
Research Article
Effective Task Scheduling in Critical Fog Applications

Aimal Khan,1 Assad Abbas,1 Hasan Ali Khattak ,2 Faisal Rehman,3 Ikram Ud Din ,4

and Sikandar Ali 4

1Department of Computer Science, COMSATS University at Islamabad, Islamabad 45500, Pakistan
2School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST),
Islamabad 44000, Pakistan
3Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
4Department of Information Technology, ,e University of Haripur, Haripur, Khyber Paktunkhwa 22620, Pakistan

Correspondence should be addressed to Hasan Ali Khattak; hasan.alikhattak@seecs.edu.pk

Received 12 November 2021; Accepted 7 March 2022; Published 31 March 2022

Academic Editor: Jamil Hussain

Copyright © 2022 Aimal Khan et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Information and technology have witnessed significant improvement with the introduction of Internet of things (IoT) appli-
cations, and most of the IoTapplications are dependent on the cloud. Cloud computing is assisting IoTapplications by providing
storage, analysis, and processing services on the cloud. However, Fog computing is the new paradigm that supports the cloud by
providing scheduling, resources optimization, and energy optimization services. Scheduling tasks based on MIPs size and
prioritizing the tasks with smallerMIPs size first make critical tasks with largerMIPs wait, which ultimately increases the delay and
may result in some serious problems. 'is paper proposes a methodology for critical tasks having large MIPs size by scheduling
and prioritizing the tasks based on the nature of the task. 'e proposed methodology for latency-critical applications reduces
latency, energy consumption, and network utilization. 'is paper proposed a scheduler “Critical task First Scheduler” (CTFS),
which schedules tasks depending on the nature of the requests, which are classified as either critical or noncritical. 'e proposed
methodology is implemented in a healthcare scenario, and the simulations are performed in iFogSim simulator. Critical requests,
such as emergency notifications, are prioritized and designated as critical, requiring immediate processing. 'e environment was
kept the same for all the approaches that are implemented to demonstrate the effectiveness of the proposed approach. 'e results
of the proposed approach were compared with First Come First Served (FCFS), Shortest Job First (SJF), and cloud-only ap-
proaches to demonstrate the effectiveness of the proposed approach in terms of latency, energy consumption, and network
utilization. Simulation results show that the proposed CTFS approach outperformed the compared techniques for all three
comparison parameters.

1. Introduction

'e Internet of 'ings (IoT) is a new paradigm that aims to
provide Internet access and power to all devices for com-
munication, enabling them to join the Internet. As the
amount of such devices grows, so does the amount of data
they generate and their demand for computational capacity
to process them. Because IoT has made objects “smart” by
allowing them to detect, process, and communicate data
efficiently over a network to conduct valuable tasks without
the need for end user input [1]. Cloud computing has
appeared to be a perfect model for providing the required

services. As the amount of users in any network grows, the
amount of generated data also rises, and hence, the need to
efficiently process the information also increases manifold.
By 2023, the cloud computing market, worth $272 billion in
2018, is expected to have grown by 230% to $623.3 billion
[2]. 'e load on the cloud continues to increase because of
the swift up growth in the amount of smart devices, moving
cloud resources to their limits. By 2025, there are estimated
to be $100 billion Internet-connected IoTdevices, impacting
the economy of more than $11 trillion [3]. 'e IoT has
shown to be helpful in various fields, including smart grids,
smart agriculture, and smart health.'e IoT has had a major

Hindawi
Scientific Programming
Volume 2022, Article ID 9208066, 15 pages
https://doi.org/10.1155/2022/9208066

mailto:hasan.alikhattak@seecs.edu.pk
https://orcid.org/0000-0002-8198-9265
https://orcid.org/0000-0001-8896-547X
https://orcid.org/0000-0002-2753-8615
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9208066

impact on the healthcare sector, as it has in other industries.
'e aim of using IoT technology is to increase efficiency in
the health sector by automating human-led processes.
Healthcare aims to provide efficient and quick results of the
patient’s condition, for which several healthcare architec-
tures proposed are created by combining IoT and cloud
computing. Cloud computing has many benefits, but it still
confronts numerous problems. 'ere is connection latency
due to the placement of the cloud server and the end-user at
a distance from each other.

Furthermore, the transmission to the cloud of all data
generated by fog devices, given the current network infra-
structures and limited data carrying capability. It is essential
to mention that processing volumes of data by the IoT
devices in the cloud may result in significant delays and
overheads, particularly for time-critical applications. 'e
reason for this is that cloud servers are usually placed far
away to IoT devices, resulting in (i) increased transmission
delay, (ii) reduced performance of delay critical applications,
and (iii) network congestion [4]. To these challenges, a new
computing paradigm was found necessary to support cloud
infrastructure efficiently. Fog computing, as a result, has
emerged as a new paradigm.

Fog computing, a novel architecture, has been proposed
to bring cloud resources nearer to IoT devices. Fog com-
puting is still in its early phases but has started to gain
significance. It is considered a cloud computing extension,
invented by Cisco [5], but there is no agreed-upon definition
of Fog; it can be described as a distributed source of
computational power that allows cloud resources to be
extended to the network’s edge [2]. Furthermore, because of
the considerably significant network latency, shifting IoT
tasks to the cloud increases the delay in data analysis reaction
time.

'e goal of healthcare systems is to highlight that, in
many countries, there is no universal healthcare system and
facing healthcare problems such as ageing population [6],
continuous rise in prolonged sickness in many areas, and
limited availability of medical professionals [7]. 'e global
health sector will face a shortfall for health workers in the
coming times by 12.9 million as per a recent study by
World Health Organization (WHO) [8]. Moreover, around
60% of deaths globally and 85% of deaths in only China
account for incurable diseases [9]. Chronic disease costs
account for over 75% of the total healthcare costs of the
United States [8], while people with inadequate and in-
accessible health facilities struggle to survive in challenging
conditions, with an increasing amount of patients being a
challenge, rural areas, in particular [7]. With the significant
rise in the number of patients as a result of the afore-
mentioned challenges, it is become very important and
critical to find a suitable solution to these problems, par-
ticularly in the field of healthcare. 'e technological ad-
vancement in wireless communication and the IoT will
contribute significantly to improving performance, as well
as a reduction in healthcare costs. 'e IoT helps these
patients be followed up by providing very low-cost
homecare systems that can detect early signs of illness and
allow doctors to respond and treat patients more rapidly.

'erefore, we propose a fog computing-based architecture
for healthcare systems.

By processing the data received from the sensors, the
proposed architecture for healthcare systems based on fog
computing delivers information about patients’ health state.
'e suggested architecture has three layers: a cloud layer, a
fog layer, and an Internet of'ings layer.'e IoT layer is the
initial layer, and it comprises sensors that sense and generate
data in the healthcare environment for various purposes.
'e second layer is known as the fog layer, which contains
the number of fog nodes that receive the data transmitted
from the sensors being attached to the patients and process it
to diagnose whether it is critical data or noncritical and using
a proxy server on the topmost layer to save the results in the
cloud server. 'e proposed healthcare system architecture is
designed to give patients uninterrupted real-time medical
support, and fog computing has validated its efficacy in time-
critical applications. Fog computing brings resources nearer
to the end-users to quickly handle the massive amount of
data generated from the end-users. 'erefore, fog com-
puting is the most appropriate method for real-time data
processing.

