012 7
PSO 41.2676387267 12.0000000000 12.0000000000 24.1851491677 5.321647791e − 20 3
SA-GA 32.3132176916 21.0818982120 12.1649288759 55.0091556193 0 1
GSA 54.7718113206 33.5951575204 12.0000000000 51.0148628266 1.358936169e − 30 2
SCA 52.6322252242 15.4114043064 23.1179418870 46.9168162381 5.431797718e − 12 12
MVO 60.0000000000 12.0000000000 41.8647883833 58.0329758032 2.334953506e − 16 5
SOA 60.0000000000 12.0000000000 43.2835302093 60.0000000000 2.567448245e − 16 6
CMSOA 43.3821083557 31.2957045927 12.0000000000 60.0000000000 7.763414089e − 17 4
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Table 12: Comparison results of the three-bar truss design problem.

Algorithm
Optimal values for variables

Optimum weight Rank
x1 x2

MFO [7] 0.788244770931922 0.409466905784741 263.895979682 10
MVO [9] 0.78860276 0.40845307 263.8958499 8
CS [60] 0.78867 0.40902 263.9716 11
MBA [64] 0.7885650 0.4085597 263.8958522 9
DEDS [65] 0.78867513 0.40824828 263.8958434 7
PSO 0.788425434690935 0.408085596065985 263.8523465301364 2
SA-GA 0.787321758816231 0.411216143996852 263.8532291023197 5
GSA 0.761893501005708 0.493138841375638 264.8099085788021 12
SCA 0.789922169365255 0.403817724788810 263.8541885386347 6
MVO 0.788407496115311 0.408135122885127 263.8523464859033 1
SOA 0.788530250484097 0.407914579681955 263.8523714388302 4
CMSOA 0.788444195859439 0.408029807190657 263.8523473086418 3

Q
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tw tf
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h

Figure 20: I-beam design problem.

Table 13: Comparison results for I-beam design problem.

Algorithm
Optimal values for variables

Optimum vertical deflection Rank
b h tw tf

MFO [7] 50 80 1.7647 5.0000 0.0066259 1
CS [60] 50 80 0.9 5 2.32167 0.0130747 9
SOS [62] 50 80 0.9 2.32179 0.0130741 8
IARSM [66] 48.42 79.99 0.90 2.40 0.131 11
ARSM [66] 37.05 80 1.71 2.31 0.0157 10
PSO 29.2349505988 77.7790428198 5.0000000000 3.5987373218 0.0114625520 12
SA-GA 34.9999839459 79.9999646294 4.9999802368 4.9999823841 0.0078637302 4
GSA 35.0000000001 80.0000000000 5.0000000000 5.0000000000 0.0078636959 2
SCA 34.9878089422 80.0000000000 5.0000000000 5.0000000000 0.0078658199 7
MVO 34.9998614894 80.0000000000 4.9997841775 5.0000000000 0.0078637964 6
SOA 34.9999002914 80.0000000000 5.0000000000 5.0000000000 0.0078636963 3
CMSOA 34.9997858604 80.0000000000 5.00000000000 5.0000000000 0.0078637332 5

A2A1

A3

1

P

4

D
A1=A3

2 3

Figure 19: *ree-bar truss design problem.
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5. Conclusion

A CMSOA is presented, with a complex-valued encoding
method and a multichain strategy. *e CMSOA is tested in
four stages from different perspectives such as benchmark
function, PID control parameters, and constraint engi-
neering. Besides, the CMSOA was compared with the PSO,
SA-GA, GSA, SCA, MVO, and SOA.

In the first phase, the SOA is improved in six different
ways: the parameter changing SOA (PCSOA), the parameter
adaptive Gaussian transform SOA (PAGTSOA), the SOA
based on the Chebyshev chaos of order three (CCSOA), the
SOA based on real coding double-link (DSOA), the SOA
based on complex-valued encoding (CSOA), and the
complex-valued encoding multichain seeker optimization
algorithm (CMSOA). Each improved algorithm was opti-
mized for the fifteen functions.*e result is that the CMSOA
is feasible in the benchmark functions. In this phase, we
consider the ranking values of 30 all-alone runs between the
CMSOAmean values, standard deviation values, best fitness
values, best fitness value ranks, the convergence curves of
functions f1, f10, and f14, and the population’s positions
search history of functions f1, f10, and f14.

In the second phase, fifteen benchmark function op-
timization problems are used to test the CMSOA further.
*e CMSOA is compared to the PSO, SA-GA, GSA, SCA,
MVO, and SOA for verification. *e CMSOA is feasible in
the benchmark functions. *e second phase is also about
the ranking values of 30 all-alone runs between the
CMSOA mean values, standard deviation values, best
fitness values, best fitness value ranks, convergence curves,
and the variance tests for the global minimum values. In
the benchmark function optimization problems, the op-
timal solution curves obtained by the CMSOA are in good
agreement with the theoretical optimal solution curves,
and the accuracy of the CMSOA is better. *e ANOVA of
the global best values to benchmark functions is studied,
and the CMSOA is the most robust algorithm. Based on
the complexity analysis, the CMSOA is known as an ef-
ficient algorithm. Based on the run time comparison of
seven algorithms in benchmark functions, the CMSOA
has relatively more program running time, and it is not
optimal in terms of running time. *e exploration and
exploitation abilities of the CMSOA in benchmark
functions are studied, and the CMSOA maintains good
balance between the exploration and exploitation abilities
as the number of iterations increases. From the results of
the performance ratios of the average solution for the
seven algorithms, the optimization probability of the
CMSOA is the highest.

