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For the improvement of the traditional evaluation e�ect of the automobile sound quality, an evaluation model of automobile
sound quality is constructed based on BP neural network.  e �rst is to introduce the basic principle of the BP neural network in
detail.  e second is to use the MGC parameters to establish the vehicle interior sound conversion model.  e converted sound
characteristic parameters are taken into the WORLD model to synthesize the new sound signals. Furthermore, the wavelet
decompositionmethod is used to remove noise from the synthesized sound signals. Finally, a sound evaluationmodel based on BP
neural network is established. e sound quality of automobiles can be better evaluated by carrying out the ABX test andMOS test
in the �eld of sound conversion. For the newly synthesized sound signal and the target sound signal, it can be seen that the newly
synthesized sound signal is more inclined to the target sound signal, and the sound quality is better. In addition, the sound quality
is tested through loudness, roughness, sharpness, and level A in the �eld of sound quality evaluation. e �nal results show that the
quality of newly synthesized sound is better, and the average errors of sound signals meet the sound standard.  erefore, the
constructed sound conversion model and the sound evaluation model are feasible and e�ective.

1. Related Work

As science and technology continuously develop, people pay
more and more attention to the performance of automobiles,
so the noise problem has become one of the important in-
dicators of automobile purchase.  e noise of automobiles
seriously a�ects the comfort of the person when riding in the
vehicle, also interferes with the communication between
people, and even seriously damages the auditory character-
istics of human ears. At the same time, vibration and noise are
also very di�erent in the automobile sound. erefore, how to
better distinguish vibration and noise, and evaluate the au-
tomobile noise, has become the focus of current research. In
practice, companies such as Nissan, FEV of Germany, and
AVL of Austria are all studying the interior sound quality of
electric vehicles. emost in�uential noise sources and special
frequencies have been found. Furthermore, some active or

passive technologies are used to eliminate noise and com-
pensate for frequency, which achieves good results.

In the academic �eld, Xie et al. proposed an adaptive
neural network sound evaluation method.  e character-
istics of the proposed method are simple and fast. At the
same time, they introduced a mainstream neural network
algorithm [1]. Yin et al. calculated the dither noise of au-
tomobile side windows by using the large eddy simulation
method. As can be seen that the variation rules of loudness,
sharpness, roughness, and undulation with wind speed and
window opening are obtained [2]. Yang et al. adopted
binaural transfer path analysis (BTPA) to measure the vi-
bration and noise transmission paths of automobiles under
transient and steady-state conditions.  en, the character-
istics and di�erences of the internal noise of automobiles
under di�erent operating conditions are studied, where the
loudness, sharpness, roughness, and A-weighted sound
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pressure level are adopted [3]. Park and Kang established a
sound quality index model, which reflects the reviewers’
different styles. Also, the model is constructed by utilizing
K-means clustering, factor analysis, and multiple linear
regression. ,is study provides an additional reference for
the evaluation of sound quality [4]. Zhao et al. proposed a
DBN based on linear regression (LR-DBN). ,ere are 6
psychoacoustic indicators and 26 Mel frequency cepstrum
coefficients being taken as input characteristics. At the same
time, the ordinary DBN, multiple linear regression (MLR),
and backpropagation neural network (BPNN) are used to
verify the performance of LR-DBN. What can be seen is that
compared with other methods, the correlation coefficient of
LR-DBN is higher, and the prediction error is lower. Fur-
thermore, LR-DBN is more stable. So, this method is a
reliable method for evaluating EEV sound [5]. Wang et al.
proposed an objective evaluation method of interior noise,
which is based on the displacement of the human basal
membrane [6]. Firstly, noise samples of different seats are
collected under different running conditions. Secondly, the
comparison method of adaptive grouping pairs is used to
obtain the subjective evaluation value of noise samples.
,irdly, the total parameter model of the human ear is
adopted to calculate the average value for the basal mem-
brane displacement response (SMVBMDR). So, the char-
acteristic matrix based on SMVBMDR is established. Finally,
there are two BP neural network models constructed to
evaluate the interior noise sound quality respectively. Also,
they took the traditional psychoacoustic indicators and
extracted the feature matrix as the input. ,e SMVBDMDR
is very correlated with SEV. Moreover, the sound quality
prediction accuracy of the model based on SMVBMDR is
higher.