Fog server has minimal resources in comparison with
cloud server, which has unrestricted storage and computing
capacities. 'e load on the fog server grows with an increase
in the number of requests in the massive systems [10]. 'e
increasing request to a particular fog node in a healthcare
system will overload that fog node. In this scenario, where
the specific fog node is being overloaded, while the other fog
nodes will remain inactive, this will lead to increased latency,
energy consumption, and network utilization. Fog appli-
cations have limited resources, and time sensitive nature
makes it more challenging to manage its resources [1]. Task
scheduling and allocation of resources hold great impor-
tance for application, which requires fast response. For
example, in healthcare systems, quick responses are needed
from the doctors to save patient’s life [11]. As a result, an
efficient job scheduling technique is required to maximize
the usage of these heterogeneous and resource-constrained
fog devices [12]. Although there are already proposed task
scheduling algorithms such as delay priority, Round Robin,
Shortest job first (SJF), and first come first served (FCFS),
they are still in their early stages. Algorithms such FCFS, SJF,
and round Robin execute the tasks based on their arrival
sequence. Hence, they cannot lower latency sensitive ap-
plications’ response times. For time-sensitive applications, a
scheduling algorithm is required, which reduces average
response time, network usage, and energy consumption. We
proposed a Critical Task First Scheduler (CTFS), which
schedules the tasks to the best suitable fog node to decrease
latency, energy consumption, and network utilization for the
requests. As from [13], we assume that IoT data might
experience increased traffic delay, energy consumption, and
network utilization. 'e simulations were carried out using
the iFogSim tool to assess the proposed approach’s per-
formance and compare it to strategies such as First Come
First Served (FCFS), Shortest Job First (SJF), and cloud-only.
In a cloud-only approach, all data is sent to the cloud server
without the fog layer being implemented. 'e effectiveness

2 Scientific Programming

of the proposed technique is proved by the results of
simulations.

'e contributions of the proposed CTFS approach are as
follows.

(i) An approach is proposed to serve and improve Fog
computing in multiple prospects. We propose a Fog
scheduler that will handle resources-constrained
Fog devices.

(ii) 'e study aims to minimize the delay in task exe-
cution and energy consumption and maximize the
use of a fog device available.

(iii) In Fog computing, the essential feature is a real-time
response without any delay. 'e Critical Tasks First
Scheduler (CTFS) will schedule the tasks to mini-
mize the response time for task execution based on
their criticality.

(iv) Since all network components use energy, and Fog
devices have limited resources, the proposed
method aims to reduce the number of resources
(RAM, Energy, and Processors) expended by Fog
devices.

(v) 'e number of IoTdevices is constantly rising network
workload and results in network congestion. We aim
for the reduction of network utilization in our work.

(vi) To demonstrate the effectiveness of the CTFS approach
against FCFS, SJF, and cloud-only implementation,
considerable simulations are performed in the iFogSim
toolkit.

'e paper is organized as follows. 'e related work is
presented in Section 2, whereas the fog computing archi-
tecture for healthcare is described in Section 3. 'e pa-
rameters for performance evaluation are highlighted in
Section 4, while Section 5 presents a case study from the
healthcare domain that is used to explain our work. Section 6
explains the complexity analysis of the proposed algorithm.
In Section 7, the performance evaluation of each parameter
is explained and discussed, with findings compared to al-
ternative techniques. Finally, Section 8 summarizes the
findings of our study.

2. Related Work

Fog computing is the new paradigm for healthcare to effi-
ciently handle the data from the sensors attached to the
patients for timely actions. It handles the data received from
the sensors at the fog node to reduce latency, energy con-
sumption, and network utilization by connecting the fog
node to the IoT device.

Low-Cost Health Management (LCHM) is proposed in
[14], which is gathering data of heart patients. Moreover,
sensors attached to patients collect and analyze data in order
to process it more quickly; however, LCHM has a longer
response time, reducing performance. FogCepCare is an
IoT-based healthcare management system proposed in [15].
It combines the cloud server with the sensor devices to
evaluate cardiac patients’ health status and reduces task

processing time at run time. FogCepCare uses a segmen-
tation and clustering approach, as well as a communication
and distributed processing policy, to reduce execution time.
In a cloud environment, the FogCepCare is simulated to
evaluate the performance with the existing models, and it
reduces execution time. However, this work lacks an eval-
uation of the results in terms of crucial QoS factors like
power consumption, latency, and accuracy. An IoT
healthcare service is proposed in [16], which is based on a
Software Defined Network (SDN) application that gathers
data via smartphone voice control and determines patients’
health status. Furthermore, an IoT healthcare service uses a
smartphone application conceptual design to determine the
type of cardiac arrest; however, the suggested application’s
performance is not tested in cloud environments.

It is proposed in [17] that a security solution for IoT-
enabled healthcare mobility that employs the Datagram
Transport Layer Security (DTLS) handshake protocol
without requiring any device layer modifications can pro-
vide secure communication between numerous inter-
connected smart gateways. Furthermore, the suggested
technique is applied using a simulation environment
(Cooja), demonstrating that it effectively lowers commu-
nication overhead by 26% and latency by 16%. HealthFog
intends to build on this work by deploying healthcare ap-
plications on real-world systems and fog nodes, resulting in a
more effective alternative.

A fog-based healthcare architecture is proposed [18], in
which several fog nodes are utilized to control patients’
requests across various cities. At the fog nodes, the patient’s
status is watched, and if the patient’s condition is found to be
critical, the request is sent to a cloud server immediately;
otherwise, the request is processed by fog node itself. While
simulating a number of topology configurations for per-
formance evaluation, the results are not comparable to any
cloud or fog based healthcare system implementation.

A task is offloaded, and a management method for
embedded devices and fog nodes is proposed in [19]. 'e
goal is to reduce the time it takes for software-defined
embedded systems to compute. 'e suggested technique
combines job scheduling and storage allocation optimiza-
tion using combined nonlinear programming. It is suggested
in [20] to limit end-to-end delay and to disseminate tasks
between fog nodes by restricting the numerous offloading
functions required to relegate a task to an appropriate fog
node. 'e author in [21] considered the energy utilization
issue with the imperative that the latency of the Internet of
things (IoT) more than a specified edge is required in ap-
plications, and energy reduction was finished by ideally
allotting assignments to middle fog nodes. 'e primary
objective is to increment the preparing proficiency of the
undertakings considering the restricted assets and corre-
spondence impediments.

'e First-Come-First-Served (FCFS) scheduling method
was employed to schedule tasks (EEG tractor game) on Fog
nodes, and they use the FCFS algorithm to calculate network
utilization, energy utilization, and loop delay. A new ar-
chitecture is presented in [22] to adhere to the cloud and
wireless network for real-time applications in the healthcare

Scientific Programming 3

domain for timely actions. According to [21], there are two
sorts of delays that might occur when data flows from IoT
devices: network delay induced by the volume of service
requests and computed delay produced by resource allo-
cation for requests.

