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Fault diagnosis technology is the science of identifying the operating state of a machine or unit, and it studies the response of the
change in the operating state of the machine or unit in the diagnostic information. It can give an early warning to the failure state
of the machine and stop the machine before a major failure occurs so as to protect the life safety of the on-site sta� and avoid huge
economic losses to the enterprise. For mechanical equipment, fault diagnosis consists of three main links: fault detection; fault
identi�cation; and fault classi�cation. Aiming at the problems that need to be solved in the fault diagnosis of industrial robots, this
paper adopts a data-driven intelligent diagnosis method to establish a fault diagnosis model of industrial robots based on Deep
Belief Network (DBN) and DSmT theory. Firstly, based on wavelet transform and information energy entropy correlation theory,
the vibration signal of industrial robot is extracted, and the energy entropy normalized eigenvector is established.�en, the energy
entropy normalized feature vector is divided into training set and test set to complete the creation of DBN network model. Finally,
using DSmT theory to carry out decision-making fusion, a fault diagnosis model for industrial robots is established, and ex-
periments are carried out on the K-R-R540 robot to verify the applicability of the established fault diagnosis model. It is proved by
experiments that the industrial robot fault diagnosis model based on the deep belief network can meet the requirements of the
recognition accuracy of robot faults, and the model will perform poorly when the faults coexist with multiple faults.

1. Introduction

�e e�cient production of industrial robots is the key to
ensure the whole product production system of the enter-
prise. �erefore, enterprises and researchers pay attention to
keeping industrial robots in an e�cient working state. For
enterprises, once the system of industrial robots breaks
down, it will lead to the stagnation of the whole production
line. If the faulty robot cannot be repaired in time, the robot
fault may evolve into a huge production accident, and even
threaten the life safety of enterprise sta�. After the industrial
robot is put into use, its application is under the arti�cial
inspection and maintenance mechanism under strict reg-
ulations. �e enterprise needs to invest a lot of human
resources to complete the daily, weekly, and monthly in-
spection and maintenance of the industrial robot, and
according to the inspection and maintenance record, the
itinerary of the �nal equipment working state, and take this

as the basis to form the equipment maintenance manual of
the industrial robot and summarize the equipment pa-
rameters of the industrial robot in the fault state. After data
analysis, the failure frequency of each equipment, as well as
the failure law and failure cause, is obtained so as to ac-
cumulate practical experience for dealing with the failure in
the future. �is traditional industrial robot fault diagnosis
has obvious disadvantages. It needs to consume a lot of
human and material resources to complete, which is un-
bearable for ordinary small enterprises. Because they do not
have a professional enterprise maintenance team to ensure
production safety, they are �nally banned in the �erce
market competition. Moreover, with the continuous prog-
ress of production and the uncertainty and randomness of
industrial robot fault itself, it is still unable to achieve timely
early warning and fault isolation for unexplained faults,
which is di�cult to meet the e�cient and safe requirements
of industrial production.
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Fault diagnosis is to identify and judge the early fault
characteristics of the equipment through various monitoring
methods based on the operation status of the equipment so
as to formulate relevant maintenance plans. Based on the
above research background, this paper will take industrial
robot as the research object, based on signal processing
knowledge and deep learning theory, and with the help of
industrial robot fault simulation platform, study the ap-
plication of deep confidence network in industrial robot
fault diagnosis. From the perspective of practical consid-
erations, when the industrial robot has faults or potential
faults, the research in this paper can accurately identify the
fault type and judge the fault degree, provide the basis for
subsequent maintenance decisions, greatly reduce the
downtime, and reduce the direct and indirect economic
losses. From the perspective of theoretical research, it can
enrich the content of industrial robot fault diagnosis
methods and provide a certain theoretical reference and
basis for the development of related research work [1–10].