It can be seen from the above research that the qualitative
and quantitative methods are used for the present sound
quality evaluation. Also, machine learning algorithms, deep
learning algorithms, and other algorithms are introduced.
However, the above sound evaluation rarely involves the
preprocessing of noise data. In this paper, it is proposed that
on the basis of parameter extraction of automobile sound
feature extraction, BP is used to synthesize automobile
sound, and then evaluate sound according to sound quality
evaluation parameters so as to provide a new reference for
automobile sound quality evaluation.

2. BP Neural Network

2.1. Introduction. BP neural network is a multilayer feed-
forward neural network. It is trained by error back-
propagation. In addition, the characteristics of the BP neural
network are that the model is clear and the structure is
simple. ,e basic ideas for training the BP neural network
model are as follows [7]:

Herein, training sample is defined as (x1, y1), (x2, y2),

. . . , (xn, yn), where x represents the input vector, y repre-
sents the output vector, and n represents the number of
training samples. Supposing that layer l− 1 and layer l
containm and k nodes, respectively, the output al

j of the j th
node of layer l can be expressed as formula (1), and the vector

al
j composed of the output of layer l can be expressed as

formula (2).
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Among them, wl
ji and bl

j are the weight and bias of node j
from l− 1 to l layer, respectively; f (z) is the activation
function; wl represents k×m matrix composed of the lth
layer weight; bl represents k× 1 vector composed of the bias
outputs of the l layer.

As can be seen from the above formula that the output
vector of each layer in the network can be calculated. ,en,
the loss function is used to find the appropriate weight
matrix and bias vector corresponding to all hidden layers
and output layers. ,e gradient descent method is adopted
to continuously update the weight matrix and bias vector.
,us, the best weight matrix and bias vector are obtained.
Finally, the optimal weight matrix and bias vector are uti-
lized to predict the predicted value which is closest to the
actual value. According to Pan et al. [8], the mean square
error function is selected as the loss function. ,e expres-
sions are as follows:
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where di and oi are the target output and actual output vector
of the network respectively, and N is the number of test
samples.

,estructureof theBPneuralnetwork is showninFigure1
[9–11]. It includes the input layer, the hidden layer, and the
output layer.Neurons at all levels of thenetworkare connected
by the way of a full connection layer.,e hidden layer is in the
middle. It includes multiple layers, but there is no connection
relationship between neurons at the same level.

2.2. BPNeural Network Structure. In BP neural network, the
number of neurons per layer is associated with the actual
number of input and output data. In the hidden layer, too
large or too small neurons may prolong the training time. It
cannot be fitted well. ,erefore, continuous search and
testing are required to determine the optimal neurons, and
available formulas are expressed as
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,
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(4)

Here, m, n, and l are the neurons in the hidden layer,
input layer, and output layer, respectively; a is a constant,
which ranges from 1 to 10.
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,e input vector and output vector in the BP neural
network should be normalized to the range −1.0∼1.0 so as to
effectively avoid the overfitting of output vectors [12–14].
,e calculation formulas are as follows:

xmid �
xmax + xmix

2
.

xi �
xi − xmid

2 xmax − xmin( 
,

(5)

,e abovementioned formulas show that xi is the data to
be normalized; xmin is the minimum value; xmax is the
maximum value; xmid represents the average value; and xi is
the normalized data.

3. Construction of Sound Conversion Model
Based on BP Neural Network

3.1. BP Neural Network Sound Conversion Model Based on
MGC Parameters. On the basis of the BP neural network,
sound characteristic parameters are extracted from the
original sound signal through the world sound analysis
synthesis system, including one-dimension lf0, 60-
dimensional MGC parameters, and 5-dimensional bap pa-
rameters. Considering that the above three parameters are
obtained through the world sound synthesis system and lf0
is consistent with the numerical changes of bap parameters,
only the 60-dimensional spectrum envelope MGC param-
eters are performed in modeling training. ,e BP neural
network sound conversion model based on MGC parame-
ters is constructed in this paper, as shown in Figure 2. ,e
neuron number of input and output is 60, the hidden layers
are 2, and the neurons of hidden layers is 59 [15–18]. Pa-
rameters select the target sound signal value and then place
the generated parameters into the WORLD system to
synthesize a new sound signal.