'e authors presented in [23] the significance of fog
computing with the conclusion that placing a fog layer
between the cloud and end-users can reduce network traffic
by 90 factors for offloading tasks have been identified:
improved performance and energy savings [24]. Another
study in [13] presented a Shortest Job First (SJF) for off-
loading of tasks by processing the smaller MIPS first to the
cloud layer using a proxy server to reduce factors such as
latency, energy consumption, and network utilization.

In previous studies, the simulation results of fog-based
methodologies were compared to cloud-only implementa-
tion [25]. In the fog, we give a modelling of these two
metrics. 'en, using Evolutionary Algorithms, we represent
the problem as restricted optimization and solve it quickly
(EA). Our strategy stands out as an energy efficient option
[26]. 'e authors of [27] concentrated on concerns such as
remaining battery lifetime and energy-characteristics of fog
devices. Unlike earlier studies, our model energy usage and
delay are lower and are unlike others who solely focus on one
factor.

A different strategy is used in [28], but in essence, they
suggest an algorithm that tries to arrange components in the
specified fog colony first and then tries to send excess
components to other fog colonies. Components that cannot
be assigned to a fog colony are sent to the cloud, which
shows its inefficiency that ultimately increases the resource
usage. According to Authors [29], fog nodes should be
arranged in a rooted tree, with computation requests ar-
riving at the leaves and being completed or directed to the
root. To distribute requests among the fog nodes on the path
from leaf to root, a branch-and-bound technique is pro-
posed. 'is method increases the delay, which is its draw-
back. 'e goal of this work is to investigate the energy
consumption tradeoff in a Fog-loT system between terminal
nodes (TN) and fog nodes (FN). To that aim, we suggest a
new protocol in which TNs broadcast their data at a pre-
determined transmission rate to possibly all FNs without
first deciding which FN to associate with. FNs decide
whether to process data locally or send it to the cloud center
after receiving it, based on whether they are overloaded or
not. 'is work only improves the energy consumption but
ignores the other important factors such as delay and net-
work usage.

'ere were comparison and resource optimization for
the system to work efficiently and in a better way. In order to
evaluate their proposed architectures, [30] did not include
performance characteristics metrics such as latency and
network use. Some previous studies [30] only considered
one parameter but did not discuss its impact on latency and
energy consumption. Another study in [31] only considered
delay and network usage, while it did not consider energy
consumption. 'e importance of delay for any task is
addressed in [32], but other parameters were not addressed
such as energy consumption and network usage. Scheduling

of tasks is discussed in [33, 34] while decreasing network
usage, but the other two important factors, that is, energy
consumption and delay, were not addressed. Only execution
time and energy consumption are reduced in [35] for
scheduling of tasks, whereas network usage is not included.
[36, 37] introduced tasks scheduling technique but only
considered two parameters such as delay and energy con-
sumption, while it ignored network usage, which is an
important factor, while another study in [38] only improved
energy consumption of the system but did not provide any
information on its impact on the other two factors delay and
network usage. We set up the environment, performed
simulations for five different topologies setups, and com-
pared the results to the FCFS and SJF schemes and cloud-
only implementation. 'ese simulations results show that
CTFS outperformed cloud-only, FCFS, and SJF schemes for
latency, network utilization, and energy consumption
parameters.

Several studies addressed multiobjective task scheduling
optimization in fog-based architectures that outplay the
cloud-only implementation. In the study presented previ-
ously, none of the proposed approaches is compared with a
fog-based architecture for healthcare systems. 'us, it is
critical to build a fog-based technique that is more efficient
and propose solutions in fog computing suffering from a
lack of job allocation efficiency while also being inefficient in
terms of energy-saving and latency. For healthcare, many
scholars have proposed fog-based architecture and proposed
algorithms to efficiently offload tasks. A fog-based archi-
tecture was not proposed by any of the researchers that
efficiently optimize resources such as time delay, energy, and
network utilization. 'us, it is imperative to propose and
develop a fog-based architecture that is efficient and better
than earlier suggested fog-based approaches. In healthcare
systems, the most critical metrics are latency, energy con-
sumption, and network utilization, while the majority of the
studies merely evaluated their proposed methods against
latency; however, energy consumption and network utili-
zation were not included as performance parameters. As a
result, comparing our proposed solution in terms of energy
consumption and network utilization is critical.

3. Proposed System Architecture

Fog computing architecture consists of three layers, that is,
the Internet of things (IoT) layer, Fog layer, and cloud layer.
'e middle layer is known as the fog layer, which works
between the cloud and IoT layers. 'e fog layer is a dis-
tributed layer consisting of numerous fog devices and is
responsible for the intermediation between cloud and IoT
layer presented in Figure 1.

3.1. First Layer: IoT. Sensors and actuators make up the IoT
layer. Temperature sensors, heartbeat sensors, humidity
sensors, cameras, GPS sensors, and other sensors take data
from the outside world; it is converted into signals and
conveys that to Fog nodes for further processing. Following
analysis, the outputs of fog nodes are communicated to

4 Scientific Programming

actuators, which operate as controllers and take necessary
action. 'e transmission between IoT and fog layer can be
made possible in two ways, i.e., Device to-Fog (D2F) and
Device-to-Device (D2D). 'e communication between de-
vices to device (D2D) that are near to each other can bemade
possible through different ways such as Bluetooth, Wi-Fi, or
Zig-bee. To communicate with the layer upper to it would be
made possible via Device-to-Fog (D2F) layer.

3.2. Second Layer: Fog. Fog exists in the middle of cloud and
IoT layers, the fog serves as an intermediary, and it weakly
combines the Fog’s Cloud and IoT layers, allowing for
autonomous development and high levels of interaction of
various layers. While leveraging the Cloud services above,
the Fog layer serves as a foundation to the base IoT eco-
system. Devices such as proxy servers, mobile base stations,
routers, and switches all together form the Fog layer. 'e fog
layer is comprised of both low and high levels of devices.
Both these low and high level devices are differentiated by
their storage, processing capabilities, and power. Low-level
devices have low RAM, storage, and power, while high-level
devices are fog servers with rich capabilities such as RAM,
storage, and power and are connected to the cloud servers.
'e Fog nodes will be communicating with each other using
Fog-to-Fog (F2F) link. 'e Fog node with IoT will be
communicating using Device-to-Fog (D2F) link. 'e ar-
chitecture can be seen in Figure 1.

3.3.,ird Layer: Cloud. In the cloud layer, the data collected
by fog devices is stored in the cloud layer, which is on top.
'e information is retained, so that data analysis may be

performed, and the results can be sent back to the devices for
further processing.

