
Research Article
Solving Capacitated Vehicle Routing Problem by an Improved
Genetic Algorithm with Fuzzy C-Means Clustering

Ji Zhu

Liupanshui Dahe Economic Development Zone Development & Construction Co., Ltd., Liupanshui 553000, Guizhou, China

Correspondence should be addressed to Ji Zhu; zhuji@dhkjgs.wecom.work

Received 25 November 2021; Revised 27 December 2021; Accepted 7 January 2022; Published 18 February 2022

Academic Editor: Ahmed Farouk

Copyright © 2022 Ji Zhu. +is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at solving the vehicle routing problem, an improved genetic algorithm based on fuzzy C-means clustering (FCM) is
proposed to solve the vehicle routing problem with capacity constraints. On the basis of genetic algorithm, the FCM algorithm is
used to decompose the large-scale vehicle routing optimization problem into small-scale subproblems, which can effectively
improve the efficiency of the algorithm. At the same time, a generation method of the initial solution to CVRP problem is
designed. +e improved algorithm has good robustness and can also reduce the possibility of falling into local optimization in the
search process. Finally, a simulation example is provided to verify the efficiency and superiority of the proposed algorithm.

1. Introduction

Capacitated vehicle routing problem (CVRP) [1], which is
well known and has high research value in the logistics field,
was proposed first time by Dantzig in 1956. Due to the exact
solution of the algorithm based on strict mathematical
description that cannot satisfy the performance require-
ment, in the past few decades, scholars from home and
abroad have carried out extensive and profound research for
this problem, and some heuristic algorithms were proposed
to solve CVRP problem [2–6]. In [7], the authors analyzed
and compared the performance of multiple heuristic algo-
rithms under the CVRP conditions, according to the genetic
algorithm characteristics of simple and high scalability,
which can search information based on the objective
function, can provide better solutions.

With the development of sensors and communication
technologies, rich results have been achieved. In [8], the
genetic algorithmwas applied for the research of VRP for the
first time in 1996. Since then, the genetic algorithm was used
widely in CVRP.+e optimizations of the traditional genetic
algorithm can be separated into two types. +e first one is
improving the specific problems in the genetic algorithm in
order to realize better performance. A double population
genetic algorithm was designed for population schemes [9].

In [10], with an aim to improve the quality of population, a
Jaccard coefficient that produces primary population was
proposed. In [11], the two-step coding scheme was used for
improvement was proposed by the coding scheme. In [12],
the genetic algorithm solution by binary coding was
designed for the coding proposal. In [13], a fixed-length real
encoding was provided to solve the problem that the tra-
ditional genetic algorithm convergence rate is slow. In [14],
an operator based on task redistribution was designed to
improve the genetic algorithm. In [13], a new strategy was
used to improve the selection strategy of the genetic algo-
rithm. According to the individual adapting value, they
mixed the individuations with the better adapting value and
worse adapting value. In [15], a policy that detects mutation
operation to improve the local optimization ability of the
algorithm was studied. In addition, in [15], a method that
uses a gene rearrangement operator for the chromosome
recombination was provided. In [16], the impact of the
location of the city on the path optimization was taken into
consideration. Undoubtedly, these improvements can get
better optimization.

+e second one is that introducing the other intelligent
optimization algorithms to mix into the traditional genetic
algorithms and get the hybrid genetic algorithms, which is
able to provide new ideas of genetic algorithms to solve
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CVRP problems. In [17], a hybrid optimization algorithm
based on the genetic algorithm and sparrow search algo-
rithm was proposed. Based on the particle swarm optimi-
zation, genetic algorithm, and nonlinear programming
theory, a hybrid optimization algorithm of particle swarm
and genetic was proposed [18]. In [19], a solution algorithm
based on genetic simulated annealing was designed, which
owns the strong global search capability of the genetic al-
gorithm, as well as the high rate of convergence of the
simulated annealing optimization. In [20], the hybrid firefly
genetic algorithm which combines the advantages from the
firefly algorithm and other mathematical optimization al-
gorithms was proposed, which effectively improved the
effectiveness of the algorithm.

Inspired by the above two methods, in this paper, an
improved genetic algorithm based on fuzzy C-means al-
gorithm (FCM) is used to solve CVRP problems. First, the
algorithm reduces the solution scale by FCM for generating
population problems randomly by the traditional genetic
algorithm. +en, a quantity of optimal initial solutions
forming the initial population by referring to the thought of
CW algorithm is constructed, which improves the efficiency
of the algorithm effectively. Finally, the experiment by using
benchmark examples is introduced, and the experiment
demonstrates that this algorithm can solve CVRP problems
with better precision and effectiveness.

