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Particle swarm optimization (PSO) algorithm is widely used due to its fewer control parameters and fast convergence speed.
However, as its learning strategy is only learning from the global optimal particle, the algorithm has the problem of low accuracy
and easily falling into local optimization. In order to overcome this defect, a multipopulation particle swarm optimization
algorithm with neighborhood learning (MPNLPSO) is proposed in this article. In MPNLPSO, a small-world network neigh-
borhood learning strategy is proposed to make particles learn from the neighborhood optimal particles instead of only the global
optimal particle. Furthermore, the concept of multipopulation cooperation is introduced to balance the ability of global ex-
ploration and local exploration. In addition, a dynamic opposition-based learning strategy is proposed to effectively activate the
particles in the search stagnation state. Moreover, in order to improve the accuracy of the algorithm and, to some extent, avoid the
population diversity decreases too fast, as the searching process continues, Lévy flight is introduced to randomly perturb the
particles of historical optimal and neighborhood optimal. To verify the performance of the proposed algorithm experimentally,
twenty benchmark functions are solved. Experimental results show that the proposed multipopulation particle swarm opti-
mization algorithm with neighborhood learning presents high efficiency and performance with a certain robustness.

1. Introduction

Recent years have witnessed the emergence of many met-
aheuristics such as the monarch butterfly optimization
(MBO) [1], slime mould algorithm (SMA) [2], moth search
algorithm (MSA) [3], and colony predation algorithm
(CPA) [4]. MBO [1] was firstly proposed by Wang in 2019,
which simplifies and idealizes the migration behavior of
eastern North American monarch population by updating
the positions of the monarch butterflies in two ways. Li et al.
[2] utilized the oscillation mode of slime mould in nature
with adaptive weights to simulate the process of producing
positive and negative feedback of the propagation wave of
slimemould based on bio-oscillator to form the optimal path
for connecting food with excellent exploratory ability and
exploitation propensity and proposed SMA. Inspired by the

phototaxis and Lévy flights of the moths, MSA was devel-
oped by Wang [3]. Natural moths are family insects, and in
MS method, the best moth individual is viewed as the light
source. Some moths that are close to the fittest one always
display an inclination to fly around their own positions in
the form of Lévy flights. On the contrary, due to phototaxis,
the moths that are comparatively far from the fittest one will
tend to fly toward the best one directly in a big step. .ese
two features correspond to the processes of exploitation and
exploration of any metaheuristic optimization method. And
based on the corporate predation of animals in nature, CPA
was proposed by Tu et al. [4], utilizing a mathematical
mapping following the strategies and introducing new
features of a unique mathematical model that uses a success
rate to adjust the strategy and simulate hunting animals’
selective abandonment behavior.
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As a traditional optimization algorithm, particle swarm
optimization (PSO), a type of evolutionary algorithm, based
on swarm intelligence, which is originated from the simu-
lation study of swarm intelligence behaviors of natural or-
ganisms in the evolution process, for example, the migration
of birds [5] and the foraging of ant colonies [6], was firstly
proposed by Kennedy and Eberhart [7] and Shi and Eberhart
[8] in 1995 for the optimization of continuous problems. In
this type of algorithm, the groups can effectively identify the
characteristics of the problem by sharing evolutionary in-
formation and considering the environmental factors of
individual’s surroundings, and finally guide the group to
search toward more promising areas. It established an
evolutionary search model based on the intelligent behavior
of swarms by studying the foraging behavior of the flock of
birds and fish. In this model, each individual in the group
can constantly move toward the position of the best indi-
vidual in the group, which is affected by the interaction of its
own and the best historical experience of any individual in
the neighborhood, and thereby finds the global optimum of
the problem. Since the algorithm was proposed, it has re-
ceived a lot of research due to its advantages such as high
efficiency and stability in solving complex problems and not
being restricted by the characteristics of the problem.
However, although most modified particle swarm optimi-
zation algorithm variants can satisfy the requirements for
optimization problems, as the scale of optimization prob-
lems continues to increase, the existing PSO algorithm and
its variants become more and more difficult to meet the
performance requirements. Studies have shown that most of
the improvements of PSO algorithm usually only pay at-
tention to modify its global search ability and ignore its local
search ability, which brings about problems such as insuf-
ficient population diversity and premature convergence
when dealing with complex optimization problems [9]. In
addition, limited by the relatively simple evolution strategy,
which is that each particle only exchanges information with
the best individual in its neighborhood and therefore ignores
the important influence of other individuals on the evolution
process of the entire group, the PSO algorithm usually has
troubles in solving complex problems. .erefore, many
researchers have conducted a lot of work on PSO algorithm
from theoretical analysis to practical application, for ex-
ample, the adaptive research of algorithm control parame-
ters [10], the design of population topology [11], and the
hybrid design with other evolutionary algorithms [12]. .e
PSO algorithm has the advantage of fewer control param-
eters that need to be adjusted, but these control parameters
have a significant impact on the performance of the algo-
rithm, for example, inertia weight and acceleration factor.
Eltamaly [13] proposed a novel strategy that can determine
the optimal values of control parameters of a PSO..e newly
proposed strategy uses two nested PSO (NESTPSO)
searching loops: the inner one contained the original ob-
jective function, and the outer one used the inner PSO as a
fitness function. .e control parameters and the swarm size
acted as the optimization variables for the outer loop. .ese
variables were optimized for the lowest premature con-
vergence rate, the lowest number of iterations, and the

lowest swarm size. Wei-Min et al. [14] proposed a more
simple strategy of PSO algorithm called θ-PSO. In θ-PSO, an
increment of phase angle vector replaces the increment of
the velocity vector and the positions are decided by the
mapping of phase angles..e results of benchmark testing of
nonlinear functions show that the performance of θ-PSO is
much more effective than that of the standard PSO. Tian
et al. [15] proposed a chaotic PSO algorithm based on the
sigmoid acceleration coefficient. A uniformly distributed
initial particle population is generated through logical
mapping rules, the sigmoid function is used to adaptively
adjust the acceleration coefficient, and the particles are
updated based on the chaotic reinitialization and Gaussian
mutation strategy to maintain the diversity of the pop-
ulation, so that the algorithm can continue to explore the
potential search area. Liu et al. [16] proposed an AWPSO
algorithm based on adaptive weights of the sigmoid func-
tion. In this algorithm, considering the distance between
each particle and the global optimal position, an adaptive
acceleration coefficient update strategy based on the sigmoid
function is designed to improve the convergence perfor-
mance of the algorithm.

Generally, PSO algorithms only utilize the best historical
experience of individuals and groups to guide the evolution
process of the population. .is strategy is simple and ef-
fective, but it is difficult to obtain high-quality results when
dealing with complex problems. .erefore, the design of
efficient evolution strategies has aroused extensive research.
An adaptive PSO algorithm using scale-free network to-
pology is proposed by Li et al. [17]. Based on the charac-
teristics of scale-free network topology with power-law
distribution, this novel algorithm can construct a corre-
sponding neighborhood for each particle. .en, it selects the
elite particles from the community to participate in the
particle evolution process and considers full play to the
guiding role of elite particles within the population search
process. In addition, a new adaptive weight strategy and an
introduction to the differential evolution operation for
achieving a balance ability to the global and local exploration
within the search process are proposed. As for the pop-
ulation topology, Chen et al. [18] proposed a hybrid ring
topology in the early evolutionary process of evolution, a
sparse topology is constructed to enhance the population
diversity to help locate multiple optima, while in the later
stage, the population communication topology is switched
to a relatively dense topology for improving the convergence
efficiency on the found optima, and the threshold that
controls the switch of the topology and its effect is also
analyzed in this study. In multimodal optimization prob-
lems, niching parameters are often used to inform the al-
gorithm how far apart between two closest optima or the
number of optima in the search space, and are typically
difficult to set as they are problem dependent. Li [19]
proposed a particle swarm optimization algorithm using a
ring neighborhood topology without any niching parame-
ters, and experimental results suggest that PSO algorithms
using the ring topology are able to provide superior and
more consistent performance over some existing PSO
niching algorithms that require niching parameters. Qin
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et al. [20] presented an improved PSO algorithm with an
interswarm interactive learning strategy (IILPSO) by over-
coming the drawbacks of the canonical PSO algorithm’s
learning strategy. IILPSO is inspired by the phenomenon in
human society that the interactive learning behavior takes
place among different groups. Particles in IILPSO are di-
vided into two swarms. .e interswarm interactive learning
(IIL) behavior is triggered when the best particle’s fitness
value of both the swarms does not improve for a certain
number of iterations. According to the best particle’s fitness
value of each swarm, the softmax method and roulette
method are used to determine the roles of the two swarms,
such as the learning swarm and the learned swarm. In
addition, the velocity mutation operator and global best
vibration strategy are used to improve the algorithm’s global
search capability. .e IIL strategy is applied to PSO with
global star and local ring structures that are termed as
IILPSO-G and IILPSO-L algorithm, respectively. Xu et al.
[21] proposed a dimensional learning strategy (DLS) for
discovering and integrating the promising information of
the population best solution according to the personal best
experience of each particle. .ereafter, a two-swarm
learning PSO (TSLPSO) algorithm based on different
learning strategies is proposed. One of the subpopulations
constructs the learning exemplars by DLS to guide the local
search of the particles, and the other subpopulation con-
structs the learning exemplars by the comprehensive
learning strategy to guide the global search.