Sense-Process-Actuate-Model (SPAM) is a model which
states that sensors are the sources that collect data from the
outside world and transfer data to the fog nodes for pro-
cessing the signals to the actuators for further action. Peer-
to-Peer (P2P), cluster techniques, or client-server is used by
these applications for nodal collaboration. Directed Acyclic
Graph (DAG) is used for developed applications for dif-
ferent modules following Distributed Data Flow model. It
takes input data, processes it, and forwards it to the next
modules.

3.4. Case Study. Fog computing is a paradigm shift for ef-
ficiently processing healthcare data from IoT devices at the
nearer fog nodes. Fog computing is efficient in handling
large amounts of data. 'e data of patients with cardiac
problems can be handled by Fog computing at edge devices
with sufficient computational power to reduce latency, re-
action time, and delay, while cloud-based solutions in
e-healthcare result in greater latency, which is undesirable in
emergencies. A substantial majority of healthcare computing
activities may be done by adjacent fog nodes leveraging fog
computing, resulting in shorter latency and increased
availability [39].

In healthcare systems application, there are two types of
use cases: critical and noncritical. 'e patient’s data, for
example, is gathered and saved for the doctor to study later.
'is type of data storage and retrieval is not extremely time-
sensitive and is tolerant of delays. Quick data analysis is
required in some cases, for example, when a patient is in a
critical state, to generate emergency warnings. Such jobs are

Tier-3

Cloud Server

Proxy Server

Fog Nodes

loT Devices

Tier-2

Tier-1

Figure 1: Fog-based architecture for healthcare.

Scientific Programming 5

time-sensitive and necessitate a fast response to avoid an
emergency.

'e following three types of application use cases are
included in this smart healthcare case study.

3.4.1. Emergency Response System. In case of emergency, an
emergency response system processes important data from
different smart sensors such as blood glucose, heartbeat,
blood pressure, and body temperature. 'is data comprises
important information about the patient’s health that must
be processed in an emergency, such as blood glucose above
400mg/dl or blood pressure levels above 140/90mmHg.

3.4.2. Patient’s Appointment Management System.
Patient’s Appointment Management System is a healthcare
system that allows booking appointments and management
of appointments while minimizing the chances of dupli-
cation of same time slot for distinct patients, and therefore, it
is considered less critical.

3.4.3. Patient’s Record Management System. 'e Patient
Record Management System stores information in the da-
tabase that includes patient personal details, doctor details,
treatment, lab results, and visits. 'e moment a patient gets
entry into the hospital, the receptionist generates a single
entry for each patient to keep in the cloud-based Patient
Record Database. We implemented three application
modules to create this smart healthcare case study, which are
shown below.

3.4.4. DCPB. DCPB is the lowermost layer of fog devices
that collects the information from each of the three appli-
cation components. It collects the critical data from the fog
devices, processes it, and forwards it to be displayed on the
notification screen. It similarly gathers data about a patient’s
appointment and records and sends it to the organizers’
module.

3.4.5. Organizer. 'e organizer module is placed on the
uppermost level fog device that collects data from the DCPB.
It assigns time slots to patients in response to appointment
requests. Patients are informed of the appointment schedule.
It sends the patient’s record, as well as certain important
data, to the Patients Record Database.

3.4.6. Patients Record Database. 'is module is cloud-
based. It gets data from the organizer to store and long-term
analysis. It creates patterns based on a patient’s health,
hospital visits, and records and delivers them to the
organizer.

4. Critical Task First Scheduler

In our proposed architecture, we have considered a
healthcare scenario where the transmission of data is very
important and critical as shown in Figure 2. 'e regular

transmission of data overloaded the system and consumed
extra resources, which led to delay and overutilization of
resources. 'erefore, it is imperative to solve the problem of
task overloading by offloading the tasks to other neighboring
fog nodes having less load and available resources to
minimize the delay and resources. Here, to minimize the
latency, energy consumption, and network utilization, a load
balancing technique is required to efficiently offload the
tasks among fog nodes. 'erefore, we propose a Critical task
First Scheduler (CTFS), to minimize the latency, energy
consumption, and network utilization. A healthcare scenario
for the proposed approach is explained by making different
streams of data that will receive data smart sensors, while
“CRITICAL” tuples include patient condition as shown in
Figure 2. 'e following is an example of a case study and its
components. Data must be processed and analyzed imme-
diately. 'e “SCHEDULE” tuples are generated by the Pa-
tient’s Appointment System, which are requests of
appointments and appointment time is presented after
processing.'us, it is less critical. Patient data to be saved on
the cloud server for later use is contained in the “RECORD”
tuple from the Patient’s Record Management System. 'us,
it is delay-tolerant. We need the quickest alert since
“CRITICAL” tuples are the most critical. 'e delays are
computed for four end-to-end modules since “SCHEDULE”
tuples are less critical, and “RECORD” tuples are delay-
tolerant.

Some recent studies have proposed load balancing
techniques, one of which is First Come First Served (FCFS)
[13], which states that the nature of the received tuple is not
important, but the arrival time is important; thus, the one
arriving first will be served first, and so on. Another ap-
proach, Shortest Job First (SJF) [13], states that the received
tuples MIPS should be checked in order to execute. 'e
tuples with smaller MIPS will be executed on priority, while
the other will wait. We are using the same procedure as in
[13] to calculate the latency, energy consumption, and
network utilization. Figure 3 shows the proposed CTFS
algorithm where as the Table 1 defines the various termi-
nologies of the algorithm.

For modelling resource management strategies in IoT
and edge computing environments, iFogSim is extremely
effective. We changed a few iFogSim classes and created a
few new ones to implement the scheduler. 'e following is a
quick overview of the classes that are utilized as shown in
Figure 4.

4.1. Sensor. 'edata from sensors or fog devices are received
at fog nodes in the form of tuples. Tuples are changed into
variable-sized in this class. 'is class functions to simulate
IoT sensors.

4.2. Fog Device. Different fog devices are simulated in this
class. Processor, memory, capacity, storage, and uplink and
downlink bandwidths are all defined for each Fog device.
Fog nodes can be multilevel, and every Fog node has the
ability to communicate with the other higher-level Fog
nodes in the IoT layer via tuples.

6 Scientific Programming

4.3. Tuple. 'e tuple class is used to communicate amongst all
of the entities in Fog. AsMIPS, each tuple gathers data about the
source, destination, and processing requirements. Tuple: the
tuple class is used to communicate amongst all of the entities in
Fog. As MIPS, each tuple gathers data about the source, des-
tination, and processing requirements as shown in Figure 5.

4.4. Proposed Scheduler. 'is class extends CloudletSched-
uler, which keeps a queue W and a completed tuples list F.
'e queue is made up of all the tuples that are awaiting
execution, whereas all of the tuples that have completed their
execution are included in the completed tuples list. When a
tuple is completed, the next tuple in the queue is chosen.

A tuple is received from the sensor using Transmit()
method and forwarded to the Send(tuple) method for a low-
level linked Fog device. A callback function is used to receive
a tuple when it arrives via ProcessTupleArrival() method.

