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Although the statistics show a slow decline in tra�c accidents in many countries over the last few years, drunk or drug-in�uenced
driving still contributes to enough shares in those records to act. Nowadays, breath analysers are used to estimate breath alcohol
content (BAC) by law enforcement as a preliminary alcohol screening in many countries.�erefore, since breath analysers or �eld
sobriety testers do not accurately measure BAC, the analysis of blood samples of individuals is required for further action. Many
researchers have presented various approaches to detect drunk driving, for example, using sensors, face recognition, and a driver’s
behaviour to confound the shortcomings of the time-honoured approach using breath analysers. But each one has some
limitations.�is study proposed a plan to distinguish between drivers’ states, that is, sober or drunk, by the use of transfer learning
from the convolutional neural network (CNN) features to the random forest (RF) features with an accuracy of up to 93%, which is
higher than that of existing models. With the same dataset, to validate our research, a comparative analysis was performed with
other existing model classi�ers such as the simple vector machine (SVM) with an accuracy of 65% and the K-nearest neighbour
(KNN) with an accuracy of 62%, and it was found that our approach is an optimized approach in terms of accuracy, precision,
recall, F1-score, AUC-ROC curve, and Matthew’s correlation coe�cient (MCC) with confusion matrix.

1. Introduction

As per the Ministry of Road Transport and Highways, India,
tra�c collisions result in the casualties of approximately four
lakh individuals and leave nearly �fty thousand individuals
with nonfatal injuries around the country each year [1]. In
simple words, if the crowd is going to watch a match in a
stadium with a capacity of one lakh and among them, a road
crash happens while approaching the stadium, there is a
chance that at least one person will die and up to thirty
people will hold nonfatal injuries. �e victims of such ac-
cidents and lethal and nondeadly wounds include weak
street clients, such as pedestrians, cyclists, motorcyclists, and
other travellers. Other than the citizens’ existence lost in
misfortunes, they also cause a heavy monetary weight on
their families, such as treatment and last rites costs. Likewise,
automobile accidents sway public economies, costing
countries practically two percent of their yearly growth in

domestic production. A driver a¥ected by intoxicants has a
critical danger factor for a conveyance accident. Drunk
driving dramatically increases road tra�c injury risk as the
driver’s blood alcohol concentration increases. Drunk
driving increases road tra�c injury risk to varying degrees
depending on psychoactive drug abuse. Many solutions are
available in the industry to prevent tra�c collisions.
However, either they are expensive, like autopilot cars, or
nonscalable and di�cult to implement, such as law en-
forcement personnel using a breath analyser to check alcohol
in the air drivers breathe out [2].

Nevertheless, the world is a bystander to severe tra�c
collisions and casualties. Let us drive into a considerable e¥ort
made by researchers to curb tra�c accidents due to drunk
driving that happened in the last two decades, inspired by
modern technology of their age in a category manner.

�e problem statement is to �nd an e�cient system to
detect drunk driving that gives accurate results in order to
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prevent road accidents or injuries under all constraints.
Because car accidents significantly affect public economies,
costing nations close to 2% of their annual GDP. Driving
under the influence of alcohol increases a serious risk factor
for a car accident.

Drunk driving detection using Gabor filters and iris
recognition: the alcohol detection system focuses on three
key objectives using iris recognition and the Gabor filter.*e
first step is to obtain an image of the iris. Following that, the
image must be encoded into a responsive format for cal-
culation and computation. Finally, a signal from the open-
source recognition system will control the car/vehicle via a
microcontroller and relay circuit attached to the car/ignition
vehicle’s system.

Neural network for drunk driving detection: researchers
use face photos, such as the cheek, chin, neck, ear, and hand,
collected by a camera and analyse them by using a 3-layered
neural network to determine whether a driver is inebriated
or not. However, there were only a few people whose face
colour did not affect them after drinking.

Speech-based drunk driving detection: the extraction of
low-level auditory characteristics and an n-way direct
classification or regression using maximum margin classi-
fiers are two states in a classic approach to speaker state
detection. Prosodic contours may be used differently by an
intoxicated speaker than by a sober speaker.

