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An arti­cial intelligence (AI) design decision model is constructed to improve the e�ciency of design decision evaluation and
avoid the in�uence of the decision preference on product design and development. Using the concept of AI, the proposedmodel is
based on a data set of product modeling design schemes, and the data set is marked with product modeling semantics. �e deep
learning residual network (ResNet) algorithm is used to train the data set to improve the accuracy of design decisions, transform
the general design decision problem into the semantic recognition problem of design scheme images, and eliminate the design
decision preference to the greatest extent.�e validity and the feasibility of the proposed AI design decision-makingmethod based
on the ResNet algorithm are veri­ed via an example of motorcycle modeling design decision-making.

1. Introduction

Modern product design integrates multiple elements such as
technology, humanities, art, culture, and commerce. Design
is characterized by apparent multi-disciplinary and multi-
­eld intersection [1]. Product innovation design includes
three functional units, namely, the problem, solution, and
decision [2], and Analysis–Synthesis–Evaluation (ASE) is
one of the typical design processes [3]. Design evaluation
and decision-making are important components of modern
product innovation design [4]. In part, design decisions will
be directly related to the success or failure of product design
and development.

�e decision-making process ofmodern product design is
usually completed by the cooperation of engineers, sales sta�,
consumers, designers, and enterprise managers. Di�erences
in the cognitive backgrounds, subjective preferences, and
experiences of decision-making groups cause the decision-
making process to be complicated, vague, and full of uncer-
tainty. �erefore, e�cient and accurate design decisions that
do not involve the personal preferences of the decision-maker
are critical to successful product development [5].

Design decision-making is based on the design evalu-
ation. �ere are currently three types of design evaluation,
namely, experimental, mathematical, and online evaluation.
Experimental evaluation primarily analyzes physical and
psychological data, such as the visual perception of partic-
ipants, the way to use the product, and the functional ex-
perience of the product, and then explores the product
attributes. Common experimental evaluation methods in-
clude eye movement experiments [6], EEG experiments [7],
and comprehensive experiments including these two
methods [8]. Mathematical evaluation mainly involves the
setting of evaluation indicators, the construction of evalu-
ation models for quantitative calculation, and the scoring
and evaluation of the design schemes. Common mathe-
matical evaluation methods include the analytic hierarchy
process [9], the rough set evaluation method [10], neural
networks [11], and deep learning models [12]. In online
evaluation, data mining technology is mainly used to ac-
quire, cluster, analyze, and mine online user data, and is an
inevitable trend in the development of network informati-
zation. Related research methods include the use of big data
[13], natural language processing [14], and text mining [15].
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Deep learning is a new ­eld of machine learning research,
the core of which is a neural network that simulates the
information analysis and processing of the human brain. In
recent years, it has achieved great success in the ­elds of image
and language recognition, autonomous driving, and medical
care [16]. Based on the basic concepts of arti­cial intelligence
(AI), in this study, a product group data set with product
design semantics is constructed, and the data set is arti­cially
labeled. �e data set is continuously trained by deep learning
algorithms, and the product design decisions are realized by
AI methods. �is improves the design decision accuracy and
e�ciency, and eliminates the decision bias.

2. Related Theories

�e product design process begins with the input of the
user’s needs. Designers and engineers comprehensively
deduce relevant design resources, design strategies, design
constraints, and design methods to promote the execution of
the design behaviors and the solidi­cation of the design
results. �e ­nal output is user satisfaction. When designing
products, designers must analyze the user’s needs based on
their own knowledge reserves and experience, propose so-
lutions and conduct comprehensive evaluations, and realize
the conversion between design processes via design deci-
sions. Design decisions are constantly iterated to ­nalize the
design for the market.