Moreover, a multi-objective approach to optimization
has been attempted. Zhang et al. [22] proposed a modified
particle swarm optimization (AMPSO) to solve the mul-
timodal multi-objective problems. Firstly, a dynamic
neighborhood-based learning strategy is introduced to
replace the global learning strategy, which enhances the
diversity of the population. Meanwhile, to enhance the
performance of PSO, the offering competition mechanism
is utilized. An improved version of the directed weighted
complex network particle swarm optimization using the
genetic algorithm (GDWCN-PSO) is presented by Bharti
et al. [23]. .is method uses the concept of the genetic
algorithm after each update to enhance convergence and
diversity.

Furthermore, the PSO algorithm and its variants have
been applied to solve many realistic problems. Bharti et al.
[23] have applied GDWCN-PSO to solve the optimal key-
based medical image encryption. It is one of the most
challenging problems in health IoTs for protecting sensitive
and confidential patient data as well as addressing the major
concern of integrity and security of data in today’s advanced
digital world. In addition, constrained optimization prob-
lems, compared to unconstrained problems, are more
complex problems due to their multiple constraints with
different requirements. In order to solve this kind of
problem, Parsopoulos and Vrahatis [24] first proposed the
idea of penalty function, turning the constraint problem into
an unconstrained problem. However, in this way, an ap-
propriate penalty function factor needs to be selected;
otherwise, the efficiency of the algorithm will be significantly
affected.

Although the above-mentioned details have introduced
some modifications on the PSO algorithm, there is little
research work analyzing the diversity of network topology.
.us, a multipopulation particle swarm optimization al-
gorithm with neighborhood learning (MPNLPSO) is pro-
posed. .e main contributions of this study can be
summarized as follows:

(1) .e concept of population cooperation is intro-
duced. In the iterative process, the particle swarm is
divided into two populations according to the fitness
value: elite population and shoddy population.

(2) Small-world network neighborhood learning strat-
egy is proposed. A neighborhood for each particle is
constructed to make them learn from the neigh-
borhood optimal particles, thus getting rid of the
situation of only learning from the global optimal
particle.

(3) Dynamic opposition-based learning strategy is
proposed. It mainly aims at activating the particles
trapped in search stagnation in the shoddy
population.

.e rest of this article is arranged as follows: Section 2
briefly reviews the PSO algorithm and some details of the
small-world network, opposition-based learning, Lévy flight,
respectively, additionally, the concept of diversity analysis of
particle swarm is introduced in particular. .e algorithm we
proposed is introduced in Section 3, which firstly gives
details about two strategies: small-world network neigh-
borhood learning strategy and dynamic opposition-based
learning strategy, and then presents the framework of the
proposed algorithm MPNLPSO. Section 4 presents the ex-
periment results ofMPNLPSO. Firstly, benchmark functions
used in the experiment and the parameter settings of the
comparison algorithms are introduced. Secondly, the di-
versity of the VN small-world network and NW small-world
network is analyzed and the solution accuracy of the pro-
posed algorithm is verified. .irdly, the effectiveness of the
strategy is analyzed. Lastly, the proposed algorithm is
compared from the perspective of convergence.

2. Related Work

2.1. Particle Swarm Optimization. In the standard particle
swarm optimization algorithm, each particle i(i � 1, 2, . . . , N)

represents a potential solution to the optimization problem and
is defined by two vectors, velocity Vi � [v1i , v2i , . . . , vD

i ] and
position Xi � [x1

i , x2
i , . . . , xD

i ]. By initialization, particles are
generated in a three-dimensional search space with random
velocity and position values. During evolution, each particle
updates its velocity and position according to the following
learning strategies:

V
t+1
ij � V

t
ij + c1 × r1 Pbesttij − X

t
ij􏼐 􏼑

+ c2 × r2 Gbest − X
t
ij􏼐 􏼑,

(1)

X
t+1
ij � X

t
ij + V

t+1
ij , (2)
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where Vt+1
ij is the velocity of the j-dimensional component

of particle i in generation t + 1, and Xt+1
ij represents the

position of the j-dimensional component of particle i in
generation t + 1. c1 and c2 are acceleration coefficients, and
r1 and r2 are random numbers of [0, 1]. In order to control
the influence of the particle’s previous velocity on the
current velocity, an inertia weight is usually added to the
velocity in Equation (1), which is shown in Equation (3) as
follows:

V
t+1
ij � ω × V

t
ij + c1 × r1 Pbesttij − X

t
ij􏼐 􏼑

+ c2 × r2 Gbest − X
t
ij􏼐 􏼑.

(3)

2.2. Small-World Network. Watts and Strogtz [25] rewired
the conventional network and introduced disordered
lines. .e resulting network has the characteristics of high
agglomeration coefficient and low average path length.
.is network model is generally called the small-world
network model. .ere are many forms of small-world
network, among which WS small-world network and NW
small-world network are widely used, and both are
constructed on the basis of a ring network. WS small-
world network is generated by the process of fixing a
vertex in a ring network, then randomly selecting a node
from the remaining nodes to reconnect with it, NW small-
world network is constructed by adding edges between
nodes randomly with connection probability p, and both
processes must ensure that there are no duplicate edges in
the network. .e connection probability p is the proba-
bility of reconnection of each edge. p � 0 means that each
edge is not reconnected, that is, it is still a ring network.
p � 1 means that each edge is reconnected, that is, it
becomes a composite network of random network and
ring network. p � (0, 1) indicates that some edges have
been reconnected, that is, the NW small-world network.

.e detail of the NW small-world network will be in-
troduced due to its application in the proposed algorithm.
.e left side of Figure 1 shows a ring topology, where each
node is connected with two points adjacent to itself on the
left and right side respectively, and the connection proba-
bility is 0. .e middle of Figure 1 shows the small-world
network when the connection probability of the edge is 0.2.
When the connection probability of the edge is 1, the small-
world network will evolve into a combination of regular
network and random network, which is shown on the right
side of Figure 1.

In addition to building a small-world network based on
the regular network above, Kleinberg [26] constructs small-
world networks in another way. Rather than using a ring as
the basic structure, we begin from a two-dimensional grid
and make edges directed.

Figure 2 shows the Von Neumann network with swarms
of size 5× 5 and each particle has up, down, left, and right
particles in its neighborhood, except the edge particles.
Figure 3 shows that each node in the Von Neumann network
is connected with its neighborhood, and in addition, ran-
domly connected with two nodes, for instance, particle i is

connected to two randomly selected particles j and k..us, a
VN small-world network is generated.

2.3. Opposition-Based Learning. .e opposition-based
learning strategy [27] is a new concept that has emerged in
the field of computational intelligence in recent years, and
has been proven to be an effective concept to various op-
timization approaches [28–33]. When evaluating a solution
x to a given problem, simultaneously computing its opposite
solution will provide another chance for finding a candidate
solution that is possibly closer to the global optimum.

Opposite number [29]: let x ∈ [a, b] be a real number.
.e opposite of x is defined as follows:

x
∗

� a + b − x. (4)

Similarly, the definition is generalized to higher di-
mensions as follows:

Opposite point [29]: let X � (x1, x2, . . . , xD) be a point
in a D-dimensional space, where x1, x2, . . . , xD ∈ R and
xj ∈ [aj, bj], j � 1, 2, . . . , D. .e opposite point
X∗ � (x∗1 , x∗2 , . . . , x∗D) is defined as follows:

x
∗
j � aj + bj − xj. (5)

By applying the definition of opposite point, the op-
position-based optimization can be defined as follows:

Opposition-based optimization [29]: let
X � (x1, x2, . . . , xD) be a point in a D-dimensional space
(i.e., a candidate solution). Assume f(X) is a fitness
function, which is used to evaluate the candidate’s fitness.
According to the definition of the opposite point, X∗ �

(x∗1 , x∗2 , . . . , x∗D) is the opposite of X � (x1, x2, . . . , xD). If
f(X∗) is better than f(X), then update X with X∗; oth-
erwise keep the current point X. Hence, the current point
and its opposite point are evaluated simultaneously in
order to continue with the fitter one.

Particularly, in the particle swarm optimization algo-
rithm, Equation (6) is used to calculate the opposition
position of the particle.

X
∗
i � Xmax + Xmin − Xi, (6)

where Xmax, Xmin represent the upper and lower bounds of
particles, that is, the function definition domain.

2.4. Lévy Flight. Lévy flight [34] is a class of non-Gaussian
random processes whose random walks are drawn from
Lévy stable distribution. .e generation of random numbers
with Lévy flight consists of two steps: the choice of a random
direction and the generation of steps that obey the chosen
levy distribution. Random walks are drawn from Lévy stable
distribution. Mantegna proposed a method to solve random
numbers with normal distribution in 1994, that is, Mantegna
method. .e method of generating random walk obeying
Lévy distribution by Mantegna method is as follows:

S �
u

|v|
1/β, (7)
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where u and v obey normal distribution as follows:

u ∼ N 0, σ2u􏼐 􏼑.v ∼ N 0, σ2v􏼐 􏼑

σu �
Γ(1 + β)sin(πβ/2)

Γ[1 + β/2]β2β−1/2􏼨 􏼩

1/β

.

(8)

.e step size of random walk is calculated by the fol-
lowing formula:

stepsize � 0.01 × S, (9)

where 0.01 is the scale factor, which comes from L/100, and
the stride L is the classical length scale. If step S is not
modified, Lévy flight may jump out of the set area because
the step is too large.