2. Related Work

)e widespread use of industrial robots requires researchers
to monitor and evaluate their working status in real time. In
order to achieve this goal, domestic and foreign scholars and
experts have done a lot of research. Freeman et al. proposed
that, by analyzing the robustness of the fault cause, the
corresponding filter can be designed to eliminate strong
interference, and the fault diagnosis of the underwater robot
can be realized by calculating the residual error of the model.
Saleh Ahmad et al. established a fault diagnosis system based
on a reconfigurable robot model by applying additional
force and torque sensors at the joints of the robot. )is
method requires additional sensors to be added to the
structure of the robot, resulting in the failure of the robot
hardware.Additional Charges. Hashimoto et al. established a
fault diagnosis model based on Bayesian time series by
analyzing the failure causes of the robot under working
conditions, which can quickly identify the occurrence of
robot faults and isolate them. )is method requires a large
number of system parameters of robot faults as prior
conditions to guarantee the accuracy of the model. Verma
et al. established a robot fault diagnosis method based on
discrete-time observer by designing an observer method and
completed the fault diagnosis of robot joints through the
cooperation of detection and diagnosis observers. )is
method requires a large amount of joint sensor information.
Jaber et al. analyzed the fault signals of the robot under
various working conditions by collecting the vibration signal
of the working state of the robot, using wavelet transform,
time-frequency domain analysis, and other methods to
realize the fault diagnosis of the robot. Ferreira et al. used the
synovial observer to establish a robot fault diagnosis model
and applied it to the fault diagnosis of the COMAU robot.
)e experiment proved that this method can achieve ac-
curate diagnosis for a single fault, but it does not perform
well in the diagnosis of robot fault states with multiple faults
coexisting. )e safe operation of industrial robots requires
maintenance personnel to complete the processing of the

faults that have occurred or will occur in time. )e tradi-
tional fault diagnosis methods have been unable to adapt to
the current production mode of enterprises. )e estab-
lishment of a fault diagnosis model suitable for industrial
robots is to solve this problem. Due to the complex structure
of industrial robots, concurrent failures often occur. It is
precisely because of the existence of this problem that a fault
diagnosis method for industrial robots based on analytical
thinking logic has been proposed. By using the idea of deep
learning, it is possible to explore and identify the intrinsic
relationship between various types of faults in industrial
robots. So that when the robot fails, it can easily solve the
failure problem in the operation of the industrial robot
[11–15].

3. Related Theoretical Methods

3.1. FailureAnalysis of IndustrialRobots. )e failure forms of
industrial robots usually manifest as control system failures
and drive system failures. )erefore, industrial robot failures
can be divided into two categories: logical failures and
physical failures. Logical faults are mainly caused by the
failure of the industrial robot control system, and the robot
cannot complete tasks according to the instructions, which is
mainly manifested in the decline of performance indicators;
physical faults are mainly due to the robot shutdown caused
by the hardware failure of the industrial robot, including
circuit aging or damage, motor failure, bearing wear, and
reducer failure. Table 1 shows several common failure forms,
failure characterizations, and failure causes of industrial
robots. It can be seen from Table 1 that there is not a simple
one-to-one correspondence between the failure forms of
industrial robots, the failure representations, and the failure
causes. Some more complex failure forms and failure rep-
resentations correspond to multiple failure causes, and some
failure causes will also occur.)ere are many different forms
of failure characterization. Since the failure of industrial
robots will be accompanied by changes in vibration signals,
and it is precisely because of this unique feature, the easiest
way to evaluate the current working state of industrial robots
is to judge the vibration signals of industrial robots.
According to the basis, as well as having good applicability,
using vibration signal as the fault of industrial robot is also
used as a main research method to study the fault of in-
dustrial robot [16].

