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For the slow speed and low accuracy of slow motor action recognition methods, this study proposes a motor action analysis
method based on the CNN network and the softmax classification model. First, in order to obtain motor action feature in-
formation, by using static spatial features of BN-inception based on CNN network extracted actions and high-dimensional
features of 3D ConvNet, then based on softmax classifier structure and realizing taxonomic recognition of the motor actions.
Finally, through the decision-layer fusion and time semantic continuity optimization strategy, the motion action recognition
accuracy is further improved and the more efficient motion action classification recognition is realized. *e results show that the
proposed method can complete the motor action analysis and achieve the classification recognition accuracy to 83.11%, which has
certain practical value.

1. Related Work

Movement action analysis is an important branch of
computer vision, which also involves data mining, image
processing, and other content, and is widely used in sports,
music playing, and many other scenes. Due to the complex
patterns of movement action and the big differences in
movement rules of different individuals, the movement
action recognition analysis is somewhat challenging and has
attracted the keen attention of relevant researchers. At
present, motion action analysis mainly focuses on motion
detection and recognition and has achieved remarkable
research results. For example, Hua-xin Zhang et al. realized
the estimation of human posture by capturing 3D motion
[1]. In addition, Xiaoqiang Li et al. applied the convolutional
neural network to action recognition. *e results show that
the action recognition results of a convolutional neural
network with the dual-attention mechanism are comparable
to the recognition results of the latest algorithm [2]. Haohua
Zhao et al. extracted intraframe feature vectors by deep
network training to form a multimode feature matrix. *e
matrix is input into CNN to achieve feature classification.
*e results show that the proposed method has better
performance than the existing LSTM in video action rec-
ognition [3]. Ran Cui et al. analyzed the motion by

constructing skeletal joints and static and dynamic features.
*e prediction of motion is realized through motion rec-
ognition [4]. Manikandaprabu et al. detected the ROI of the
human body using the combination of background sub-
traction and frame subtraction [5]. *en the CAMShift
algorithm is adopted for recognition. *e results show that
this method has good precision and has great advantages
compared with the most advanced algorithms. It can be seen
from the above studies that convolutional neural networks
are widely used in action recognition, among which the
CNN attracts more attention due to its unique
characteristics.

Despite the great progress in motor motion analysis, its
overall performance still needs to be improved, mainly due
to the blurred boundary of motor motion, which increases
the difficulty of the study. For the difficulties, this study
applies powerful deep learning capabilities, based on the
CNN network and the softmax classifier, and proposes a
deep learning-based motion action analysis method.

2. Basic Methods

2.1. Network Profile. *e CNN network is a representative
algorithm of deep learning, which is commonly used in
image processing, video image recognition, and other fields,
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with the characteristics of simple structure and strong ex-
pansion performance. Its basic module includes a convo-
lution layer, a pooling layer, and a full connection layer, as
shown in Figure 1. *e convolution layer is responsible for
extracting the local features of the input image to obtain
different feature maps; the pooling layer reduces the di-
mension of the extracted features of the convolution layer to
retain important information while reducing the risk of
overfitting due to nonessential information. Common
pooling layer settings include average pooling and maxi-
mum pooling; the full connection layer plays a classification
role in the network and enables sample data classification by
mapping the learned feature data to the space of sample
markers [6–11].

In recent years, with the deepening of deep learning re-
search, a huge breakthrough in CNN network structure has
been made. In terms of spatial feature extraction, the network
continuously deepens, forms the inception structure module,
as shown in Figure 2, which greatly reduces the quantities of
network parameters, realizes the multiscale processing fusion
of images, and obtains a better feature representation [12–15].

In terms of spatiotemporal feature extraction, a 3D
ConvNet network emerged, acquiring spatiotemporal fea-
tures by performing both convolutional and pooling oper-
ations in time and space simultaneously, further improving
the model performance.

2.2. Softmax Model Introduction. *e softmax model is a
multiclassifier based on the logistic regression model that
can handle multiclassification problems. In the softmax
model, for a given input x, the hypothetical function hθ(x)
was used to estimate the probability value of each category j,
p (y� j|x), i.e., estimating the probability of each classifi-
cation result of x. Suppose the k-dimensional vector output
by the function is the probability of these estimated k values.
*e hθ(x) form is as follows:
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In the formula, θ1, θ2, . . . , θk ∈ R
n+1 represents model
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is to normalize the probability
distribution so that the sum of all probabilities is one.

*us, the probability that softmax classifies x into cat-
egory j can be expressed as [16–18]
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Motor action analysis is a multitaxonomic recognition
process. According to the above analysis, in order to better
analyze motor actions, this paper first used the feature ex-
traction method to acquire motor representation based on

the CNN network and then identified by the softmax
classifier to realize the analysis of motor actions.

3. Motor Motion Analysis Method Based on
Deep Learning

3.1. Characteristic Extraction Based on CNN Network. *e
analysis of motor actions includes the appearance features
and action context information of the data. In order to
obtain well robust action characteristics, this study, based on
the CNN network, represents the motion action appearance
features and motion features by extracting the low-di-
mensional static features and high-dimensional spatial and
temporal features of the data, respectively, to represent the
motion action features, as shown in Figure 3.

3.1.1. Static Spatial Characteristic Extraction. In this paper,
the BN-inception network with high accuracy and efficiency
extracts the static spatial features of motion action, whose
network structure is shown in Table 1. Specific extraction
steps are as follows [19–22]:

Step 1: pretreatment for image cutting, motion action
images, and image level flipping to obtain a matrix that
meets the BN-Inception network input
Step 2: tacking the input matrix through a pretrained
BN-inception model with feature extraction and cal-
culating the feature average of each dimension of
different image parts according to equation (3)

dj �
1

M


,M

i�1
feai,j, j � 1, 2, . . . , 10{ }, j � 1, 2, . . . 1024{ }.

(3)

Step 3: obtaining final feature representation of a
single-frame image, as in formula (4)

Staticfea � d1, d2, . . . , d1024( . (4)

Decreeing f � Staticfea, a characteristic representation of
a sample of motion action data is a two-D matrix
F � f1, f2, . . . , fN  of N x D. In it, N represents the total
number of motion action video segment frames, fn repre-
sents the single-frame image feature, and D represents the
feature dimension size. And so forth, all the static spatial
features of the motor movement can be obtained.

3.1.2. Dynamic Spatiotemporal Feature Extraction. In this
paper, 3D ConvNet high-dimensional spatial features and
the network structure are shown in Figure 4. *e specific
extraction method is as follows:

Step 1: A multiscale frame sequence is entered and
divides the video into different scale segments
according to the set window size
Step 2: the spatiotemporal feature representation of
each segmentation timing segment fc6 layer is extracted
by network forward propagation, such as follows:
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Figure 1: Standard CNN network structure.
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Figure 2: Structural representation of inception. (a) Inception v1 module. (b) Inception v2 module.
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Figure 3: Structured flowchart of deep feature extraction.

Table 1: BN-inception network structure.

Type Kernel size/step Output size
Convolution 7 × 7/2 112×112× 64
Max pool 3 × 3/2 56× 56× 64
Convolution 3 × 3/1 56× 56×192
Max pool (3a) 2 × 3/2 28× 28×192
Inception (3b) 28× 28× 2S6
Inception (3a) 28× 28× 320
Inception (3c) stride2 14×14× 576
Inception (3a) 14×14× 576
Inception (4a) 14×14× 576
Inception (4b) 14×14× 608
Inception (4c) 14×14× 60×

Inception (5a) stride2 7× 7×1056
Inception (5b) 7× 7×1024
Inception (5c) 7× 7×1024
Avg pool 7 × 7/1 1× 1× 1024
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Dynamicfea � d1, d2, . . . , d4096( . (5)

Decreedf � Dynamicfea, for a sample of motion action
video data with a total frame number as N, if the time
overlap is 50%, the extracted action feature represen-
tation F � (f1, f2, . . . , fK) is a K × D 2D matrix.
Where K � ( N − (wi/2))/(wi/2), fk represents the
input fragment features, and D represents the di-
mension size. With the above operation, the spatio-
temporal features of all motion action video samples
are extracted.

3.2. Classification Identification of Motion Actions Based on
the Softmax Model

3.2.1. Model Structure Construction. Based on the above
feature extraction, the softmaxmodel structure was designed
as shown in Figure 5 in this study.*is classification network
includes three fully connected layers for selecting parame-
ters, one dropout layer to prevent overfitting, and finally,
connecting the softmax loss. During training, the parameters
were optimized by using small-batch gradient descent
[23–25].

Considering that CNN network-based features include
low-dimensional static features extracted by BN-inception
and high-dimensional spatiotemporal features extracted
from C3D, to improve the classification effect, different
dimensions were trained separately in the study. To set the
number of full connected-layer neurons of the low-di-
mensional feature softmax classification network for
fc1� 512, fc2� 256, fc3� 6, and fc1� 1024, fc2� 512, and
fc3� 6, while the high-dimensional feature softmax classi-
fication network for fc1� 1024, fc2� 512, fc3� 6.

3.2.2. Model Training and Testing. Specific procedures of
training and testing of the above softmax model are as
follows:

Step 1:*e feature matrix of the training sample data is
built. Assuming training sample QTY is M, the feature
matrix of sample i (i� 1,2,3, . . ., M) is Fi �N x D, N
represents the number of training sample frames, andD
represents the size of the feature dimension extracted
per frame. *e total number of M samples can be
represented as

F � 
M

i�1
Fi. (6)

To train the soft model by the network structure in
Figure 5, the number of fc3 output neurons is the same
as in the categorical category C and the output vector

X � xi , j � 1, 2, . . . , C. *erefore, the corresponding
marker probability yj for the output value xj obtained by
the softmax function can be expressed as [26]

yj � softmax(x)j �
exp xj 


C
j�1 exp xj 

. (7)

Step 2: to minimize the loss, a cross-entropy loss
function was used, as shown in equation (8) to mini-
mize the loss during training.

Hy(y) � − 
j

yjlog yj . (8)

In the abovementioned formula, yj represents the score
distribution of classification by softmax; and yj rep-
resents the target true value. *us, the C category final-
loss-value loss is the average of the cross-entropy loss
for each category, as in the following formula[27]:

Loss � mean Hy(y) . (9)

Step 3: after optimizing the training parameters to
speed up the model training, the model parameters
were optimized by usingM-BGD. During optimization,
weight optimization is as in formula (10)–(14) [28].

errors � yj − softmax xj . (10)

Δw � α × xj × errors, (11)

Δβ � α × errors, (12)

w � w − Δw, (13)

β � β − Δβ, (14)

where errors represent the weight error, α represents
the learning rate, w represents the weight, and β rep-
resents the deviation.
Step 4: model testing is performed. *e best softmax
classification model obtained by training is selected to
classify and identify the test dataset, and the corre-
sponding action category of the maximum classifica-
tion score in C categories output from the following
layer is selected as the classification result of the test
data, and it is expressed as follows:

class � index max y1, y2, . . . , yc ( . (15)

3.3. Decision-Making Layer-Based Fusion. Considering the
diversity, complexity, and ambiguity among motor
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Figure 4: 3D ConvNet network structure block diagram.
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movements and the different key movements, different
movement performance modes need to be mixed together to
improve the classification and recognition accuracy of motor
movements. Currently, common fusion methods include
feature-based and decision-based fusion. Since feature-
based fusion stitched and fused the features, it may lead to
mutual interference among features and learning efficiency.
In contrast, the fusion method based on the decision-layer
only needs to determine action categories based on different
classification confidence sizes, which is efficient and simple.
*erefore, this paper fuses the classification results in a
decision-layer fusion-based manner.

*e fusion structure based on the decision-layer fusion
mode is shown in Figure 6. Assuming the number of
classified motor action categories is C, for individual test
data X, the classification result is where
result(X) � s1, s2, . . . , sC , in it, si represents the classifi-
cation score of category i, i ∈ 1, 2, . . . , C{ }, the N road
classification identification results can be summarized
according to formula (16).

result Xi
′(  �

1
N

 N
n�1result X

i
n , n ∈ 1, 2, . . . , N{ }. (16)

*en to sum and average the data to obtain the final
classification results

result(X)′ � s1′, s2′, . . . , s3′ . (17)

In the formula, Xi
n represents the classification score of

sample X in the classifier n, and Xi
′ is the classification score

of X is category i after fusion. *e classification result based
on result(X)′ maximum is the final classification category of
sample X, as in the following formula:

label � max result Xi
′(  , i ∈ 1, 2, . . . C{ }. (18)

3.4. Time-Based Semantic Continuity Optimization.
Movement actions have a certain time sequence, so there are
a large number of redundant and incomplete trivial frag-
ments during sequential action detection. To further im-
prove the detection performance of the method according to
temporal semantic continuity, this study proposes an op-
timization strategy based on the characteristics of motion
action.