2. Methodologies

2.1. Fuzzy Clustering. Clustering analysis is one of the
multivariate statistical analyses [21, 22]. According to certain
rules, it can divide the uncategorized samples into subsets
and group the similar samples together. K-means [23] and
K-medoid [24] are two common clustering methods. Hard
clustering divides every unidentified objective into certain
collections strictly, and the objectives of it have the either-or
characteristics. While the fuzzy clustering established the
uncertain description of collection from samples, it can
reflect the objective world objectively; therefore, it has be-
come the mainstream of clustering analysis.

In many fuzzy clustering algorithms, FCM is the most
widely used algorithm. It can get themembership of all of the
cluster centers by optimizing the objective function and get
the aim of classifying the data automatically by determining
the category of sample points. A membership function
belonging from each cluster to each sample is assigned and
sorted by the sample by comparing the value of membership.

+ere are three key parameters of fuzzy C-means clus-
tering: fixed number of clusters, the center of each mass
cluster, and each data point’s cluster which closest to the
corresponding center of mass.

Fuzzy C-means clustering can get the cluster center by
minimizing the objective functions.+e objective function is
essentially the sum of Euclidean distances of each point to
each cluster. +e process of clustering is the process of
minimizing the objective function. By iterative arithmetic,
the error value of the objective function can be decreased
step by step. When the objective function is convergent, we

can get the final result of the cluster. +e objective function
can be expressed as

Jm � 􏽘
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wherem is the weighting factor, N is the number of samples,
c is the number of cluster centers, vi is the jth cluster center,
which is the same as the sample’s characteristics of di-
mension, xi is the ith sample, and uij is the membership of
the sample xi to the cluster center cj.

+e traditional FCM algorithm needs to give the cluster
number of the data set in advance. If the cluster number is
not selected properly, it will lead to classification failure. +e
determination of cluster number belongs to the research
category of cluster effectiveness. +e proposed method is
modified based on the traditional FCM algorithm, so that the
cluster number C can be determined adaptively according to
the data set.

Pal and Bezdek have pointed out that the reasonable
value range of weight factorM is [1.5, 2.5], so this paper takes
its middle value. In all, in the beginning, we set the weighting
factor as 2, the number of cluster centers is 2, and the
number of iteration l is 0. +e steps of improved FCM al-
gorithm are as follows.

Step 1. Calculate cluster center V � vi(l)􏼈 􏼉.
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+e membership matrix is the matrix of N∗C, which
means each sample point belongs to extent of each cluster.
For the single sample, the sum of the membership degree of
each cluster is 1. Closer to 1 means a higher membership
degree, and vice versa. Each sample point in which class the
membership degree is the highest belongs to which class.

According to (2) and (3), the membership degree matrix
and cluster center are connected with each other, and they
constitute the positive feedback under the objective func-
tion. +erefore, it is only needed to iterate the membership
degree matrix and cluster center until the objective function
converges to a better solution. It should be pointed out that it
is needed to assign a value that meets the conditions to uik(0)

or vi(0) when the FCM algorithm program started.

Step 3. Compare U(l) and U(l+1); if

U
(l)

− U
(l+1)

�����

�����≤ ε, (4)

then stop the iteration; otherwise, l � l + 1, steering to Step 1.

2 Scientific Programming



Step 4. If the effective value function PFm(U, c) reaches the
minimum, the clustering process is supposed to end; oth-
erwise, c � c + 1 and steering to Step 1. In other words, we
take number that the effective value function PFm(U, c) as
the minimum point value with the increase of C. +e ef-
fective value function PFm(U, c) is defined by [25]

PFm(U, c) �
1
n

􏽘

c

i�1
􏽐
n

j�1
uij − uij􏼐 􏼑0.5

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (5)

+e flow chart of the improved FCM algorithms is
shown in Figure 1.

2.2. Construction of the Initial Solution. +e initial solution
to the traditional genetic algorithm is generated randomly.
+erefore, the C–W algorithm mentioned by Clark and
Wright in 1964 was considered, which aims to generate a
better initial solution to expedite the speed of the program.

+e number of customers as N is set, every vehicle
capacity is 200, and 0 means distribution center. +e steps of
C–W algorithm are as follows:

Step 5. Assuming that each car serves only one customer, it
generates N independent loops. +en, the saving value of
distance by combining customer i and customer j into one
route is calculated. +e distance of reduction can be
expressed as

Sij � doi + doj − dij, (6)

where Sij is the saving value of distance and dij is the
distance between customer i and customer j. doi and pm �

pmmin +
����������������
􏽐

N
i�1 (fi − favg)

2/N
􏽱

· pma represent the distance
from customer i and customer j to the distribution center,
respectively.

