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Short text similarity computation plays an important role in various natural language processing tasks. Siamese neural networks
are widely used in short text similarity calculation. However, due to the complexity of syntax and the correlation between words,
siamese networks alone cannot achieve satisfactory results. Many studies show that the use of an attention mechanism will
improve the impact of key features that can be utilized to measure sentence similarity. In this paper, a similarity calculation
method is proposed which combines semantics and a headword attention mechanism. First, a BiGRU model is utilized to extract
contextual information. After obtaining the headword set, the semantically enhanced representations of the two sentences are
obtained through an attentionmechanism and character splicing. Finally, we use a one-dimensional convolutional neural network
to fuse the word embedding information with the contextual information. �e experimental results on the ATEC and MSRP
datasets show that the recall and F1 values of the proposed model are signi�cantly improved through the introduction of the
headword attention mechanism.

1. Introduction

In machine learning, text similarity is a type of similarity
learning, and is a hot research area in the �eld of natural
language processing (NLP). Its in�uence in several �elds
such as question answering systems, information retrieval,
machine translation, and text classi�cation is becoming
increasingly signi�cant [1]. For example, the calculation of
the matching degree between query items and documents in
retrieval systems and of question and candidate answers in
question answering systems are based on text similarity. So,
research on semantic similarity calculation is highly sig-
ni�cant for the development of NLP-based systems.

However, the calculation of text similarity is a chal-
lenging task. As a few short words can contain complex and
subtle content, anthropological linguistics is a very esoteric
subject. Seemingly di�erent sentences can express very
similar semantics, so text should not only be analyzed on
di�erent degrees of granularity but also on a deeper level
within speci�c linguistic contexts. Previous studies were

limited to the use of traditional statistic models for text
similarity calculations, such as the Term Frequency-Inverse
Document Frequency (TF-IDF) model based on literal
matching, the BM25 model, and latent semantic analysis
based on semantic matching [2–4]. However, these models
are based on keyword information for matching, which only
allows the extraction of shallow information and ignores
deep semantic information [5]. Methods based on neural
network models use word2vec and other methods to convert
words into word vectors, train the model to obtain the
feature representation of the sentence, and then use fully
connected layers or editing distance equations to calculate
the similarity. Hu et al. [6] used convolutional neural net-
works to model two sentences, and calculated their similarity
through the extracted semantic vectors. Sundermeyer et al.
[7] applied a long short-term memory (LSTM) to the �eld
for literary NLP. LSTMs solve the problem of traditional
recurrent neural networks for long-distance information
dependencies of input sequences. Zhu et al. [8] proposed a
bidirectional LSTM network based on a siamese network
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structure to calculate text similarity; their network traverses
the entire text using two LSTMmodels and comprehensively
considers the context information accompanying each word.

In the field of deep learning, current methods for
comparing the similarity of two sentences aremainly divided
into three types: siamese network frameworks, interactive
network frameworks, and pretrained models [9]. *e
common approach involving siamese networks is to evaluate
sentence similarity by mapping the two sentences through
the same encoder, comparing them, and evaluating their
similarity through the calculation of a loss function [10–13].
*is method of using siamese networks to share the pa-
rameters can reduce the computation time greatly but does
not take into account the interactive relationship between
the sentence encoding vectors. It is also difficult to measure
the contextual importance of words, which results in poor
accuracy. Studies on interactive network frameworks dealing
with text similarity include ESIM, BiMPM, and DIIN
[14, 15]. In these approaches, the two sentences are first
encoded using neural network, the similarity between word
sequences in the text is calculated through some complex
attention mechanism to formulate an interaction matrix,
and the interaction information is finally integrated.
However, global information such as syntax and inter-
sentence relationships is ignored. Using pretrained models
for text similarity-related tasks can lead to good results, as
demonstrated by BERT [16] and XLNet [17]. *ese models
are trained on a large-scale corpus and then fine-tuned on a
target dataset pertaining to a specific field. However, the
pretrained models have too many parameters and it is
difficult to change the network structure, which limits their
applicability.