Among them, a set of sound signals has 60-dimensional
MGC parameters, and one dimension has 117 data, which is
represented as 60∗ 117. Here, 45 groups of portable and
artificial head data are selected for training, and 5 groups of
data are randomly selected as test sets. As the large amount
of training data, the parameters are divided into input vector
and output vector. For the input vector, there are 45 60∗ 117
MGC parameters collected by the portable. For output
vector, there are 45 60∗ 117 MGC parameters collected by
the artificial head, and the amount of data is large.

,erefore, all of the neurons are 60. In addition, the
learning rate of the model algorithm is 0.01; the number of
maximum errors is 10; the number of maximum training is
10000, and the accuracy of learning and training is 0.001.

After the transformation model is established, newMGC
parameters can be obtained for synthesizing new sounds so
as to provide sound parameters for the establishment of
subsequent sound evaluation model.

3.2. Sound SignalDenoising Based onWaveletDecomposition.
In the extraction and synthesis of sound features, the al-
gorithm calculation leads to the sound spectrum decline,
frequency offset, resulting in a large amount of noise. ,ese
noises will seriously interfere with the quality and evaluation
effect of sound signals. ,erefore, it is necessary to denoise
the transformed and synthesized sound. In this paper, the
most widely used wavelet denoising method is adopted. ,e
flow of this method is as follows:

(1) Decompose the original sound signal s(n) by wavelet.
So, the real target sound signal a(n) and noise signal
d(n) can be separated;

(2) Calculate the wavelet coefficients of real sound sig-
nals, and remove the wavelet coefficients of noise
signals;

(3) Adopt the inverse transformation method to obtain
the new sound signal after wavelet transform so as to
complete the denoising of the sound signal.

,eformulaofanoriginal soundsignalwithnoise signal is

s(n) � a(n) + d(n). (6)

,e formula (6) shows that s(n) is the original sound
signal with noise; a(n) is the normal target sound signal;
d(n) is the unwanted noise signal. Furthermore, d(n) is
subjected to N(0, σ2) distribution, while a(n) is the non-
stationary signal subjecting to non-Gaussian distribution.

4. Experimental Results and Analysis

After the sound conversion and synthesis, the sound eval-
uation model based on the field of sound conversion and the
automobile sound quality will be established so as to evaluate
the new synthetic sound signal better. ,en, the subjective
evaluation was performed for the field of sound conversion,
and the objective parameters of the field of automotive
sound quality were used to evaluate the synthetic sound
signal.

4.1. Evaluation in the Field of Sound Conversion

4.1.1. Experimental Environment and Data. To achieve
better experimental results, this paper selects a meeting
room with a strong sound insulation effect in a university for
testing, with an indoor temperature of 22°C and the hu-
midity of 45%. Also, the better sound signal can be obtained
by using a high-fidelity headphone for sound playback
Sennheiser HD650.

hidden layerinput layer output layer

Figure 1: Structure of BP neural network.
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,e experimental data were derived from 5 healthy and
normal hearing postgraduates in a university, including 3
boys and 2 girls.

4.1.2. Test Method. ,e ABX test and MOS test are adopted
to evaluate synthetic sound signals so as to ensure the ac-
curacy of subjective evaluation in the field of sound
conversion.

,e ABX test is a common method for subjective
evaluation of sound conversion. A and B represent the
original and target sound signals, respectively, and X rep-
resents the converted sound signal. ,e testing process is to
distinguish the similarity between the converted sound
signal with the original or target sound signal by different
people’s subjective auditory feelings. Finally, the probability
statistics are used to obtain the ABX score of the system so as
to evaluate the conversion performance effect of the system.

ABX calculation process is expressed as [19–21]:

ABX �


M
m�1 pm

M
× 100%, (7)

where M represents the number of testers and pm represents
the test result. When pm value is 0, it indicates that the
converted sound signal is more similar to the original sound
signal. When the pm value is 1, it indicates that the converted
sound signal is more similar to the target sound signal.