2.5. Diversity Analysis of Particle Swarm. By judging the
difficulty of the problem from the fitness distance correla-
tion, it can be concluded that when the problem presents
simple characteristics, it shows that particle swarm opti-
mization needs to enhance local exploitation ability, and
when the problem presents difficult characteristics, it shows
that particle swarm optimization needs to enhance global
exploration ability. .erefore, it is necessary to judge the
impact of two complex networks in the process of particle
swarm optimization. Taking advantage of the characteristics
of complex network topology can effectively enhance the
robustness of particle swarm optimization algorithm.

.ere are many ways to evaluate population diversity,
such as population diameter, population radius, average
distance from population center to surrounding particles,
standard average distance from population center to sur-
rounding particles, and population consistency. In the
process of particle swarm search, particle swarm will show
different characteristics. In order to intuitively reflect the
diversity of scale-free network and small-world network in
the process of particle swarm search, this study selects the
average distance from the population center to the sur-
rounding particles to describe the diversity of particle
swarm, that is, this study selects Gbest as the population
center and calculates the average distance from other par-
ticles to Gbest. .e calculation equation is shown as follows:

D �
1
N

􏽘

N

i�1

���

􏽐
D

j�1

􏽳

x
j
i − Gbest􏼐 􏼑

2
, (10)

where N is the particle swarm size and D is the dimension.
.e above calculation method is chosen to describe the

diversity of particle swarm so as to evaluate the diversity of
particle swarm after every iteration, more specifically, it is

p=0 p=1

Figure 1: Evolution of NW small-world network.

Figure 2: Swarm of particles 5× 5.

j k

i

Figure 3: Small-world with 2 random particles.

Scientific Programming 5



more objective to take Gbest as the central position of
particle swarm after different networks take effect on particle
swarm, which can fully reflect the impact of different net-
works on particle swarm. If the result is small, it means that
the network presents good convergence in the particle
swarm optimization algorithm. Or, it means that the net-
work has good diversity.

3. Proposed Algorithm

.is section will introduce the proposed algorithm
MPNLPSO in detail. Firstly, Section 3.1 introduces the
neighborhood learning strategy of the small-world network.
By building a small-world network to construct a neigh-
borhood for each particle, it can make full use of the ex-
perience gained by the optimal particle within its
neighborhood, thus getting rid of the situation of learning
only from the global optimal particle. .e dynamic oppo-
sition-based learning strategy is introduced in Section 3.2,
which aims at reactivating particles in the search stagnation
in the shoddy population.

3.1. Small-World Network Neighborhood Learning Strategy.
As we all know, heuristic optimization algorithms based on
multipopulation have always attracted researchers’ interests.
In order to improve the search efficiency of particle swarm
optimization, the concept of population cooperation is in-
troduced. .e swarm is divided into elite population and
shoddy population, and different learning strategies are
adopted according to the characteristics of the two pop-
ulations. .e partition rule of particle swarm is as follows: in
each iteration, the particle swarm is sorted according to the
fitness value. Because all the problems in this study are
minimum problems, the fitness values are sorted from small
to large. .e top 50% of the particles are defined as elite
particle swarm, and the last 50% are shoddy population.

In this study, the dispersion analysis method introduced
in Section 2.5 is used to calculate the dispersion of NW
small-world network and VN small-world network. It is
concluded that the dispersion of VN small-world network is
greater than that of NW small-world network. .e specific
experimental results will be introduced in Section 4.

For the elite population, its ability of local search should
be enhanced due to the location being more promising.
.erefore, this study uses NW small-world network to build
a neighborhood for each particle that belongs to the elite
population. .e specific steps are as follows:

(1) Build a ring-shaped regular network with particles of
10% of the population size before and after, re-
spectively, for each particle.

(2) Set the probability p to 0.5 and randomly edge the
regular network.

(3) After every particle in the population is traversed, the
neighborhood topological space of small-world
network is formed.

For the shoddy population, its global exploration ability
should be enhanced because its location is far from the actual

optimal value compared with the elite population..erefore,
this study uses VN small-world network to build a neigh-
borhood for each particle. .e specific steps are as follows:

(1) .e particles in the inferior population are arranged
into a 7× 7 Von Neumann network according to the
sequence number.

(2) After the von Neumann network is constructed, for
each particle, in addition to its upper, lower, left, and
right particles, two other particles are randomly
selected to connect.

In order to ensure that the final network can present the
characteristics of small-world network, the edges connected
between particles are set as two-way edges, and the particles
do not consider whether they have been previously con-
nected when randomly selecting the target particles.

Figure 4 shows a simple example. Particle i is connected
with j and k. .e randomly selected target particle j has been
connected with i, but it is still one of the two particles
randomly selected by i. Only in this way can the final
network show the characteristics of small-world network.

After constructing the small-world network, each par-
ticle learns from its neighborhood optimal particle Nbest, so
as to get rid of the situation that particle only learns from the
global optimal particle. .e speed update formula of small-
world network neighborhood learning strategy is shown as
follows:

Vt+1
ij � ω × V

t
ij + c1 × r1 pbesttij − X

t
ij􏼐 􏼑

+ c2 × r2 Nbest − X
t
ij􏼐 􏼑.

(11)

Even if a certain learning strategy is adopted, particle
swarm optimization may fall into local optimization due to
the uncertainty in the search process. In particular, the
particles of historical optimal position and neighborhood
optimal position are more important, as other particles will
learn from them. .is study takes advantages of the char-
acteristics of Lévy flight to randomly perturb Pbest andNbest
to reduce the risk of falling into the local optimum. .e
improved velocity update equation is as follows:

V
t+1
ij � ω × V

t
ij + c1 × r1 stepsize × pbesttij − X

t
ij􏼐 􏼑

+ c2 × r2 stepsize × Nbest − X
t
ij􏼐 􏼑.

(12)

3.2. Dynamic Opposition-Based Learning Strategy. Based on
the characteristics of shoddy population, we know that
shoddy population has a higher probability of falling into
search stagnation than elite population. .erefore, a dy-
namic opposition-based learning strategy is proposed. .e
basic idea of this strategy is setting a parameter stag with an
initial value of 0. When the current solution is not signif-
icantly improved compared with the previous one, stag will
increase by 1. When the solution searched by the population
is better than the previous solution, stag will be reset to 0. As
the searching process continues, the value of stagwill keep or
increase. In this study, the upper bound of stag is set to 5.
When the upper bound is reached, the opposition-based
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learning strategy will be adopted for the particle. After the
solution based on opposition-based learning strategy is
generated, it needs not to compare with the original solution,
due to the obvious reason that the original solution has
already made the particle trapped into search stagnation
state, that is, the purpose of dynamic opposition-based
learning is to increase the diversity of the particle and ac-
tivate its search state, not just to find a better solution.

.e pseudocode of dynamic opposition-based learning
strategy is expressed as follows:

(1) Input: shoddy population N2, temporary variables
temp of last global optimal particle, current global
optimal particle Gbest;

(2) Output: x2;
(3) stag� 0;
(4) For i� 1 :N2

(5) If stag>5
(6) x2 � x2 + v2;
(7) x2 �U+ L− x2;
(8) Else
(9) x2 � x2 + v2;
(10) End if
(11) End for

(12) Evaluate particles and update Gbest;
(13) If fitness(Gbest)<fitness(temp)
(14) fitness(temp)� fitness(Gbest);
(15) stag� 0;
(16) Else
(17) stag� stag+ 1;
(18) End if

3.3. ?e Framework of the MPNLPSO Algorithm.
According to the above learning strategy, a multipopulation
particle swarm optimization algorithm with neighborhood
learning strategy is proposed. After initializing and evalu-
ating, the algorithm enters the iterative process. .e particle
swarm is sorted according to the fitness value. .e top 50%
of the particles is considered as the elite population, and the
last 50% is the shoddy population. For elite population and
shoddy population, NW small-world network and VN
small-world network are constructed respectively, so that
each particle can learn from the optimal particle in its
neighborhood. For the shoddy population, the dynamic
opposition-based learning strategy is additionally used to
activate the particles trapped in the stagnant search. Finally,
the elite population and shoddy population are combined to
reevaluate the particles and update the historical optimal
particles Pbest and global optimal particle Gbest.

Inspired by Li et al. [17], this study constructs a
neighborhood for each particle, on the other hand, divides
the particle swarm into elite population and shoddy pop-
ulation. It is considered that as the search process progresses,
it is more reasonable to give each particle different inertia
weights than to reduce the inertia weights linearly. As when
the updated position of the particle is better than the average
position of the particle swarm, the influence of the previous
particle velocity should be reduced, which will enhance its
local exploitation ability. And when the updated position of
the particle is worse than the average position of the particle
swarm, the influence of the previous particle velocity should
be increased to enhance its ability of global exploration.
.erefore, the inertia weight equation proposed in Li et al.
[17] is used for calculation in this study.

ωi(t) �

ωmin +
ωmax − ωmin( 􏼁 fpbest(t) − fmin(t)􏼐 􏼑

favg(t) − fmin(t)
, if fpbest(t)≤favg(t),

ωmax, if fpbest(t)≤favg(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

where ωmax � 1.2, ωmin � 0.2, and fpbest(t) is the historical
optimal fitness of the ith particle in generation t. fmin(t) is
the minimum fitness value in generation t. favg(t) is the
average fitness value in generation t.