2.1. Product Design Semantics and Design Decisions. Each
product has or conveys di�erent product semantics, via
which the image characteristics of products in di�erent
usage scenarios are studied. Semantic communication be-
tween people and products is achieved through continuous
iteration in the design process [17]. Via a communication
method built between people and products, the product
connotation, form, structure, color, and other elements are
transmitted to users so that they can form a certain cognitive
image of the product. Generally, in the early stage of product
design, the design entrusting party or design developer will
propose speci­c development tasks according to the product
positioning, user needs, brand strategy, marketing strategy,
etc. �e semantic vocabulary of product design is a speci­c
description provided before new product design and de-
velopment. For example, the client will use a clear semantic
vocabulary of shape and color to semantically describe the
expectations of the new product, and the design team will
use this semantic vocabulary as an important design input to
guide the design process until a satisfactory design solution
is obtained.

During the product design process, the product design
plan will be analyzed, communicated, and evaluated many
times, and the ­nal design plan will be obtained via the
selection and design decisions of Party A and the design
expert team. �roughout this process, product design se-
mantics are an important basis for design decisions.
According to the product design process, product design
semantics are proposed at the beginning of product design
and development, and are communicated to designers via a

design semantic vocabulary. �e design team parses and
expresses the design semantic information based on their
design knowledge, experience, and tools. Design brain-
storming, conceptual design optimization, and detailed
design proposals are then used to interpret the scheme, and
the decision-making evaluation of the design scheme is
carried out via the semantic matching degree between the
design scheme and the design goal [18].

2.2. SemanticModel of ProductDesignDecisions. �eprocess
of product design is accompanied by solutions to di�erent
design problems. �e solution process includes the initial
state of the problem, the target state, and the solution strategy
[19], and roughly undergoes the stages of sketch conception,
conceptual design, schemedesign, detaileddesign, anddesign
re­nement. Constant revision and adjustment are required to
form a satisfactory solution for users. �is process is the co-
progression of design problems and design solutions with a
basis on design decisions [20], which links the problem space
and the solution space. Based on the principle of semantic
models, the interrelationships between the design problem
space, design decision space, and solution space were con-
structed (Figure1), aswerenine semantic connectionsused to
describe the product design decision problems, namely,
synthesis, re­nement, substitution, expansion, questioning,
support, opposition, prompt, and response.

(i) Problem space. �e problem space is used to re�ect
on the user needs. When user needs are not met, the
problem space questions the solution space and
design decisions.

(ii) Design decisions. �e design decision is the
screening of the solution of the design problem, and
the solution space is formed by supporting or op-
posing one or multiple solutions.

(iii) Solution space. A solution space is a collection of
solutions designed by designers for user needs. For
any problem in the design process, the solution space
must respond to it.�eelements in the solution space
can be further re­ned and synthesized to form a new
solution set.

Solution
Space

Problem
Space

Design
Decisions

question

response

quest
ion

synthesizing refiningsynthesizing refining
replacement development

supportopposition

Figure 1: �e semantic model of the problem space–design
decision–solution space.
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2.3. AI and Image Recognition. In the field of image rec-
ognition and processing, AI technology, including graphic
preprocessing, graphic segmentation, graphic feature ex-
traction, and judgment matching, has become relatively
mature. Machines can preprocess, analyze, and judge a
target image to identify various objects or targets.'e field of
deep learning mainly includes the use of convolutional
neural networks (CNNs) and generative adversarial net-
works (GANs). Neural network research originated from the
field of biology. In 1998, Fukushima [21] constructed a
neural cognitive machine composed of alternating simple
and complex cell layers, which was considered to be the first
engineering implementation of CNNs. A GAN is a gener-
ative model proposed by Kim et al. [22] in 2014. For neural
networks, with the increase in the number of network layers,
the training difficulty of learning algorithms such as CNNs
and deep neural networks (DNNs) increases, and ideal
model training results cannot be obtained. Using the re-
sidual learning framework, He et al. [23] proposed the re-
sidual neural network (ResNet) algorithm, which overcomes
the increase of the training difficulty of the network with the
deepening of the network, thereby allowing the number of
network layers to reach new heights.

In the product design stage, the analysis, communica-
tion, display, and evaluation of the design scheme are usually
carried out in the form of renderings. 'e images of design
renderings are direct carriers for conveying the information
of the design language. In the evaluation of design decisions,
images of design renderings can be processed by AI to obtain
algorithms implementing classification, understanding, and
semantic feature evaluation [24]. 'erefore, the image of the
rendering of the design scheme is used as the output, the
resulting image is preprocessed, semantic image segmen-
tation is performed on the key modeling areas according to
the designer’s requirements, and the semantic features are
extracted for judgment. Finally, according to the score of
algorithm reasoning and the pre-evaluation of the design
scheme, the purposes of the evaluation, optimization, and
decision-making of the design scheme set are achieved.

3. Method of Product Design Decision-Making
Based on AI

'e loss of traditional deep learning algorithms will increase
with the increase of the depth beyond a certain level. 'e
unique structure of the ResNet algorithm can accelerate the
training of deeper neural networks without losing speed.'e
detection and segmentation effects of the ResNet algorithm
are better than those of other algorithms, and its accuracy is
also greatly improved. In this study, the residual unit module
of the ResNet algorithm is used to study the deep learning
and semantic segmentation of the design scheme, and AI
design decision-making is realized via the machine learning
method.

3.1. Decision-Making Framework of AI Product Design Based
on a Deep Learning Algorithm. According to the general
product design process, the semantics of the target product

design are used as the input, and AI design decisions are
made based on the design scheme renderings of each round.
A deep residual network-based AI design decision-making
method is constructed, and the overall framework of which
is shown in Figure 2.

After the design semantics of the target product are
determined, a large amount of design proposal data of the
same type are collected. 'ese design proposals are pre-
processed and semantically labeled, and a basic design
proposal data set available to the machine is constructed.
According to the design scheme images in these data sets, the
modeling of key areas and semantic feature extraction are
performed, and the data are continuously trained through
the ResNet core algorithm. 'e deep residual network
consists of three fully connected layers and 10 convolutional
layers. After the first convolutional layer, the network is
divided into three residual modules, each of which is divided
into a main path and a shortcut. 'ree convolutional layers
are located on the main path to extract the deep features and
the features of design semantic annotation in the image
features of the design scheme. To facilitate the upward
propagation of residuals during training, the shortcut
contains a convolutional layer. At the end of the residual
module, the key features obtained from the main path and
the shortcut are restacked and integrated to classify the
previously obtained convolution features. 'e convolution
features obtained previously are classified via restacking
integration. During the intelligent decision-making of
product design, users can set target semantics, input the
design scheme images of the intermediate process into the
trained deep residual network, and evaluate different design
schemes via image semantic decoding.

3.2. Data Set Construction and Feature Extraction. In the
field of AI, data sets are used to train and test proposed
algorithms [25]. 'e goal of AI design decision-making is to
evaluate the design and modeling semantics of the corre-
sponding area via the semantic segmentation of the product
modeling area; thus, the general outline of the target area
must be given. As an example, a subject collected a large
number of side views of gas motorcycles in domestic and
foreign markets as the main image data, and a basic data set
was constructed, as shown in Figure 3. After the completion
of the basic data set, it is necessary to perform segmentation
and semantic annotation on the modeling area of the basic
image to further improve the evaluation efficiency and ac-
curacy. For the image evaluation of the design scheme in
combination with AI algorithms, it is necessary to segment
and extract the contour lines of the image modeling area,
and to combine the Kansei engineering method to extract
and label the main modeling semantic parts in the images.
Due to the huge data set, multi-user participation was
adopted, and professional designers performed artificial
semantic annotation on the feature areas of the data images.

3.3. AI Product Design DecisionModel. 'e advantage of the
ResNet algorithm is that it can quickly accelerate the training
process of the neural networks [26].'e original input of the
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entire deep network of ResNet is x, and the output is F(x),
which is obtained through a Conv-ReLU-Conv combination
layer. By adding the output and the original output, i.e.,
H(x) � F(x) + x, the identity activation function of the
original input result is superimposed on the convolution
output, the stacking layer is used to ­tH(x) − x, and the re-
superposition of x will help to obtain H(x) (Figure 4). To
ensure that the accuracy rate decreases after the network is
deepened, stochastic gradient descent can be used to
propagate the response, and chain derivation can be used to
obtain a faster convergence speed [27].

y � F x, wi( ) + x, (1)

where x is the input, y is the output, and F(x, wi) is the
residual mapping. Moreover, Wi is a linear convolution
operation, in which the dimensions of x and F must be
consistent. If they are inconsistent, linear mapping can be
used to match the dimensions, as follows.

y � F x,Wi( ) +Wsx∘. (2)

�e design plan image is input and scaled proportionally
according to its short side, normalization (resize) processing
is performed, and a cropped area with a size of 600× 480 is
then sampled from the image. After convolution operation
with a 4× 4 convolution kernel, the extracted image features
include the contour features of three main regions. In the AI
design decision model, the default step size of all max-
pooling layers is 2, and the default step size of the convo-
lution operation is 1. If the sizes of the output key features
are di�erent, it is usually ­lled with zeros; if they are the

same, the result will be used as the ­nal output [28].�e ­nal
data of the convolution layer are converted into a 13-layer
fully connected network, and the key features of the image
are superimposed and merged in the residual module. �e
previously obtained convolution features are classi­ed, and
the recognition results are output via the softmax classi­er.

4. Verification of theDecision-MakingModel of
AI Products

�e TensorFlow deep learning framework [29] was used to
implement the ResNet algorithm for AI design decisions
based on the Python programming language, and the gas
motorcycle design case was used as the basic data set to verify
the performance of the ResNet algorithm in design decisions.

4.1. Experimental Data. In the experiment, the side view of
motorcycles was used as the main image data. To ensure
su�cient experimental samples, the image data of domestic
and foreign motorcycles were obtained via a web crawler to
construct the basic data set.

Design schemel data

Build usable datasets

Feature
Extraction
Semantic
Features Design Decisions

ResNetModel

preprocessing labelling

Training Data

Input design
graphics

Set targeted
semantics

Semantic decoding
of design scheme

image

Output result

Test Data SectionData set Section

Figure 2: �e AI design decision-making framework.

Figure 3: A section of the design decision data set.
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Figure 4: �e algorithm �ow of a single residual module in the
ResNet algorithm.
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4.2.Data Preprocessing. Via web crawling, a large amount of
basic image data was obtained. 'e basic data set was
screened to eliminate the invalid samples. 'e basic pre-
processing process and methods were as follows.

Step 1. Images with a side view or approximate side view
were kept, and images taken from other perspectives were
deleted.

Step 2. 'e image modeling area was segmented. In the
styling design of gas motorcycles, the handles, wheels, and
lights of the motorcycle are basically standard parts, and no
additional design is required. 'erefore, in the process of
extracting the contour lines or boundary lines of the
products in the data set, the FCN (fully convolutional
network) open-source code of the UC Berkeley team was
used for graph segmentation and contour extraction. Fig-
ure 5 shows the key areas of motorcycle styling design. 'e
area marked No. 1 is the motorcycle oil tank, the area
marked No. 2 is the motorcycle seat, and the area marked
No. 3 is the motorcycle engine.'emodeling design of these
three parts forms the overall design semantics of the mo-
torcycle. Areas No. 1 and No. 2 area are two key design areas
in the motorcycle modeling design. 'e design of areas No.
1, No. 2, and No. 3 accounts for more than 85% of the
motorcycle styling design, so they are the most important for
people’s visual perception and influence.

Step 3. 'e semantic annotation of image modeling was
conducted. In current product design image research, sta-
tistical analysis and perceptual engineering methods are the
most often used. 'e product image mainly reflects the
product’s design features, color, layout, structure, and other
psychological perceptions of consumers. 'e usual product
image vocabulary is “male-female, solemn-frivolous, future-
past, solid-fragile, technology-conservative, rational-sen-
sual.” [30] Building on the current research progress of
product modeling design images, relevant research was
conducted on product modeling semantics. 'e research
objects were designers, consumers, and enterprise managers.
A total of 108 survey questionnaires were distributed, after
which another three pairs of image vocabulary were in-
cluded, namely, “introverted-publicized, complete-frag-
mented, and dynamic-stable.” 'ese nine image vocabulary
pairs correspond to the semantic annotation of modeling
design, as shown in Table 1.

'e modeling semantics and decision-making scores
were manually labeled by five design experts and obtained
after conducting confidence statistics, after which images of
3000 pieces of motorcycle modelingmetadata were randomly
selected as the training set. After data preprocessing, a total of
3843 motorcycle images were obtained.'emetadata of each
image included four modeling semantic channels and two
score channels, respectively, representing the modeling se-
mantics and overall decision score of the image.

4.3. Experimental Process. 'e experimental process of AI
design decision-making included the input layer, residual

module, batch regularization layer, pooling layer, and ac-
tivation function.

Step 1: Image metadata was used as a data set for the
input layer, and included the resulting preprocessed
images, semantic labels, and scoring data.
Step 2: 'e final data were converted via the convolu-
tional layer to the output of a 13-layer fully connected
network. 'e first convolutional layer was divided into
three main residual modules after the operation.
Step 3: On the main path, the deep features of the
design scheme image were extracted through three
convolution layers. 'e size of the first two layers was
the same as that of the convolution kernel of the
previous layer, and the size of the convolution kernel on
the shortcut was doubled after the third layer.
Step 4: 'e shortcut controlled the number of features
via a convolution layer, thus directly doubling the
convolution kernel and speeding up the upward
propagation of the residual during training. 'e main
path and shortcut of each residual module obtained the
key features of the design image. 'e numbers of
feature layers and feature dimensions of the main path
were kept consistent with those obtained by the
shortcut, and the two were superimposed and con-
verged at the end of the residual module.
Step 5: For the three fully connected layers, the pre-
viously obtained convolutional features were classified.
'e process continued to the next stage after adding
and fusing at the end of the module.

In the experimental process, to speed up the training
effect, the batch normalizationmethod proposed by Ioffe and
Szegedy [31] was adopted. 'us, the mean value of the fea-
tures after convolution extraction was 0, the variance was 1,
and each convolution layer and pooling layer was processed
by batch normalization.'e softmax classifierwas used in the
last layer to output the intelligent decision recognition results
[32]. A depiction of the motorcycle shape obtained by the
ResNet algorithm in the training phase is shown in Figure 6.

4.4. Experimental Results. To verify the validity and deci-
sion-making satisfaction of the proposed AI design decision-

Figure 5: 'e key labeling areas of motorcycle styling design.
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making model, two groups of modeling semantic input
vocabulary were set. �e ­rst group included the semantic
vocabulary of “future, stability, and dynamic,” and the
second group included the semantic vocabulary of “tech-
nology, sensibility, and integrity”; these vocabularies rep-
resent the semantic vocabulary of motorcycle product
styling design. Also, Party A and ­ve design experts jointly
participated in making design decisions about three mo-
torcycle design schemes. Based on Party A’s scoring results
of the design scheme, the full score was 10 points, and the
proposed ResNet AI design decision-making model and
design experts, respectively, scored the comprehensive
satisfaction of the design scheme. During the experiment,
the subject used the design decision accuracy curve as an
indicator to analyze the experimental results. �e design
decision accuracy refers to the degree of ­t between the
scores of the proposed ResNet AI design decision model or
the design expert and the score given by Party A. �e higher
the degree of ­t, the higher the e�ectiveness of the tested
model. In Figure 7, the abscissa of the design decision ac-
curacy curve indicates the number of iterations, and the
ordinate indicates the degree of ­t.