'is function determines whether the tuple should be
handled by the Fog device or forwarded to a higher-level Fog
device. In case the fog devices will process the tuples arrived,
so it will send it to the Proposed Scheduler using the
SubmitTuple() method. 'e tuples will be placed on the
queueW using SubmitTuple() method. SchedulenextTuple()
method is used to select the next tuple for execution to fog
devices. Once the execution of the current tuples finishes, so
the scheduler requests for the upcoming tuple to be pro-
cessed via CloudletFinish() method; after successful exe-
cution of the tuples, it is placed in the completed tuples list F.
After that, the next tuple will be selected from the queue W
for execution as shown in Figure 6.

5. Experimental Setup

'is section explains the environmental setup for simulation
that was used to evaluate the suggested approach’s performance.

PATCRI

PATREC

TIME

ALERT

DISPLAY

CRITICAL

EMERGENCY ALERT
SYSTEM

PATIENT APPOINTMENT
SYSTEM

PATIENT’S RECORD
MANAGEMENT

SCHEDULE

DCBP

Organizer

Patients Records Database

RECORD

CRIDATA

CRIHIS SCH
HIS

SCH
DATA

RECHIS

RECDATA APPSCH

PATSCH

Patients Records Database

Figure 2: An example of a case study and its components.

Scientific Programming 7

In healthcare, the smart IoT sensors are attached to the
body of the patient to sense and generate the data for
transmission to the fog nodes. 'e data is processed and
analyzed at the fog node to see and take the necessary ac-
tions. After processing, the data is forwarded to the cloud for
storage using a proxy server. To evaluate the performance of
the proposed approach, we have used the iFogSim toolkit. It
is used by many researchers [40, 41] for simulations of their
proposed architecture.

For evaluation of the proposed architecture, we need to
define the fog devices in iFogSim and also set the values for
different parameters. Table 2 shows parameter values that
are equivalent in magnitude to those typically used in the
associated literature [13, 25]. 'e computation of the device
has different levels starting from zero to 3.'e cloud server is
represented by level 0, whereas level 1 represents the proxy
server, which makes the connection between the fog nodes
and the cloud servers. Level 2 shows the fog nodes that are

located in various locations to aid IoT sensors inefficient
calculation, while level 3 consists of sensors attached to end-
users for data generation. 'e topology of the proposed
healthcare architecture is given in Figure 7. 'e simulations
for the proposed architecture are carried out on Dell 3521
(Intel Core i3, 3.3GHz Processor, 520 Hard Drive) with the
windows 10 operating system.

'e proposed architecture is simulated for different
topologies while only increasing the node of fog devices to
see the results of the performance as given in Figure 7. We
set the first configuration for 100 fog devices to see the
effectiveness of the proposed architecture on how it dis-
tributes the increasing load among fog nodes. 'e simula-
tions are conducted five times, with each configuration
increasing the number of fog devices by 100. 'e perfor-
mance parameters are latency, energy consumption, and
network utilization.

6. Performance Evaluation

In this section, we compare the outcomes of the Critical
Tasks First Scheduler (CTFS) to the First Come First Served
(FCFS), Shortest Job First (SJF), and cloud-only approaches
for various configurations. 'e algorithms used for com-
parison in this work is selected based on the work done in
[13]. 'e loop delay, energy consumption, and network
utilization are the three metrics that we must choose. Table 3
shows the notations used in various equations.

INPUT: Tuple List (N1, N2, ..., NN)

OUTPUT: Fineshed Tuple FT

1: do

if new tuple arrived then

Nt <----received tuple

if Nt=CR then

Allocate VM to Nt

FT <---- Nt

F <---- NT

W<---- Nt

end if

queue in W

end if

if FT then

Tmin <---- select Nt with Appropriate MIPs form W return allocate VM to MINT

execute MINT

FT<----MINT

F<----FT

end if

return tuple

While Not end of tuple OR W=0

else

execute Nt

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

Figure 3: Proposed algorithm.

Table 1: 'e proposed CTFS algorithm’s symbols.

Symbols Meaning
W Queue of tuples
F Finish list of tuples
Mt Coming tuple
Ft Completed tuples
MINR Appropriate tuple
CR Critical tuples

8 Scientific Programming

Sensor Fog Device

Fog Device

Tuple

Tuple

Tuple

else (Non-Critical Tuples)
Waiting queue

Execute tuple
SelectNextTuple

Finished Tuple

Finished Tuple queue

if (Critical Tuples)

Execution

CTFS

Figure 4: Block diagram of the proposed CTFS approach.

Sensor FogDevice

Transmit

Send (tuple) ProcessTupleArrival ()

SubmitTuple ()

Scheduled Tuple
execute Tuple ()

checkFinishedCloudlets ()
cloudletFinish SelectTuple ()

Sendup (tuple)

SelectTuple ()
ScheduleTuple

executeTuple ()

CheckPriority ()

ProcessTupleArrival ()

CTFS

SubmitTuple ()

SchedulenextTuple

CTFS Application FogDevice

Figure 5: Tuple scheduling and execution sequence diagram.

IOT devices Fog Device CTFS Execution Finished

Non-Critical

Critical Tasks

Figure 6: Flow diagram of the proposed CTFS approach.

Scientific Programming 9

6.1.AverageLoopDelay. 'e complete latency of all modules
in the loop is measured using a control loop. 'e average
CPU time is used to calculate the loop delay, Avg CPU all
tuples of a specific type of tuple use it. Equation (1) is used to
calculate the average CPU time in iFogSim as in [13].

AvgCPUT �

Ts × NT + TE

NT + 1
,

TE + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

TS denotes the start of execution, TE denotes the end of
execution, and NT is the total number of performed tuples of
a certain type. Equation 2 is used to calculate the execution
latency of each tuple.

Latency(i) � TS(i) − TE(i), ∀i ∈ T, (2)

T is the tuple set that already exists.
'e results produced from our scheduler for application

loop delays are compared with FCFS, SJF, and cloud-only
approaches as these three are the only implemented ap-
proaches in a given healthcare scenario in iFogSim. 'e
number of nodes is shown on the x-axis, whereas the average
application loop delays are shown on the y-axis. Four color

bars are used to distinguish between CTFS, FCFS, SJF, and
Cloud-only approaches.

'e emergency alert’s average loop delay is shown in
Figure 5. In this situation, the Critical Tasks First Scheduler
(CTFS) delays are significantly smaller than those of FCFS,
SJF, and cloud-only. When using the CTFS, the growing
number of nodes does not arise the latency. Figure 6
demonstrates a noncritical loop delay for the patient’s ap-
pointment. Figure 8 shows that the loop delay of the CTFS is
very small as compared to FCFS, SJF, and cloud-only.

Table 2: Configuration of Fog nodes.

Name RAM MIPs Level UpBw DnBw Rate per MIPs Busy power Idle power
Cloud 40000 44800 0 100 10000 0.01 1648 1332
Proxy server 4000 5600 1 10000 10000 0.0 107.339 83.4333
2nd level fog nodes 4000 5600 2 10000 10000 0.0 107.339 83.4333
1st level fog nodes 1000 800 3 10000 270 0 87.53 82.44

Cloud

Proxy Server

Fog Node 1

IoT Sensor IoT Sensor IoT Sensor

Fog Node 2

IoT Sensor IoT Sensor IoT Sensor

Figure 7: Topology of the proposed fog-based approach in iFogSim.