.e pseudocode of the MPNLPSO algorithm in this
study can be expressed as follows:

(1) Initialization: N� 100, D� 30, 50;

j

n

k

m i

Figure 4: VN small-world network.
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(2) Evaluate the particle swarm and get Pbest and
Gbest;

(3) While Fes<maxFEs do
(4) Calculate the inertia weight of each particle using

equation (13);
(5) Generate a set of random numbers obeying Lévy

distribution;
(6) Sort particle swarm by fitness in ascending order;
(7) Constructing elite population N1 using the top

50% of particles;
(8) Constructing NW small-world network;
(9) For i� 1: N1

(10) Select Nbest for every particle;
(11) Update velocity using equation (12);
(12) Update position using equation (2);
(13) End for
(14) Constructing shoddy population N2 using the

top 50% of particles;
(15) Constructing VN small-world network;
(16) For i� 1: N2

(17) Select Nbest for every particle;
(18) Update velocity using equation (12);
(19) Update position using strategy 2;
(20) End for
(21) End while

4. Experiment

.is study is performed on a computer with a Win_64 bit,
Intel (R) core (TM) i5-6300hq CPU@ 2.30GHz and 8GB
RAM. MATLAB r2019a was used to carry out the relevant
experimental work, and the results were discussed and
analyzed. Section 4.1 introduces the benchmark functions
used in the experiment and the parameter settings of the
comparison algorithms. .e diversity of VN small-world
network and NW small-world network is analyzed in detail
in Section 4.2. Section 4.3 analyzes the effectiveness of the
strategy. In Section 4.4, the solution accuracy of the pro-
posed algorithm is verified in 30 and 50 dimensions re-
spectively. In Section 4.5, the proposed algorithm is
compared from the perspective of convergence.

4.1. Benchmark Functions and Parameter Settings. In order
to verify the robustness of the MPNLPSO algorithm in
solving complex problems, twenty widely used benchmark
functions (ten unimodal functions and ten multimodal
functions) are solved in this study. In addition, this study
compares the MPNLPSO algorithm with seven other well-
known particle swarm optimization algorithm variants,
including BLPSO [35], CLPSO [36], SLPSO [37], ACPSO
[37], SFAPSO [17], SWPSO-I [38], and RTPSO [39]. Where
BLPSO, CLPSO, SLPSO, and ACPSO are four PSO variants
on learning strategies, and SFAPSO, SWPSO-I, and RTPSO

are three PSO variants on network topology. Table 1 clearly
describes the names and upper and lower bounds of the
benchmark functions. Table 2 shows the parameter settings
of all algorithms. In order to ensure the fairness, the pop-
ulation size of all algorithms is set to 100, the dimensions are
30 and 50 respectively, and the maximum evaluation time is
D× 1e4. Other parameters are set according to the original
values.

4.2.DiversityAnalysis of Small-WorldNetworks. .is section
uses the method described in Section 2.5 to calculate the
diversity of VN small-world network and NW small-world
network. Both of the two small-world networks are used to
calculate twenty benchmark functions, with the population
size of 100, the dimension of 30, and the iteration number of
2000. By solving each benchmark function 30 times, cal-
culating the average distance from the center of the pop-
ulation to the surrounding particles, the average results of 30
runs are obtained and the data are listed in Table 3.

As we can see from Table 3, in terms of unimodal test
functions, NW small-world network has greater diversity
than VN small-world network in f4 and f5 functions, and
shows better convergence ability in other eight test func-
tions. As for multimodal functions, NW small-world net-
work shows good diversity in f11, f12, f18, and f19 functions,
and VN small-world network shows good diversity in the
other six multimodal functions. On the whole, the results of
fourteen functions of VN small-world network are better
than that of NW small-world network, that is, VN small-
world network shows better diversity in particle swarm
optimization algorithm, and the convergence ability of NW
small-world network is slightly better than that of VN small-
world network.

4.3.Effectiveness of theStrategy. .is part experiments on the
effectiveness of the strategy, which is divided into five
combinations. Comb. 1 is the standard particle swarm op-
timization algorithm, Comb. 2 is a multipopulation strategy,
Comb. 3 uses the NW small-world network to build the
neighborhood topology, Comb. 4 uses the VN small-world
network to build the neighborhood topology, and Comb. 5 is
the algorithm proposed in this study. All combinations were
tested on 30 dimensions. Each combination ran 30 times
independently to get the mean and standard deviation. It can
be clearly seen from Table 4 that the experimental effect has
not been improved when Comb. 2 does not use the network
topology to build the neighborhood. Comb. 3 and Comb. 4
can significantly improve the result of f5 function without
using the multipopulation strategy, and can reach the actual
optimal value, but not all functions have improved. .e
convergence accuracy of Comb. 4 on f13 function is better
than that of other combinations. Comb. 5, that is, the al-
gorithm proposed in this study shows excellent optimization
ability in most functions, which shows that there can be an
effective cooperation between learning strategies and sig-
nificant improvement in the convergence accuracy of the
algorithm.
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4.4. Comparison of PSO Algorithm Variants. .is section
compares MPNLPSO with six well-known PSO variants in
30 and 50 dimensions, respectively. .e population size is
100, and the maximum number of evaluations is 10000×D.
In order to show the calculation error of each algorithm,
each function is calculated 30 times, and then the minimum,
average, and standard deviation are recorded. Tables 5 and 6
list the comparison results of the six well-known PSO
variants on the benchmark test functions. It can be seen that
each function contains three rows of values that are the
minimum value, the average value, and the standard
deviation.

It can be seen from the results of unimodal function in
Table 5, that SFAPSO can converge to the actual optimal value
on the f1 function. In the 30 results of the solution, MPNLPSO
can converge to the actual optimal value, but it is not stable
enough. On the f2 function, all algorithms fall into the local

Table 1: Benchmark functions.

Test function Equation Search range

f1 Brown function 􏽐
n−1
i�1 (xi

2)(x2
i+1+1) + (xi+1

2)(x2
i
+1) [−1, 4]

f2 Exponential function −exp(−0.5􏽐
n
i�1 x2

i ) [−1, 2]

f3 Griewank function 1 + 􏽐
n
i�1 x2

i /4000 − 􏽑
n
i�1 cos(xi/

�
i

√
) [−600, 600]

f4 Powellsum function 􏽐
n
i�1 |xi|

i+1 [−1, 1]

f5 Ridge function xi + d∗ (􏽐
n
i�1 x2

i )α, d � 1, α � 0.5 [−5, 5]

f6 Schwefel2.20 function 􏽐
n
i�1 |xi| [−100, 100]

f7 Schwefel2.21 function max
i�1,...n

|xi| [−100, 100]

f8 Schwefel2.22 function 􏽐
n
i�1 |xi| + 􏽑

n
i�1 |xi| [−100, 100]

f9 Schwefel2.23 function 􏽐
n
i�1 x10

i [−10, 10]

f10 Sphere 􏽐
n
i�1 x2

i [−5.12, 5.12]

f11 Ackley 1 20 + exp(1) − 20∗ exp(0.2
��������
􏽐

n
i�1 x2

i /n
􏽱

) − exp[1/n 􏽐
n
i�1 cos(2πxi)] [−35, 35]

f12 Alphine 1 􏽐
n
i�1 |xi sin(xi) + 0.1xi| [0, 10]

f13 Happy cat (􏽐
n
i�1 x2

i − n)α + 1
n

(0.2􏽐
n
i�1 x2

i + 􏽐
n
i�1 xi) + 0.5, α � 0.5 [−2, 2]

f14 Periodic 1 + 􏽐
n
i�1 sin

2(xi) − 0.1exp(− 􏽐
n
i�1 x2

i ) [−10, 10]

f15 Quatic function with noise 􏽐
n
i�1 ix4

1 + rand(0, 1) [−1.28, 1.28]

f16 Rastrign 10n + 􏽐
n
i�1[x2

i − 10cos(2πxi)] [−5.12, 5.12]

f17 Salomon 1 − cos(2π ∗
������
􏽐

n
i�1 x2

i

􏽱
) + 0.1∗

������
􏽐

n
i�1 x2

i

􏽱
[−100, 100]

f18 Xin-She Yang 1 􏽐
n
i�1 a|xi|

i, a � rand(0, 1) [−5, 5]

f19 Xin-She Yang 2 (􏽐
n
i�1 |xi|

i)∗ exp[− 􏽐
n
i�1 sin(x2

i )] [−2 π, 2 π]

f20 Xin-She Yang 4 [􏽐
n
i�1 sin

2(xi) − exp(− 􏽐
n
i�1 x2

i )]∗ exp(− 􏽐
n
i�1 sin

2 ���
|xi|

􏽰
) [−10, 10]

Table 2: Parameter settings.

Algorithm Parameter settings

CLPSO ω� 0.9∼ 0.2, c� 1.49445, gapm� 5,
Vmax � 0.2× range

BLPSO ω� 0.9∼ 0.2, c� 1.49445, I�E� 1, Vmax � 0.2× range
SLPSO M� 100, m�M+floor(d/10), c3 � d/M× 0.01

ACPSO ω� 0.9∼0.4, c1 � c2 �1.49445, swarmNum� 3,
alpha� 0.1, beta� 0.1, max� 0.2× range

SFAPSO ωmax � 1.2, ωmin � 0.2 c1� c2� 2.0, α� 0.5, g � 0.6,
Vmax � 0.2× range

SWPSO-I ω� 0.9∼0.4, c1 � c2 �1.494, Vmax � 0.2× range
RTPSO χ � 0.7298, φ1+φ2 � 4.1, Vmax � 0.2× range

MPNLPSO ωmax � 1.2, ωmin � 0.2, c1 � c2 �1.494, β� 1.5,
Vmax � 0.2× range

Table 3: Population diversity analysis.