3.2. Deep Belief Networks

3.2.1. Restricted Boltzmann Machines. Ordinary Boltzmann
Machine (BM) is the predecessor of RBM. Each BM
structure consists of two layers of networks, which are
defined as the visible layer v and the hidden layer h, re-
spectively. Figure 1 shows the BM structure. It can be found
that the network structure of BM is fully connected by
random neurons, so it has a strong ability to learn specific
rules from complex data in an unsupervised form, but at the
same time its disadvantages are also obvious. )e fully
connected structure makes the network. )e training time is
long, and the computational cost is high. )e emergence of
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RBM is to improve the defects of BM network structure; it is
a new unsupervised learning network structure model based
on greedy learning. Except for the undirected nature of the
interlayer connection, there is no difference from the general
BM principle in terms of network definition of each layer,
neuron output and representation, and neuron state value
rules. Figure 2 shows the RBM structure organization. )e
energy model of RBM can be intuitively understood as
follows: a small ball with a rough surface and an irregular
shape is placed anywhere in a large bowl with a very rough
surface. Affected by gravitational potential energy, generally
speaking, when the state is stable, the probability of the ball
staying at the bottom of the bowl is the greatest, and of
course there is a certain possibility that it will stay at other
positions in the bowl. In the theory of the energy model, the
final stable stop position of the ball is defined as a state, each
state corresponds to an energy, and this energy can be
represented by an energy function. So, in a sense, the
probability that the ball is in a certain state can be expressed
by the energy of the ball in the current state [17].

3.2.2. Basic Structure of Deep Belief Network. RBM is an
important foundation of DBN. From the macroscopic point
of view, the network structure of DBN is mainly composed
of several RBM stacks and a labeled classifier, as shown in
Figure 3. As can be seen from Figure 3, this deep DBN
network has four layers of hidden units, the input of the
network is the sample data that meets the requirements, and
the top is the label information corresponding to the input
data. First, the prepared input sample data is assigned to
each neuron in the visual layer of the first layer one by one,
after a series of iterative training and learning (i.e., forward
greedy learning and backward fine-tuning; the specific
process will be introduced later), the weight matrix between
each layer and the bias value of each neuron will reach a
certain stable state, which can fit the training samples to the
maximum extent. After the training is completed, when a
test data sample is input, the trained network will auto-
matically analyze and process the data and assign the
possibility of each category according to the calculation

result, and the sample will be included in the corresponding
category with the highest probability. Inside the network, all
feature data can share the entire network information to-
gether. )is sharing mode makes it more convenient to
extract the deep features of the data and can significantly
enhance the memory capacity of the entire network. )e

Table 1: Several common failure forms, failure characterizations, and failure causes of industrial robots.

Failure form Fault characterization Cause of issue

Power system failure
)e robot cannot be powered on Power circuit failure

Robot cannot move Power chip failure
)e host computer restarts Short circuited

Control system failure

Controller cannot be powered Damaged control chip

)e control port is unstable Control chip soldering
Controller failure

Robot out of control Control program run away
Damaged control chip

Motor failure
Motor stuck

Driver chip failure
Motor overcurrent protection

Drive joint failure
Bearing failure Bearing wear

Bearing fracture

Reducer failure Damaged reducer
Coupling loose

h1

h2

h3

v1

v2 v3

v4

Hidden layer

Visible layer

Figure 1: Schematic diagram of BM structure.
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Figure 2: Basic structure of RBM.
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training process of DBN mainly includes two processes:
forward greedy learning and backward fine-tuning. )e
greedy learning process of RBM is mainly to extract and
mine the feature information of the input data layer by layer,
and the backward fine-tuning process is to fine-tune the
structural parameters of the entire DBN network through
the known labels so as to adjust the parameters in the deep
layer containing multiple hidden layer parameter vectors
[18]. )rough the neuron of the deep belief network and the
ability to extract and mine the feature information of the
input data layer by layer, it has a good application perfor-
mance in industrial robot diagnosis.