,eMOS test is also known as average opinion score test.
Its main function is to evaluate the tester’s overall satis-
faction with the converted sound signal. If the MOS test
score is high, it indicates that the converted sound signal is
up to the standard, and its naturalness and intelligibility are
better. ,e expression is as follows:

MOS �
1

M


M

n�1
scorem. (8)

Here,M represents the total participants in evaluation,N
represents the sound signals in the test, and scoren,m rep-
resents the evaluation score of them-th individual on the nth
sound signal.

When conducting subjective evaluation experiments, it
is necessary to be in a room with a better environment. ,e
temperature of the selected automobile is 22°C, and the
humidity is about 45%. In addition, the sound playback
selects high-fidelity headphones to obtain a better sound

signal. ,e sound signals evaluated by the test are mainly
four sets of signals obtained through the world sound
synthesis system, and the four sets of sound signals corre-
spond to the operating speed of an automobile at 60 km/h,
100 km/h, 30 km/h, and 80 km/h. ,e four groups corre-
spond to the numbers 1 to 4 in Tables 1 and 2.

,e specific evaluation effect is as follows:

(1) ABX test
,e results of ABX are shown in Table 1.
According to the above table above, the highest ABX
score of the fourth group, reaching 85%, indicates the
best effect of this experiment, the lowest ABX score,
only 63%; the main reason may be due to too little
experimental data. ,erefore, the next step is to
further expand the amount of data properly. How-
ever, comprehensive analysis found that the ABX test
score averaged 74%, reaching the experimental
standards, with preliminary proof that the newly
synthesized sound signal meets the experimental
requirements.

(2) MOS test
MOS test results are shown in Table 2.

According to the table, of the four sound signals, the first
MOS test score was 4.2, indicating that the experiment was
good; the firstMOS test score compared with the other three,
the lowest score reached only 3, the main reason may be still
that the number of data sets is relatively small. ,e com-
prehensive analysis shows that the MOS test score was
averaged into 3.65, which met the experimental require-
ments, and preliminarily proved that the newly synthesized
sound signal met the experimental requirements. ,e
scoring standards of the MOS test are shown in Table 3.

4.2. Evaluation in the Field of Automobile Sound Quality.
First of all, the synthetic sound signal is evaluated by using
the objective parameters such as SPL, roughness, loudness,
and sharpness [22–24].

Furthermore, the error evaluation is performed between
the five groups of synthetic sound signals with the corre-
sponding five groups of portable and five groups of artificial
head sound signals. Also, the objective parameters are cal-
culated by LMS Test.Lab.

Neural Network

Input

60

Hidden Layer

W

b
+

Hidden Layer

W

b
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+
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60

59 59 60

Figure 2: ,e structure of the BP neural network sound conversion model based on the MGC parameters.

4 Scientific Programming



4.2.1. Roughness. Roughness is a parameter that shows the
modulation degree of the sound signal. ,e unit of
roughness value is asper. When the roughness is 1 asper, the
sound signal is a sinusoidal pure tone signal with a SPL of
60 dB. Also, beyond that, the frequency is 1 kHz, the
modulation amplitude is 1, and the modulation frequency is
70Hz. It can be seen that the roughness calculation formula
is [25]

R � 0·3fmod 
24bank

0
ΔLE(z)dzasper. (9)

Formula (9) shows that fmod represents the modulation
frequency, and the unit is kHz. Here, G represents the
change value of the excitation stage of a sound signal,
expressed as

ΔLE � 20 log10
N max(z)

N min(z)
 , (10)

where z represents the critical band Bark number and Nmax
and Nmin represent the maximum and minimum values of
the specified loudness in the feature frequency band for a
sound signal, respectively.

As can be seen from the above Figure 3, B, R, and X
represent portable, artificial head, and newly synthesized
sound signals, respectively. Here, the newly synthesized
sound signals were close to the artificial head signals. Using

LMS Test.Lab to calculate the RMS value, which is found that
the portable, artificial head and newly synthesized RMS
values are 0.00995 asper, 0.00530 asper, and 0.00494 asper,
respectively. ,e difference between portable and artificial
head is 87.74%, while the difference between new synthe-
sized and artificial head is 6.79%.,erefore, the roughness of
the newly synthesized sound signal is obviously improved
and meets the experimental requirements.