First, to model the motion action time sequence se-
mantics and time sliding window classification at different
scales, initial detection results are taken. Defined all de-
tection results of a motor action as X, seg(ci, wk) indicated a

category of ci in X, and a set of tests with a sliding window
size of wk can be represented as

X � seg ci, wk(  , (19)

seg ci, wk(  � sn, en, gn(  
Ni,k

n�1 . (20)

In the formula, C represents the total number of cate-
gorical categories; K represents the total number of sliding
windows; Ni,k is the number of action time segments de-
tected in ci and wk; sI, eI are the start and end times of
detected action segments; and gn represents the classifica-
tion score.

*en to calculate the classification score, the temporal
overlap values of different time periods, as in equations (21)
and (22), and compare them with the set threshold.

gI − gs


< θ, (21)

IOU pl, ps( ≥U × min Tl, Ts( l, s ∈ 1, 2, . . . Ni,k ,⋮l≠ s.

(22)

In the formula, P � seg(ci, wk) represents the detection
results of the same category ci and the same scale wk, pl � (sl,
el, gl), and ps � (ss, es, gs) both are one detection fragment of
P; |gl − gs|, IOU(pl, ps) represent the score difference and
time overlap value, respectively; Tl � el − sl, Ts � es − ss the
execution time of two actions, and θ, U the set threshold.

*e two action segments were integrated if the two
action segment classification scores were less than the set
threshold and the time overlap was greater than the
threshold.

Considering that the motion action obtained by the
above operation is synthesized from multiple incomplete
fragments, which partially destroys the spatiotemporal
structure of the action, it also needs to conduct classification
detection. *is study uses a 3D convolutional neural net-
work with good classification performance for reclassifica-
tion. Furthermore, to ensure more accurate classification
results and reduce the classification impact of sliding win-
dows on motor movements, it statistically calculated the
weight scores of different sliding windows for different

featur fc1 fc2 dropout Softmax
loss

fc3

Figure 5: Structure diagram of the classification network based on
softmax.

BD-inception
feature C3D classifier

Softmax classifier

All types of classification confidence
scores summary

Corresponding classification of the
maximum confidence level output

Figure 6: Fusion structure block diagram.
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categories, further adjusted the classification confidence
scores, and trained classificationmodels by softmax classifier
and overlap loss function.

Finally, to reduce redundancy detection in the presence
of sliding windows at different scales, they were processed by
nonmaximum inhibition to bring the final results close to
the start and end of the motor action.

4. Simulation Experiment

4.1. Data Source and Preprocessing. *e project dataset and
the*oumos14 publicdata set were used for this experiment.
*e project dataset contains 72 video action segments of six
action categories, including brushing, mouthwash, and
cleaning, with the characteristics of complex background,
variable perspective, and an obvious difference in action
execution speed. Its specific description is shown in Table 2.
*e *oumos14 public dataset includes 2,755 clips in 20
sports action categories, with a total of 212 test videos an-
notated with timing. Because there were two mislabels of
“270” and “1496” in this dataset, the remaining 210 anno-
tated timing videos were selected for this experiment.

4.2. Parameter Settings

4.2.1. BN-Inception Network Parameter Settings. *e BN-
inception network parameters of this experiment are set as
in Table 3.

4.2.2. 3D ConvNet Network Parameter Settings. In this ex-
periment, the 3D ConvNet network parameters were set as
follows: the convolutional kernel size was 3× 3× 3, the step
size was 1× 1× 1, the size of the first pooling layer was
1× 2× 2, and the size of the remaining pooling layers to
2× 2× 2 with maximum pooling.

4.2.3. Softmax Classifier Parameter Selection. *e M-BGD
optimized softmax classifier parameters were used for this
experiment. First, the batch-size size of the softmax classifier
was selected. *e average accuracy change curve on the project
dataset test set under the same number of iterations when
different batch-size values are taken in Figure 7. It is known
from Figure 7(a) that when batch-size� 64, the test had the
highest average accuracy, hence batch-size� 64 is set. Second,
the number of iterations is selected. *e effect of the different
number of iterations on the identification results during
training is shown in Figure 7(b). As Figure 7(b) shows that the
highest identification result was achieved when the number of
iterations was 20000, so the number of iterations was set at
20000.