VN small-world network NW small-world network
f1 1.18E+ 00 5.80E− 01
f2 2.97E+ 02 4.05E+ 00
f3 3.56E+ 01 2.18E+ 01
f4 2.29E− 03 2.95E− 02
f5 4.05E+ 02 1.22E+ 02
f6 6.37E+ 01 5.70 E+ 01
f7 6.81E+ 01 7.51E+ 01
f8 1.11E+ 02 6.00 E+ 01
f9 1.61E+ 01 1.56 E+ 01
f10 0.00E+ 00 0.00E+ 00
f11 4.15E+ 01 5.17E+ 01
f12 1.10E+ 01 2.26E+ 01
f13 2.91E+ 02 1.95E+ 02
f14 1.21E+ 02 1.96 E+ 01
f15 3.68E+ 01 3.19E+ 01
f16 1.25E+ 02 9.41E+ 01
f17 2.51E+ 02 1.22E+ 02
f18 3.69E+ 01 8.53E+ 01
f19 2.01E+ 01 2.23E+ 01
f20 2.14E+ 01 1.72 E+ 01
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optimum. On the f3 function, BLPSO, SLPSO, and MPNLPSO
can all converge to the actual optimal value, but compared to the
other two algorithms, MPNLPSO is more stable. On the f4
function, BLPSO, SLPSO, and SFAPSO all present excellent
optimization capability, especially, SFAPSO can converge to the
actual optimal value and is relatively stable, and BLPSO and
SLPSO show high accuracy, almost reaching the actual optimal
value. On the contrary, as for f4 function, the performance of
MPNLPSO is worse than BLPSO, SLPSO, SWPSO-I, and
SFAPSO. As for the functions f5–f10, MPNLPSO has shown
excellent optimization ability, converging to the actual optimum
on both minimum and average value with good robustness.
Among the f5–f10 functions, SLPSO can only converge to the
actual optimal value on two functions. SWPSO-I and SFAPSO
can converge to the actual optimal value on the f5 and f10
functions, but the stability of SWPSO-I on the f5 function is not
as good as that of SFAPSOandMPNLPSO. Similar to SWPSO-I,
ACPSO andRTPSO can converge to the actual optimal value on
the f5 function, but the stability is not good enough.

It can be seen from the results of multimodal function in
Table 5 that on the f11 function, the optimization effect of all
algorithms is not good, and MPNLPSO is relatively better
than all other algorithms. On the f13 function, SFAPSO can
converge to the actual optimal value in all the 30 runs, but it
can be seen from the average values that the stability is
ordinary. .e average values of ACPSO on the f13 function
are slightly better than the other six algorithms, indicating
that, to some extent, it has certain advantages in this
function. It can be seen from the f14 function that, except for
MPNLPSO, which exhibits excellent optimization capabil-
ities, other algorithms all fall into local optima. Regarding
f15 function, MPNLPSO is better than the other six algo-
rithms in both the minimum and average values, although it
fails to find the actual optimal value, it has a certain degree of
competitiveness compared to other algorithms. Concluded
from the results of functions f16–f20, MPNLPSO can
converge to the actual optimal value, and it shows quite
competitive stability. Especially on the f20 function, when

Table 4: Effectiveness of the strategy.

Comb. 1 Comb. 2 Comb. 3 Comb. 4 Comb. 5

f1 Mean 1.22E+ 01 4.02 E+ 01 3.07E+ 00 5.40E− 01 2.29E− 30
Std. 7.26E+ 00 3.06 E+ 01 2.90E+ 00 5.11E− 01 1.16E− 30

f2 Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00
Std. 0.00E+ 00 6.78 E− 16 0.00E+ 00 0.00E+ 00 0.00E+ 00

f3 Mean 1.13E+ 00 2.89E+ 00 9.77E− 01 6.97E− 01 0.00 E+ 00
Std. 9.41E− 02 2.18E+ 00 1.10E− 01 1.53E− 01 0.00 E+ 00

f4 Mean 7.03E− 07 5.28 E− 05 1.38E− 08 8.83E− 13 3.08E− 33
Std. 1.24E− 06 1.28 E− 04 1.62E− 08 3.07E− 12 0.00 E+ 00

f5 Mean 7.61E+ 01 2.91E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Std. 3.36E+ 01 2.39E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f6 Mean 1.21E+ 02 2.99E+ 02 7.36E+ 01 2.55E+ 01 0.00E+ 00
Std. 3.94E+ 01 1.57E+ 02 1.51E+ 01 8.63E+ 00 0.00E+ 00

f7 Mean 1.55E+ 01 3.45 E+ 01 1.06E+ 01 3.39E+ 00 0.00E+ 00
Std. 3.11E+ 00 3.09E+ 00 2.60E+ 00 9.15E− 01 0.00 E+ 00

f8 Mean 3.69E+ 02 2.52E+ 32 2.46E+ 02 3.87E+ 01 0.00E+ 00
Std. 9.74E+ 01 9.81E+ 32 6.61E+ 01 1.17E+ 01 0.00E+ 00

f9 Mean 1.16E+ 02 5.07E+ 05 1.29E+ 00 2.68E− 04 0.00 E+ 00
Std. 2.43E+ 02 4.76E+ 05 4.14E+ 00 1.04E− 03 0.00E+ 00

f10 Mean 1.86E+ 01 1.81E+ 02 3.64E− 01 2.52E− 01 0.00E+ 00
Std. 1.85E+ 01 1.22E+ 02 4.47E− 01 9.90E− 01 0.00E+ 00

f11 Mean 8.42E+ 00 1.76 E+ 01 5.97E+ 00 3.29E+ 00 8.88E− 16
Std. 1.24E+ 00 5.89E+ 00 1.23E+ 00 6.54E− 01 0.00E+ 00

f12 Mean 6.31E+ 00 7.74E+ 00 3.18E+ 00 3.94E− 01 0.00 E+ 00
Std. 2.45E+ 00 1.03 E+ 01 1.49E+ 00 2.06E− 01 0.00E+ 00

f13 Mean 4.85E− 01 4.12 E− 01 2.94E− 01 3.05E− 02 9.42 E− 01
Std. 1.13 E− 01 1.68E− 01 9.14 E− 02 1.11E− 02 1.22 E− 01

f14 Mean 8.12 E− 01 7.51E+ 00 4.98E− 01 4.51E− 01 0.00E+ 00
Std. 2.80E− 01 1.77E+ 00 2.89E− 01 1.78E− 01 0.00E+ 00

f15 Mean 1.89E− 01 1.37 E+ 01 5.56E− 02 3.74E− 03 3.53E− 04
Std. 9.82E− 02 1.69 E+ 01 4.67E− 02 2.36E− 03 3.96E− 04

f16 Mean 6.83E+ 01 2.79E+ 02 5.17 E+ 01 2.83E+ 01 0.00 E+ 00
Std. 1.53E+ 01 2.22 E+ 01 1.22E+ 01 8.10 E+ 00 0.00 E+ 00

f17 Mean 3.38E+ 04 2.40E+ 07 6.67E+ 03 6.77E+ 02 2.90E+ 01
Std. 7.75E− 01 4.98E+ 00 5.64E− 01 3.04E− 01 0.00 E+ 00

f18 Mean 3.10E+ 00 5.31E+ 08 1.01E− 01 3.63E− 06 0.00 E+ 00
Std. 7.61E+ 00 2.05E+ 09 1.70E− 01 6.42E− 06 0.00 E+ 00

f19 Mean 2.48E− 10 6.23 E− 09 9.46E− 11 1.28E− 11 0.00 E+ 00
Std. 4.10E− 10 1.35 E− 08 1.22E− 10 1.02E− 11 0.00 E+ 00

f20 Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 0.00 E+ 00
Std. 4.46E− 13 3.06 E− 09 1.75E− 13 1.45E− 13 0.00 E+ 00
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Table 5: Results of comparison algorithms on benchmark functions (30 D).

BLPSO CLPSO SLPSO ACPSO SWPSO-I SFAPSO RTPSO SWNWPSO

f1
Min 1.53E− 152 5.44E+ 01 3.13E− 145 3.37E− 06 4.19E− 05 0.00E+ 00 7.70E− 01 0.00E+ 00
Mean 1.86E− 132 1.18E+ 02 1.21E− 141 8.43E− 06 1.68E− 01 0.00E+ 00 3.81E+ 01 2.29E− 30
Std. 1.02E− 131 4.70E+ 01 6.42E− 141 4.46E− 06 5.30E− 01 0.00E+ 00 5.15E+ 01 1.16 E− 30

f2
Min 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 1.00E+ 00
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 1.00E+ 00
Std. 7.93E− 11 1.64E− 05 6.78E− 16 0.00E+ 00 6.78E− 16 6.78E− 16 2.03E− 06 0.00E+ 00

f3
Min 0.00E+ 00 3.05E+ 00 0.00E+ 00 3.59E− 06 5.77E− 06 8.51E− 07 6.86E− 02 0.00E+ 00
Mean 2.71 E− 03 4.65E+ 00 4.93E− 04 4.42E− 02 5.28E− 03 9.37E− 03 5.11E− 01 0.00E+ 00
Std. 4.81 E− 03 5.79E− 01 1.88E− 03 3.46E− 02 6.67E− 03 1.23E− 02 3.85E− 01 0.00E+ 00

f4
Min 5.32E− 251 6.06E− 04 0.00E+ 00 7.52E− 33 7.96E− 39 0.00E+ 00 6.66E− 16 3.08E− 33
Mean 4.22E− 222 3.05E− 03 1.22E− 314 3.49E− 26 2.28E− 14 0.00E+ 00 2.06E− 06 3.08E− 33
Std. 0.00E+ 00 2.06E− 03 0.00E+ 00 1.17E− 25 1.00E− 13 0.00E+ 00 7.94E− 06 0.00E+ 00