Drunk driving detection by using a noninvasive bio-
logical sensor system: the air-pack sensor that monitors the
AP-PW is housed in a seat. AP-PW is used to measure the
digital pulse volume and the breath-alcohol concentration at
the same time, utilizing a finger clip photoplethysmography.

Drunk driving detection by pattern: drunk driving de-
tection based on driving patterns makes use of mobile
phones as a platform because they combine detection and
communication features.

Engine locking system-based drunk driving detection:
the alcohol sensor (MQ-3) detects a vehicle speed of zero
when the driver starts the vehicle. If the driver is found to be
inebriated, the ignition system will be turned off instantly,
along with an alarm and communication to the police station.

Detection of drunk driving based on a sensor for alcohol:
water bunches with a dripping vapor tension of 47mmHg
and a temperature of about 98.6 degrees Fahrenheit can be
separated into positively and negatively levied water bunches
by blowing between parallel plate electrodes consisting of a
counter electrode to which a voltage is applied, and a de-
tection electrode connected to a picoampmeter in exhaled
gas by humans. *is helps to determine that the exhaled gas
was truly from a person’s breath.

Various strategies and algorithms for classifying
intoxicated and sober people have been documented to date.
Even though automobile collisions due to drunk driving are
responsible for a significant number of fatal and nonfatal
injuries, the primary reasons for the same are the poor
performance of the algorithm being used, unwieldy inte-
gration procedures, inadequate training datasets, and less
responsive systems. *is work advocates a simple, easy-to-
implement, scalable, and economical solution equipped with
modern technology and futuristic models.

*e study is divided into various sections: the first is the
introduction portion of Section 1, which addresses the issues
of drunk driving as it now exists, and the most recent
cutting-edge research studies in the field of the drunk
driving detection system are outlined in Section 2. In Section
3, the proposed materials and methodology is described, and
Section 4 describes the results and discussion of the per-
formance analysis of the proposed technique. Lastly, the
conclusion and future scope are given in Sections 5 and 6,
respectively.

2. Related Work

Harkous et al. [3] address the given problem using a 2-phase
machine learning system. In phase 1, the vehicle simulator
provides time-series sensor data. *e sensor data is then
selected based on priorities, and after the hidden Markov
model (HMM) is applied to sensor data, these sensors gather
data from the steering wheel, throttle, vehicle’s centre of
gravity, lateral acceleration/speed, longitudinal acceleration/
speed, vertical acceleration/speed, pitch rate, yaw rate, and
roll rate. *e hidden Markov model prediction accuracy is
79%, which is the highest for longitudinal acceleration. In
phase 2, researchers prioritised lists of sensors higher than a
given threshold, and the recurrent neural network (RNN)
machine learning algorithm was applied to subgroups of
sensor data. *e RNN shows a prediction accuracy of 95%
with the given subgroup sensor data, classifying the data as
either drunk or sober behaviour. Researchers also share
experiment results of RNN-HMM and RNN alone, stating
that applying both the machine learning algorithms leads to
better results.

Chang et al. [4] presented a mode to supersede the
definitive breath-type proportions to address expensive
devices and hygiene concerns. A two-stage machine learning
system differentiates between drunk and sober driving. Stage
1 is to identify the age range of the driver using the simplified
VGG network. Data are segregated into age groups of 18–30,
31–50, and ≥51 years to train the model, and the obtained
prediction accuracy is 89.62%. Stage 2 is to identify the facial
features of an influenced driver using the simplified Den-
seNet. For this stage, collected data were classified into four
categories: nondrinking, drinking within the bar, exceeding
the bar, and heavy drinking, and the prediction accuracy
obtained here is 87.44%. *is experiment also implies that
the age factor significantly affects prediction.

Li et al. [5] suggested a technique for drunk driving
detection based on the random forest algorithm using
feature selection. *e driving simulator helps collect the
driver’s behaviour data, and then features are chosen as per
the feature significance in the mentioned algorithm. Next, a
dummy variable simulates the real-world environment, such
as the geometric markers of nonnative roads. Finally, dif-
ferent classifiers apply selected features to get a holistic
comparison of the performance of each. Linear discriminant
analysis, support vector machine, AdaBoost, and random
forest are the classifiers used. *e performance parameters
are prediction accuracy, F1-score, receiver operating char-
acteristic curve, and area under the curve value. Experiment
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results show that accelerator depth, speed, distance to the
centre of the lane, acceleration, engine revolution, brake
depth, and steering angle are used to classify the drivers’
states. AdaBoost and RF classifiers have an accuracy of
81.48%.