In the third test phase, four PID control parameter
optimization problems are used to test the CMSOA in
practice further. *e problems were a parameter opti-
mization model of second-order PID controller without
time delay, a parameter optimization model of PID
controller with first-order microdelay, a parameter opti-
mization model of first-order PID controller with sig-
nificant time delay, and a parameter optimization model
of high-order PID controller without time delay problems.
*e third test phase also considered the CMSOA mean
values, standard deviation values, best fitness values, and
best fitness values rank of 30 all alone runs, the conver-
gence curves, and the ANOVA. From the results of PID
parameter optimization problems, compared with the
other six algorithms, the CMSOA is effective and feasible
in the practical problem.

Eventually, in the last test phase, six engineering
problems further tested the CMSOA. *e CMSOA was
compared with various algorithms.*e results prove that the
CMSOA is the highest competitive algorithm for the
practical optimization problems.

According to the comparative analysis of the experi-
ments, the conclusion is as follows:

(i) We use the complex-valued encoding and the
multichain strategy for each seeker to increase the
scout region and avoid convergence to local
optimality.

(ii) Among the six improved algorithms: PCSOA,
PAGSOA, CCSOA, DSOA, CSOA, and CMSOA,
the CMSOA performed best in the benchmark
function test.

(iii) Among the seven algorithms PSO, SA_GA, GSA,
SCA, MVO, SOA, and CMSOA, the CMSOA op-
timization benchmark functions have higher op-
timization capability.

(iv) *e CMSOA optimization benchmark function has
almost the same calculational complexity as the
SOA.

(v) *e running time of the CMSOA optimization
benchmark function is relatively long. Among the
seven algorithms compared, the running time is
only shorter than that of the SA-GA.

(vi) *e CMSOA can solve real challenging problems,
such as the PID control parameter optimization
problems and the real constrained engineering
optimization problems.

(vii) Further improvement and application can be in-
corporated into future studies.
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Appendix

A. Welded Beam Design Problem

Consider x
→

� x1, x2, x3, x4􏼂 􏼃 � [h, l, t, b],

Minimize f( x
→

) � 1.10471x
2
1x2 + 0.04811x3x4 14 + x2( 􏼁,

Subject to

g1( x
→

) � τ( x
→

) − τmax ≤ 0,

g3( x
→

) � x1 − x4 ≤ 0,

g4( x
→

) � 1.10471x
2
1 + 0.04811x3x4 14 + x2( 􏼁 − 5≤ 0,

g5( x
→

) � 0.125 − x1 ≤ 0,

g6( x
→

) � δ( x
→

) − δmax ≤ 0,

g7( x
→

) � P − Pc( x
→

)≤ 0,

Variable range: 0.1≤x1 ≤ 2, 0.1≤ x2 ≤ 10, 0.1≤x3 ≤ 10, 0.1≤ x4 ≤ 2,

(A.1)

where τ( x
→

)�
����������������������
(τ′)

2+2τ′τ″x2/2R+(τ″)
2

􏽱
, τ′ � P/

�
2

√
x1x2,

τ″ �MP/J, M � P(L + x2/2), R �

�������������������

(x2
2/4) + ((x1 + x3/2)2)

􏽱

,
J � 2

�
2

√
x1x2[(x2

2/4) + ((x1 + x3/2)2)]􏽮 􏽯, σ( x
→

) � 6PL/x4x
2
3,

δ( x
→

) � 6PL3/Ex4x
3
3, Pc( x

→
) � ((4.013E

�������

x2
3x

6
4/36

􏽱

)/L2)

(1 − (x3/2L)
�����
E/4G

√
), P�6000lb, L�14in, E�30×106psi,

G�12×106psi, τmax�136000psi, σmax�30000psi, δmax�

0.25in.

B. Pressure Vessel Design Problem

Consider x
→

� x1, x2, x3􏼂 􏼃 � [Ts,Th, R, L],

Minimize f( x
→

) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x

2
1x4 + 19.84x

2
1x3

Subject to

g1( x
→

) � − x1 + 0.0193x3 ≤ 0

g2( x
→

) � − x2 + 0.00954x3 ≤ 0

g3( x
→

) � − πx
2
3x4 −

4
3
πx

3
3 + 1296000≤ 0

g4( x
→

) � x4 − 240≤ 0,

Variable to: 0≤x1 ≤ 99, 0≤x2 ≤ 99, 10≤x3 ≤ 200, 10≤x4 ≤ 200.