5. Discussion

Figure 7(a) presents the change curve of the decision ac-
curacy rate of Party A, the design experts, and the ResNet
design decision model after using the three modeling image
words of “future, stability, and dynamic” as the design se-
mantic labels and inputting the renderings of such design
schemes as images. With the increase in the number of
iterations, the design decision accuracy of the ResNet AI
design decision model gradually increased. When the
number of iterations was about 160, the decision accuracy
tended to be stable. �e design decision accuracies of the
three design schemes were, respectively, 0.83, 0.78, and 0.75,
and the design decision accuracies of the design experts for
the three schemes were, respectively, 0.78, 0.66, and 0.63.

Figure 7(b) shows the change curve of the decision-
making accuracy rate of Party A, the design experts, and the
ResNet design decision-making model after the three
modeling image words of “technology, sensibility, and in-
tegrity” were used as design semantic labels. When the
number of iterations was about 165, the accuracies of the
design schemes obtained by the ResNet AI design decision

Table 1: �e semantic annotation of data set modeling.

Numbering Semantic description
Modeling semantic description Realizability

(1–10)
Overall

evaluation (1–10)First part second part �ird part

1 Solid male restrained Sensual female Rational solemnity Rational and
stable 6 7

2 Technology
sensibility publicity

Sensual fragmented
sensual pieces

Rational tech rational
technology Solid 5 7

3 Steady restrained
female Male tech Future solemn Full dynamic 7 6

4 Robust complete
restrained Rational and stable Future complete Technology 8 5
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Figure 6: Semantic recognition at di�erent training stages.
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model were, respectively, 0.83, 0.78, and 0.77, while the
design decision accuracies of the design experts for the three
schemes were, respectively, 0.84, 0.76, and 0.71.

�us, the satisfaction of the ResNet AI design decision
was found to be higher than the average decision satisfaction
of the design experts for both schemes.

To further verify the e�ectiveness of the proposed ResNet
AI design decision-making model, a judgment was made
based on the original data set, and the traditional CNN [33]
and DNN [34] deep learning algorithms were, respectively,
compared (Table 2). �e average decision satisfaction and
the average recall rate of the ResNet AI design decision
model were found to be higher than those of the two other
algorithms. �e proposed ResNet AI design decision-
making model performed stably in two rounds of design
decision-making, and the design decision-making time was
greatly shortened as compared with that of manual decision-
making.

6. Conclusion

Building on the design scheme data set of product modeling
semantics, this work was based on the concept of AI in
combination with the characteristics of design decision-
making. �e data set was semantically annotated, and an AI
evaluation decision model was constructed with the deep
ResNet algorithm. �e design decision problem was
transformed into the semantic recognition problem of de-
sign scheme images, and the product design decision was
realized via the AI design decision method. Finally, the

e�ectiveness of the proposed method was veri­ed by a case
of motorcycle modeling design decision-making. �e
analysis of the experimental results revealed that the pro-
posed ResNet AI design decision-making model exhibited
higher decision-making satisfaction and decision-making
e�ciency than traditional manual design decision-making
and the CNN and DNN algorithms.

Future research will focus on the following aspects. (1)
Deep residual networks have good learning performance,
but in the ­eld of design decision-making, a smaller amount
of data will lead to less e�ective training e�ects. While the
crawler method was used to obtain graphic data in this
study, there was a large amount of irrelevant data, which
increased the data preprocessing and screening time. �e
acquisition and preprocessing process and methods of de-
sign data will be further studied in future research. (2) A
general model for product design decision-making will be
constructed based on a multi-level ResNet, the general
method of ResNet-based product design decision-making
will be investigated, and further experimental analysis will be
conducted for other types of product design.
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Figure 7: �e comparison of the decision satisfaction of the (a) ­rst and (b) second groups of modeling semantic vocabulary.

Table 2: �e comparison of design evaluation satisfaction.

Method Average satisfaction (%) Average recall (%)
CNN 54.3± 3.4 44
DNN 57.8± 2.6 61
ResNet 77.6± 5.3 65
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