4.2.2. Loudness. Loudness is a parameter proposed to show
how the human ear feels about the strength of the sound
signal. ,e magnitude of loudness is determined by the size
of the original sound amplitude, which is also associated
with the frequency size. ,e unit of loudness value is
expressed as song (sone). When the loudness value of the
sound signal is 1 sone, which means it is a pure sound signal
with a SPL of 40 dB, and the frequency size is 1 kHz.

,e Zwicker algorithm is commonly used to calculate the
loudness, which is expressed as

N � 0·08
ETQ

EO

  0·5 + 0·5
E

ETQ
 

0.23
⎡⎣ ⎤⎦ − 1. (11)

Formula (13) shows that ETQ represents the excitation
generated by the listening valve when it is relatively quiet, EO

represents the corresponding excitation under the reference
sound intensity I0 � 10−12 W/m2, and E represents the
corresponding excitation of the sound signal calculated by
test. At the characteristic frequency band Bark from 0 to 24,
performing the integral operation for the feature loudness to
obtain the value of the total loudness, and the expression is
as follows:

N � 
24bark

0
N′(z)dz. (12)

Here, N is the total loudness, namely the calculation
model of steady-state sound signal loudness.

Table 3: Scoring standards of MOS test.

Score Quality
evaluation Distortion degree

5 Excellent Basically impossible to detect distortion

4 Good Slightly detect distortion without
discomfort

3 Medium Possible to detect distortion with
discomfort

2 Poor Obnoxious but tolerable
1 Inferior Obnoxious and intolerable

B Roughness
R Roughness
X Roughness
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Figure 3: Roughness comparison.

Table 1: ABX test scores.

No. 1 2 3 4
1 0 1 1 1
2 1 0 0 1
3 0 1 1 1
. . . . . . . . . . . . . . .

30 1 0 1 1
Total 63% 74% 79% 85%

Table 2: MOS test scores.

No 1 2 3 4
1 2 3 2 3
2 4 3 4 5
3 1 2 5 4
. . . . . . . . . . . . . . .

30 5 4 3 5
Total 3 3.4 3.8 4.4

Scientific Programming 5



As can be seen from Figure 4, B, R, and X represent
portable, artificial head, and newly synthesized sound sig-
nals, respectively. Here, the newly synthesized sound signals
are between the portable signals and the artificial head
signals. Also, using LMS Test.Lab to calculate the RMS value
finds that the portable, artificial head and newly synthesized
RMS values are 0.63 sone, 1.24 sone, and 0.95 sone, re-
spectively. In addition, the error of portable and artificial
head is 49.19%, and the error of new synthesized and the
artificial head is 23.39%, indicating that the loudness of the
new synthesized sound signal is significantly improved and
reaches the experimental standard.

4.2.3. Sound Pressure Level (SPL). ,e sound pressure level
is one of the important methods to express subjective
feelings of loudness. In ANSI S1.8 (1989) and ANSI S1.13
(1995), the sound pressure level is calculated as

SPL � 20 log10
pe

pref
 dB. (13)

,e formula (13) shows that in SPL, pe represents the
effective sound pressure value for testing sound signals, and
pref represents the sound pressure size, that can be heard by
human ears in a stable condition, whose sound signal is 1
KHZ. In addition, this sound pressure value is also the
audible threshold value. ,e reference sound pressure refers
to the minimum root mean square sound pressure. In other
words, at standard atmospheric pressure, and when
pref � 2 × 10−5 pa, the subjective perception of sound in-
tensity by human ear is not very closely related to the sound
pressure level itself. If the loudness increases, the sound
pressure level will increase in a logarithmic speed. ,e ex-
pression of Stevens extracting the power relation of both is

L � kI
0·3

, (14)

where L represents the perceived loudness of the ear, k
represents the coefficient of each subject, and I represents
sound intensity.