Mehta et al. [6] created a new dataset named “Dataset of
Perceived Intoxicated Faces,” which contains audio-visual
data collected via semisupervised efforts. *e duration of the
data collection is up to ten seconds. Deep learning algo-
rithms such as convolutional neural networks (CNN), re-
current neural networks (RNN), 3D CNN, audio-based
LSTM, and deep neural networks (DNN) are applied to them
as part of the experiment. Behaviour-based detection such as
lingo, gait, or facial countenances and biosignal-based de-
tection such as facial thermal images show promising results
in detecting intoxicated faces with an accuracy of 88.39%.
*e future scope is to add eye gaze and head pose infor-
mation to the network to explore audio and visual fusion
strategies for binary classification. Furthermore, there is
scope for transferring learning from a vision-based network
to an audio-based network.

Bhuyan et al. [7] proposed a method to classify drunk
and sober people using their thermal images and walking
patterns. *e Curvelet transform is used to grab the fringes
of a face to identify intemperate people, and SURF (speeded
up robust features) detects the temperature flux in the iris
and sclera (more tremendous for intoxicated persons).
Optical flow is used to demarcate the movement courses of
intoxicated or average persons. *is work uses RF and SVM
algorithms for classification.

Joshi et al. [8] proposed a method using an embedded
system to classify drunk and sober people by scanning their
faces using a backpropagation algorithm and reacting
according to the results processed. *is work uses the neural
network algorithm for classification, and stopping or
slowing down the car is performed by using other tools
embedded in the system. *is system is further extended to
autopilot mode and can easily integrate with two-wheelers.

Takahashi et al. [9] experimented with detecting alcohol
presence in humans using facial and other body details
caught by a high-definition camera. *ey incorporated a
three-layered neural network to witness alcohol presence in
humans and classified them into three stages: sober, mild,
and hefty drinking. *ey obtained an accuracy of 77.3%
through combinations of cheek, neck, and hand; they also
created a decision tree to distinguish between them. How-
ever, some individuals’ body colours do not change after
consuming liquor. As mentioned, the future scope is to
increase accuracy in the detection of drunk people via
feeding eyes to neural networks.

Li et al. [10] devised a method to classify intoxicated and
sober people using the information received from their
smartphones’ accelerometers and gyroscopes. A reliable
indicator of an individual’s level of intoxication is the
drinker’s walk. *is study uses a bidirectional long short-
term memory (biLSTM), a convolutional neural network
(CNN), a random forest, a multilayer perceptron, and a
gradient boost architecture to perform regression analysis
on sensor data. *e subsequent experiment demonstrates

that, in comparison to other architectures, biLSTM and
CNN have the lowest root mean square error values of
0.0167 and 0.0168, respectively. In addition, researchers like
to build upon this work by including dynamic segmentation
to strengthen the algorithm and employing an ensemble of
biLSTM networks to lessen bias and noise and to avoid
overfitting in their future work.

Bekkanti et al. [11] concocted a computer-based detector
to distinguish between drunk and sober individuals using
human emotions. To perform regression computation on
data gathered from human sentiments, this study uses a
multilayered perceptron-based back propagation neural
network (MLP-BBN), a convolutional neural network
(CNN), an adaptive neuro-fuzzy inference system (ANFIS),
a simple vector machine, and a probabilistic neural network.
*e subsequent experiment shows that MLP-BBN has the
highest accuracy, sensitivity, and specificity of 92.01%,
93.90%, and 93.98%, respectively, followed by CNN with
91.9% and ANFIS with 91%.

Soltuz et al. [12] used deep convolutional neural net-
works (DCNNs) to evaluate face thermal pictures to provide
a novel method for subject-dependent intoxication detec-
tion. *e analysis presents 3 specific DCNN architectures
with fifteen, seven, and twenty layers (GoogLeNet). *e
architectures are trained via transfer learning, using a sizable
dataset that includes thermal infrared snaps of the faces of 41
participants. Each subject has a hundred thermal snaps in
the dataset. *e dataset is equally contained in the subject’s
sober and intoxicated states.*e samples are before and after
an hour of alcohol consumption. DCNNs produce pleasing
results when facial thermal images are between 93.17% and
98.54%.