3.2.3. Forward Greedy Learning. )e forward greedy learning
process is also called stacked RBM pretraining. In the whole
process, the algorithm itself learns the data without the par-
ticipation of label information, which belongs to a category of
unsupervised learning. Before the DBN algorithm was pro-
posed, one of the main bottlenecks encountered by the BP
neural network was that when the number of network layers

was too large, the problem of gradient dispersion would occur
during the training process, resulting in a poor learning effect
of the entire model. )e proposed unsupervised greedy
learning method solves this problem, it divides the deep
network into multiple shallow network structures and restricts
model training and parameter adjustment to this shallow
network. It turns out that by adequately training these net-
works, good training results for the entire model can be
achieved. )e forward greedy learning process is shown in
Figure 4. As can be seen from Figure 4, the training in each step
is completed within a certain RBM. In the first step, the input
data is assigned to the neurons of the visual layer, the data of the
visual layer v is mapped to the hidden layer h1 through greedy
learning, and then the hidden layer h1 is reconstructed through
the CD-k algorithm to return to the hidden layer. View layer,
and adjust the internal weights and biases after calculating the
reconstruction error. On the basis of the first step, use the fully
trained parameter vector to solve the hidden layer h1, and use it
as the input of the second RBM structure, and train the
subsequent RBM structure in the sameway until the training of
the entire DBN network is completed [19–21].

top unitLabel

hidden unit

hidden unit

hidden unit

RBM

Input data

Hidden layer

Weights

Visible layer

RBM

Classifier

fifth floor

Second floor
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the third floor

level one

pre-training

pre-training

pre-training

fine-tuning

fine-tuning

fine-tuning

Figure 3: Schematic diagram of DBN network structure.
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3.2.4. Backward Fine-Tuning. Forward greedy learning is a
typical unsupervised training process, which can roughly
capture information on the input vector, that is, obtain a
solution set within a large range, and the corresponding
internal parameter vector of each RBM is initially determined,
but the model cannot be obtained. For a high-precision
optimal solution, so it is necessary to use the backward fine-
tuning strategy to find it from this large-scale solution set.
Different from the forward greedy learning, the backward
fine-tuning process is a supervised learning method. )e
pretrained parameters are used as initialization parameters,
and the label information is used to further optimize each
layer of the DBN network to improve the overall recognition
rate and enhancement of the DBN network. Robustness of the
Model. )e principle of DBN’s backward fine-tuning algo-
rithm is similar to that of BP’s reverse adjustment, mainly
including fast gradient descent method and conjugate gra-
dient descent method. Compared with the model obtained by
the BP algorithm alone, the performance of the model after
fine-tuning the network as a whole by using the gradient
descent method combined with the label information tends to
be better. Because the pretraining step has been performed
before fine-tuning, it is now equivalent to only needing to do a
local search within a specific parameter space, so it is relatively
easier to converge, and it takes less time. )e reverse fine-
tuning process is shown in Figure 5.

4. The Establishment of Four Major Industrial
Robot Fault Diagnosis
Experimental Platforms

4.1. Introduction to the Experimental Platform

4.1.1. Experimental Equipment. )e experimental platform
is designed with the KR-3-R540 robot as the main equip-
ment. )e experimental equipment mainly includes KR-3-
R540 robot, vibration exciter, several acceleration sensors,
data acquisition and storage system, and data analysis sys-
tem. Among them, the data acquisition and storage system
and the data analysis system together constitute the

experimental host computer, which can realize the calling
and analysis of the vibration signal through the computer
and obtain the experimental results; since the fault used in
this chapter is described as the fault at the joint of the robot,
the vibration excitation is used. )e controller applies a
preset continuous excitation at the robot joints, in this way
to simulate the failure of the robot joints. )e data analysis
system is a computer equipped with Modal Genius software
provided by Yiheng Company, the operating system is
Windows 10, the CPU is Intel Core i7, and the running
memory is 16 G.