*e attention mechanism can be abstracted to improve
the attention focus on a specific part of the data. *e at-
tention mechanism was first adopted to the image pro-
cessing field to allow focusing on key information in specific
image regions. Bahdanau et al. [18] first introduced the
attention mechanism into natural language processing tasks,
aiming to align the output of the target end with the input of
the source end to improve the accuracy machine translation.
Subsequently, scholars have proposed various attention
mechanisms for different tasks. For example, Cheng et al.
[19] proposed a one-way self-attention mechanism in
reading tasks to analyze the correlation between current and
previous words. He et al. [20] and Shan et al. [21] found that
in recommendation systems, an attention mechanism can
capture the long-term and short-term interest of users ef-
fectively and improve the accuracy of the system. Tan et al.
[22] used an attention mechanism based on BiLSTM and
CNN to represent separately the question and candidate
answers semantically in a Q&A system and answer selection
tasks, and used cosine similarity for fusion. *e results
showed that only a word-level attention mechanism leads to
good results.

*e main contributions of this paper can be summarized
as follows: 1. A semantic similarity calculation method is
proposed based on the siamese network structure and
combining a convolutional neural network (CNN) and a
bidirectional gated recurrent unit (BiGRU). *e BiGRU

network is used to extract contextual information, and then
the CNN network is used to fuse the word embedding in-
formation with the contextual information. 2. An attention
mechanism based on the headword is proposed, and the
output of the BiGRU is weighted and updated to enhance the
influence of the headword of the sentence.

2. Methods

*e proposed HA-RCNN model for calculating text simi-
larity consists of three components: (1) A sentence encoder.
We use a BiGRU to extract the contextual information and
combine it with the word embedding information to obtain a
representation of each word in the sentence. (2) A head-
word-based attention mechanism. We use the nouns or
verbs that reflect the main information of the sentence as
headwords. After obtaining the set of headwords, the output
of the BiGRU is weighted and updated. (3) Information
fusion. In this part, the word sequences obtained after
splicing are fused. Finally, we use cosine similarity as the
evaluation function to determine the similarity of the two
texts. Figure 1 gives an illustration of the proposed HA-
RCNN model.

2.1. Sentence Encoding. Recurrent neural networks (RNNs)
are the most common and effective method for dealing with
sequences [23]. *rough the interconnection between the
nodes of the hidden layer, the previous memory is factored
in the current output to capture contextual information.
However, gradient disappearance and gradient explosion
may occur during the training process, so only a small
amount of context information can be captured. GRU
networks use different functions to control the state of the
hidden layer and screen useful information in the sequence,
which avoids the gradient explosion problem.

*e GRU is a variant of LSTM. Compared with LSTMs,
GRU models have a simpler network structure, but their
effect is the same as that of LSTM, which leads to greatly
reduced training times. GRUs merge the input gate and the
forget gate into a single structure called the update gate.

GRUs use a gatingmechanism to control input, memory,
and other information to make predictions at the current
time step. A GRU has two gates, a reset gate and an update
gate. Intuitively speaking, the reset gate determines how to
combine the new inputs with previous memory, while the
update gate defines the amount of previous memory taken
into account for the current time step. *e special feature of
these two gating mechanisms is that they can preserve the
information contained in long-term sequences, which will
not be lost over time if it is not relevant to the current
prediction. If the reset gate is set to 1 and the update gate is
set to 0, a standard RNN model is obtained. *e update
equation of the GRU is as follows:

zt � σ wzxt + uzht−1 + bz( , (1)

rt � σ wrxt + urht−1 + br( , (2)
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ht′ � tanh wcxt + uc rt ⊙ ht−1( ) + bc( ), (3)

ht � zt ⊙ ht−1 + 1 − zt( )⊙ ht′, (4)

yt � σ W0 · ht( ), (5)

where xt is the current input; σ is a sigmoid function; ht−1
and ht are the hidden states at the previous and current
moment, respectively; ht′ is the candidate state at the current
moment; and yt is the current output. Equations (1) and (2)
pertain to the update and reset gate, respectively.

In GRUs, information can only be transmitted one-way.
In practice, each word may have a dependency relationship
with words in its context, so in this paper a BiGRU network
is adopted. A BiGRU is composed of a forward and a
backward GRU. It traverses the text in two directions and
obtains contextual information bidirectionally, thus over-
coming the single-direction processing limitation of plain
GRUs. �e process is shown in Figure 2.

�e sentence sequence S � (w1, w2, w3, . . . , wl) is ob-
tained through the embedding layer, where L is the sentence
length, and wi is the i-th word in the sentence. CL(wi) and
CR(wi) represent the contextual information on the left and
right side of word wi, respectively. CL(wi) and CR(wi) are
obtained by training the forward and backward GRU, re-
spectively, as shown below:

CL wi( ) � tanh WL ∗CL wi−1( ) +WSL ∗ e wi−1( )( ),
CR wi( ) � tanh WR ∗CR wi−1( ) +WSR ∗ e wi+1( )( ).

(6)

In the above equations, e(wi−1) represents the word
embedding of word wi−1; and CL(wi−1) represents the vector
representation of the contextual information on the left side
of wi−1; WL represents the transformation matrix of the
contextual information vector; and WSL is the matrix that
combines the current word vector with the left contextual
vector of the next word. CR is calculated in a similar way.

After extracting the context information using the
BiGRU, the contextual information and word embedding

information are spliced together. Finally, we obtain the
semantic representation of the i-th word wi in the word
sequence as xi � [CL(wi); e(wi);CR(wi)].

2.2. Headword-Based Attention Mechanism. In previous
studies, attention mechanisms were used to enhance the ex-
pression of local information. However, these mechanisms
usually take into account the number of occurrences of certain
words in a sentence from a traditional statistical perspective,
resulting in an increase in theweight of someunimportantwords.

Our approach is based on the assumption that the nouns
or verbs in the sentence re�ect the main information of the
sentence, and consider them as headwords. For example, the
information expressed in the sentence “Does Ant Check Later
require a credit check?” is mainly expressed through the
words “require,” “Ant Check Later,” and “credit check.” In the
sentence “When will the deposit rate go up?”, the information
is expressed mainly through “go up” and “deposit rate.”

To obtain the headwords, we use the Language
Technology Platform (LTP) to analyze the sentence
syntactically. As an example, for the sentence “How do I
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apply for quota in Huabei?,” we obtain the result shown in
Figure 3.

*e meanings of corresponding tags are shown in
Table 1.

After analysis, “apply” is identified as the main verb
and is extracted as wordV of the sentence. If the subject or
object of wordV is a noun or a noun phrase, it is assigned
as the primary noun wordV. If the rhetorical and juxta-
posed elements of wordN also contain nouns, they are
also added to wordN. wordN and wordV form the
headword of the sentence. In addition, if the main verb
cannot be extracted through syntactic analysis, the
headword is extracted directly through the part of speech.
*erefore, there may be multiple wordN instances. For
example, in Figure 3, the subject of “apply” is “I” and the
object is “quota.” Because “I” is a personal pronoun rather
than a noun or noun phrase, the object “quota” is a noun,
and the noun “Huabei” is a modifier of “quota,” the
headwords of the sentence in Figure 3 are {apply, quota,
and Huabei}.

After the headwords have been obtained, they are
denoted as vHW � (S1, S2, . . . , Sl), where l is the number of
words in the set. We use vHW to update the weighting output
of the forward (CL) and backward (CR) GRUs. Specifically,
for each vector in vHW, the similarity with C is calculated
separately to obtain the maximum value vt. *e calculation
method is as follows:

vt � max cossin c wi( , sj  , 1≤ j≤ l. (7)

By updating c with vt, we obtain the information en-
hancement representation based on the attention of the
headwords.

2.3. Information Fusion. CNNs extract the local information
of the text through a fixed-size convolution kernel, and use a
pooling layer to reduce the amount of calculation and retain
key information. Because the convolution kernel has a fixed
window, it is always possible that some important infor-
mation will be lost. Although this problem can be solved
using multiple windows of different sizes, this solution will
lead to an increase of the number of calculations.

We use a one-dimensional CNN network (1DCNN) to
fuse the information of the spliced word sequences. *e
calculation process is as follows:

yi � CNN xi( , i ∈ [1, L], (8)

where yi represents the feature representation corre-
sponding to xi after 1D convolution processing. *e cal-
culation process is shown in Figure 4.

Finally, after obtaining the vector representation of the
two sentences, we use their cosine distance to determine
whether the two texts are semantically similar. *e corre-
sponding equation is:
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n
i�1 S

i
L × S

i
R���������


n
i�1 S

i
L 

2


×

���������


n
i�1 S

i
R 

2
 . (9)

3. Experiment

We conducted experiments to demonstrate the effectiveness of
the proposed HA-RCNN model. In this section, the experi-
mental datasets and evaluation criteria are first introduced,
followed by a detailed analysis of the experimental results.

3.1. Datasets. Two datasets were used to verify the perfor-
mance of the model, as follows:

(a) *e Ant Financial NLP Competition (ATEC) dataset
was obtained from Ant Financial’s 2018 competition.
Each pair of sentences in the dataset comes from
questions received by an intelligent customer service
and was labeled with “1” to indicate that the two
sentences are semantically similar, and 0 when the
sentences were not similar.

(b) *e Microsoft Research Paraphrase Corpus (MSRP)
is a collection of sentence pairs obtained from news
on the web. As in the ATEC dataset, each pair of
sentences was labeled with a 0 or a 1 for dissimilarity
or similarity, respectively.

In the ATEC dataset, the training set contains 100,000
sentence pairs and the test set contains 10,000 sentence pairs.
During preprocessing, we found that the ratio of positive and
negative samples in ATEC was significantly unbalanced at
about 4.5 :1. In order to avoid the impact of sample im-
balance on the experiment, we selected 32250 pairs of
sentences for training and 6450 pairs of sentences for testing,
with positive and negative samples accounting for half of
each subset. *eMSRP dataset contains 5803 sentence pairs,
including 4077 pairs in the training set and 1726 pairs in the
test set. Due to the small number of samples inMSRP, we did
not segment the dataset. *e standard format of the two
datasets is shown in Table 2.

In the experiments, we used accuracy, precision, recall,
and F1 as the evaluation criteria, calculated as follows:

accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 � 2∗
pre∗ rec
pre + rec

,

(10)

where TP is the number of positive samples predicted as
positive samples; TN is the number of negative samples
predicted as negative samples; FP is the number of negative
samples predicted as positive samples; and FN is the number
of positive samples predicted as negative samples.

3.2. Experimental Results andAnalysis. In order to prove the
effectiveness of HA-RCNN, we compared it with state-of-
the-art models used for the same application.
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MMNF [24]: �is model uses the Jaccard coe¬cient
based on the part of speech, TF-IDF and the Word2Vec-
CNN model to measure sentence similarity through
weighted calculation.

BiGRU+Dilated [25]: �is model uses constituency
parsing and dilated convolution to reduce the missing el-
ements in long sentences and increase the important in-
formation in short sentences. At the same time, the receptive
�eld is extended to capture semantic relevance in two-di-
mensional space.

Tree-lSTM [26]:�emodel uses a control input to model
the relationship between the two inputs. To calculate the
sentences’ similarity, their semantic representation is em-
bedded into a dense vector through syntactic parsing and
other operations.

CNN-lSTM [27]: �is model is based on the siamese
neural network structure. A CNN and LSTM are used to
obtain the local and global information of the text,
respectively.

Multi-Feature [28]: �is model evaluates the similarity of
two sentences in terms of words, word order, and word
vectors, and introduces word vectors in traditional statistical-
based discriminative method to make judgments, taking into
account the structural information of the sentences.

�e results of the comparative experiment are shown in
Figures 5 and 6.

As can be seen from the data in the diagram, the per-
formance of the CNN-LSTM model is poor. Although the
text is analyzed from both local and global perspectives, the
model focuses only on few factors and ignores the in�uence
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Figure 4: 1DCNN and max-pooling.

Table 2: Standard format of datasets.

Dataset Sentence A Sentence B Label

ATEC 我的花呗账单可以提前还吗 (can I pay my bill in advance) 怎么推迟花呗的还款日期 (how to postpone the
repayment date of the bill) 0

花呗额度怎么提升 (how can I increase Huabei’s quota) 花呗额度能不能提额 (can Huabei’s quota be raised) 1

MSRP

Air commodore quaife said the hornets remained on three-
minute alert throughout the operation

Air commodore john quaife said the security operation
was unprecedented 0

Still, he said, “I’m absolutely con�dent we’re going to have a bill” “I’m absolutely con�dent we’re going to have a bill,”
frist, R-Tenn., said �ursday 1

Root How do I apply for quota in Huabei ?

HED

ATT
WP

nsubj

WP

COO

LADCOO
LAD

Figure 3: Results of syntax analysis.

Table 1: �e meaning of each tag.

Tag Description
ATT Attribute
COO Coordinate
HED Head
LAD Left adjunct
WP Punctuation
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of sentence structure and syntactic information. Compared
with the CNN-LSTM model, the Tree-LSTM and
BIGRU+Dialated control word vectors through operations
such as syntax analysis, taking into account the in�uence of
sentence structure on text similarity evaluation. �e MMNF
model extracts text features by combining di�erent machine
learning algorithms and a CNN network, maximizing the
performance of the model through a continuous adjustment
of the weights. Its accuracy is the highest in several com-
parative experiments. �e recall rate and F1-value of the
HA-RCNNmodel are better than those of the other models,
but its accuracy is worse than that of the MMNF model. �e

comparison of the F1-values shows that the HA-RCNN
model achieves excellent results on the ATEC dataset.

On the MSRP dataset, the performance of the
BiGRU+Dialated and CNN-LSTM models was poor. �e
Multi-Feature model performed well due to its combination
of multiple parameters, aided by the use of word vectors.�e
recall rate of HA-RCNNmodel was again the highest, and its
F1-value was also excellent.

It can be seen that the HA-RCNNmodel lags behind the
other two models in accuracy. By observing the confusion
matrix of the experiment, we see that the number of TP
samples is small, which leads to the low accuracy of the
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model. We believe that there are two reasons for this
phenomenon. First, the sample size of the training and test
sets provided by the MSRP dataset is small, and the pro-
portion of positive and negative samples in the dataset is
unbalanced. �is makes it di¬cult to achieve accurate
classi�cation of positive sample data. Another reason is that
the model in this paper is more complex and it is di¬cult to
train the desired e�ect in small datasets.

We replaced the BiGRU in themodel with a BiLSTM and
observed the change in model performance on the ATEC
dataset, as shown in Figure 7.

It is evident that the model performance is hardly af-
fected by the change, but the model is trained faster.

In order to verify the e�ectiveness of the proposed
method, we introduce the attention mechanism proposed by
other scholars into the model of this paper for comparison.
�e results are shown in Table 3.

�ese three attention mechanisms allow the model to
learn to determine the importance of each word by in-
creasing the weight of important words and reducing the
weight of unimportant words. To avoid interfering with
weight assignment, no lexical rules were introduced.

To test whether the proposed attention mechanism can
capture important information in sentences, we randomly
selected a pair of sentences from the dataset and observed
how they a�ected the output of the mechanism. �e results
are shown in Figure 8.

It can be seen that after the attention mechanism, the
semantic expression of the important elements in the sen-
tence is enhanced, as is the correlation between them and
other important elements. However, non-important ele-
ments of the sentence have little e�ect.

4. Conclusion

In this paper, we proposed a model based on a siamese
network, integrating semantic information and a head-
word attention mechanism to learn sentence represen-
tations. Our model obtains a semantically enhanced
representation through the headword attention mecha-
nism, which increases the in�uence of key information in
the sentence. In order to verify the performance of the
model, we conducted experiments on the ATEC and
MSRP datasets. Compared with other models, our model
achieved relatively excellent performance in the recall and
F1 metrics.
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Figure 7: �e impact of BiLSTM and BiGRU on model
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Table 3: E�ects of di�erent attention mechanisms on model
performance.

Methods Accuracy Recall F1-value
SA [29] 0.7522 0.8631 0.7737
CSA [30] 0.7582 0.8656 0.7795
S2SA [31] 0.7685 0.8919 0.7912
HA 0.7731 0.9048 0.7936
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In future work, we will study the impact of multi-level
attention mechanisms on model performance, and incor-
porate external knowledge into our model.
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