f5
Min 1.78E− 07 6.41E− 01 9.37E− 09 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Mean 1.41 E− 06 1.88E+ 00 7.82E− 07 1.91E− 14 6.26E− 07 0.00E+ 00 6.29E− 16 0.00E+ 00
Std. 1.20E− 06 6.50E− 01 6.14E− 07 3.04E− 14 1.63E− 06 0.00E+ 00 3.45E− 15 0.00E+ 00

f6
Min 1.03E− 93 4.21E+ 02 5.32E− 73 6.37E− 02 3.36E− 02 7.05E− 02 1.09E+ 00 0.00E+ 00
Mean 1.03E− 82 5.07E+ 02 9.42E− 72 1.16E− 01 2.12E− 01 1.79E− 01 3.47E+ 01 0.00E+ 00
Std. 4.12 E− 82 4.03E+ 01 9.72E− 72 2.93E− 02 1.32E− 01 6.69E− 02 4.28E+ 01 0.00E+ 00

f7
Min 5.18 E− 03 3.89E+ 01 3.53E− 39 1.61E− 01 1.63E− 02 3.55E− 02 2.71 E− 01 0.00E+ 00
Mean 5.24E− 02 4.70E+ 01 2.33E− 38 2.57E− 01 4.04E− 02 1.18E− 01 3.22E+ 00 0.00E+ 00
Std. 3.93E− 02 3.39E+ 00 2.60E− 38 5.93E− 02 1.67E− 02 6.25E− 02 3.73E+ 00 0.00E+ 00

f8
Min 1.28E− 88 1.47E+ 21 1.30E− 71 6.84E− 02 3.86E− 02 3.44E− 02 1.38E+ 00 0.00E+ 00
Mean 1.13 E− 78 4.14E+ 26 1.38E− 70 1.02E− 01 5.67E− 01 9.53 E+ 00 1.83E+ 32 0.00E+ 00
Std. 3.20E− 78 1.47E+ 27 1.57E− 70 2.75E− 02 1.55E+ 00 5.06E+ 01 8.19E+ 32 0.00E+ 00

f9
Min 6.32E− 232 2.51E+ 06 0.00E+ 00 1.53E− 23 1.37E− 21 5.19E− 21 1.71 E− 07 0.00E+ 00
Mean 2.14 E− 203 1.17E+ 07 0.00E+ 00 9.90E− 20 7.60E− 14 5.14E− 15 1.48E+ 01 0.00E+ 00
Std. 0.00E+ 00 7.36E+ 06 0.00E+ 00 2.38E− 19 4.14E− 13 1.93E− 14 5.25E+ 01 0.00E+ 00

f10
Min 1.06E− 57 3.03E+ 02 0.00E+ 00 2.34E− 06 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Mean 7.33E− 34 3.63E+ 02 0.00E+ 00 1.75E− 05 0.00E+ 00 0.00E+ 00 9.24E+ 01 0.00E+ 00
Std. 4.01 E− 33 3.34E+ 01 0.00E+ 00 7.47E− 06 0.00E+ 00 0.00E+ 00 1.38E+ 02 0.00E+ 00

f11
Min 2.66E− 15 1.61E+ 01 2.66E− 15 1.05E− 02 8.33E− 03 6.35E− 04 2.05E− 01 8.88E− 16
Mean 6.69E− 15 1.74E+ 01 5.74E− 15 1.70E− 02 8.09E− 02 1.11E+ 00 4.76E+ 00 8.88E− 16
Std. 6.10 E− 15 5.44E− 01 1.23E− 15 4.25E− 03 3.21E− 01 1.03 E+ 00 3.11E+ 00 0.00E+ 00

f12
Min 2.60E− 245 2.49E+ 01 1.37E− 137 4.96E− 03 3.60E− 03 5.73E− 03 3.29E− 01 0.00E+ 00
Mean 8.12 E− 14 2.97E+ 01 7.40E− 18 7.27E− 03 8.99E− 03 8.46E− 02 1.03E+ 01 0.00E+ 00
Std. 4.23E− 13 2.58E+ 00 4.05E− 17 1.74E− 03 3.64E− 03 7.62E− 02 1.06E+ 01 0.00E+ 00

f13
Min 1.12 E− 03 3.81E− 01 2.43E− 02 7.88E− 04 4.84E− 03 0.00E+ 00 4.01 E− 01 7.11E− 01
Mean 3.76E− 03 5.60E− 01 4.05E− 02 1.56E− 03 2.17E− 02 2.12E− 02 6.18E− 01 9.42E− 01
Std. 1.26E− 03 1.04E− 01 9.24E− 03 3.94E− 04 1.07E− 02 1.68E− 02 8.27E− 02 1.22E− 01

f14
Min 1.00E− 01 3.58E+ 00 1.00E− 01 1.19E− 01 1.00E− 01 1.00E− 01 3.39E− 01 0.00E+ 00
Mean 1.02E− 01 5.43E+ 00 1.00E− 01 1.39E− 01 1.01E− 01 1.00E− 01 6.18E+ 00 0.00E+ 00
Std. 5.42E− 03 7.15E− 01 1.13E− 16 1.16E− 02 1.31 E− 03 7.51E− 04 2.41E+ 00 0.00E+ 00

f15
Min 9.82E− 04 1.59E+ 00 9.31E− 03 7.30E− 02 2.01 E− 03 8.68E− 05 1.87E− 02 6.22E− 06
Mean 1.99E− 03 6.66E+ 00 1.36E− 02 4.83E− 01 6.16E− 03 1.86E− 03 3.07E− 01 3.53E− 04
Std. 9.53E− 04 2.10E+ 00 2.02E− 03 3.99E− 01 2.55E− 03 1.10E− 03 4.49E− 01 3.96E− 04

f16
Min 2.98E+ 00 2.05E+ 02 6.96E+ 00 1.19E− 01 9.98E+ 00 1.50E+ 01 1.88E+ 01 0.00E+ 00
Mean 8.89E+ 00 2.36E+ 02 1.56 E+ 01 5.21E− 01 1.60E+ 01 2.49E+ 01 1.63E+ 02 0.00E+ 00
Std. 3.32E+ 00 2.02E+ 01 4.82E+ 00 3.42E− 01 3.59E+ 00 5.79 E+ 00 8.07E+ 01 0.00E+ 00

f17
Min 2.00E− 01 1.12E+ 01 3.00E− 01 4.00E− 01 2.00E− 01 3.00E− 01 2.00E+ 00 0.00E+ 00
Mean 2.03E− 01 1.29E+ 01 3.07E− 01 5.00E− 01 2.03E− 01 4.40E− 01 4.65E+ 00 0.00E+ 00
Std. 1.83E− 02 8.13E− 01 2.54E− 02 8.30E− 02 1.83E− 02 8.94E− 02 2.18E+ 00 0.00E+ 00

f18
Min 3.74E− 30 1.37E+ 02 3.28E− 180 5.08E− 10 3.72E− 12 1.34E− 06 1.38E− 05 0.00E+ 00
Mean 1.95E− 13 4.55E+ 04 1.62E− 169 1.88E− 06 2.25E− 08 5.04E− 03 2.33E+ 00 0.00E+ 00
Std. 1.01 E− 12 5.71E+ 04 0.00E+ 00 5.41E− 06 4.51 E− 08 1.88E− 02 9.04E+ 00 0.00E+ 00
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Table 5: Continued.

BLPSO CLPSO SLPSO ACPSO SWPSO-I SFAPSO RTPSO SWNWPSO

f19
Min 3.51 E− 12 3.93E− 08 5.71E− 12 3.52E− 12 3.51 E− 12 3.66E− 12 4.81 E− 11 0.00E+ 00
Mean 3.91 E− 12 4.02E− 07 8.15E− 12 3.61E− 12 3.56E− 12 5.49E− 12 8.70E− 07 0.00E+ 00
Std. 3.71 E− 13 4.42E− 07 1.36E− 12 8.27E− 14 7.83E− 14 3.25E− 12 3.54E− 06 0.00E+ 00

f20
Min 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 0.00E+ 00
Mean 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 0.00E+ 00
Std. 1.84E− 16 4.40E− 11 1.75E− 16 2.06E− 16 6.52E− 16 6.00E− 16 1.55E− 11 0.00E+ 00

Table 6: Results of comparison algorithms on benchmark functions (50 dimensions).