4.1.2. Experimental Platform Function. In order to realize the
acquisition of the vibration signal of the KR-3-R540 robot
joint and the end effector, the main functions of the exper-
imental platform designed in this chapter are as follows: (1)
Acceleration sensor is used to collect the vibration signal of
the acceleration sensor, of which a single acceleration sensor
can only collect the vibration signal on the Z-axis; the three
acceleration sensors can collect the vibration signal in the
three directions ofXYZ and store it in the data acquisition and
storage system, which is convenient for the computer to
retrieve the vibration data of the robot joints at any time.)is
system is Hangzhou Yiheng, the sensor data acquisition and
storage system provided by the company. (2) )rough the
KR-3-R540 robot teach pendant, change the trajectory of the
robot and the running speed of the robot (resp., 30%, 50%,
and 70% of the maximum speed) so that the acceleration
sensor can collect data at different speeds and different
working trajectories. )e robot vibration signal provides data
support for model creation. (3) )rough the modal analysis
software, the modal analysis of the robot is carried out
through the modal test. )rough modal analysis, determine
the cut-off frequency of the robot resonance frequency and
vibration frequency. Provide data support for designing filter
parameters in the next step. Figure 6 shows the sensor layout
of the KR-3-R540 robot. A single acceleration sensor is ap-
plied from joint 1 to joint 5, corresponding to sensor 1 to
sensor 5, respectively; because the structure of the end effector

Forward calculation phase

retactonng computation
phase

b1

v

RAM1

b2

h1 h1

RAM2

b3

h2

RAM3

v
v

Figure 4: Greedy learning process before and after.
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and joint 6 is close, it is only at the end. )ree acceleration
sensors are applied to the actuator, corresponding to sensor 6,
and no acceleration sensor is added to joint 6. Figure 6 shows
the schematic diagram of the experimental platform. )e
vibration data is transmitted to the data acquisition and
storage system through the single acceleration sensor applied
to the robot joint and the three acceleration sensors of the end
effector, and the subsequent analysis is performed by the
computer.

4.2. Experiment Content and Data Collection

4.2.1. Experiment Content. Due to the interference of the
motion frequency and resonance frequency of the robot,
there is a large error in the original signal of the sensor. )e
range of the motion frequency and resonance frequency of
the robot is obtained through the modal analysis experi-
ment, and the signal is filtered by designing a filter. )e time
length is divided into experimental samples to obtain ex-
perimental data sets. In order to realize the creation of the
robot fault diagnosis model, it is necessary to design ex-
periments to collect the response joint vibration signals. Due
to the limitation of technology and cost, the robot failure
state used in this section is described as the robot’s end pose
deviation, which is not within the allowable range. )e fault
is a fault at the joint, and the fault is in the form of a
simulated fault. )e vibration exciter is set to continuously
excite and interfere with the joint motion of the robot,
resulting in the deviation of the robot’s end pose beyond the
allowable range. Set the robot running trajectory as a straight
line in space. As shown in Figure 7, the vibration exciter
interferes with the movement trajectory of the robot end
effector before and after joint 1. In Figure 7(a), the move-
ment trajectory of the robot end effector is in normal state;
Figure 7(b) is the motion trajectory of the robot end effector
after the vibration exciter interference (the point where the
maximum deviation is intercepted is enlarged and displayed,
and the different colors in the figure represent the repetitive
motion trajectory of the robot). Since the error range of the
robot’s end effector is [0, 0.35mm], comparing Figures 7(a)

and 7(b), it can be concluded that the pose accuracy of the
robot’s end effector is accurate after applying continuous
excitation with the exciter. Serious deviation occurs. At this
time, the robot state is regarded as a fault, and the specific
fault is the fault at joint 1.

)e specific content of the experiment includes the
following steps: (1) Using the KR-3-R540 robot teach
pendant, randomly set 10 closed-loopmotion trajectories for
the robot, and let the robot run at 30%, 50%, and 70% of the
maximum speed. Complete the command movement, and
the movement time is 20 s. (2) According to the above, set
the robot joint fault; the fault status is divided into five
categories; the first type of fault is expressed as no fault, the
second type of fault is expressed as a joint fault, and the third
type of fault is expressed as two joint faults, the fourth type of
fault is represented as three joint faults, and the fifth type of
fault is represented as four joint faults; the fault locations are
set as joint 1, joint 2, joint 3, and joint 4. )e detailed
description of the fault is shown in Table 2. (3) Acceleration
sensors are used to collect vibration signals of joints and end
effectors in all working states of the robot. )e sensors at the
joints are single-term sensors, and the end-effectors are
three-term sensors.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5
Sensor 6

Figure 6: KR-3-R540 robot sensor layout.
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label label label
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Figure 5: Background fine-tuning process.

6 Scientific Programming



4.2.2. Experimental Data. )e joint vibration data of the
robot is used to complete a series of steps to establish a fault
diagnosis model suitable for the robot. Due to the limitation
of technology and operation space, the acceleration sensor
cannot be set inside the robot, but the sensor can only be set
on the robot shell, which will inevitably collect the motion
vibration signal and the robot resonance signal generated by
the robot during the movement process. Filters need to be
designed to eliminate these two interference signals.
According to the modal analysis results, it can be known that

the motion frequency of the robot is about 100Hz; the
resonance frequency is about 2200Hz.

In this study, the vibration data acquisition system
under the LabVIEW platform was designed, and experi-
ments were carried out on the gear fault simulation test
bench, and the gear fault diagnosis data set under different
working conditions was obtained. After the vibration signal
is collected under all working states of the industrial robot,
the corresponding experimental data are obtained, and a
total of 150 sets of different experimental source data are
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Figure 7: Comparison of the movement trajectories of the robot end effector before and after the exciter interference. (a) )e motion
trajectory of the robot end effector under normal conditions. (b) )e exciter interferes with the movement trajectory of the robot end
effector of joint 1.
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obtained. Each group includes the vibration signals of each
joint and the end effector, a total of 1200 sets of sensor
source data. First, filter the source data, and set the filter
parameters as follows: the low-pass filter frequency is
100Hz, and the high-pass filter frequency is 2200Hz. )en,
1200 sets of source data are divided with 0.1s as the sample
length, and 240000 experimental samples are obtained, of
which the number of experimental samples in normal state
is 48000, and the number of experimental samples in all five
fault states is 192000. )e vibration signal dataset of the
robot is shown in Table 3.

5. Fault Diagnosis of Industrial Robot Based on
Deep Belief Network

5.1. Creation Process of Fault Diagnosis Model. )is section
creates an industrial robot fault diagnosis model based on a
deep belief network (DBN). First, the wavelet transform is
used to decompose and reconstruct the vibration signal of
the industrial robot joint and the end effector. )en, the
energy entropy normalized eigenvector of the wavelet
reconstructed signal is constructed using the information
energy entropy and normalization theory. Finally, the
normalized feature vector is divided into a training set and a
test set. )e training set is used for forward layer-by-layer
training and reverse fine-tuning of the basic parameters of
the fault diagnosis model. )e test set is used to test the
accuracy of the fault diagnosis model.

5.2. Initialize DBN Network Parameters. In the process of
establishing a fault diagnosis model, it is necessary to ini-
tialize the basic parameters of the DBN network, including
the number of layers of the DBN network model, the di-
mension of the underlying input sample, the dimension of
the upper output label, and the forward unsupervised layer-
by-layer training learning rate, inverse fine-tuning learning
rate, number of iterations, momentum factor, and weight
matrix and bias. Among these basic parameters, the number
of model layers and the number of iterations can be set
according to experience, mainly based on model training
time and model accuracy; the underlying input sample di-
mension is determined by the number of elements of the
energy entropy normalized feature vector. )e label di-
mension is determined by the fault category labels contained
in the sample data; the weight matrix, bias, learning rate, and
momentum factor can be determined according to the
following rules. (1) Initial setting of the weight matrix and
bias: the initial setting of the weight matrix directly affects
the training speed of the model. If the initial setting of the

connection weight is too large, the fault classification result
will not meet the requirements, and the setting value is too
small. )is can lead to severely slow model training, neither
of which is desirable. Usually, the initial setting of the weight
should be a normal distribution conforming to N (0, 0.01),
and the initial setting of the bias between the visible layer and
the hidden layer can be 0. Because in the process of DBN
network training, the weight matrix and bias will be con-
tinuously updated according to the update criterion, which
can be initialized according to the empirical formula. )e
empirical formula is expressed as follows:

w � 0.1 × randn(n, m),

a � zeros(1, n),

b � zeros(1, m).

(1)

In the formula, n is the number of input layer neuron
units and m is the number of output layer neuron units.

(2) Initial setting of learning rate: the learning rate is a
key parameter of the gradient descent algorithm, an im-
portant basic algorithm in the DBN network training
process, which determines the gradient descent distance
each time the algorithm is executed. If the initial set value of
the learning rate is relatively small, it will cause the model
to step too slowly towards the minimum loss function
value, which will take extra time to complete the model
training; if the initial set value is large, it will lead to DBN.
)e reconstruction error of the network is too large, which
will seriously cause model training failure. )e initial
setting of the forward unsupervised layer-by-layer training
learning rate of the DBN model is generally 0.1, and the
initial setting of the reverse fine-tuning learning rate is
generally 0.01.

(3) Initialization of momentum factor: the main role of
momentum factor in DBN model training is to improve the
antioscillation performance of the training process by in-
troducing the estimated gradient value after the previous
iteration into the algorithm so that the algorithm can
converge quickly and stably to the allowable range.

θt+1 � θt + Δθt,

Δθt � mbΔθt−1 + ε ×
z ln L

z ln θ
.

(2)

In the formula, mb is momentum factor; ε is learning
rate; and zlnL/zlnθ is sample gradient.

)e formula is the parameter update formula of the DBN
network after adding the momentum factor. After the
momentum factor is introduced, the update value of the
DBN network parameter is calculated by the sample gradient

Table 2: Robot fault description.

Fault description Type 1 fault Type 2 fault Type 3 fault Type 4 fault Type 5 fault
Joint 1 0 1 1 1 1
Joint 2 0 0 1 1 1
Joint 3 0 0 0 1 1
Joint 4 0 0 0 0 1
Note. “0” means there is no fault at the joint; “1” means there is a fault at the joint.
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and the correction value after the last iteration. )e initial
value of the momentum factor is generally set to [0.5, 0.9].

5.3.ModelAccuracyAnalysis. According to the analysis, it can
be determined that the number of wavelet envelopes is 7.
Figure 8 shows the energy entropy normalized eigenvectors
corresponding to different wavelet base numbers. )e abscissa
is the wavelet packet decomposition node, and the ordinate is
the element value in the energy entropy normalized eigen-
vector. It can be seen from the comparison in the figure that
when the wavelet base is db1, there are still obvious differences
after the 96th node, and the signal information is relatively
complete; when the wavelet base is greater than db1, especially
when the wavelet base is above db4, at 96. )e normalized
energy entropy of all nodes after the node is close to 0, the
difference between the nodes is very small, and the signal
information is seriously lost. In order to make the normalized
energy entropy feature vector have a good representation and
meet the requirements of the underlying input of the DBN
model, the wavelet base is selected as db1 in this paper.

)e software used in this section is MATLAB 2019b, the
operating system is Windows 10, the CPU is Intel Core i7,
the graphics card is NVIDIA 930M, and the running
memory is 8G. Divide the sample data into training set and
test set according to the ratio of 4 :1. )e training set in-
cludes 192,000 experimental samples (38,400 normal ex-
perimental samples and 38,400 each of 4 types of fault
experimental samples); the test set contains 48,000 experi-
mental samples (9,600 normal experimental samples and
9,600 each of 4 types of fault experimental samples).
According to the decomposition level of 7 and the wavelet
base of db1, the wavelet packet is decomposed and nor-
malized. Each experimental sample can construct an energy
entropy normalized feature vector containing 128 elements.
)e training set of the DBN network model is 192,000 input
samples, and the test set is 48,000 input samples. )e input
layer item of the DBN networkmodel is 128, the output layer
is represented as the sample fault label, and the output layer
item is 6. )e basic parameters of the DBNmodel are shown
in Table 4, and the sample labels corresponding to the output
layer are shown in Table 5. )e number of iterations of the
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Figure 8: Node energy entropy under different wavelet bases. (a) db1. (b) db2. (c) db3. (d) db4.