(B.1)
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C. Cantilever Design Problem

Consider x
→

� x1, x2, x3, x4, x5􏼂 􏼃,

Minimize f( x
→

) � 0.0624 x1 + x2 + x3 + x4 + x5( 􏼁,

Subject to g( x
→

) �
61
x
3
1

+
37
x
3
2

+
19
x
3
3

+
7
x
3
4

+
1
x
3
5

− 1≤ 0,

Variable to: 0.01≤x1, x2, x3, x4, x5 ≤ 100.

(C.1)

D. Gear Train Design Problem

Consider x
→

� x1, x2, x3, x4􏼂 􏼃 � nA, nB, nC, nD􏼂 􏼃,

Minimize f( x
→

) �
1

6.931
−

x3x2

x1x4
􏼠 􏼡

2

,

Variable range: 12≤x1, x2, x3, x4 ≤ 60.

(D.1)

E. Three-Bar Truss Design Problem

Consider x
→

� x1, x2􏼂 􏼃 � A1, A2􏼂 􏼃,

Minimize f( x
→

) � 2
�
2

√
x1 + x2( 􏼁∗ l

Subject to

g1( x
→

) �

�
2

√
x1 + x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0

g2( x
→

) �
x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0

g3( x
→

) �
1

�
2

√
x2 + x1

P − σ ≤ 0,

Variable range: 0≤ x1, x2 ≤ 1, l � 100 cm, P � 2 kN/cm2
, σ � 2 kN/cm2

.

(E.1)

F. I-Beam Design Problem

Consider x
→

� x1, x2, x3, x4􏼂 􏼃 � b, h, tw, tf􏽨 􏽩,

Minimize f( x
→

) �
5000

x3 x2 − 2x4( 􏼁
3/12􏼐 􏼑 + x1x

3
4/6􏼐 􏼑 + 2x1x4 x2 − x4/2( 􏼁

2
􏼐 􏼑

,

Subject to g( x
→

) � 2x1x3 − x3 x2 − 2x4( 􏼁≤ 0,

Variable range: 10≤x1 ≤ 50, 10≤x2 ≤ 80, 0.9≤x3 ≤ 5, 0.9≤x4 ≤ 5.

(F.1)
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[53] E. Dolan and J. Moré, “Benchmarking optimization software
with performance profiles,” Mathematical Programming,
vol. 91, no. 2, pp. 201–213, 2002.

[54] R. A. Krohling and L. D. S. Coelho, “Coevolutionary particle
swarm optimization using Gaussian distribution for solving
constrained optimization problems,” IEEE Transactions on
Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 36,
pp. 1407–1416, 2006.

[55] K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm
for continuous engineering optimization: harmony search
theory and practice,”ComputerMethods in AppliedMechanics
and Engineering, vol. 194, pp. 3902–3933, 2005.

[56] E. M. Mezura and C. A. C. Coello, “An empirical study about
the usefulness of evolution strategies to solve constrained
optimization problems,” International Journal of General
Systems, vol. 37, pp. 443–473, 2008.

[57] L. Li, Z. Huang, F. Liu, and Q.Wu, “A heuristic particle swarm
optimizer for optimization of pin connected structures,”
Computers & Structures, vol. 85, pp. 340–349, 2007.

[58] A. Kaveh and S. Talatahari, “An improved ant colony opti-
mization for constrained engineering design problems,”
Engineering Computers: Int. J. Comput. Aid. Eng.vol. 27,
pp. 155–182, 2010.

[59] K. Deb, “Optimal design of a welded beam via genetic al-
gorithms,” AIAA Journal, vol. 29, pp. 2013–2015, 1991.

[60] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural op-
timization problems,” Engineering Computers, vol. 29,
pp. 17–35, 2013.

[61] H. Chickermane and H. Gea, “Structural optimization using a
new local approximation method,” International Journal for
Numerical Methods in Engineering, vol. 39, pp. 829–846, 1996.

[62] M. Y. Cheng and D. Prayogo, “Symbiotic organisms search: a
new metaheuristic optimization algorithm,” Computers &
Structures, vol. 139, pp. 98–112, 2014.

[63] E. Sandgren, “Nonlinear integer and discrete programming in
mechanical design,” ASME Journal Mechanical Design,
vol. 112, pp. 223–229, 1990.

[64] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi,
“Mine blast algorithm: a new population-based algorithm for
solving constrained engineering optimization problems,”
Applied Soft Computing, vol. 13, pp. 2592–2612, 2013.

[65] M. Zhang, W. Luo, and X. Wang, “Differential evolution with
dynamic stochastic selection for constrained optimization,”
Information Sciences, vol. 178, pp. 3043–3074, 2008.

[66] G. G. Wang, “Adaptive response surface method using
inherited Latin hypercube design points,” Journal of Me-
chanical Design, vol. 125, pp. 210–220, 2003.

Scientific Programming 35

http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf

