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-e multiobjective optimization problems are a common problem in various fields in the real society. -erefore, solving the
multiobjective optimization problems are one of the important problems studied by many researchers in recent years. From the
research in recent years, it can be seen that there is still a lot of room for development of particle swarm optimization in solving
multiobjective optimization problems. -is paper proposes a novel multiobjective particle swarm optimization combining
hypercube and distance, called HDMOPSO. -e particle velocity update part in this paper uses a combination of hypercube and
distance. In order to prevent the algorithm from falling into the local optimum, the part also uses the nonlinear decreasing
opposite mutation strategy, which enables the particles to explore a more area. Finally, a control strategy is used for external
archive to improve the convergence and diversity of the algorithm. -e algorithm has been simulated in 22 test problems and
compared with multiobjective particle swarm optimization algorithms (MOPSOs) and multiobjective evolutionary algorithms
(MOEAs). -e results show that the HDMOPSO can effectively improve the convergence and diversity, so it is an
effective improvement.

1. Introduction

In real life, many problems are composed of multiobjective
that conflict and influence each other. When an objective is
found to be the best solution, it cannot guarantee that other
objectives are also the best solution at the same time, butmay
lead to degradation. Scientists usually try to make these
objectives reach the best state in an enclosed area, which is
multiobjective optimization problems (MOPs).

In recent years, it has become one of the important
methods to integrate biological information into meta-
heuristic algorithms to solve multiobjective optimization
problems in evolutionary algorithms. Typical multiobjective
evolutionary algorithms (MOEAs) are genetic algorithm [1],
multiobjective particle swarm optimization [2], multi-
objective bee colony algorithm [3], multiobjective ant colony
algorithm [4], and multiobjective differential algorithm [5]
and so on. -e particle swarm optimization (PSO) is similar

to the genetic algorithm. It is also an algorithm invented
based on the behavior of the population in nature. Because of
its simple principle, high search efficiency, fast convergence
and so on, it is widely used in various fields of industrial
production.

When using PSO to deal with MOPs, we should not only
consider the common difficulties in the process of traditional
multiobjective optimization, but also consider the problems
targeted by PSO when applied toMOPs.-ere are four main
problems: (1) -e optimal particle selection strategy (i.e.,
how to select the “leader” particle to lead the entire pop-
ulation to quickly approach the Pareto front while retaining
some individual information); (2) Mechanisms for main-
taining diversity (i.e., how to guide particles out of the local
optimal solution); (3) Convergence improvement means
(i.e., how to improve the search efficiency while maintaining
the diversity of the population when the external archive set
increases sharply, and strengthen the advantage of the
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algorithm in terms of convergence velocity); and (4) -e
balance method of diversity and convergence (i.e., how to
dynamically coordinate the relationship between develop-
ment and local search at different stages of the optimization
process to obtain the best optimization results).

In order to solve the above four problems, scientists have
proposed various solutions. Among them, how to choose the
“leader” particles? Qingling Zhu et al. [6] proposed to select a
leader from an external archive set and decompose the
multiobjective optimization problems into a single opti-
mization problem. -is method greatly reduces the com-
putational complexity of the algorithm and also improves
the convergence velocity of the algorithm. -e fast con-
vergence speed and high convergence accuracy of the al-
gorithm often lead to poor diversity performance. Dividing
the population into multiple subgroups [7] and various
maintenance strategies for external archive [8] can effec-
tively improve the diversity of the algorithm. For the method
of balancing diversity and convergence, a combination of
multiple strategies [9] was required. Generally, combining
the selection of the “leader” with the update strategy of the
external archive can effectively balance the convergence and
diversity of the algorithm. Because a good “leader” selection
strategy can more efficiently guide the population to con-
verge to the Pareto front, and a good external archive control
strategy can better maintain the diversity of the population.
However, Xingyi Zhang et al. [10] proposed a multiobjective
particle swarm optimization with a competitive mechanism.
-is method was different from most multiobjective particle
swarm optimization algorithms (MOPSOs) because it does
not use external archive. It was more competitive in bal-
ancing diversity and convergence compared with most
MOPSOs. Means for improving convergence, although the
strategy of choosing a good “leader” can effectively improve
the convergence of the algorithm, as the dimensionality
increases, the convergence of the algorithm will be affected.
Since the inertia weight can effectively affect the convergence
of the algorithm in the scientific field, some assumptions
about the inertia weight can effectively improve the con-
vergence of the algorithm. For example, Peng Guang et al.
[11] proposed a dynamic learning factor. Of course, it is not
only the above methods that solve the multiobjective op-
timization problem, but also more extensive exploration in
the scientific field. -erefore, the main contributions of this
paper are as follows:

(1) A control strategy for external archive is proposed. In
the continuous iterative update of the algorithm, the
nondominant solutions produced will gradually
increase, which not only increases the complexity of
the algorithm, but also affects the convergence and
diversity of the algorithm. -erefore, when the total
number of nondominant solutions and newly gen-
erated nondominant solutions in the external archive
exceed the preset threshold, the hypercube tech-
nology is used in the external archive to control the
nondominant solutions within the preset threshold.
First, the hypercube is created in an external archive.
-en, a hypercube is created in the densest

hypercube. Finally, a nondominant solution is ran-
domly deleted from it. -is cycle continues until the
sum of the number of nondominant solutions and
the number of newly generated nondominant so-
lutions in the external archive is within the preset
threshold. -is method can effectively maintain the
diversity of solutions and improve the convergence
of algorithm.

(2) A nonlinear decreasing opposite mutation is pro-
posed. -is strategy performs nonlinear decreasing
opposite mutation on the particles of the non-
dominant solution generated after each iteration
update, which can effectively prevent the algorithm
from falling into the local optimal solution. Using the
method of nonlinear declining can well balance the
global exploration and local exploration capabilities
of the algorithm, and is an effective method to
balance diversity and convergence.

(3) -e combination of hypercube and distance method
is proposed to set the particle velocity to update the
social part. First, the hypercube established based on
the objective function value of the nondominant
solution in the external archive. Second, calculating
the average value of the nondominant solutions set
in each hypercube obtained. We call this value the
“generalized position”. -is value is the learning
position of the social part of the group. Finally, the
Euclidean distance method allows each particle to
learn from the generalized position closest to itself.
-is strategy is an effective means to improve the
diversity and convergence of algorithms.

-e rest of this paper is organized as follows: In Section
2, the relevant background knowledge of this paper is briefly
introduced. Section 3 gives the details of the HDMOPSO.
Section 4 verifies the performance of HDMOPSO by
comparing with existing MOPSOs and MOEAs. Finally,
Section 5 introduces the conclusions and future work of this
paper.

2. Background

2.1. MOPs. MOP is an optimization problem composed of
n-dimensional decision variables,m objective functions, and
P+Q constraints. MOPs can generally be transformed into a
minimum problem, so the mathematical form of MOPs is
expressed as follows:

Miny � F(x)

� f1(x), f2(x), . . . , fm(x) ,

gp(x)≤ 0, p � 1, 2, . . . , P,

hq(x) � 0, q � 1, 2, . . . , Q,

Li ≤xi ≤Ui, i � 1, 2, . . . n,

(1)

where x� (x1, x2, ..., xn)T ∈X ∈Rn is the n-dimensional de-
cision variable; y� (y1, y2, ..., ym)T ∈Y ∈Rm is the m-di-
mensional objective variable; P is the number of inequality
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constraints; Q is the number of equality constraints; and [Li,
Ui] is the boundary of the i-th dimension of the particle.

In MOPs, the definitions of Pareto dominance, Pareto
optimal solution, and Pareto optimal solution set are as
follows.

Definition 1 (Pareto dominance [12]). For two decision
vectors xu, xv ∈ X, xv dominates xu which is expressed as
xv≺xu, if and only if

∀i ∈ 1, 2, . . . , n{ }, fi xv( ≤fi xu(  ∧ ∃j ∈ 1, 2, . . . , n{ }, fj xv( <fj xu(  . (2)

Definition 2 (Pareto optimal solution [12]). x∗ ∈ X is the
Pareto optimal solution on X, if and only if

∃x ∈ X, x≺x∗. (3)

Definition 3 (Pareto optimal solution set [12]). -e set of all
Pareto optimal solutions becomes Pareto optimal set (P∗ ).
-e mathematical definition is as follows:

P
∗

� x ∈ X|∃x′ ∈ X, fj x′( ≤fj(x), (j � 1, 2, . . . , m) . (4)

Definition 4. (Pareto front (PF) [12]). All objective functions
corresponding to nondominant solutions constitute the
nondominant optimal objective domain, also known as
Pareto front (PF). -e mathematical definition is as follows:

PF � F x
∗

(  � f1 x
∗

( , f2 x
∗

( , . . . , fm x
∗

( ( |x
∗ ∈ P
∗

 . (5)

2.2. PSO. PSO was first proposed by Eberhart and Kennedy
[13] in 1995, and its concept originated from the study of
bird flock foraging behavior. Ven den Bergh [14] analyzed
and proved the stability and convergence of PSO from a
theoretical perspective. In 2002, coello et al. [15] applied the
PSO to solve MOPs, called multiobjective particle swarm
optimization (MOPSO). Imagine a scene where a group of
birds randomly search for food in an enclosed area. -ere is
a lot of food in this area, but all the birds do not know where
the food is. -ey only know how far the food is from the
current location. -erefore, the simplest and effective
strategy is needed to find the food quickly and efficiently.
PSO uses a massless particle to simulate birds in a flock of
birds. Particles have only two attributes, velocity and po-
sition. Velocity represents the speed of the particle’s
movement, and position represents the direction of the
particle’s movement. -e particle uses the following equa-
tion to update its velocity and position:

vi(t + 1) � wvi(t) + c1r1 pbesti(t) − xi(t)(  + c2r2 gbesti(t) − xi(t)( . (6)

xi(t + 1) � xi(t) + vi(t + 1). (7)

-e right side of equation (6) consists of three parts. -e
first part is the inheritance of the particle to the previous
velocity, which represents the particle’s trust in its own
motion state, and is the inertial motion of the particle’s
previous velocity. Among them, w is called the inertia
weight, and its value is non-negative. When the value is
large, the global optimization ability is strong, and the local
optimization ability is weak. When the value is small, the
global optimization ability is weak, and the local optimi-
zation ability is strong. -e second part is the self-cognition
part of the particle, which means that the particle’s thinking
about itself is derived from the summary of the past ex-
perience so as to implement the next behavior decision. Here
pbesti represents the optimal solution found by the i-th
particle in the historical experience, which is called “indi-
vidual extreme value”.-e third part is the social part, which
represents the process of information sharing and mutual
cooperation between particles. Particles can make appro-
priate adjustments to their flight directions by perceiving
their experienced companions. In the standard PSO, gbesti
represents the optimal solution found so far by the entire
group (i.e., the global optimal). In addition, in equation (6)

and (7), vi represents the velocity of the i-th particle; r1, r2 are
random numbers between (0, 1). xi represents the current
position of the i-th particle; c1, c2 represent acceleration
factors.

2.3.5e ExistingMOPSOs. Since PSO was proposed to solve
MOPs in 2002, many scholars have become more and more
interested in it. In the past twenty years, there have been
manyMOPSOs. Below, we’ll take a closer look at some of the
existing MOPSOs.

Coello et al. [15] first proposed using PSO to solve
MOPs. Pareto front was proposed in this algorithm to select
the nondominant solution in the current solution and save it
in the archive. -e global optimal particle was then deter-
mined from the archive. Although compared with tradi-
tional non-dominated sorting genetic algorithm II (NSGAII)
[16], this algorithm has certain advantages. But the diversity
of solutions and convergence performance can be further
improved. Nebro et al. [17] proposed a velocity constrained
multiobjective particle swarm optimization. In this algo-
rithm, the velocity contraction program was used to prevent
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the group explosive in the process of particle movement.
Literature [7, 8] proposed different methods for the selection
of global optimal particles on the basis of [12]. In reference
[7], the optimal solution was selected according to the way of
using crowding distance in the nondominant solution in the
external archive. In reference [8], the selection of the global
optimal solution was based on the grid technology in the
archive, and the optimal solution was selected according to
the grid distance. Experimental results show that literature
[7, 8] was superior to the algorithm proposed in literature
[12] in both diversity and convergence.

Zapotecas Martinez S et al. [18] proposed a method that
relied entirely on decomposition (dMOPSO). -e decom-
position method was similar to the algorithm proposed by
Qingfu Zhang et al. [19], which was to decompose multi-
objective optimization problems into several single-
− objective optimization problems. It can also be combined
with other decomposition methods in dMOPSO. In the
literature [18], a set of global optimal solutions can give the
set value of the best value of all the sub-problems to update
the position of the particle. Of course, the algorithm also has
some limitations because this algorithm mainly solves
continuous and unconstrained multiobjective optimization
problems.

Researchers have also proposed other methods to im-
prove the convergence and diversity of the algorithm. -e
biggest difference between the algorithm proposed by Xingyi
Zhang et al. [10] and other MOPSOs was that it does not use
external archives. A competition mechanism was used in the
algorithm, which was composed of three parts: nondomi-
nant solution selection, pair competition and particle
learning. Experimental results showed that this algorithm
was more competitive than the existing MOPSO algorithm.

-e above algorithms in the paper were almost aimed at
some continuous, discontinuous, concave, and convex
properties of MOPs. MOPs are more than that. Ying Hu
et al. [20] proposed a feature selection problem to solve fuzzy
costs, in which fuzzy advantage relations were used instead
of traditional Pareto dominance and fuzzy crowded dis-
tances were used to update files. A set of nondominant
solutions can be calculated by using defined fuzzy concepts
applied to an algorithm. -is was a highly competitive
approach to the problem of feature selection. -e algorithm
proposed by Zhang Yong et al. [21] was a powerful tool for
optimizing building energy preferences. A perturbation
strategy was proposed and control parameters such as inertia
weight and acceleration were deleted compared with the
traditional MOPSOs. -e traditional MOPSOs were more
sensitive to control parameters.

2.4. Opposite Direction. In 2005, Hamid R. Tizhoosh [22]
proposed the concept of the opposite direction. Some re-
searchers used the opposite direction strategy for initiali-
zation, two sets of positions were generated when the
position was initialized. One set was randomly generated,
and the other set was generated in the opposite direction
based on the existing position. Literature [23] used the
opposite direction for learning strategies. -e reason for the

opposite direction is because in a given environment, our
search direction may be opposite to the direction of the
optimal solution. If we continue to search in the wrong
direction, the algorithm will not get better results. So we can
observe all directions in the search process. Sometimes it
may be advantageous to look in the opposite direction. If the
opposite direction is advantageous, then the first step in
finding the opposite direction is as follows:

Definition 5 (opposite direction [22]). x is a real number
defined in a certain interval, x ∈ [L, U], if x is the opposite
value of x, the definition of x is as follows:

x � L + U − x. (8)

Similarly, the opposite number can also be defined in the
case of multiple dimensions.

Corollary 1 (see [22]). 5ere is x� (x1, x2, ..., xn), where x1,
x2, ..., xn ∈R and xi ∈[Li, Ui], then the opposite of x is defined
by x1, x2, ..., xn, which is defined as follows:

xi � Li + Ui − xi(i � 1, 2, . . . , n). (9)

3. HDMOPSO

Research has shown that the choice of “leader” particles in
PSO is crucial in recent years.-e “leader” particle can chose
the best solution the particle has found so far in single-
objective optimization, but MOPs is not the same as single-
objective optimization because multiobjective optimization
is restricted by multiobjective and generates more than one
nondominant solution each time. -erefore, a good “leader”
selection strategy can effectively improve the convergence
and diversity of the algorithm. In addition, Because PSO has
a fast convergence speed, it may make the algorithm fall into
local optimal in MOPs. -e nondominant solution particles
after each iteration are used to nonlinear reduce the opposite
mutation so that the particles can explore more area in this
paper. Finally, this paper also uses an external archive
control strategy to improve the convergence and diversity of
the algorithm. -e details are introduced as follows.

3.1. Control Strategy for External Archive. -e external ar-
chive is used to store the nondominant solutions after
each iteration, and it is the candidate solutions, also called
the solutions. When the external archive is empty, the
solutions will directly enter the external archive. Because a
new set of solutions is generated after each update pop-
ulation, this new set of solutions is compared to the
historical solution in the external archive. Such behavior
is called “elitism”. It has three situations. (1) If the new
solutions dominate the historical solutions in the external
archive, the historical solutions will be deleted in the
external archive. (2) If the new solution is dominated by
the historical solutions in the external archive, the
dominated new solutions will also be automatically dis-
carded. (3) If the historical solutions in the external ar-
chive and the new solutions do not dominate each other,
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the solutions in the external archive and the newly gen-
erated solutions remain unchanged. After judging the
above three situations, the final solutions will be placed in
an external archive. However, as the number of iterations
increases, the nondominant solutions in the external
archive gradually increase, which will increase the sub-
sequent calculation work and also easily cause the algo-
rithm to fall into a local optimal situation. -erefore, an
external archive control strategy is needed to control the
nondominant solutions within a certain threshold. -e
convergence and diversity of the algorithm are improved
at the same time.

-is paper uses hypercube technology to control external
archive within a certain threshold. -e main problem of
external archive control is that the particles in the external
archive are all nondominant solutions and do not dominate
each other. -ere may be very small nondominant solutions
that prevent the algorithm from maintaining diversity.
-erefore, this paper mainly builds hypercube based on the
value of the objective function value of the nondominant
solutions, from which the densest hypercube is selected to
create a hypercube, and then one is randomly deleted. -e
cycle continues until all new solutions after elitism are put
into the external archive. Figure 1 shows the control strategy
of the external archive when the objective number is two.
Begin to establish fixed hypercube according to the objective
function value of the current nondominant solutions, and
then select a hypercube with high density each time to es-
tablish an adaptive hypercube again, and randomly delete
one from the hypercube with high density. -e above
method can effectively delete the denser nondominant so-
lutions in the external archive and increase the diversity of
the algorithm. In addition, each time fixed hypercube is
established based on the objective function value of the
current nondominant solutions, and then an adaptive hy-
percube is established in the densest hypercube, which
greatly reduces the computational complexity of the
algorithm.

3.2. Nonlinear Decreasing opposite Mutation Strategy. At
present, mutation strategy is often used to improve the
performance of the algorithm, but the mutation used in this
paper is a combination of exploration and convergence. It
differs from most of the mutations proposed by the re-
searchers, because most of the current mutation is to in-
crease the particle’s exploration ability and the ability to
jump out of the local optimal solution. For example, the
mixed mutation and jump mutation proposed in the liter-
ature [24]. However, the opposite mutation of nonlinear
decreasing in this paper is that the current nondominant
solution is not guided by better particles in the social part, so
opposite search is carried out to prevent the algorithm from
falling into the local optimal solution. In addition, the global
search tends to local search in nonlinear decreasing way,
which is beneficial to the convergence of the algorithm. So
the mutation also has the ability to converge.

In the multiobjective particle swarm optimization, as the
iteration increases, the algorithm converges quickly.

According to the characteristics of the PSO, all particles are
generally searched based on the particles of the nondomi-
nant solutions that have been generated. As a result, the
particles currently in the nondominant solutions can only
judge the next search direction based on the inheritance of
the previous velocity and their own experience. If these
particles have no particle leadership, the search may deviate
from the right direction. If it continues to search in this way,
it will not only affect the convergence velocity of the al-
gorithm, but also affect the convergence of the algorithm.
-erefore, this paper proposes a nonlinear decreasing op-
posite mutation strategy. If the particle loses the direction
guided by the social part, it may be beneficial to search in the
opposite direction. But it is definitely impossible for all
particles to search in the opposite direction. Because all the
particles search in the opposite direction, the population will
gradually move away from the better solution and it is always
part of the search process, whichmakes the algorithm unable
to converge well. So, this paper adopts the opposite mutation
of the particles that get new nondominant solutions after
each iteration. Figure 2 shows mutation simulation that
there are 15 particles in a certain area, and after a certain
iteration, three nondominant particles are produced. As can
be seen from the left image in Figure 2, there are some areas
in this area that can be further explored. -erefore, we use
the strategy of opposite mutation of nondominant solutions
particles so that the particles can explore more areas, the
same as 1, 2, and 3 in Figure 2. However, it is impossible to
explore farther places all the time, which will hinder the
convergence of the algorithm and may also deteriorate the
performance of the algorithm. So we used nonlinear de-
creasing opposite mutation. In the early stage of the algo-
rithm, the particles of the new nondominant solutions
undergoing farther opposite mutation can better perform
global exploration. With the increase of iterations, the al-
gorithm also enters the final stage, because the algorithm is
best to converge to the Pareto front, so it needs to be locally
explored to the current nondominant solutions in the later
stage. -erefore, a small range of opposite mutation is
carried out at the end of the algorithm, and local exploration
is carried out, so that the algorithm can gradually converge
to the Pareto front. -e pseudocode of the nonlinear de-
creasing opposite mutation search strategy is shown in
Figure 3.

v

0

0

Deletef2

f2

f1

f1

Figure 1: Control strategy for external archive.
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3.3. Setting the Social Part Based on theMethod of Combining
Hypercube andDistance. Figure 4 shows the flying direction
of the particle in PSO. -e symbols in the figure indicate the
reference equation (6). It can be seen from Figure 4 that the
particle i finally determines the next flight direction
according to three parts. Since the social part of the guidance
represents the optimal position that the group finds, the
position has more resources, so gbesti is the key factor for the
next flight direction of particle i. From the above analysis, we
can know that actually refers to gbesti position. Since in the
single-objective particle swarm optimization algorithm,
there is only one optimal solution of the population after
each iteration, so the effect of the particle learning of the
population following the optimal solution in the population
in the social part may be the best. However, there is more
than one optimal solution in the multiobjective particle
swarm optimization. If one optimal solution is used blindly
to lead the particles to fly, it may cause the particles to
converge in one direction and lose the diversity of the

algorithm. At present, the most used strategy in this part is
roulette-wheel, which uses a certain probability tomake each
particle choose a leader to lead itself, but this method is more
random.

-is paper avoids this randomness and proposes a
method based on the combination of hypercube and dis-
tance to set the social part of the particle velocity update
equation under external archive. According to the estab-
lishment of hypercube in the external archive, the candidate
solutions in the external archive are divided into a certain
number of hypercube according to the objective function
value. Take the nondominant solutions set in each hyper-
cube to find its average value. In this process, the non-
dominant solutions in the same hypercube can effectively
exchange information. Figure 5 shows the hypercube created
by the candidate solutions in the external archive when the
problem is two objectives. For any hypercube, if the space
has k nondominant solutions, the average of different di-
mensions is calculated. As shown in (10), where j represents
the j-th hypercube, u represents the number of hypercube
with nondominant solutions, k represents that the space has
k nondominant solutions, and i represents decision variable
dimension. It can be seen from Figure 5 that there is more
than one such hypercube, so this paper also uses the shortest
distancemethod tomake each particle autonomously choose
its own average value. As shown in (11), the particles are
compared with the average value in each hypercube until the
Xj corresponding to the minimum d_min is selected. At this
time, the velocity update equation of the particle swarm
algorithm is shown in (12). In equation (12), Xj is the di-
rection guide of the i particle in the social part in t iter-
ations.Xj is determined by equation (11). -e rest of the
parameter analysis is consistent with equation (6).