Table 3: Simulation setup notations.

Symbols Meaning
TS Start time of execution
TE End time of execution
ECONSUMPTION Energy consumption
TCURRENT Current time
TR Update time (last utilization)
HPR Host power (last utilization)
Li Latency of ith tuple
Ci Network size of ith tuple
CCURRENT Current cost
T Last utilization

10 Scientific Programming

Figure 9 illustrates the loop delay for Patients Record
Management, showing that, for FCFS, SJF, and cloud-only,
the delay grows as the number of nodes grows, but the CTFS
performs better with lesser delays.

6.2. Energy Consumption. Reducing fog node power utili-
zation lowers the total cost of electricity consumption as well
as the environmental impact. 'ere are two power states for
fog nodes: idle and busy. Whenever the fog node is not
processing tasks, it is said to be in idle mode, and when it is
executing tasks, it is said to be in busy mode. 'e Fog
device’s energy consumption using equation (3) in iFogSim
is calculated as in [13]:

EFN � ECONSUMPTION+ TCURRENT −TR()×HPR
, (3)

where ECONSUMPTION is the current energy consumption,
TCURRENT is the current time, TR is the update time of last
utilization, and HPR is the host power in the last utilization.
'e energy may be calculated using the total of all the hosts’
power during the set length of time for any of the Fog
devices.

Figure 10 illustrates the average energy utilization of fog
nodes. On the x-axis, the number of nodes is shown, whereas
the energy consumed is shown on the y-axis. For a limited
number of participating IoT nodes (less than 300), the av-
erage energy utilization of the CTFS is lower than that of
FCFS, SJF, and cloud-only. As the number of fog IoTgrows,
so does the value. As a result, we employ to offer adaptive
load balancing to send workloads while lowering the energy
consumption of the server executing the request. 'us, the
consumed energy by fog nodes using CTFS is lower than
FCFS and SJF but minor increased as compared to cloud-
only, but since it is a small increase, so it does not impact the
overall system. It is also stated in [42] that running a huge
number of IoT devices may increase energy consumption.
'erefore, the difference of results for the various number of
fog nodes can be seen in Figure 10, which depicts that our
CTFS works more efficiently than FCFS and SJF. Figure 11
shows the energy consumption of the approaches in the
paper.

6.3. Network Utilization. 'e last evaluation metric is net-
work utilization. Network congestion is caused by the
regular increase in the numbers of the device. Such an in-
crease in the number of devices leads to network congestion
and poor performance of the overall system. By spreading
the load over several fog devices, fog computing helps
minimize network congestion. Equation (4) is used to cal-
culate network use.

N �
N

i�1
Li × Ci, (4)

whereN is the total number of tuples, Li is the latency, and
Ci is the network size of the ith tuple. Figure 12 shows the
results of CTFS against the FCFS, SJF, and cloud-only. 'e
number of nodes is represented on the x-axis, while the

average network utilization is represented on the y-axis. 'e
results show that the CTFS is decreasing network utilization
efficiently as compared to FCFS and SJF but starts increasing
at a certain point due to the growing number of IoT devices,
which results inmore energy consumption when compared to

7,500

5,000

2,500

Av
er

ag
e L

oo
p

D
ela

y
(M

S)

0
100 200 300

Number of Nodes
400 500

FCFS
SJF

Cloud-only
CTFS

Figure 8: For an Average loop delay, the average loop delay is
measured in milliseconds (ms).

100

75

50

25

Av
er

ag
e L

oo
p

D
ela

y
(M

S)

0
100 200 300

Number of Nodes
400 500

FCFS
SJF

Cloud-only
CTFS

Figure 9: For an emergency alert, the average loop delay is
measured in milliseconds (ms).

7,500

5,000

2,500

Av
er

ag
e L

oo
p

D
ela

y
(M

S)

0
100 200 300

Number of Nodes
400 500

FCFS
SJF

Cloud-only
CTFS

Figure 10: For the history of nodes for varying numbers of IoT
nodes, average loop latency is measured in milliseconds (ms).

Scientific Programming 11

the cloud-only approach. It is stated in [42, 43] that requiring
high bandwidth sometimes increases the network utilization,
but since network consumption of our proposed architecture
and cloud-only in our healthcare scenario is still smaller, so
there is no negative impact on the overall system. 'e con-
sumption of the network appears to be growing as the number
of fog nodes grows, which ultimately leads tomore congestion
more power utilization, while our proposed approach utilizes
the unutilized fog nodes to quickly complete the tasks and
save time and wastage of resources by assigning tasks. SJF
approach is wasting the resources and making network
congestion by processing the small tasks on fog nodes with
high resources, which can be used for other tasks, which
require heavy resources due to its inefficiency, which is solved
in our proposed approach, which efficiently forwards the task
to fog nodes according to their requirement for processing
and completion. 'e empirical findings for network con-
sumption performance measures demonstrating the Fog
computing-based solution we propose are a better fit for time-
critical systems. When used for a time-critical application like
healthcare, a fog-based architecture provides rapid recovery
of information about the patient’s physiological data. 'e
findings indicate that fog computing is useful in scenarios
wherever fast data processing is critical. Figure 13 shows the
energy consumption of the approaches in the paper.

7. Discussion

'e study presents three important findings: first, the
healthcare system requires time-critical solutions, and fog
computing is found to be the most suitable one for it, as it
minimizes the latency and provides fast services. Second, the
proposed CTFS approach is very efficient in healthcare
compared to the FCFS, SJF, and cloud-only implementations
in terms of the three performance parameters, i.e., latency,
energy consumption, and network utilization. 'ird, energy
consumption and network utilization are also reduced for
the increasing number of devices on fog nodes, which shows
the efficiency of the proposed approach. Cloud computing,
due to its decentralized nature, used to be the best possible

option for processing and storing data over cloud servers
until the emergence of issues such as increased latency,
energy consumption, and network utilization. Cloud com-
puting was found to be making issues for time-critical ap-
plications such as healthcare where real-time data processing
and execution are very imperative as human life might be at
risk. 'erefore, cloud-based approaches would not be the
best solution for such time-critical applications. In contrast,
a new layer is added to the cloud architecture, called the fog
layer, which works between cloud servers and end-users.'e
fog layer brings the resources nearer to the IoTdevices at fog
nodes for required tasks. 'us, the load on cloud servers is
minimized. 'e load distribution over fog nodes reduces
latency, energy consumption, and network utilization.
'erefore, it is noted from the results that fog computing is
the best possible solution for time-critical applications such
as healthcare. Our proposed fog-based CTFS approach re-
duces latency, energy consumption, and network utilization
significantly compared to FCFS [13], SJF [13], and cloud-
only implementation. 'e results clearly show that our
proposed CTFS approach outperformed FCFS, SJF, and
cloud-only implementation. 'e values of latency, energy

39500
39000
38500
38000
37500
37000

En
er

gy
 C

on
su

m
pt

io
n

(J
)

36500
36000
35500
35000
34500

100 200 300
Number of Nodes

400 500

FCFS
SJF

CTFS
cloudy-only

Figure 11: By changing the number of nodes of the Fog devices, the average used energy in (J) may be calculated.