Table 3: Robot vibration signal dataset.

Running speed Type 1 fault Type 2 fault Type 3 fault Type 4 fault Type 5 fault
30% 16000 16000 16000 16000 80000
50% 16000 16000 16000 16000 80000
70% 16000 16000 16000 16000 80000
Total 48000 48000 48000 48000 24000
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DBNmodel is set to 100, the number of inverse tuning times
is preset to 100 and multiplied to 1000, and the learning rate
and momentum factors are set to 0.1 and 0.9, respectively.
Figure 9 shows the fault identification accuracy under dif-
ferent tuning times. It can be seen from Figure 9 that when
the number of iterations reaches more than 900, the fault
identification accuracy tends to a fixed value of 99.4%. It can
be seen that the number of forward iterations of the DBN
model used in this paper is 100 times, and the number of
reverse tuning times is 100 times, should not be less than 900
times.

Figure 10 shows the fault identification accuracy of the
fault diagnosis model based on DBN network when dealing
with different fault states. It can be seen from the figure that
the fault identification accuracy of the fault diagnosis model
based on the DBN network can reach 99.4% when dealing
with a single fault, and with the increase of the number of
faults, the fault identification accuracy of the model also
begins to decline, especially when dealing with the first fault.
When there are five types of faults, the fault recognition
accuracy is only about 85%. It is concluded that the fault

diagnosis model based on DBN network used in this chapter
is not good in dealing with the fault diagnosis of multiple
faults coexisting, and the model needs to be further improved.

6. Conclusion

)e status of industrial robots in industrial production is getting
higher and higher, and its normal operation is directly related to
production safety, and it is also particularly important for the
fault diagnosis of industrial robots. In order to improve the fault
recognition accuracy of the industrial robot fault diagnosis
model, this paper is based on theDSmTtheory, and the results of
the DBN networkmodel diagnosis are fused at the decision level
to achieve the purpose of improving the fault recognition ac-
curacy of the model. Taking the output layer of the fault di-
agnosis model of the DBN network as the fault evidence, the
conflict between the pieces of evidence is analyzed, the fusion
rules and decision rules of DSmT are selected, and the fault
diagnosis model based on DBN and DSmT is established.
According to the requirements of the model for the experi-
mental sample data, an experimental platform is built, the basic
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Figure 9: )e fault identification accuracy of the fault diagnosis model based on DBN network when dealing with different fault states.

Table 4: DBN model parameters.

Parameter Numerical value
Wavelet packet decomposition layers 7
Wavelet packet wavelet basis db1
Initial bias 0
Initial weight 0.001
Learning rate 0.1
Momentum factor 0.9
Input layer item 128
Output layer project 6

Table 5: Sample labels corresponding to the output layer.

Sample description Sample label
Class I failure 0 0 0 0 0 0
Type II fault 1 0 0 0 0 0
)ree types of faults 1 1 0 0 0 0
Four types of faults 1 1 1 0 0 0
Five types of faults 1 1 1 1 0 0
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parameters of the DBN fault diagnosis model are determined
through MATLAB programming, and a fault diagnosis model
suitable for robots is established; finally, the fault diagnosis used
in this experiment is verified by design experiments. )e ap-
plicability of the model: It can be seen that the fault recognition
accuracy of the industrial robot fault diagnosis model based on
the DBN network can reach 99.4% when dealing with a single
industrial robot fault. With the increase of the number of in-
dustrial robot faults, the industrial robot fault recognition ac-
curacy of the model also begins to decline. Especially when
dealing with the fifth type of fault, the accuracy of industrial
robot fault recognition is only about 85%.
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