Xji
�

xji1
+ xji2

+ . . . + xjik

k
, (i � 1, 2, 3, . . . , n; j � 1, 2, . . . , u), (10)

d min � 
u

j�1
Xj − x⎛⎝ ⎞⎠

1/2

, (11)

Non-dominanted particle
Particle a�er opposite
mutation

1 2

3

1
2

3

Dominanted particle
Original non-dominanted
particle

Figure 2: Mutation simulation.

% position=particle position
% gencount=current iteration
% maxgen=total number of iterations
% a=nonlinear decreasing factor
% rank(i)=1, i is the non-dominanted solution at this time
function Opposition-Mutation-Operator(position, gencount, U, L, rank, maxgen)

a=(1-gencount/maxgen);
for i=1 to n

if rank(i)=1
Position(i,:)=U(i,:)+L(i,:)-a*position(i,:);

else
position(i,:)=position(i,:);

end if 
end for 

end function

Figure 3: Pseudocode of nonlinear decreasing opposite mutation.
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vi(t + 1) � wvi(t) + c1r1 pbesti(t) − xi(t)(  + c2r2 Xj(t) − xi(t) . (12)

3.4. Steps of HDMOPSO. -e steps of HDMOPSO are as
follows:

Step 1 (initialize). First, set related parameters, such as
population size N, inertia weight w, and learning
factors c1, c2, etc. Secondly, randomly initialize the
positions of N particles and set the velocity v � 0. Fi-
nally, the individual extreme value is determined.
Step 2. -e dimension of particles is disturbed, similar
to literature [12]. However, in this paper, random se-
lection of reference dimensions, random selection of
particles and dimensions requiring variation are used
to increase the diversity of the algorithm.
Step 3. Calculate the target value for each particle.

Step 4. -e Pareto dominant sorting method is used to
sort each particle (reference [12]), and the nondomi-
nant sorting is selected to be released into the external
archive.
Step 5. Update the external archive as described in
Section 3.1.
Step 6. -e opposite mutation of the method particles
is nonlinear decreasing according to Section 3.2.
Step 7. -e individual extreme values are updated based
on the sorting values of Step 4. If the particle ranks higher,
the individual extremum is updated. If there is no pro-
motion, there is no update. If the rank is the same, the
choice is made randomly with a probability of 0.5.

pbesti

gbesti

vi (t)

xi (t)

xi (t + 1)

Figure 4: Display of the flying direction of particle i.

1

2

3

k

0

Any hypercube
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Figure 5: -e setting of the social part is based on hypercube.
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Step 8. Set up the social section as described in Section
3.3.
Step 9. -e particle velocity and position are updated
using equation (12) and (7).
Step 10. If the maximum number of iterations is
reached, the algorithm ends; otherwise, return to Step
2.

4. Experimental Study

4.1. Test Problems. In order to better test the performance of
HDMOPSO, this paper uses the test problems of ZDT1-4
and ZDT6 [25], which are concave and convex in geo-
metrical problems, and the test problems have two objec-
tives. In order to show the performance of this algorithm as
much as possible, this paper also uses DTLZ1-7 [26], the test
problems are geometrically linear, convex, and scalable.
Finally, this paper also uses themore complex and difficult to
converge to the Pareto front UF1-10 [27] test problems to
test the performance of the algorithm in this paper.

4.2. Performance Indicators. Inverse generation distance
(IGD) [28] and hypervolume (HV) [29], standard deviation
(Std.), statistical boxplot, convergence trajectory compari-
son, and Pareto front simulation are used to compare the
performance of each algorithm. -e reason for choosing
these test indicators is because they are used in most of the
literature to compare the performance of various multi-
objective optimization algorithms. Both IGD and HV are
comprehensive indicators used to evaluate the convergence
and diversity of algorithms. But the two are different. IGD is
the average of the minimum distance between the set of
points on Pareto front surface and the population. HV does
not need Pareto front, only a reference point, and the
comprehensive performance of the algorithm is evaluated
according to the hypervolume obtained from the solution to
the reference point. Among them, the smaller the IGD value,
the better the convergence and diversity of the algorithm.
-e larger the value of HV, the better the quality of the
solution set. Std. is used to evaluate the stability of the al-
gorithm, and use statistical boxplots to further illustrate the
stability of the algorithm. -e trajectory compares the
convergence velocity of each algorithm.

4.3. Experimental Settings. In this section, we will compare
HDMOPSO with seven MOPSOs (MOPSO [15], MOPSOCD
[30], dMOPSO [18], SMPSO [17], NMPSO [31], MPSOD
[32], CMOPSO [10]) and seven MOEAs (AGEII [33],
ANSGAIII [34], DGEA [35], NSGAIII [36], MOEAD [19],
ARMOEA [37], and AGEMOEA [38]) to verify its perfor-
mance (the full name of the acronyms here is shown in
Table 1). -e settings in the test problems are as follows:
ZDT1-4 and ZDT6 are two objective problems, the pop-
ulation size is 200, the number of decision variables of ZDT1-3
is 30 dimensions, and the number of decision variables of
ZDT4 and ZDT6 is 10 dimensions; -e DTLZ settings are all
three objective problems, the population size is 100, and the

number of decision variables is 12 dimensions; UF1-7 is set to
two objective problems, while UF8-10 is set to three objective
problems, the population size is all 200, and the number of
decision variables is all 30 dimensions. Each algorithm is
evaluated 10,000 times and each algorithm is independently
run 30 times. In order to ensure the fairness of algorithm
comparison, other parameters of the comparison algorithm
are set with reference to the original text. -e parameters data
is shown in Table 2. In Table 2, pc and pm represent crossover
probability and mutation probability respectively. ηc and ηm
are the distribution indices of simulating binary crossover
(SBX) and polynomial-based mutation (PM) respectively. div
is the number of divisions of the coordinate axes.w, c1, c2, c3 is
a parameter in the speed update in PSO. F and CR are dif-
ferential evolution parameters set in MPSOD. r is the number
of selected elite particles in CMOPSO. R is the number of
direction vectors in DGEA. All experimental results are
obtained in MATLAB R2020b version in a computer with a
PC of 3.60GHz and 16GB of storage.-e original codes of all
comparison algorithms are provided by PlatEMO [39].

4.4. Comparison with MOPSOs. Table 3 shows the average
and standard deviation of the IGD obtained from 30 in-
dependent runs of the HDMOPSO and MOPSOs on 22 test
problems. -e following is a data analysis of Table 3 (-e
best average for each test instance in Table 3 is highlighted in
bold. -e meaning of bold highlights in Tables 4–6 is the
same as in Table 3). It can be seen from Table 3 that the test
problems of the HDMOPSO in ZDT have a good IGD value.
Especially the effect on ZDT4 is particularly obvious, which
shows that the algorithm performs better on convex sets.
However, it can be seen from the data of ZDT3 that the
HDMOPSO has a significant deterioration compared to
other seven algorithms, indicating that the algorithm has a
poor effect on discontinuous test problems. UF test prob-
lems are obviously better, and 80% of the IGD values of the
other seven algorithms show a clear advantage. Especially
UF7 and UF10 are an order of magnitude better than the
other seven algorithms. However, the experimental result
cannot converge to the Pareto front obviously on the UF test
problems, and it can be further improved in future research.
It can be seen from the test problems of DTLZ that the
algorithm is seriously degraded. SMPSO and MPSOD
performed well in the test functions of DTLZ, but only two
problems well. It is worth noting that the HDMOPSO has
achieved better results on DTLZ6. From the overall effect
analysis, it can be found that among the 22 test problems
given above, the performance of the HDMOPSO is the best.