3,000

2,000

1,000

Av
er

ag
e L

oo
p

D
ela

y
(M

S)

0
100 200 300

Number of Nodes
400 500

FCFS
SJF

Cloud-only
CTFS

Figure 12: For record management, the average loop delay is
measured in milliseconds (ms).

12 Scientific Programming

consumption, and network utilization increase with the
number of IoT devices with each configuration. Cloud-only
implementation results for energy consumption and net-
work utilization are also increasing but found to be de-
creasing at some points. 'e latency difference between the
CTFS approach and cloud-only implementation is very high,
but the difference in energy consumption and network
utilization is small. Overall results state that CTFS is the
most effective approach among the three for time-critical
applications. 'e fog-based FCFS approach receives the task
from the end-users at fog nodes and starts distributing load
among different fog nodes but lacks prioritizing the critical
one. Furthermore, it increases delay, energy consumption,
and network utilization. In another fog-based approach, SJF
processes the data at fog nodes and distributes the load
among different fog nodes. 'e load distribution is priori-
tized by executing the smaller tasks first while keeping the
larger ones awaiting, which ultimately increases the delay,
energy consumption, and network utilization. Our proposed
approach CTFS proved to be the most effective approach
among FCFS, SJF, and cloud-only implementation for
performance parameters latency, energy consumption, and
network utilization. In summary, our proposed CTFS ap-
proach in comparison with FCFS, SJF, and cloud-only
implementations performed very well in terms of latency,
energy consumption, and network utilization. 'e proposed
fog-based approach for healthcare will reduce latency to
provide time-critical patients response and medical staff and
others in their daily operation’s instant services. 'e pro-
posed approach will reduce the burden on healthcare
workers and facilitate the patients as well.

8. Conclusion

Cloud computing is not an efficient option for real-time
applications such as healthcare, where data is critical and
must be transmitted quickly without delay. Cloud-based

architecture is limited by high bandwidth utilization and
increasing latency. Fog computing, a modern computing
paradigm that supports cloud computing by assisting with
real-time processing and analysis and other resources near
the edge device, has evolved to address these limitations.
Fog computing job scheduling is a significant challenge
since edge devices have limited resources.

'is study provides an improved task scheduling
method for latency-critical applications that reduces la-
tency, energy consumption, and network utilization. To
demonstrate the time-critical and delay-tolerant jobs over
fog nodes, we have used a healthcare case study. 'e
proposed Critical Tasks First Scheduler (CTFS) is sched-
uling the task based on the nature of the requests, which are
divided into two categories: critical and noncritical. 'e
critical request such as emergency alerts is kept at the top
priority and labelled as critical to be processed first without
any delay as the human life would be at risk if it is not
processed on time, while the other requests such as record
management and patient’s appointments are labelled as
noncritical and delay-tolerant. To minimize the latency,
energy consumption, and network utilization in a system
requires the appropriate load distribution to make the
system work efficiently. 'e proposed Critical Tasks First
Scheduler (CTFS) outperforms the First Come First Served
(FCFS), Shortest Job First (SJF), and cloud-only imple-
mentation in all three parameters, according to the results
of the simulations.

Data Availability

Data are available upon reasonable request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

N
et

w
or

k
U

til
iz

at
io

n
(M

B)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
100 200 300

Number of Nodes
400 500

FCFS
SJF

CTFS
cloud-only

Figure 13: Network utilization of fog devices in megabytes (MB) versus the number of nodes (IoT devices).

Scientific Programming 13

References

[1] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and
J. H. Abawajy, “Fog of everything: energy-efficient networked
computing architectures, research challenges, and a case
study,” IEEE access, vol. 5, pp. 9882–9910, 2017.

[2] M. I. Bala and M. A. Chishti, “Offloading in cloud and fog
hybrid infrastructure using ifogsim,” in Proceedings of the
202010th International Conference on Cloud Computing, Data
Science & Engineering (Confluence), pp. 421–426, Noida,
India, January 2020.

[3] A. K. Majumdar, Optical Wireless Communications for
Broadband Global Internet Connectivity: Fundamentals and
Potential Applications, Elsevier, Amsterdam, Netherlands,
2018.

[4] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog
computing: architecture, key technologies, applications and
open issues,” Journal of Network and Computer Applications,
vol. 98, pp. 27–42, 2017.

[5] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and
R. Buyya, “Fog computing: principles, architectures, and
applications,” in Internet of ,ingsElsevier, Amsterdam,
Netherlands, 2016.

[6] M. Haghi Kashani, M. Madanipour, M. Nikravan, P. Asghari,
and E. Mahdipour, “A systematic review of iot in healthcare:
applications, techniques, and trends,” Journal of Network and
Computer Applications, vol. 192, Article ID 103164, 2021.

[7] M. Islam, A. Rahaman, and M. R. Islam, “Development of
smart healthcare monitoring system in iot environment,” SN
computer science, vol. 1, no. 3, pp. 1–11, 2020.

[8] R. Van de Pas, P. S. Hill, R. Hammonds et al., “Global health
governance in the sustainable development goals: is it
grounded in the right to health?” Global Challenges, vol. 1,
no. 1, pp. 47–60, 2017.

[9] F. Meng, X. Zhang, X. Guo, K.-H. Lai, and X. Zhao, “How do
patients with chronic diseases make usage decisions regarding
mobile health monitoring service?” Journal of Healthcare
Engineering, vol. 2019, Article ID 1351305, 2019.

[10] R. A. da Silva and N. L. da Fonseca, “On the location of fog
nodes in fog-cloud infrastructures,” Sensors, vol. 19, no. 11,
Article ID 2445, 2019.

[11] S. Mishra and S. Jain, “Ontologies as a semantic model in iot,”
International Journal of Computers and Applications, vol. 42,
no. 3, pp. 233–243, 2020.

[12] L. Liu, D. Qi, N. Zhou, and Y. Wu, “A task scheduling al-
gorithm based on classification mining in fog computing
environment,” Wireless Communications and Mobile Com-
puting, vol. 2018, Article ID 2102348, 11 pages, 2018.

[13] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and
H. Ijaz, “A job scheduling algorithm for delay and perfor-
mance optimization in fog computing,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 7, Article
ID e5581, 2020.

[14] T. Nguyen Gia, I. B. Dhaou, M. Ali et al., “Energy efficient fog-
assisted iot system for monitoring diabetic patients with
cardiovascular disease,” Future Generation Computer Systems,
vol. 93, pp. 198–211, 2019.

[15] S. He, B. Cheng, H. Wang, Y. Huang, and J. Chen, “Proactive
personalized services through fog-cloud computing in large-
scale iot-based healthcare application,” China Communica-
tions, vol. 14, no. 11, pp. 1–16, 2017.