BLPSO CLPSO SLPSO ACPSO SWPSO-I SFAPSO RTPSO SWNWPSO

f1
Min 4.96E− 76 3.59 E+ 02 5.00E− 168 2.94E− 08 7.66E− 04 0.00E+ 00 9.60E+ 00 0.00 E+ 00
Mean 3.20E− 75 1.51E+ 03 8.04E− 166 2.03E− 07 4.89E− 01 0.00E+ 00 3.38E+ 02 2.90E− 30
Std. 3.18E− 75 1.42 E+ 03 0.00E+ 00 1.30E− 07 1.25E+ 00 0.00E+ 00 6.39E+ 02 2.41 E− 30

f2
Min 1.00 E+ 00 1.00 E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 1.00 E+ 00
Mean 1.00 E+ 00 1.00 E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 1.00 E+ 00
Std. 0.00 E+ 00 7.42E− 08 4.34E− 16 0.00 E+ 00 2.26E− 16 2.26E− 16 8.21 E− 10 0.00 E+ 00

f3
Min 0.00 E+ 00 7.77 E+ 00 0.00 E+ 00 3.98E− 08 1.21E− 04 9.07E− 06 9.38 E− 02 0.00 E+ 00
Mean 0.00 E+ 00 9.07 E+ 00 2.47E− 04 9.93E− 03 5.85E− 03 7.46E− 03 9.80E− 01 0.00 E+ 00
Std. 0.00 E+ 00 8.63E− 01 1.35E− 03 1.35E− 02 7.66E− 03 8.06E− 03 5.48E− 01 0.00 E+ 00

f4
Min 1.13E− 138 4.67E− 04 0.00 E+ 00 4.99E− 45 0.00 E+ 00 0.00E+ 00 8.35 E− 17 3.08E− 33
Mean 8.88E− 131 2.22E− 03 0.00 E+ 00 2.53E− 39 8.14E− 14 0.00E+ 00 2.25 E− 08 3.08E− 33
Std. 4.83E− 130 1.50E− 03 0.00 E+ 00 6.87E− 39 3.43E− 13 0.00E+ 00 8.96 E− 08 0.00 E+ 00

f5
Min 3.99E− 09 4.20 E+ 00 1.27E− 08 0.00 E+ 00 0.00 E+ 00 0.00E+ 00 0.00 E+ 00 0.00 E+ 00
Mean 1.01E− 06 5.05 E+ 00 1.16E− 06 0.00 E+ 00 1.39E− 06 0.00E+ 00 3.36 E− 02 0.00 E+ 00
Std. 1.24E− 06 4.40E− 01 1.08E− 06 0.00 E+ 00 3.26E− 06 0.00E+ 00 1.08E− 01 0.00 E+ 00

f6
Min 5.85E− 27 8.53 E+ 02 1.62E− 85 9.10E− 04 3.51E− 01 1.71E− 01 3.17E+ 00 0.00 E+ 00
Mean 1.14E− 26 9.97 E+ 02 5.22E− 84 3.76E− 03 8.22E− 01 9.52E− 01 6.39E+ 01 0.00 E+ 00
Std. 3.98E− 27 6.29 E+ 01 5.06E− 84 1.15E− 03 7.90E− 01 1.59 E+ 00 6.43E+ 01 0.00 E+ 00

f7
Min 6.86E− 03 4.76 E+ 01 1.04E− 30 2.16E− 01 9.00E− 02 5.44E− 01 6.88E− 01 0.00 E+ 00
Mean 1.90E− 02 5.41 E+ 01 2.45E− 06 4.15E− 01 1.77E− 01 2.12 E+ 00 3.71E+ 00 0.00 E+ 00
Std. 1.08E− 02 2.91E+ 00 1.34E− 05 8.41E− 02 5.35E− 02 1.00 E+ 00 1.98E+ 00 0.00 E+ 00

f8
Min 6.23E− 30 1.35 E+ 45 7.43E− 84 1.50E− 03 3.07E− 01 3.18E− 01 2.43E+ 02 0.00 E+ 00
Mean 5.52E− 29 2.63 E+ 51 1.54E− 82 3.45E− 03 1.59E+ 00 9.28E+ 01 4.10E+ 63 0.00 E+ 00
Std. 4.43E− 29 5.77 E+ 51 1.59E− 82 1.71E− 03 2.64E+ 00 1.54 E+ 02 2.25E+ 64 0.00 E+ 00

f9
Min 2.04E− 96 2.49 E+ 07 0.00 E+ 00 2.97E− 25 1.03E− 14 3.97E− 16 3.54 E− 04 0.00 E+ 00
Mean 1.53E− 90 9.24 E+ 07 0.00 E+ 00 2.15E− 19 2.22E− 10 1.68E− 12 3.69E+ 01 0.00 E+ 00
Std. 3.79E− 90 4.01E+ 07 0.00 E+ 00 5.76E− 19 5.66E− 10 3.82E− 12 1.24E+ 02 0.00 E+ 00

f10
Min 2.41E− 81 6.50 E+ 02 0.00 E+ 00 5.60E− 08 0.00 E+ 00 0.00E+ 00 0.00 E+ 00 0.00 E+ 00
Mean 2.51E− 10 7.66 E+ 02 0.00 E+ 00 3.57E− 07 0.00 E+ 00 0.00E+ 00 3.72E+ 02 0.00 E+ 00
Std. 3.89E− 10 5.71 E+ 01 0.00 E+ 00 2.52E− 07 0.00 E+ 00 0.00E+ 00 3.51E+ 02 0.00 E+ 00

f11
Min 2.66E− 15 1.76 E+ 01 2.66E− 15 6.90E− 04 3.64E− 02 3.11E− 02 2.11E+ 00 8.88E− 16
Mean 5.98E− 15 1.83 E+ 01 6.69E− 15 1.72E− 03 1.26E+ 00 2.19 E+ 00 4.75E+ 00 8.88E− 16
Std. 9.01E− 16 3.12E− 01 2.03E− 15 5.13E− 04 8.96E− 01 6.62E− 01 1.65E+ 00 0.00 E+ 00

f12
Min 3.50E− 03 4.92 E+ 01 2.11E− 133 8.19E− 04 1.51E− 02 7.09E− 02 1.51E+ 00 0.00 E+ 00
Mean 4.96E− 03 5.84 E+ 01 1.28E− 16 4.05E− 03 3.11E− 02 2.46E− 01 1.83E+ 01 0.00 E+ 00
Std. 5.94E− 04 4.84 E+ 00 2.01E− 16 2.05E− 03 1.46E− 02 1.24E− 01 1.60E+ 01 0.00 E+ 00

f13
Min 9.46E− 03 5.22E− 01 9.17E− 02 3.91 E− 03 4.14E− 02 2.13E− 02 5.46E− 01 8.00E− 01
Mean 1.19E− 02 6.44E− 01 1.22E− 01 6.01 E− 03 6.27E− 02 7.28E− 02 7.14E− 01 9.97E− 01
Std. 1.47E− 03 6.95E− 02 2.09E− 02 1.22 E− 03 1.14E− 02 2.45E− 02 7.31 E− 02 1.19E− 01

f14
Min 3.76E− 01 9.42 E+ 00 1.00E− 01 1.02E− 01 1.01E− 01 1.00E− 01 9.64E+ 00 0.00 E+ 00
Mean 5.12E− 01 1.18 E+ 01 1.00E− 01 1.77E− 01 1.40E− 01 1.03E− 01 1.50E+ 01 0.00 E+ 00
Std. 6.70E− 02 8.65E− 01 7.06E− 17 7.01E− 02 1.22E− 01 6.07E− 03 2.19E+ 00 0.00 E+ 00

f15
Min 4.64E− 03 2.30 E+ 01 2.08E− 02 2.12E− 01 7.04E− 03 5.77E− 05 1.54E− 01 1.26E− 06
Mean 7.28E− 03 3.31 E+ 01 3.32E− 02 6.27E− 01 2.17E− 02 9.77E− 04 5.84E− 01 1.67E− 04
Std. 1.50E− 03 5.93 E+ 00 4.35E− 03 2.90E− 01 1.11E− 02 7.33E− 04 5.14E− 01 1.92E− 04

f16
Min 1.57 E+ 01 4.08 E+ 02 1.79 E+ 01 3.29E− 01 1.31E+ 01 2.49E+ 01 9.27E+ 01 0.00 E+ 00
Mean 2.42 E+ 01 4.53 E+ 02 2.96 E+ 01 4.26E+ 00 3.07E+ 01 4.93E+ 01 2.73E+ 02 0.00 E+ 00
Std. 3.06 E+ 00 1.79 E+ 01 6.11E+ 00 2.21E+ 00 7.33E+ 00 1.27E+ 01 8.12E+ 01 0.00 E+ 00
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other seven algorithms all fall into the local optimum,
MPNLPSO can effectively jump out of the local optima and
achieve the goal of finding the best.

From the results of unimodal function in Table 6, it can
be obtained that MPNLPSO cannot converge to the actual
optimal value on the f2 and f4 functions, but succeeds on
the remaining eight functions. However, the average value
of the f1 function indicates that MPNLPSO’s optimizing
ability on the f1 function is not stable enough. On the f2
function, all algorithms fall into local optima. On the f3
function, BLPSO and SLPSO present the same excellent
optimization capability as MPNLPSO, but relatively,
SLPSO is less stable than the other two comparison al-
gorithms. In particular, on the f4 function, SLPSO,
SWPSO-I, and SFAPSO can all converge to the actual
optimal value, and the optimization ability is stronger than
MPNLPSO. ACPSO, RTPSO, SWPSO-I, and SFAPSO all
have excellent optimizing capabilities on the f5 function,
but the stability of SWPSO-I is slightly worse. SLPSO can
reach the actual optimal value on the f9 and f10 functions.
SWPSO-I, RTPSO, and SFAPSO also show certain com-
petitiveness on the f10 function.

From the results of multimodal function in Table 6, it
can be seen that optimization capabilities of all algo-
rithms are ordinary on the f11 function, while MPNLPSO
can reach the actual optimal value on the f12 function
with a certain degree of stability. On the f13 function,
BLPSO’s optimization ability is slightly stronger than
other comparison algorithms, but it still cannot converge
to the actual optimal value. What interests us is that
MPNLPSO presents better robustness in f14 and f16–f20,
and both the accuracy and stability of the solution are
stronger than other algorithms. On the contrary, other
comparison algorithms do not converge to the actual
optimal value on the f16–f20 functions. Although SLPSO
does not find the actual optimal value on the f18 function,
its accuracy is high and it has a certain degree of stability.
.e other seven algorithms still fail to jump out of the
local optimum on the f20 function, while MPNLPSO can
easily jump out of the local optimum and reach the actual
optimal value.