Iamudomchai et al. [13] aimed to develop an innovative
alcohol detection system using deep learning and infrared
(IR) cameras. *e initial component is an infrared camera
(FLIR) that can capture both infrared and standard snaps of
an individual’s face. *e following component processes the
snapshots for alcohol detection based on deep learning
technology on a smartphone with the iPhone operating
system. Classification accuracy is 85.10 percent (135 pop-
ulation) with four levels of sobriety and a binary classifi-
cation accuracy of 74.07%.

Bernstein et al. [14] used heart rate data gathered using
sensors frommultiple participants who drank alcohol, which
we turned from a 1D waveform into a set of spectrograms.
CaffeNet and AlexNet, two pretrained CNNs, were fed the
spectrograms to identify whether the given spectrogram was
an instance of alcohol intake. Using 80 training images (40
positives and 40 negatives) and 20 test images (10 positives
and 10 negatives), we achieved a test accuracy of 72 percent
(n� 20, five trials) after adjusting the learning rate, the
number of iterations, gradient descent algorithm, as well as
the time window, and coloration of the spectrograms.

Willoughby et al. [15] examined samples of 53 people’s
face snaps after drinking up to three glasses of liquor,
extracted features from the images, and used ML to de-
termine whether the participants were sober or intoxicated.
According to the researchers, facial lines changed sub-
stantially after consuming liquor, and facial landmark
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vectors showed the most robust predictive features. Using
gradient-boosted machines to classify subjects as sober or
intoxicated, the regression model achieved an 81 percent
classification accuracy. To capture more realistic party/bar
scenes, the original dataset was supplemented by blurring,
rotating, and adjusting the lighting, which enhanced clas-
sification accuracy.

Sajid et al. [16] aimed to design a model for detecting
distracted drivers using a publicly accessible dataset, and the
dataset is distributed among eight classes: using a cell phone,
chatting over a smartphone, driving, operating the radio,
tiredness, chitchatting with passengers, peeking back, and
consuming alcohol. *e proposed methodology uses a
pertained model, EfficientNet. *is experiment implements
five variants of EfficientNet, from which the EfficientDet-D3
is the most acceptable model for detecting distracted drivers
with a mean average precision (MAP) of 99.16%.

3. Materials and Methods

*is section describes some of the theoretical fundamentals
to conduct the experiment which involves the
methodologies.

3.1. Convolutional Neural Networks (CNNs/ConvNets).
*e CNN architecture consists of an input layer, hidden
layers, and an output layer. *e activation function and final
convolution mask the hidden layer’s inputs and outputs.*e
CNN includes a layer that performs a dot product of the
convolutional kernel with the layer’s input matrix, and the
activation function is commonly known as ReLU.*e initial
convolution operation generates a feature map of the input
image, which contributes to the input of the next layer.
CNN’s hidden layers also contain pooling, dense, and
normalization layers [17]. Figure 1 shows the detailed CNN’s
architecture to explain the convolutions and subsampling to
generate the output. *e two main parts of CNN’s archi-
tecture are: Feature extraction is a procedure used by a
convolution tool to separate and identify the distinct
characteristics of a picture for analysis. *ere are numerous
pairs of convolutional or pooling layers in the feature ex-
traction network. A fully connected layer that makes use of
the convolutional process’s output and determines the class
of the image using the features that were previously
extracted. *is CNN feature extraction model seeks to
minimise the number of features in a dataset. It generates

new features that compile the existing features into an
original set of features.

3.2. Convolutional Layer. *e input image is engrossed in a
feature map in the convolutional layer, also known as the
activation map. Convolutional layers convolve the input and
pass its result to the next layer. Each convolutional neuron
processes data only for its receptive field. Fully connected
feedforward neural networks are impractical for more sig-
nificant inputs. FC requires a very high number of neurons,
even in a shallow architecture. Convolution reduces the
number of free parameters, making the network more
profound. Conclusively, CNN is immaculate for data with a
grid-like topology like images as convolution or pooling
consider spatial relations between features [17].