As can be seen from the comparison diagram, B, R, and
X also represent portable, artificial head, and newly syn-
thesized sound signals, respectively. It can be found from
Figure 5 that the new synthesis is between the portable
signals and the artificial head signals. ,e RMS values of the
three are 47.86 Pa, 45.32 Pa, and 44.98 Pa, respectively. ,e
error of portable and artificial head is 5.60%, and the error of
new synthesis and human foreman is 0.75%. It indicates that
the A sound level of the newly synthesized sound signal is
further improved to meet the requirements.

4.2.4. Sharpness. Sharpness is an objective parameter. It
emphasizes the sharpness of sound signal and mainly shows
the proportion of high-frequency signal in the total sound
spectrum. In a sound signal, the larger the proportion of
high-frequency components, the greater the loudness value,
and the greater the sharpness of this sound signal.

,eunit of sharpness value is acum, and the sound signals
witha sharpnessof1 acumareanarrowbandnoise signalwith

a sound pressure level 60 dB. ,e center frequency size is
1 kHz, and the bandwidth size is 160Hz.,e solutionmethod
of sharpness is toconduct theweighted integral calculation for
the total loudness and the spectrum response of the critical
frequency band, and the expression formula is

S � 0·11

24bark
0 N′(Z) · Z · g(Z)dZ


24bark
0 N′(z)dz

acum,

g(z) �
1, z≤ 16,

0.06e
017z

, 16< z≤ 24.

⎧⎪⎨

⎪⎩

(15)

Among them, z represents the critical frequency bands
number; N′(z) represents the characteristic loudness

so
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Figure 4: Loudness comparison.
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function and g(z) represents the weighting function when
the critical frequency band of sound is high. Its numerical
change is mainly affected by the critical frequency band.

As can be seen from the sharpness comparison in Fig-
ure 6, the newly synthesized sound signal is adjacent to the
artificial head signal, and the RMS value can be calculated by
LMS Test.Lab. ,e portable, artificial head and newly syn-
thesized RMS values are 6.54 acum, 2.47 acum, and
2.47 acum, respectively. ,e error of portable and artificial
head is 43.32%, while the error of new synthesized and
artificial head is 0.00%, indicating that the sharpness of the
new synthesized sound signal is further improved and
reaches the experimental standard.

,e above evaluation is based on a single index to
evaluate the sound inside the automobile, which is obviously
not objective enough. On the basis of single index evalua-
tion, a comprehensive evaluation method is proposed to
evaluate the new synthetic automobile sound. As the units of
above indicators are different and belong to different levels,
the following ideas are adopted in the comprehensive
evaluation: Firstly, 32 different evaluators are invited to
evaluate the new synthetic interior sound signals according
to the grade standards in Table 4 and scored them one by one
so as to obtain the overall evaluation of new synthetic sound.

At the same time, the test is conducted in a closed
environment to avoid interference from the external envi-
ronment. ,e number of tests is 10, and the final results are
averaged. Based on the abovementioned tests, the obtained
results are shown in Table 5.

As can be seen from the above scores, the overall average
score of the four indicators is 8, which belongs to the great
level. It shows that the synthesized sound can be accepted by
the evaluator and get a better evaluation.

5. Conclusion

To sum up, the sound quality evaluation model based on BP
neural network constructed in this paper is feasible. ,e
model can effectively evaluate the sound signals of new
synthetic, portable, and artificial heads. Also, after testing
through subjective evaluation and objective parameters, it is
found that the newly synthesized sound signal is very close to
the target sound signal, with an average error of less than
10%. As can be seen that in the field of sound quality
evaluation, the newly synthesized sound is up to the design
standards of this paper. However, due to the limitation of
conditions, there are still some shortcomings. ,e main
reason is that there are too few data sets elected in the
conversion model, which results in that the final test data
may have a low monitoring score. It provides a more
comprehensive evaluation method for the research and
synthesis of automobile sound.

Data Availability

,e experimental data are available from the corresponding
author.
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Table 4: Grade 10 evaluation scale.

Adjective Review score
Remarkable 10
Great 9
Very good 8
Satisfied 7
Acceptable 6
Need to improve 5
Offensive 4
Very disgusting 3
Disturbing 2
Intolerable 1

Table 5: Evaluation results of synthetic sound.

Evaluating indicator Average score
Roughness 7
Loudness 8
Sound pressure level 9
Sharpness 8
Overall average score 8
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