+e highest saving value that counterparts customer i
and customer j is found out and then combine them into one
route. +e sketch map is shown in Figure 2.

Step 6. When two customers are on the same route (customer
1 and customer 2) and then bymixing customer 3 to this route,
there are 3 different ways to mix (0123, 0312, and 0132). Lastly,
the saving value is calculated by these three situations.

Step 7. When the requirement value of all customers is
beyond the total capacity of vehicles, we need a new route,
then calculate the saving value again that follows Step 5 and
Step 6, and mix the route until all customers are distributed
when delivery.

+e flow path of constructing initial solutions by CW
algorithm is shown in Figure 2, in which n is the position
where the largest distance saving value, Q is the total vehicle
capacity, pm � pmmin +

����������������
􏽐

N
i�1 (fi − favg)

2/N
􏽱

· pma is
whether customer point i be served by car k. qi means the
requirement of customer i.

2.3. Solutions of Genetic Algorithms. GA is one of the
methods which used widely to search optimal solutions. It

simulates the mechanism of life evolution. It is unnecessary
to make model and complex calculation. Only need to use
the three operators of GA, we can get the optimal solutions.

+e GA algorithm sets the objective function as research
information directly. It is simple to use and has high ex-
pansibility, but the algorithm’s efficiency usually lower than
the other traditional optimal methods. In addition, in the
traditional GA algorithm, the production of the initial
cluster is randomly generated, so that one of the better initial
solutions can increase the probability of catching the optimal
solution from the program and speed the program searching
the optimal solution up. In order to overcome the disad-
vantage of the GA algorithm, this article makes improve-
ments on the production of the initial solutionmethod in the
traditional GA algorithm.

First, based on some rules, this paper uses the FCM
algorithm to divide all of the customer points into several
subclusters.

Second, this paper constructs some better initial solution
by using CW algorithm and codes the initial population
which is made up of chromosomes, respectively. It can
increase the probability of catching the adjacent territory
solution that has high quality, which increases the efficiency
of the traditional GA algorithm to solve the CVRP problem
considerably.

Calculate C cluster
centers

Start

c = 2, l = 0

Calculate
membership matrix

If the validity function
minimized

End

N

Y

N
||U(l)–U(l+1)||≤ ε

l = l+1c = c+1

Y

Figure 1: +e flow chart of the improved FCM algorithms.
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Figure 2: +e sketch map of the CW algorithm.
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+ird, traditional genetic algorithms are prone to fall
into local optimum. On the other hand, in the late stage of
evolution, the fitness values of individuals in the population
are relatively stable, and the diversity between them is greatly
reduced, resulting in slow convergence of the algorithm. To
solve this problem, this paper modifies the crossover and
mutation operations in the traditional genetic algorithm, so
that the crossover and mutation probability can be set dy-
namically. In the early stage of evolution, the fitness of
individuals in the population is poor, and there is little
difference between individuals. By increasing the crossover
probability, the improved genetic algorithm can make the
excellent individuals show up as soon as possible and reduce
the search range of the optimal solution. In the late stage of
evolution, the fitness of individuals in the population is
generally good, but there is little difference between them. By
increasing the mutation probability, the local search ability
of the population is enhanced, which makes it quickly find
the best solution and speed up the convergence of the
algorithm.

2.3.1. Improvement of Crossover Probability. First, the
minimum crossover probability is set, and then, with the
increase of iterations, the standard deviation of the fitness
value is used to control the change of crossover probability,
so that the crossover probability is larger at the beginning of
evolution and smaller at the end of evolution. +at is, the
crossover probability is

pc � pcmax −

��������������

􏽐
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2

N

􏽳

· pca,
(7)

where pcmax is the maximum value of crossover probability.
fi is the fitness value of individual i. favg is the average
fitness value of all individuals in the population. N is
population capacity. pca is the cross probability adjustment
parameter.

2.3.2. Improvement of Mutation Probability. First, the
minimum mutation probability is set, and then with the
increase of iterations, the standard deviation of the fitness
value is used to control the mutation probability, making the
mutation probability smaller at the beginning of evolution
and larger at the end of evolution. +e mutation probability
is

pm � pmmin +
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· pma,
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where pmmin is the minimum mutation probability. pma is
the adjusting parameter for mutation probability.

+ere are 4 main steps for the improved algorithm as
follows:

Step 1: using FCM algorithm to divide the received data
into several subcluster.
Step 2: using CW algorithm, and recording the several
groups of better initial solutions which are produced by

CW algorithm. Coding them as several chromosomes,
and set them as a part of the initial population.
Step 3: under the limited of the number of iterations,
using genetic algorithm to iterate constantly. Produce
the optimal solutions by choosing, overlap, and
aberrance.
Step 4: obtaining the optimal individual after iteration,
outputting the optimal route.

3. Problem Description and Modeling

3.1. Problem Description. Vehicle routing problem is de-
scribed as organizing the appropriate route for a series of
loading and unloading points tomake vehicles through them
orderly. In the conditions of the quantity demanded (such as
transmission quantity, time of delivery, vehicle capacity
limitation, driving range, and time limitation), the aims are
achieved (such as shortest distance, least cost, least time, and
least vehicles).

+ere are many basic types of VRP problems. CVRP is
the most basic type from them. CVRP has several con-
straints: 1. the vehicles have the same capacities of freight, 2.
each customer only can be served by one car, and customer
requirements cannot be separated, 3. vehicles depart from a
single distribution center and need to get back, 4. all cus-
tomers have to be served.

3.2. Problem Modeling. Based on the description of CVRP,
the related parameters and variables of the CVRP model are
defined. +e CVRP model can be described as

minf � 􏽘
i∈N

􏽘
j∈N

􏽘
k∈K

dijxijk, (9)

􏽘
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xijk � yjk, (10)

􏽘
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xijk � yjk, (11)

􏽘
i∈N

xijk � yjk, (12)

􏽘
j∈N

xijk � yik, (13)

􏽘
j∈N

x0jk � 1, (14)

􏽘
j∈N

xi0k � 1, (15)

where N0 is the nodes of distribution center. c � 1, . . . , n{ } is
the customer collection. K � 1, . . . , k{ } is the vehicle col-
lection. Q is the total vehicle capacity. qi is the requirement
of customer i. dij is the cost of the route from customer i to
customer j. xijk means car k whether from customer point i
to customer point j. yik means whether customer point i be
served by car k.
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In the above formula, (6) means to minimize the length
of vehicle distribution path, (7) means the need of meeting
the limitation of vehicle load when delivery, (8) means each
customer only can be served by one car. When equations
(12) and (13) are established at the same time, it can ensure
that customers who are on the same line are served by the
same distribution vehicle. Equations (14) and (15), respec-
tively, mean that each distribution vehicle must start from
distribution center 0 and each distribution vehicle must
finally return to distribution center 0.

+e aim of clustering analysis to solve CVRP is to
separate this problem into several subproblems and use the
optimization algorithm to solve these subproblems. +en,
based on the optimal solutions of these subproblems, we can
get the optimal solution of the main problem.

Based on the above algorithm and model, an improved
genetic algorithm was proposed to solve the CVRP problem.
+e flow chart of the CM algorithm is shown in Figure 3. At
the same time, the flow chart of the improved algorithm is
shown in Figure 4.

4. Case Studies

4.1. Introduction of Case. In order to verify the performance
of the improved genetic algorithm, this paper uses data from
25 CVRP standard examples to take tests. +e simulations
are based on MATLAB R2020b environment with Win10
OS. CPU is AMD R7 5800H. Graphics card is Nvidia 3060
laptop. +e gap in the experiment can be expressed as
follows:

gap �
BS − BSK

BSK
%, (16)

where BS is the optimal solution obtained by algorithm
optimization. BSK is the known optimal solution.

4.2. Experimental Parameter andAnalysis. Table 1 shows the
arithmetic partial parameter settings. Each benchmark ex-
ample runs independently for 20 times to obtain the ex-
perimental results, as shown in Table 2. Cost is the value of
the objective function (i.e., the total distance of the journey),
AVS is the average optimal solution of the algorithm, and
AVT is the average time-consuming of the algorithm. It can
be seen from Table 2 that the algorithm proposed in this
paper has good solution accuracy and fast solution speed for
CVRP. In terms of solution accuracy, the algorithm pro-
posed in this paper can obtain the optimal solution for 25
benchmark examples. In addition to the optimal solution,
the error of the optimal solution of the algorithm optimi-
zation is not more than 1.0%, the average error of the op-
timal solution is not more than 5.85%, and the average error
of the optimal solution is 0.11%. Among the 25 groups of
standard examples, 18 groups have found the optimal so-
lution, the number of vehicles has reached the optimal, and 9
groups of 18 groups of test examples can stably solve and
obtain the optimal solution. In terms of solution speed, all
examples are optimized in milliseconds, and none of them is
more than 400ms. Figures 5 and 6 are the FCM clustering

results of some benchmark examples, and the optimal so-
lution is obtained by the improved genetic algorithm. +e
optimal distribution path calculated by the improved genetic