3.3. PoolingLayer. Pooling layers down sampling the extents
of feature maps and it merges the results of neuron tufts into
a single neuron. *ere are two types of pooling layers tuft of
neurons in the feature map as shown in [17].

(1) Max pooling uses the utmost value per tuft of
neurons in the same manner as shown in Figure 2.

(2) Average pooling uses the moderate value per tuft of
neurons.

Average pooling is used in our model by using a
moderate value per tuft of neurons.

3.4. Fully Connected Layer or Dense Layer. Figure 3 shows
that the fully connected layer is applied to a flattened input
where all intakes are connected to all neurons from the next
layer. Usually, the end of the architecture contains fully
connected layers, and they are used for optimizing objectives
such as class scores [18].

3.5. Dropout. *e dropout layer unsystematically plunges
units and their associations with the neural network during
training, discouraging units from co-adapting overly. *is is
also known as overfitting, as shown in Figure 4 [19].

3.6. Early Stopping. Early stopping is a technique for reg-
ularizing model training and is used to sidestep overfitting
with an iterative approach, such as gradient descent. Its rules
direct how many epochs should be executed before the
model commences to overfit, as shown in Figure 5 [20].

ConvolutionsConvolutions

Input

Feature maps

f. maps

f. maps

Sub SamplingSub Sampling Fully Connected

OUTPUT

Figure 1: A typical CNN architecture.
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3.7. Random Forest Classifier (RF). Figure 6 shows the
random forest classifier, which falls under the domain of a
supervised machine learning algorithm primarily used for
category and deterioration problems [21]. *e RF classifier
constructs diverse decision trees from a slipshod subset of
the training data, and it compiles the votes from given
decision trees to settle the final prognosis [22].

3.8. Performance Metrics. Now, let us investigate the basic
terminologies of performance metrics..

3.8.1.4e ConfusionMatrix. It envisions the performance of
a classification algorithm in a matrix arrangement of the
valid labels versus the model’s foreshadowed, where row
specimens are a predicted class and column specimens are

an actual class. *e confusion matrix provides the basis of
the metrics on which other metrics can evaluate the results
[23, 24]. *is metric is as follows:

(1) True-positive (TP) is the tally of correctly fore-
shadowed positive classes over the dataset.

(2) False-positive (FP) is the tally of wrongly fore-
shadowed positive classes over the dataset, also
known as Type I error.

(3) False-negative (FN) is the tally of wrongly fore-
shadowed negative classes over the dataset, also
known as Type II error.

(4) True-negative (TN) is the tally of correctly fore-
shadowed negative classes over the dataset.

Considering, α as true-positive, then

(1) β: true-negative,
(2) c: false-positive,
(3) δ: false-negative.
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Figure 2: Example of max pooling 2× 2.
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3.8.2. Accuracy. It is the fraction of accurate projections by
the count of the input dataset [25].

Accuracy �
(α + β)

(α + c + β + δ)
. (1)

3.8.3. Precision. It is a fraction of precisely classified positive
classes to the count of predicted positive classes [25].

Precision P′(  �
α

(α + c)
. (2)

3.8.4. Recall. It is a fraction of precisely classified positive
classes to the count of actual positive classes [25].

Recall R′(  �
α

(α + δ)
. (3)

3.8.5. 4e F1-Score. *e F1-score states the equilibrium
between precision and recall, ranging from zero to one.*is
metric usually tells us about classifier accuracy and ro-
bustness [25].

F1 �
2∗P′ ∗R′( 

P′ + R′( 
. (4)

3.8.6. Matthew’s Correlation Coefficient (MCC). It is a
correlation coefficient between the observed and expected
binary categories; it returns a value from a negative one to a
positive one. *e coefficient of a positive one conveys a
flawless prediction, zero is better than arbitrary foretelling,
and a negative one implies a false projection.

MCC � α∗ β − c∗
δ

�������������������������
((α + c)(α + δ)(β + c)(β + δ))

 . (5)

4. Results and Discussion

*is section describes the performance metrics of the ma-
chine learning classifier, which were collected during the
experiment. *e performance metrics are accuracy, preci-
sion, recall, F1, AUC, and MCC. Random forest, simple
vector machine, and K-nearest neighbour were applied over
the features extracted from the image process using CNN.
Here, RF has surmounted all other classifiers in performance
metrics. *e AUC of RF is 0.95, and MCC is 0.8783, leading
to the highest accuracy of 0.9375, as shown in Table 1.