Table 4 shows the average and standard deviation of HV
obtained from 30 independent runs of the HDMOPSO and
MOPSOs on 22 test problems. It can be seen from Table 4
that ZDT test problems are obviously better, because 80% of
ZDT test problems are better than the other seven algo-
rithms. -e test problems of UF have some changes, but
there are also 80% test problems that are better. -ere is still
a significant deterioration in the test problems of DTZL. It
can be seen from Table 4 that the HDMOPSO and MOPSOs
still have strong competitiveness.
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In order to more intuitively see the stability of the al-
gorithm in this paper when compare withMOPSOs, we use a
statistical boxplot of the IGD values obtained from 30 in-
dependent runs of each algorithm. Figure 6 shows the 12 test
problems in Table 3 that perform well. It can be seen from
Figure 6 that it is consistent with the results obtained in
Table 3. Not only is the optimization result better, but it also
shows a better advantage in terms of stability. Although not
significant compared with other algorithms in ZDT6, they all
performed better than MOPSO, MOPSOCD and MPSOD.
-e comparison between HDMOPSO, NMPSO and
dMOPSO on DTLZ6 is not obvious, but it has obvious
advantages over the other five algorithms. For the other 10
test problems, they all showed good advantages, especially
UF5, UF7, UF9, and UF10 showed obvious advantages.

Another important performance of HDMOPSO is the
speed of convergence. Figure 7 shows the IGD convergence
trajectory obtained by HDMOPSO and MOPSOs running
10000 times in ZDT6, UF4, and DTLZ6. Although
HDMOPSO is not obvious compared with NMPSO on
ZDT6 and DTLZ6, the convergence speed of HDMOPSO on
UF4 is significantly better than that of optimal NMPSO. A
closer look at the convergence trajectories of ZDT6 and
DTLZ6 will reveal that HDMOPSO converges faster than

NMPSO in the early stage of the evaluation. In the data in
Table 3, the IGD value of NMPSO on the two test problems
of ZDT6 and DTLZ6 is better than that of NMPSO. -e
above shows that HDMOPSO still has some advantages over
NMPSO in terms of convergence speed.

Finally, Figure 8 shows the Pareto front simulation of
each algorithm on ZDT4. It can be seen from the figure that
HDMOPSO almost all converge to the Pareto front, and the
distribution is good. Other algorithms have no convergent
Pareto front.

-rough the above analysis of the comparison of
HDMOPSO and MOPSOs, it can be concluded. Among
the 22 test functions of HDMOPSO, 12 test problems
performed better on the IGD indicator, and it can be seen
from Figure 6 that the stability is also better. On the HV
indicator, 13 test problems performed well. Figures 7 and
8 also briefly temporarily show the convergence of
HDMOPSO. In particular, it can be concluded from the
data in Tables 3 and 4 that HDMOPSO is more com-
petitive than the other seven algorithms in the above ZDT
and UF test problems. It also shows that the operator
proposed in this paper has good performance in con-
vergence and diversity, which confirms the relevant
statement in Section 3 of this paper.

Table 1: List of acronyms.
Acronyms -e full name of an acronym
MOPSO MOPSO: a Proposal for multiple objective particle swarm optimization
MOPSOCD An effective use of crowding distance in multiobjective particle swarm optimization
dMOPSO A multiobjective particle swarm optimizer based on decomposition
SMPSO SMPSO a New PSO-based metaheuristic for multiobjective optimization
NMPSO particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems
MPSOD A new multiobjective particle swarm optimization algorithm based on decomposition
CMOPSO A competitive mechanism based multiobjective particle swarm optimizer with fast convergence
AGEII A fast approximation-guided evolutionary multiobjective algorithm

NSGAIII An evolutionary many-objective optimization algorithm using reference− point-based non-dominated
sorting approach, part I: Solving problems with box constraints

MOEAD MOEA/D:a multiobjective evolutionary algorithm based on decomposition
ARMOEA An indicator based multiobjective evolutionary algorithm with reference point adaptation for better versatility
AGEMOEA An adaptive evolutionary algorithm based on non-Euclidean geometry for many-objective optimization

Table 2: Parameter settings of all the compared algorithms.

Algorithms Parameters settings
1 MOPSO w ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5], div� 10
2 MOPSOCD w ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5]
3 dMOPSO w ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5]
4 SMPSO w ∈ [0.1, 0.5], c1, c2∈ [1.5, 2.5], pm � 1/n
5 NMPSO w ∈ [0.1, 0.5],c1, c2, c3 ∈ [1.5, 2.5], pm � 1/n, ηm � 20

6 MPSOD w ∈ [0.1, 0.5], c1, c2, c3 ∈[1.5, 2.5], pc � 0.9, F� 0.5,
CR� 0.5, pm � 1/n, ηm � 20, ηc � 20

7 CMOPSO r� 10
8 AGEII pm � 1/n, pc � 0.9, ηm � 20, ηc � 20
9 ANSGAIII pm � 1/n, pc � 1.0, ηm � 20, ηc � 20
10 DGEA R� 10
11 NSGAIII pm � 1/n, pc � 1.0, ηm � 20, ηc � 20
12 MOEAD pm � 1/n, pc � 1.0, ηm � 20, ηc � 20
13 ARMOEA pm � 1/n, pc � 1.0, ηm � 20, ηc � 20
14 AGEMOEA pm � 1/n, pc � 1.0, ηm � 20, ηc � 20
15 HDMOPSO w � 0.4, c1 � c2 � 2, div� 50
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4.5. Comparison with MOEAs. Table 5 shows the average
IGD of HDMOPSO andMOEAs for 30 independent runs on
22 test problems. It can be seen from Table 5 that
HDMOPSO is significantly better than the other four al-
gorithms in the ZDT test problems. Of course, the perfor-
mance of the ZDT3 test problem here is not very obvious,
which also shows that HDMOPSO is not outstanding in the
non-continuous set. For other concave and convex sets,
HDMOPSO has obvious advantages over the rest of
MOEAs, because ZDT1, ZDT2, and ZDT6 are all an order of
magnitude lower than the best value of the other seven
algorithms, and it is in the ZDT4 test problem. It is two
orders of magnitude lower than the best one of the other

MOEAs algorithms. In addition, the UF test problems also
show a clear advantage, because 90% of the 10 UF test
problems are better than the other four algorithms. Al-
though the single UF optimization effect is not very obvious,
the overall effect is good. In the DTLZ test problem, you can
see the algorithm obvious deterioration, and none of the
algorithms given can show obvious advantages in the DTLZ
test problems, and the better one is AGEMOEA. Because 3 of
the 7 DTLZ test problems are better than other test prob-
lems. Only one or two of the remaining algorithms per-
formed well on the DTLZ test problems. Such a result may
be that each test problem of DTLZ is quite different and
contains many local optimal values, which makes it more

Table 3: IGD values of HDMOPSO and MOPSOs on 22 test problems.

Problems MOPSO MOPSOCD dMOPSO SMPSO NMPSO MPSOD CMOPSO HDMOPSO

ZDT1 7.5088e− 1
(2.92e− 1)

3.9812e− 3
(5.25e− 3)

4.8573e− 2
(1.60e− 2)

9.5769e− 2
(9.47e− 2)

3.8449e− 2
(2.19e− 2)

1.0348e− 1
(4.21e− 2)

3.1875e− 3
(4.35e− 4)

3.1535e− 3
(1.27e− 4)

ZDT2 1.3707e+ 0
(3.04e− 1)

1.1354e− 1
(2.14e− 1)

3.8831e− 2
(1.16e− 2)

9.2544e− 2
(1.65e− 1)

7.5055e− 2
(1.16e− 1)

1.4178e− 1
(7.53e− 2)

2.9214e− 3
(4.96e− 4)

3.3724e− 3
(1.66e− 4)

ZDT3 7.6697e− 1
(2.06e− 1)

6.0399e− 2
(5.76e− 2)

3.6479e− 2
(7.25e− 3)

2.1381e− 1
(9.78e− 2)

9.1792e− 2
(1.05e− 2)

2.2252e− 1
(6.02e− 2)

3.8754e− 3
(8.05e− 4)

1.9279e− 1
(8.24e− 4)

ZDT4 1.4121e+ 1
(4.52e+ 0)

1.8729e+ 1
(5.99e+ 0)

3.0691e+ 0
(4.33e+ 0)

9.3197e+ 0
(4.44e+ 0)

1.6335e+ 1
(6.71e+ 0)

3.6865e+ 1
(4.99e+ 0)

2.0777e+ 1
(5.99e+ 0)

3.2676e− 3
(1.66e− 4)

ZDT6 1.2262e− 1
(5.57e− 1)

3.8317e− 3
(1.75e− 3)

5.5255e− 3
(5.36e− 3)

1.9286e− 3
(9.20e− 5)

2.2633e− 3
(1.88e− 4)

1.7753e− 2
(9.12e− 3)

1.5817e− 3
(3.73e− 5)

1.4406e− 3
(1.40e− 4)

UF1 5.4509e− 1
(9.68e− 2)

7.0292e− 1
(1.37e− 1)

6.4403e− 1
(9.29e− 2)

3.8697e− 1
(9.73e− 2)

1.2881e− 1
(2.06e− 2)

2.5801e− 1
(3.95e− 2)

8.9465e− 2
(1.16e− 2)

1.0285e− 1
(3.90e− 3

UF2 1.0642e− 1
(1.52e− 2)

1.3831e− 1
(1.41e− 2)

9.5994e− 2
(7.11e− 3)

1.0196e− 1
(9.90e− 3)

8.3881e− 2
(7.73e− 3)

1.1263e− 1
(7.82e− 3)

6.2882e− 2
(7.46e− 3)

4.2773e− 2
(4.68e− 3)

UF3 5.1345e− 1
(2.66e− 2)

3.7654e− 1
(5.93e− 2)

3.3278e− 1
(8.05e− 3)

4.5443e− 1
(5.30e− 2)

3.4509e− 1
(4.01e− 2)

5.0080e− 1
(1.39e− 2)

3.7938e− 1
(4.19e− 2)

2.2609e− 1
(3.25e− 2

UF4 1.1332e− 1
(1.32e− 2)

7.6570e− 2
(8.53e− 3)

1.3842e− 1
(3.90e− 3)

1.1399e− 1
(5.74e− 3)

6.0533e− 2
(7.40e− 3)

9.9699e− 2
(3.70e− 3)

1.1406e− 1
(9.14e− 3)

5.6199e− 2
(3.62e− 3)

UF5 3.1549e + 0
(4.02e− 1)

3.9278e + 0
(4.15e− 1)

3.2280e + 0
(2.91e− 1)

2.9766e + 0
(5.34e− 1)

1.6894e + 0
(4.72e− 1)

2.8148e + 0
(2.29e− 1)

8.6853e− 1
(2.37e− 1)

4.7202e− 1
(6.69e− 2)

UF6 2.3228e + 0
(5.49e− 1)

2.6922e + 0
(7.84e− 1)

2.5325e + 0
(6.61e− 1)

1.2647e + 0
(4.51e− 1)

6.2828e− 1
(7.21e− 2)

1.3585e + 0
(2.17e− 1)

3.9239e− 1
(5.48e− 2)

5.7701e− 1
(1.12e− 1)

UF7 6.1070e− 1
(1.01e− 1)

6.4461e− 1
(1.08e− 1)

3.9902e− 1
(8.50e− 2)

3.8701e− 1
(1.41e− 1)

1.8045e− 1
(1.40e− 1)

2.3004e− 1
(5.59e− 2)

1.5988e− 1
(1.35e− 1)

5.4736e− 2
(4.64e− 3)

UF8 4.0988e− 1
(4.08e− 2)

7.9818e− 1
(1.73e− 1)

3.4771e− 1
(2.78e− 2)

3.9381e− 1
(5.03e− 2)

4.8985e− 1
(1.02e− 1)

5.5254e− 1
(4.72e− 2)

6.3473e− 1
(9.14e− 2)

2.9892e− 1
(8.93e− 2)

UF9 5.5595e− 1
(3.53e− 2)

8.6183e− 1
(1.14e− 1)

5.8222e− 1
(3.31e− 2)

5.5428e− 1
(3.84e− 2)

4.5999e− 1
(7.11e− 2)

6.5550e− 1
(4.06e− 2)

9.1997e− 1
(1.16e− 1)

1.3840e− 1
(2.20e− 2)

UF10 2.2568e + 0
(2.69e− 1)

4.9302e + 0
(7.78e− 1)

9.4535e− 1
(1.42e− 3)

2.8317e + 0
(4.19e− 1)

1.5045e + 0
(2.82e− 1)

4.1995e + 0
(3.64e− 1)

4.3317e + 0
(4.34e− 1)

5.1341e− 1
(9.72e− 2)

DTLZ1 6.5415e + 1
(2.14e + 1)

4.3410e + 1
(1.15e + 1)

1.1274e+ 1
(9.86e+ 0)

1.3471e + 1
(1.55e + 1)

3.1643e + 1
(6.32e + 0)

4.0410e + 1
(5.50e + 0)

6.0047e + 1
(1.90e + 1)

4.4077e + 1
(1.40e + 1)

DTLZ2 1.0105e− 1
(1.17e− 2)

1.0093e− 1
(7.88e− 3)

1.4135e− 1
(1.21e− 2)

8.9297e− 2
(7.51e− 3)

8.0083e− 2
(2.41e− 3)

5.6798e− 2
(8.22e− 4)

6.1246e− 2
(1.20e− 3)

1.0454e− 1
(7.54e− 3)

DTLZ3 1.5740e + 2
(5.27e + 1)

1.1338e + 2
(3.54e + 1)

5.4112e + 1
(5.58e + 1)

2.9074e+ 1
(3.08e+ 1)

9.0109e + 1
(1.87e + 1)

1.1838e + 2
(1.59e + 1)

1.3237e + 2
(3.85e + 1)

1.2671e + 2
(3.40e + 1)

DTLZ4 4.0345e− 1
(1.71e− 1)

2.9034e− 1
(4.99e− 2)

3.1557e− 1
(3.37e− 2)

4.4687e− 1
(1.86e− 1)

1.2632e− 1
(1.41e− 1)

6.2524e− 2
(5.04e− 3)

1.5281e− 1
(2.69e− 1)

1.1168e− 1
(3.22e− 2)

DTLZ5 1.5467e− 2
(6.41e− 3)

2.1884e− 2
(7.37e− 3)

4.1222e− 2
(5.96e− 3)

5.7212e− 3
(3.92e− 4)

1.2661e− 2
(2.12e− 3)

5.4102e− 2
(5.42e− 3)

7.7990e− 3
(6.03e− 4)

2.2555e− 2
(2.85e− 3)

DTLZ6 3.1831e + 0
(7.91e− 1)

1.0237e− 2
(1.62e− 2)

3.2892e− 2
(3.09e− 4)

1.1052e + 0
(9.46e− 1)

1.5140e− 2
(2.31e− 3)

2.5577e− 1
(2.58e− 1)

2.3427e− 1
(4.95e− 1)

7.5019e− 3
(1.07e− 3)

DTLZ7 1.6046e + 0
(7.71e− 1)

8.9805e− 2
(7.76e− 3)

1.3944e− 1
(5.84e− 3)

2.0575e− 1
(1.52e− 1)

7.5483e− 2
(3.57e− 3)

1.6499e− 1
(1.57e− 2)

1.7726e− 1
(2.33e− 1)

9.8273e− 2
(1.16e− 2)

Best/All 0/22 0/22 1/22 2/22 1/22 2/22 4/22 12/22
-e best average on each test instance is highlighted in bold.

10 Scientific Programming



difficult to optimize the algorithm. HDMOPSO andMOEAs
in a total of 22 test problems, HDMOPSO performs better
than the other seven algorithms with 15 and showed obvious
advantages in the test problems of ZDTand UF. HDMOPSO
is more competitive compared with the other seven
algorithms.

In order to further prove the results obtained above, the
HV average and standard deviation of each algorithm in-
dependently run 30 times are also used. -e results are
shown in Table 6. It can be seen from the HV indicator that
HDMOPSO has a clear advantage over the other algorithms
in the ZDT test problems, reaching 100% excellence. UF also
show a better advantage than other algorithms, because 80%

of the UF test problems performed better than the other
sevenMOEAs algorithms. Although the data optimization is
not very obvious, the overall data can still see obvious ad-
vantages. HDMOPSO deteriorated significantly in the DTLZ
test problems. -e best performer in DTLZ is AGEMOEA,
because 3 out of 7 DTLZ problems are better. Compared to
the results in Tables 5 and 6, although there are some dif-
ferences in the conclusions drawn from the data, it can also
be clearly concluded that HDMOPSO is more competitive
than other MOEAs in ZDT and UF test problems.

In order to show more clearly that HDMOPSO not only
performs excellent numerically, but also performs well in
terms of stability. Figure 9 shows the statistical boxplot of the

Table 4: HV values of HDMOPSO and MOPSOs on 22 test problems.

Problems MOPSO MOPSOCD dMOPSO SMPSO NMPSO MPSOD CMOPSO HDMOPSO

ZDT1 8.7931e− 2
(9.03e− 2)

7.1927e− 1
(7.63e− 3)

6.6243e− 1
(1.85e− 2)

6.0408e− 1
(1.14e− 1)

6.7972e− 1
(2.38e− 2)

5.7261e− 1
(5.43e− 2)

7.1985e− 1
(6.73e− 4)

7.2106e− 1
(1.67e− 4)

ZDT2 0.0000e + 0
(0.00e + 0)

3.6202e− 1
(1.38e− 1)

3.8608e− 1
(1.89e− 2)

3.6414e− 1
(1.23e− 1)

3.8523e− 1
(9.41e− 2)

2.7324e− 1
(7.70e− 2)

4.4470e− 1
(8.96e− 4)

4.4479e− 1
(3.14e− 4)

ZDT3 1.1302e− 1
(9.47e− 2)

5.6641e− 1
(4.00e− 2)

6.0143e− 1
(1.46e− 2)

5.1021e− 1
(7.81e− 2)

5.7190e− 1
(5.59e− 3)

4.5070e− 1
(4.78e− 2)

5.9962e− 1
(1.34e− 3)

6.5930e− 1
(5.18e− 4)

ZDT4 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

6.2941e− 2
(7.98e− 2)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

7.2109e− 1
(1.94e− 4)

ZDT6 3.6205e− 1
(8.57e− 2)

3.8818e− 1
(1.85e− 3)

3.8626e− 1
(5.94e− 3)

3.9003e− 1
(9.26e− 5)

3.8979e− 1
(1.63e− 4)

3.7439e− 1
(9.32e− 3)

3.9034e− 1
(4.35e− 5)

3.8917e− 1
(1.28e− 4)

UF1 1.3865e− 1
(6.26e− 2)

4.8415e− 2
(4.52e− 2)

6.5077e− 2
(5.42e− 2)

2.6626e− 1
(8.05e− 2)

5.2452e− 1
(3.33e− 2)

3.6635e− 1
(4.49e− 2)

5.8159e− 1
(1.25e− 2)

5.8358e− 1
(5.07e− 3)

UF2 6.0344e− 1
(9.56e− 3)

5.4564e− 1
(1.92e− 2)

6.1588e− 1
(6.00e− 3)

6.0714e− 1
(8.34e− 3)

6.1881e− 1
(8.74e− 3)

5.7945e− 1
(9.61e− 3)

6.4476e− 1
(7.24e− 3)

6.7344e− 1
(5.90e− 3)

UF3 1.5813e− 1
(1.85e− 2)

2.5471e− 1
(4.65e− 2)

3.0604e− 1
(1.01e− 2)

2.0705e− 1
(4.80e− 2)

2.9285e− 1
(3.54e− 2)

1.7439e− 1
(1.29e− 2)

2.7643e− 1
(3.07e− 2)

4.4309e− 1
(4.02e− 2)

UF4 2.9015e− 1
(1.65e− 2)

3.3601e− 1
(1.17e− 2)

2.5150e− 1
(4.74e− 3)

2.9022e− 1
(6.68e− 3)

3.6468e− 1
(9.76e− 3)

3.0708e− 1
(4.93e− 3)

2.8639e− 1
(1.07e− 2)

3.6976e− 1
(4.36e− 3)

UF5 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

1.4949e− 2
(2.77e− 2)

1.9772e− 2
(2.21e− 2)

UF6 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

1.8676e− 3
(7.67e− 3)

3.3322e− 2
(3.38e− 2)

0.0000e + 0
(0.00e + 0)

1.4986e− 1
(7.13e− 2)

1.3127e− 2
(1.39e− 2)

UF7 5.1589e− 2
(4.38e− 2)

2.0540e− 2
(2.93e− 2)

1.6202e− 1
(6.16e− 2)

1.7451e− 1
(1.02e− 1)

3.8134e− 1
(1.10e− 1)

2.7511e− 1
(6.12e− 2)

4.1920e− 1
(9.58e− 2)

5.0640e− 1
(6.73e− 3)

UF8 1.7316e− 1
(3.13e− 2)

8.5853e− 3
(1.78e− 2)

2.7047e− 1
(1.87e− 2)

1.6701e− 1
(3.92e− 2)

2.8249e− 1
(6.24e− 2)

5.2054e− 2
(1.89e− 2)

9.4227e− 3
(1.56e− 2)

3.5290e− 1
(1.67e− 2)

UF9 2.1069e− 1
(3.67e− 2)

2.6834e− 2
(3.09e− 2)

2.2614e− 1
(1.75e− 2)

2.1584e− 1
(3.84e− 2)

3.1904e− 1
(5.62e− 2)

1.1375e− 1
(2.83e− 2)

1.2671e− 2
(1.52e− 2)

6.3437e− 1
(2.37e− 2)

UF10 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

9.0885e− 2
(4.33e− 5)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

3.1914e− 1
(4.40e− 2)

DTLZ1 3.0031e− 5
(1.64e− 4)

0.0000e + 0
(0.00e + 0)

6.0507e− 3
(3.06e− 2)

7.7696e− 2
(1.78e− 1)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

DTLZ2 4.4743e− 1
(2.05e− 2)

4.5905e− 1
(1.68e− 2)

3.6806e− 1
(2.25e− 2)

4.5953e− 1
(1.65e− 2)

5.5708e− 1
(1.26e− 3)

5.4695e− 1
(2.35e− 3)

5.3735e− 1
(3.01e− 3)

4.7654e− 1
(1.15e− 2)

DTLZ3 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

4.3486e− 2
(7.73e− 2)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

DTLZ4 2.5413e− 1
(9.14e− 2)

3.2113e− 1
(6.45e− 2)

3.0697e− 1
(4.79e− 2)

2.9025e− 1
(1.12e− 1)

5.3648e− 1
(6.52e− 2)

5.3767e− 1
(9.08e− 3)

4.8396e− 1
(1.33e− 1)

5.1071e− 1
(1.03e− 2)

DTLZ5 1.8647e− 1
(5.26e− 3)

1.8447e− 1
(6.82e− 3)

1.5607e− 1
(1.02e− 2)

1.9841e− 1
(3.22e− 4)

1.9596e− 1
(7.26e− 4)

1.4596e− 1
(6.89e− 3)

1.9642e− 1
(5.33e− 4)