[16] S. Ali andM. Ghazal, “Real-time heart attack mobile detection
service (rhamds): an iot use case for software defined net-
works,” in Proceedings of the 2017 IEEE 30th Canadian

conference on electrical and computer engineering (CCECE),
pp. 1–6, Windsor, Canada, April 2017.

[17] G. Manogaran, R. Varatharajan, D. Lopez, P. M. Kumar,
R. Sundarasekar, and C. 'ota, “A new architecture of in-
ternet of things and big data ecosystem for secured smart
healthcare monitoring and alerting system,” Future Genera-
tion Computer Systems, vol. 82, pp. 375–387, 2018.

[18] H. A. Khattak, H. Arshad, S. ul Islam et al., “Utilization and
load balancing in fog servers for health applications,” EUR-
ASIP Journal on Wireless Communications and Networking,
vol. 2019, no. 1, pp. 1–12, 2019.

[19] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint opti-
mization of task scheduling and image placement in fog
computing supported software-defined embedded system,”
IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702–
3712, 2016.

[20] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-
a-service at the edge: trade-off between energy efficiency and
service availability at fog nano data centers,” IEEE wireless
communications, vol. 24, no. 3, pp. 48–56, 2017.

[21] S. Aljanabi and A. Chalechale, “Improving iot services using a
hybrid fog-cloud offloading,” IEEE Access, vol. 9, pp. 13775–
13788, 2021.

[22] H. Gupta, A. VahidDastjerdi, S. K. Ghosh, and R. Buyya,
“ifogsim: a toolkit for modeling and simulation of resource
management techniques in the internet of things, edge and fog
computing environments,” Software: Practice and Experience,
vol. 47, no. 9, pp. 1275–1296, 2017.

[23] B. Varghese, N. Wang, D. S. Nikolopoulos, and R. Buyya,
“Feasibility of fog computing,” in Handbook of Integration of
Cloud Computing, Cyber Physical Systems and Internet of
,ingsSpringer, New York, NY, USA, 2020.

[24] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and
B. Sikdar, “A survey on iot security: application areas, security
threats, and solution architectures,” IEEE Access, vol. 7,
pp. 82721–82743, 2019.

[25] S. Tuli, N. Basumatary, S. S. Gill et al., “Healthfog: an ensemble
deep learning based smart healthcare system for automatic
diagnosis of heart diseases in integrated iot and fog computing
environments,” Future Generation Computer Systems,
vol. 104, pp. 187–200, 2020.

[26] S. S. Chawathe, “Monitoring iot networks for botnet activity,”
in Proceedings of the 2018 IEEE 17th International Symposium
on Network Computing and Applications (NCA), pp. 1–8,
Cambridge, MA, USA, November 2018.

[27] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Virtual resource
allocation for information-centric heterogeneous networks
with mobile edge computing,” in Proceedings of the 2017 IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 235–240, Atlanta, GA, USA, May
2017.

[28] M. M. Shurman and M. K. Aljarah, “Collaborative execution
of distributed mobile and iot applications running at the
edge,” in Proceedings of the 2017 International Conference on
Electrical and Computing Technologies and Applications
(ICECTA), pp. 1–5, Ras Al Khaimah, United Arab Emirates,
November 2017.

[29] F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, “A
survey on big data market: pricing, trading and protection,”
Ieee Access, vol. 6, pp. 15132–15154, 2018.

[30] F. S. Abkenar, Y. Zeng, and A. Jamalipour, “Energy con-
sumption tradeoff for association-free fog-iot,” in Proceedings
of the ICC 2019-2019 IEEE International Conference on
Communications (ICC), pp. 1–6, Shanghai, China, May 2019.

14 Scientific Programming

[31] D. Hoang and T. D. Dang, “Fbrc: optimization of task
scheduling in fog-based region and cloud,” in Proceedings of
the 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 1109–1114,
Sydney, Australia, August 2017.

[32] W. Liang, J. Long, T.-H. Weng, X. Chen, K.-C. Li, and
A. Y. Zomaya, “Tbrs: a trust based recommendation scheme
for vehicular cps network,” Future Generation Computer
Systems, vol. 92, pp. 383–398, 2019.

[33] K. Zhang, C. Shen, Q. Gao, and H. Wang, “Research on
similarity metric distance algorithm for indoor and outdoor
firefighting personnel precision wireless location system based
on vague set on uwb,” in Proceedings of the 2017 IEEE 17th
International Conference on Communication Technology
(ICCT), pp. 1162–1165, Chengdu, China, Octomber 2017.

[34] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a
cloud-fog computing system,” in Proceedings of the 2016 18th
Asia-Pacific network operations and management symposium
(APNOMS), pp. 1–4, Paris, France, May 2016.

[35] S. Kabirzadeh, D. Rahbari, andM. Nickray, “A hyper heuristic
algorithm for scheduling of fog networks,” in Proceedings of
the 2017 21st Conference of Open Innovations Association
(FRUCT), pp. 148–155, Helsinki, Finland, November 2017.

[36] D. Rahbari and M. Nickray, “Scheduling of fog networks with
optimized knapsack by symbiotic organisms search,” in
Proceedings of the 2017 21st Conference of Open Innovations
Association (FRUCT), pp. 278–283, Helsinki, Finland, No-
vember 2017.

[37] J. Wang and D. Li, “Task scheduling based on a hybrid
heuristic algorithm for smart production line with fog
computing,” Sensors, vol. 19, no. 5, p. 1023, 2019.

[38] K. Braiki and H. Youssef, “Resource management in cloud
data centers: a survey,” in Proceedings of the 2019 15th in-
ternational wireless communications & mobile computing
conference (IWCMC), pp. 1007–1012, Tangier, Morocco, June
2019.

[39] M. M. Hassan, K. Lin, X. Yue, and J. Wan, “A multimedia
healthcare data sharing approach through cloud-based body
area network,” Future Generation Computer Systems, vol. 66,
pp. 48–58, 2017.

[40] S. R. Hassan, I. Ahmad, S. Ahmad, A. Alfaify, and M. Shafiq,
“Remote pain monitoring using fog computing for
e-healthcare: an efficient architecture,” Sensors, vol. 20, no. 22,
Article ID 6574, 2020.

[41] M. Singh, B. B. Singh, R. Singh et al., “Quantifying covid-19
enforced global changes in atmospheric pollutants using
cloud computing based remote sensing,” Remote Sensing
Applications: Society and Environment, vol. 22, Article ID
100489, 2021.

[42] R. Kumar and R. Goyal, “Top threats to cloud: a three-di-
mensional model of cloud security assurance,” in Computer
Networks and Inventive Communication Technologies-
Springer, New York, NY, USA, 2021.

[43] Y. Hou, Q. Li, C. Zhang et al., “'e state-of-the-art review on
applications of intrusive sensing, image processing tech-
niques, and machine learning methods in pavement moni-
toring and analysis,” Engineering, vol. 7, no. 6, pp. 845–856,
2021.

Scientific Programming 15