Combining Tables 5 and 6, we can conclude that
MPNLPSO has presented certain competitiveness in solving

both low-dimensional and high-dimensional complex op-
timization functions. Other comparison algorithms also
have certain optimization capabilities, but regardless of
overall optimization effect or stability, MPNLPSO is
stronger than them.

In addition, this study uses two nonparametric tests with
a significance level of 0.05, namely Wilcoxon rank sum test
and Friedman test. For Wilcoxon rank sum test, “+” “−” “≈”
in Tables 7 and 8 respectively indicate that the solution
accuracy and stability of MPNLPSO are better than, worse
than, and almost equal to the comparison algorithms. Ta-
bles 9 and 10 clearly show the ranking obtained by Friedman
test.

As can be seen from Table 7, MPNLPSO has higher
solution accuracy than BLPSO on fifteen functions and
better performance than CLPSO on nineteen functions.
SLPSO algorithm is excellent. .e performance of four
functions is equivalent to that of MPNLPSO, and three
functions are better than MPNLPSO, but the solution ac-
curacy of thirteen functions is inferior to MPNLPSO.
SFAPSO has the same solving ability of three functions as
MPNLPSO, and the performance of two functions is better
than MPNLPSO. In Tables 8 and 10, the result of the
Friedman test of MPNLPSO is 1.65. In Table 8, SLPSO ranks
second, which is 2.75. BLPSO ranks third, which is 2.85. In
Table 10, both BLPSO and SLPSO rank second. To sum up,
the experimental analysis and comparison show that the
proposed algorithm has strong competitiveness in both
solution accuracy and convergence speed.

4.5. Convergence Analysis of the Comparison Algorithms.
.is section analyzes the convergence of MPNLPSO and
seven other comparison algorithms. Figures 5 and 6 show
the convergence curves of 30-dimensional unimodal and
multimodal functions, and Figures 7 and 8 show the
convergence curves of 50-dimensional unimodal and
multimodal functions. It can be seen from Figure 5 that
MPNLPSO can quickly jump out of the local optimum
after falling into the local optimum in f1 function, but it
falls into the local optimum in the later stage, and the final
optimization effect is inferior to SLPSO. .e f4 function
can be solved quickly to a certain accuracy in the early

Table 6: Continued.

BLPSO CLPSO SLPSO ACPSO SWPSO-I SFAPSO RTPSO SWNWPSO

f17
Min 2.00E− 01 1.59 E+ 01 5.01E− 01 6.00E− 01 2.00E− 01 5.00E− 01 2.30E+ 00 0.00 E+ 00
Mean 2.00E− 01 1.88 E+ 01 6.00E− 01 8.03E− 01 2.83E− 01 9.73E− 01 6.71E+ 00 0.00 E+ 00
Std. 3.07E− 08 1.18E+ 00 5.22E− 02 1.10E− 01 5.92E− 02 2.35E− 01 2.45E+ 00 0.00 E+ 00

f18
Min 4.40E− 52 7.52 E+ 08 2.94E− 219 3.16E− 09 4.10E− 11 1.50E− 05 4.62 E− 04 0.00 E+ 00
Mean 1.36E− 47 3.93 E+ 11 1.36E− 207 5.77E− 05 6.64E− 08 2.74E− 01 3.18E− 01 0.00 E+ 00
Std. 3.55E− 47 5.41E+ 11 0.00 E+ 00 3.03E− 04 1.54E− 07 9.65E− 01 1.47E+ 00 0.00 E+ 00

f19
Min 1.65E− 20 4.80E− 12 2.72E− 20 1.23E− 20 1.21E− 20 1.24E− 20 8.42 E− 15 0.00 E+ 00
Mean 1.83E− 20 7.25E− 11 3.34E− 20 1.86E− 20 1.29E− 20 2.06E− 20 2.44 E− 08 0.00 E+ 00
Std. 1.38E− 21 7.97E− 11 3.46E− 21 4.09E− 21 8.62E− 22 3.07E− 20 7.49 E− 08 0.00 E+ 00

f20
Min 1.00 E+ 00 1.00 E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 0.00 E+ 00
Mean 1.00 E+ 00 1.00 E+ 00 1.00E+ 00 1.00E+ 00 1.00E+ 00 1.00 E+ 00 1.00E+ 00 0.00 E+ 00
Std. 0.00 E+ 00 7.14E− 17 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00 E+ 00 0.00E+ 00 0.00 E+ 00
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stage, but SLPSO can achieve better accuracy in the later
stage. In addition, MPNLPSO can quickly converge to the
actual optimal value. It is precise because MPNLPSO can
generally search the actual optimal value within the first
10 iterations, so the continuation of the convergence
curve may not be clearly seen in the figure. Similarly, it can
be seen from the multimodal function in Figure 6 that
MPNLPSO has a very poor convergence effect on f13
function and shows good convergence ability on other
multimodal functions. .is shows that each complex
optimization problem has different characteristics, and an
algorithm cannot achieve very high solution accuracy and
convergence speed for all complex functions. As an old
saying goes, there is no free lunch in the world, and the

algorithm proposed in this study cannot solve all complex
optimization functions perfectly. As can be seen in Fig-
ures 7 and 8, MPNLPSO has no reduction in the con-
vergence ability in 50 dimensions, and also has high
solution accuracy and convergence speed.

.e reasons why MPNLPSO has good robustness are
summarized in the following aspects. Firstly, this algo-
rithm divides the particles into two populations according
to their fitness value for the purpose of cooperation, and a
dynamic opposition-based learning strategy is proposed
to activate the particles trapped in search stagnation in the
shoddy population. Secondly, according to the different
characteristics of the particles, corresponding learning
strategies are adopted to enhance the abilities of different
particles, which will contribute to the searching process.
.irdly, the small-world network topology is used to build
a neighborhood for particles. By learning from the
neighborhood optimal particles and getting rid of the
situation of learning only from the global optimal particle,
the risk of falling into local optimization can be reduced to
a certain extent. Finally, in view of the fact that the
historical optimal position of particles and the neigh-
borhood optimal position of particles also have the
possibility of falling into local optimization, this study
takes advantages of Lévy flight to randomly disturb them
to increase the diversity of these two particles, so that the

Table 7: Rank sum test (30 D).

MPNLPSO v.s. + − ≈
BLPSO 15 3 2
CLPSO 19 1 0
SLPSO 13 3 4
ACPSO 18 1 1
SFAPSO 15 2 3
SWPSO-I 17 1 2
RTPSO 18 1 1

Table 8: Rank sum test (50 D).

MPNLPSO v.s. + − ≈
BLPSO 15 3 2
CLPSO 19 1 0
SLPSO 13 3 4
ACPSO 18 1 1
SFAPSO 15 2 3
SWPSO-I 17 1 2
RTPSO 18 1 1

Table 9: Friedman test (30 D).

Algorithm Rank
BLPSO 2.85
CLPSO 6.75
SLPSO 2.75
ACPSO 3.85
SFAPSO 3.45
SWPSO-I 3.80
RTPSO 6.00
MPNLPSO 1.65

Table 10: Friedman test (50 D).

Algorithm Rank
BLPSO 2.60
CLPSO 6.65
SLPSO 2.60
ACPSO 3.55
SFAPSO 3.80
SWPSO-I 3.75
RTPSO 6.10
MPNLPSO 1.65

14 Scientific Programming



particle swarm can maintain good diversity from the
beginning to the end of the search. To sum up, MPNLPSO
has taken corresponding measures to strengthen both

global exploration and local exploitation, effectively im-
proving the solution accuracy of particle swarm
optimization.
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Figure 5: Convergence curve of unimodal function (30 D).
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Figure 6: Convergence curve of multimodal function (30 D).
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Figure 7: Convergence curve of unimodal function (50 D).
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5. Conclusion

In this study, a multipopulation particle swarm optimization
algorithm with neighborhood learning is proposed to im-
prove the solution accuracy and convergence speed. As we
all know, the reason why standard particle swarm optimi-
zation algorithm is easy to fall into local optimization is that
all particles only learn from the global optimal particles. In

order to get rid of this situation, this study proposes a small-
world network neighborhood learning strategy, which
makes the particles learn from the neighborhood optimal
particles by constructing a neighborhood for each particle.
At the same time, in view of the quality of the position of
particles in the search process, this study adopts different
small-world network neighborhood topologies for different
populations, for the purpose of cooperation. For the shoddy
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Figure 8: Convergence curve of multimodal function (50 D).
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population, a dynamic opposition-based learning strategy is
proposed to activate the particles trapped in search stag-
nation. In addition, in order to maintain a certain diversity
of the population from beginning to end, Lévy flight is used
to randomly perturb the historically optimal and neigh-
borhood optimal particles. In this study, twenty benchmark
functions are tested, including ten unimodal test functions
and ten multimodal test functions. .e MPNLPSO algo-
rithm can search the actual optimal value on most test
functions with good stability. In addition, through rank sum
test and Friedman test, MPNLPSO ranks first on the whole.
At the same time, the convergence ability of MPNLPSO is
proved by the convergence curve. Experimental results show
that MPNLPSO effectively improves the solution accuracy
and the convergence speed of the algorithm with certain
robustness.

Although the algorithm proposed in this study has a
certain improvement effect, it still has challenges in solving
more complex problems. In the next step, we will focus on
the analysis of other network topology characteristics and
effectively utilize the unique characteristics of different
network topologies, so that the algorithm can effectively
solve more complex optimization problems. [40].
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