Start

Calculate and integrate
saving value 

Update saving value 

If satisfied Eq. 7 ?

n=n+1

Merge paths with the nth
largest saving value

Output customer number
passed by each vehicle

End

n=1

N

Y

Figure 3: +e flow chart of the CW algorithm.
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Figure 4: +e flow chart of the proposed algorithm.

Scientific Programming 5



Table 2: Simulation results of the proposed algorithm.

Instance BSK BS AVS
AVT/s

Cost Cost Gap (%) Cost Gap (%)
A-n33-k5 661 661 0.0 666.25 0.79 0.24
A-n33-k6 742 743 0.13 749.1 0.96 0.15
A-n36-k5 799 799 0.0 800.05 0.13 0.14
A-n37-k6 949 955 0.63 986.75 3.98 0.3
A-n38-k5 730 730 0.0 747.05 2.34 0.16
A-n39-k5 822 822 0.0 848.0 3.16 0.26
A-n39-k6 831 855 0.48 864.5 4.03 0.19
A-n44-k7 937 937 0.0 984.2 5.04 0.33
B-n31-k5 672 672 0.0 683.1 1.65 0.15
B-n34-k5 788 788 0.0 798.35 1.31 0.19
B-n35-k5 955 955 0.0 974.3 2.02 0.17
B-n38-k6 805 805 0.0 822.1 2.12 0.24
B-n41-k6 829 832 0.36 853.5 2.96 0.24
B-n43-k6 742 742 0.0 785.55 2.23 0.26
B-n45-k5 751 755 0.53 768.85 2.38 0.36
B-n52-k7 747 744 0.0 766.2 2.57 0.42
P-n16-k8 450 450 0.0 450.0 0.0 0.1
P-n19-k2 212 212 0.0 212.0 0.0 0.02
P-n20-k2 216 216 0.0 216.0 0.0 0.03
P-n21-k2 211 211 0.0 211.0 0.0 0.04
P-n22-k2 216 216 0.0 216.0 0.0 0.04
P-n22-k8 590 590 0.0 590.0 0.0 0.05
P-n23-k8 529 529 0.4 531.1 0.4 0.16
P-n45-k5 510 515 5.85 539.85 5.85 0.29
P-n55-k8 588 590 5.48 620.25 5.48 0.55

0
0

10

20

30

40

50

60

70

80

90

20 40 60 80 100

Figure 5: FCM clustering results.

Table 1: Arithmetic partial parameter settings.

Parameter name Parameter setting
Population size NIND� 50
Number of iterations MAXGEN� 200
Intersect probability Pcmax� 0.9
Aberrance probability Pmmin� 0.05
Generation gap GGAP� 0.9
Initial cluster center 2
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algorithm is 661, and three vehicles are needed to complete
the distribution task.

4.3. Modeling Simulation Comparison and Analysis.
Comparison results among the improved genetic algorithm,
artificial fish school algorithm (AFSA), and traditional ge-
netic algorithm are performed in this paper. Twenty-five
CVRP benchmark examples are selected for testing. Table 3
is the average optimal value by tested 20 times, the known
error rate of the optimal solutions, and the average time.+e
convergence of the three algorithms is shown in Figure 7.

5. Conclusion

In this paper, FCM and CW algorithm are used to reduce
the range of data group and construct a better initial
population, separately. +e proposed approach can in-
crease the searching quality and efficiency effectively.
Based on that, an improved genetic algorithm is proposed
to solve the CVRP problem. Compared with the experi-
mental results by using several algorithms, it can achieve a
better result by using an improved algorithm to solve the
CVRP problem. It is necessary to make further work in the
future. In addition, it can also try to apply this algorithm
to solve more complex combinatorial optimization
problems, such as practical logistics transportation
scheduling problems.
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Figure 6: Diagram of optimal solution obtained by improved genetic algorithm.

Table 3: Comparison of results of each algorithm for solving the CVRP problem.

Algorithm Average optimal value Error rate (%) Average time (s)
Improved genetic algorithm based on FCM 676.23 91.46 202.12
AFSA 688.45 95.12 280.77
Traditional genetic algorithm 690.24 97.56 291.47
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Figure 7: Iterative procedure.
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