During the training session, the loss change curves are
shown in Figure 8. *is figure shows that the loss values
gradually decrease and tend to 0 during training.

4.2.4. 7resholding Selection Based on Temporal Semantic
Continuity. *e choice of score difference optimized threshold
θ has a certain impact on the integration speed of the detection

window. If θ value is too large, it will easily lead to excessive
integration of the detectionwindow; if θ value is too small, it will
lead to the integration time fragments cannot being merged,
and there are still too many incomplete time fragments.
*erefore, this experiment determined reasonable values by
analyzing the influence of different θ values on mAP. Figure 9
shows the mAP taking different values at different temporal
overlap thresholds on the *oumos14 public dataset. And the
highest mAP value is when θ � 0.5e− 3. *erefore, this exper-
iment was set θ� 0.5− 3.

Considering the time continuity of motion movements
and the variability of sliding windows at different scales, the
time overlap threshold was set for U� 2/3.

4.3. Results and Analyses

4.3.1. Softmax Classified Network Performance Analysis.
To validate the performance of the proposed softmax
classification network, this study was validated on the
project dataset and compared with the SVM classification
network, and the results are presented in Table 4. According
to the table, compared with the SVM classifier, the softmax
classifier has a better effect, achieves a classification iden-
tification accuracy of 78.52%, and improves by 12.22%.
Moreover, with the same classification recognition accuracy,
the proposed softmax network in this study has a shorter
training time and looks about 10 times shorter than the SVM
classifier. *is shows that the softmax classification network
proposed in this study performs better and is more con-
ducive to motion action analysis.

4.3.2. Fusion Result Analysis Based on the Decision Layer.
To verify the effectiveness of the decision-layer-based fusion
method proposed in this study, the study was validated on
the project dataset and compared with the prefusion clas-
sification identification results, results are shown in Table 5.
According to the table, the average classification recognition
accuracy reached 79.89%, an improvement of 1.38% com-
pared with before the fusion method, indicating that the
fusion method has some effectiveness.

4.3.3. Validation Based on the Temporal Semantic Continuity
Optimization Method. To further verify the effectiveness of
this temporal semantic-based continuity optimization method,
the study was validated on the project dataset and compared the
identification results of partial test samples before and after
optimization, as shown in Table 6 and Table 7. According to the
table, this proposedmethod in this study can effectively improve
the recognition accuracy from 79.89% to 83.11%.

In the test dataset, the mAP values at different time
overlap thresholds are shown in Table 6. According to the
table, when α� 0.5, the average detection accuracy of the
present study is 60.2%.

4.3.4. Classification Identification Results Analysis. To verify
the effectiveness of the proposed method, this study visu-
alized the method classification identification results in
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Figure 10. Figure 10(a) is the input video stream identifi-
cation result, where the abscissa is the video frame, and the
ordinate is the identification accuracy with the highest
classification score for each frame. Figure 10(b) is the action
performed at different time periods in the video stream, the
abscissa represents the video stream, and the ordinate is the
action category. Since the project dataset used for the

experiment includes six action categories, each color in the
figure corresponds to one action category, so there are six
colors in Figure 10. According to the figure, the proposed
method has the highest accuracy of the actions in the
process. *e recognition accuracy of different actions de-
creased due to the vague beginning and end of the operation
type and time location. In Figure 10(b), green presents for

Table 2: Project dataset description.

Difficulties Description
Background noise Different individual clothing changes, relationships with the environment, etc

Action nonstandardized *ere are interruptions in the process of action execution, disorderly order, property management
action, etc

Speed difference of action
execution

Differences in speed and performance time during action execution occur due to the behavioral habits of
different individuals

Different perspectives Camera location, different angles, etc
Shelter Cameras and their own occlusion problems
Lens movement *ere are varying degrees of lens movement during the dataset recording process

Table 3: BN-inception network parameter settings.