4.1. Dataset. *e dataset [26] contains the facial pictures of
human subjects before and after they have consumed al-
cohol, collected from 53 participants. Each image describes
an individual in four states: sober, low drunk, mild drunk,
and heavy drunk [27]. Lastly, we have 212 (53× 4) sets of
images that are low in the count for the training model using
machine learning algorithms. From there, we turned to

image augmentation for experiments, based on which
we used Keras APIs for augmentation to multifold
given datasets. A sample preview of the dataset is given in
Figure 7.

*is technique of image augmentation allows the gen-
eration of a sample pool of 2,120, which is further split into
80 percent for training and 20 percent for testing. *e ex-
periment supplied with a thousand epochs has been limited
to 12 epochs to prevent an overfitting model.

*e experiment is performed over Google collab with a
graphical processing unit (GPU) to enable faster processing
of python code. *e dataset that resides on Google Drive is
mounted to the development environment. Image aug-
mentation is applied while fetching image files from the
directory. After that, the augmented data is split into eighty
percent training and twenty percent testing. We prepare the
CNN model as per the given Figure 8 block diagram, except
for the Random Forest Classifier. *e CNN model is
complied with the Adam optimizer and binary cross-en-
tropy loss. Extract features from the CNN model are sent as
input to various classifiers like the random forest, K-nearest
neighbour, and support vector machine. *e result section
incorporates the calculated matters in Table 1.

4.2. Observation of Training of Model Using CNN Alone.
A learning curve plots the loss and accuracy of the machine
learning model’s performance over an epoch. Here, we were
able to plot the loss and accuracy curves for the convolu-
tional neural network model with the help of the sklearn
metrics library.

In Figure 9, the yellow line shows the curve of training
loss throughout epochs, and similarly, the red line shows
validation loss over epochs. Here, training loss and vali-
dation loss decline at a point of stability, and validation loss
has a small deficient area compared to the training loss that
deduces that the CNN model is a good fit. Since continued
training of a good fit will likely lead to an overfit, an early
stopping call back helps restrain the same.

In Figure 10, the yellow line shows the curve of training
accuracy throughout epochs, and similarly, the red line
shows validation accuracy over epochs. Training accuracy
shows strength after a few passes and remains at 100 percent
throughout the remaining epoch passes. However, valida-
tion accuracy starts with more than 60 percent but slides
down to less than 40 percent in the subsequent passes. After
ten passes, validation accuracy moves upward to 60 percent
and remains constant until the end of the cycle.

Figure 11 shows the confusion metric of the convolu-
tional neural network model. Here, we see that the
true-negative is 2, the false-positive is 32, the false-negative
is 3, and the true-positive is 31. Using these values,
other performance metrics are calculated in the Results
section.

*e area under the curve (AUC) or receiver operating
characteristics curve (ROC) plot envisions a classification
model’s performance based on accurate and inaccurate
classifications. *e ROC curve plots the true-positive rate
versus the false-positive rate at distinct classification verges.
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*e area under the curve (AUC) furnishes the capability for
a model classifier to discriminate between actual or pre-
dicted classes and summaries of the ROC curve [28]. *e
AUC score is estimated between 0 and 1. *e AUC score
value near zero represents the classifier model’s unsatis-
factory version and the score value near one represents the
excellent version of the classifier model.

Figure 12 shows the AUC-ROC curve of convolutional
neural network model performance. Here, we can see that
the AUC-ROC curve moves downward with the mean curve;

thus, we conclude that the mentioned model has below-
average performance. *e AUC score is 0.5441.

In the following observation, feature extraction from the
CNN model is passed to other classifiers [29].

4.3. Observation of the Training ofModel Using CNNwith RF.
Figure 13 shows the confusion metric of the convolutional
neural network with the random forest model. Here, we see
that the true-negative is 12, the false-positive is 0, the false-

Table 1: *e performance of classifiers over the same dataset.