type Depth #1 × 1 #1 × 1 reduce #3 × 3 #3 × 3 reduce Double #3 × 3 Pool + proj
Convolution 1
Max pool 0
Convolution 1 64 192
Max pool 0
Inception (3a) 3 64 64 64 64 96 Avg + 32
Inception (3b) 3 64 64 96 64 96 Avg + 64
Inception (3c) 3 0 128 160 64 96 Max + pass
Inception (4a) 3 224 64 96 96 128 Avg + 128
Inception (4b) 3 192 96 128 96 128 Avg + 128
Inception (4c) 3 160 128 160 128 160 Avg + 128
Inception (4d) 3 96 128 192 160 192 Avg + 128
Inception (4e) 3 0 128 192 192 256 Max + pass
Inception (5a) 3 352 192 320 160 224 Avg + 128
Inception (5b) 3 352 192 320 192 224 Max+ 128
Avg pool 0
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Figure 7: Selection of training parameters. (a) Effect on the identification results. (b) Effect of the number of training iterations on the
identification results.
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Figure 8: Loss curves of different iteration times. (a) *e loss change with 0–2,000 iterations. (b) *e loss change with 50000–11,000
iterations.
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Figure 9: Different thresholds θ impact onmAP. (a) θ changing curves with mAPwhen A is 0.1,0.2. (b) θ changing curves withmAPwhen A
is 0.3,0.4.

Table 4: Comparison of classification and recognition results of different classifiers.

Features test videos Softmax SVM
Pl 76.84 58.73
P2 80.33 59.51
P3 51.25 72.07
P4 86.39 84.24
P5 76.29 33.33
P6 943 6 94.21
P7 93.34 61.82
P8 71.69 72.82
P9 82.80 58.42
P10 71.88 67.91
AVG 78.52 66.30
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Table 6: Comparison of results before and after optimization.

Methods test videos Class score confusion (%) Action continuity and temporal integrated (%)
Pl 75.91 81.18
P2 81.63 8139
P3 63.26 76.97
P4 86.13 83.81
P5 74.2V 72.02
P6 94.43 94.62
P7 94.52 95.24
P8 76.17 80.46
P9 84.41 89.78
P10 68.23 75.61
AVG 79.89 83.11

Table 7: Comparison of map values at different time overlapping thresholds.

ɑ 0.5 0.6 0.7 0.7 0.8 0.9
mAP (%) 60.2 45.1 35.3 35.3 27.1 14.3

Table 5: Fusion experimental results.

classifier Features test video
Softmax classifier

Class score confusion
BN-inception features (%) C3D features (%)

Pl 76.84 58.73 75.91
P2 80.33 59.51 81.63
P3 51.25 72.0 63.26
P4 86.39 84.24 86.13
P5 76.29 33.33 74.29
P6 94.36 94.21 94.43
P7 93.34 61.82 94.52
P8 71.69 72.82 76.17
P9 82.80 58.42 84.41
P10 71.88 67.91 68.23
AVG 78.51 66.30 79.89
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Figure 10: Visualization of classification recognition results. (a) Optimal visualization results of single frames in a video stream.
(b) Classification results in the action timing flow.
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the third action category. *e proposed method presents the
detection results (545,687), (697,672), and (3440,3468)
frames, consistent with actual conditions.

To further analyze the classification and recognition
effects of the similarity action, a study performed taxo-
nomic identification of a test sample, and the results were
shown in Figure 11. In the figure, abscissa represents video
streams, the ordinate represents action categories, blue
represents true values, red represents predictive values,
and green boxes represent misclassification caused by
similarity actions. According to the figure, considering the
action time timing structure is conducive to the analysis of
motion movements.

5. Conclusion

In summary, using the deep-learning-based motor action
analysis method proposed in this study, static spatial
features of the motion action are extracted by using BN-
inception and high-dimensional spatiotemporal features
of motor movements are extracted by 3D ConvNet. A
characteristic representation containing the spatiotem-
poral information of the motor movements is obtained.
By using the softmax classifier and integrating the
extracted features with the fusion based on decision
layers, the accuracy of motion action classification and
recognition was improved, so that the average motion
action classification and recognition accuracy reached
79.89%. *rough the time-based semantic continuity
optimization strategy, the recognition accuracy of motion
movements was further improved, and the average mo-
tion action classification recognition accuracy reached to
83.11%, realizing the efficient recognition of motion
actions. However, there are still some deficiencies in this
study, mainly manifested in feature extraction. *e BN-
inception network and 3D ConvNet network used in the
study trained the model in advance for the public dataset
and did not fine-tune the model structure according to
the research content, so its robustness needs to be further
improved.

Data Availability

*e data used in this experiment are available from the
corresponding author upon request.
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