Classifier Accuracy Precision Recall F1-score AUC MCC
CNN 0.5441 0.5238 0.9705 0.6804 0.5441 −0.0563
CNN+KNN 0.625 0.6538 0.85 0.7391 0.55 0.1240
CNN+SVM 0.6562 0.8 0.6 0.6857 0.675 0.3395
CNN+RF 0.9375 1.0 0.9 0.9473 0.95 0.8783

1.0 1.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 1.0

0.0 0.0 1.0 1.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0 1.0

Figure 7: Preview of the dataset.
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Figure 8: *e comprehensive structure of the CNN-RF model from this work.
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negative is 2, and the true-positive is 18. Using these values,
other performance metrics are calculated in the Results
section.

Figure 14 shows the AUC-ROC curve of a convolutional
neural network with the random forest model performance.
Here, we can see that the AUC-ROC curve stays at the top
left corner of the plot; thus, we conclude that the mentioned
model has better performance.*e AUC score is 0.95, which
is close to 1.

4.4. Observation of 4e Training of Model Using CNN with
KNN. Figure 15 shows the confusion metric of the con-
volutional neural network with the K-nearest neighbours
model. Here, we see that the true-negative is 3, the false-
positive is 9, the false-negative is 3, and the true-positive is
17. Using these values, other performance metrics are cal-
culated in the Results section.

Figure 16 shows the AUC-ROC curve of the convolu-
tional neural network with the K-nearest neighbour model

performance. Here, we can see the AUC-ROC curve move
up with the mean curve; thus, we conclude that the men-
tioned model has above-average performance. *e AUC
score is 0.55.

4.5. Observation of Training of Model Using CNN with SVM.
Figure 17 shows the confusion metric of the convolutional
neural network with the simple vector classifier model. Here,
the true-negative is 9, the false-positive is 3, the false-neg-
ative is 8, and the true-positive is 12. Using these values,
other performance metrics are calculated in the Results
section.

Figure 18 shows the AUC-ROC curve of the convolu-
tional neural network with simple vector classifier model
performance. Here, we can see the AUC-ROC curve move
up with the mean curve; thus, we conclude that the afore-
mentioned model has better than average performance. *e
AUC score is 0.675.
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Figure 9: Training and validation loss curves for the convolutional neural network.
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Figure 10: Training and validation accuracy curves for the convolutional neural network.
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Figure 11: Confusion metric for the convolutional neural network.
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4.6. Validation. Since validation is a vital step to reckon the
algorithm’s correctness, we validate the same data over two
machine learning models: CNN and CNN+RF. *e image
input to the CNN model erroneously predicts an image of a
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Figure 13: Confusion metrics of CNN with the RF model.
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Figure 14: *e ROC curve of CNN with the RF model.
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Figure 15: Confusion metric of CNN with the KNN model.
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Figure 16: *e ROC curve of CNN with the KNN model.
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Figure 17: Confusion metric of CNN with the SVC model.
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drunk individual, and when the same image is entered into
the CNN+RF model, it predicts the image precisely as a
sober individual, as shown in Figure 19.

5. Conclusions

*is work has documented various techniques and al-
gorithms to classify drunk and sober individuals re-
gardless of vehicle collisions, which account for many
fatal and nonfatal injuries. Algorithms with low per-
formance, ungainly integration techniques, poor training
datasets, and less responsive systems are fundamental
reasons for collisions. Here, we propose a machine
learning algorithm with higher accuracy, precision, re-
call, and F1-score that can easily integrate with the
mobile ecosystem with the minimum sophistication of
hardware structure. Most importantly, it focuses on a
noninvasive and portable approach. *e proposed
technique should reduce the number of crash results,
lowering the burden on traffic police, hospitals, and other
safety workers. *is technique is limited to people of a
particular age group (above 18 yrs.). It is yet to be dis-
covered whether it will be applicable to people of the age
group below 18 yrs.) [30, 31].

6. Future Scope

Future scope starts with category drivers based on multiple
factors like age, gender, geography, experience, and working
on sensors that may impact system decisions such as ac-
celeration or brake. Most importantly, the machine learning
models should use the proper dataset for training and
validation. After that, these machine learning models can be
combined with other noninvasive sensor readings to achieve
better results and reliability. Our algorithm is fast enough to
recognize intoxicated faces with a high-performance rate.
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