1.8259e− 1
(3.45e− 3)

DTLZ6 0.0000e + 0
(0.00e + 0)

1.9703e− 1
(9.32e− 3)

1.8259e− 1
(2.20e− 4)

6.4336e− 2
(8.99e− 2)

1.9555e− 1
(1.02e− 3)

1.0561e− 1
(5.88e− 2)

1.5968e− 1
(8.12e− 2)

1.9487e− 1
(4.19e− 3)

DTLZ7 5.2658e− 2
(5.50e− 2)

2.6585e− 1
(2.37e− 3)

2.4595e− 1
(3.67e− 3)

2.3873e− 1
(2.32e− 2)

2.7377e− 1
(1.57e− 3)

2.1759e− 1
(1.05e− 2)

2.6121e− 1
(2.34e− 2)

2.6668e− 1
(3.33e− 3)

Best/All 0/22 1/22 0/22 3/22 2/22 1/22 2/22 13/22

Scientific Programming 11



15 test problems in Table 5 that perform well. It can be seen
from Figure 9 that HDMOPSO performs better on ZDT1-2,
ZDT4 and ZDT6, and its stability is better than other

MOEAs. HDMOPSO has shown obvious advantages in UF
test problems except for UF6, and the stability is better than
other algorithms. In the DTLZ test problem, although it is
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Figure 6: IGD values statistical boxplot of HDMOPSO and MOPSOs on ZDT1, ZDT4, ZDT6, UF2-5, UF7-10, and DTLZ6 problems. (1, 2,
3, 4, 5, 6, 7, and 8 in each statistical boxplot represent MOPSO, MOPSOCD, dMOPSO, SMPSO, NMPSO, MPSOD, CMOPSO, and
HDMOPSO, respectively).
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Figure 7: IGD values convergence trajectory of HDMOPSO and MOPSOs comparison on ZDT6, UF4, and DTLZ6 problems.
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Figure 8: Continued.
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Figure 8: -e Pareto front simulation of HDMOPSO and MOPSOs on ZDT4 problem.

Table 5: IGD values of HDMOPSO and MOEAs on 22 test Problems.

Problems AGEII ANSGAIII DGEA NSGAIII MOEAD ARMOEA AGEMOEA HDMOPSO

ZDT1 8.5782e− 2
(2.08e− 2)

1.0467e− 1
(1.70e− 2)

1.2053e + 0
(2.29e− 1)

1.0429e− 1
(1.49e− 2)

1.9889e− 1
(9.18e− 2)

7.6736e− 2
(3.69e− 2)

3.6880e− 2
(6.45e− 3)

3.1535e− 3
(1.27e− 4)

ZDT2 1.8054e− 1
(8.01e− 2)

2.0715e− 1
(5.94e− 2)

9.0498e− 1
(3.82e− 1)

1.9997e− 1
(3.51e− 2)

5.8069e− 1
(6.00e− 2)

6.7290e− 1
(5.31e− 2)

7.7285e− 2
(1.92e− 2)

3.3724e− 3
(1.66e− 4)

ZDT3 8.9131e− 2
(2.48e− 2)

9.4678e− 2
(1.55e− 2)

1.0018e + 0
(2.14e− 1)

9.3148e− 2
(1.44e− 2)

1.8357e− 1
(6.61e− 2)

5.5582e− 2
(3.07e− 2)

3.2164e− 2
(1.03e− 2)

1.9279e− 1
(8.24e− 4)

ZDT4 5.5026e− 1
(3.48e− 1)

2.5973e + 0
(7.71e− 1)

8.8328e + 0
(6.15e + 0)

2.7783e + 0
(7.38e− 1)

5.5262e− 1
(1.82e− 1)

1.6582e + 0
(7.07e− 1)

9.0188e− 1
(3.21e− 1)

3.2676e− 3
(1.66e− 4)

ZDT6 2.4504e− 1
(1.14e− 1)

1.5490e + 0
(1.97e− 1)

1.2914e− 1
(6.77e− 1)

1.4790e + 0
(2.24e− 1)

8.3351e− 2
(3.09e− 2)

9.1101e− 1
(2.46e− 1)

3.9277e− 1
(1.22e− 1)

1.4406e− 3
(1.40e− 4)

UF1 1.5388e− 1
(5.14e− 2)

1.3636e− 1
(2.85e− 2)

6.2298e− 1
(1.34e− 1)

1.5270e− 1
(4.12e− 2)

3.0044e− 1
(8.04e− 2)

1.1692e− 1
(2.29e− 2)

1.1202e− 1
(2.27e− 2)

1.0285e− 1
(3.90e− 3)

UF2 9.2897e− 2
(1.19e− 2)

8.1301e− 2
(7.06e− 3)

1.7032e− 1
(2.16e− 2)

8.2564e− 2
(5.03e− 3)

2.3152e− 1
(5.81e− 2)

7.8838e− 2
(1.20e− 2)

7.0535e− 2
(7.08e− 3)

4.2773e− 2
(4.68e− 3)

UF3 4.9379e− 1
(3.06e− 2)

4.7702e− 1
(8.89e− 3)

5.7403e− 1
(4.99e− 2)

4.8138e− 1
(7.78e− 3)

3.3739e− 1
(2.31e− 2)

4.3339e− 1
(2.91e− 2)

4.2878e− 1
(2.67e− 2)

2.2609e− 1
(3.25e− 2)

UF4 1.0075e− 1
(4.48e− 3)

9.4497e− 2
(3.05e− 3)

1.2237e− 1
(8.65e− 3)

9.5983e− 2
(3.42e− 3)

1.1437e− 1
(5.47e− 3)

8.1805e− 2
(2.63e− 3)

8.1923e− 2
(3.13e− 3)

5.6199e− 2
(3.62e− 3)

UF5 9.9788e− 1
(2.90e− 1)

1.4897e + 0
(3.01e− 1)

2.9718e + 0
(6.70e− 1)

1.4989e + 0
(3.52e− 1)

1.4515e + 0
(2.29e− 1)

6.7696e− 1
(1.71e− 1)

7.2508e− 1
(1.92e− 1)

4.7202e− 1
(6.69e− 2)

UF6 6.7744e− 1
(2.48e− 1)

7.3813e− 1
(1.39e− 1)

2.5695e + 0
(7.97e− 1)

7.5191e− 1
(1.41e− 1)

5.3913e− 1
(1.32e− 1)

5.0980e− 1
(6.57e− 2)

5.2598e− 1
(7.62e− 2)

5.7701e− 1
(1.12e− 1)

UF7 2.7369e− 1
(1.10e− 1)

2.0424e− 1
(7.04e− 2)

7.3512e− 1
(1.32e− 1)

1.9615e− 1
(7.53e− 2)

4.5705e− 1
(1.11e− 1)

2.1657e− 1
(1.05e− 1)

1.6563e− 1
(9.49e− 2)

5.4736e− 2
(4.64e− 3)

UF8 3.6710e− 1
(3.96e− 2)

3.5163e− 1
(3.51e− 2)

7.4397e− 1
(1.22e− 1)

3.4069e− 1
(3.59e− 2)

5.7647e− 1
(2.54e− 1)

3.4331e− 1
(5.95e− 2)

3.5650e− 1
(4.59e− 2)

2.9892e− 1
(8.93e− 2)

UF9 5.0642e− 1
(9.51e− 2)

4.9393e− 1
(5.80e− 2)

7.6655e− 1
(1.05e− 1)

4.8937e− 1
(4.30e− 2)

5.1151e− 1
(9.53e− 2)

4.5574e− 1
(5.93e− 2)

4.8648e− 1
(7.66e− 2)

1.3840e− 1
(2.20e− 2)

UF10 2.2698e + 0
(8.82e− 1)

2.2711e + 0
(3.91e− 1)

4.6292e + 0
(8.83e− 1)

2.3699e + 0
(4.58e− 1)

7.2339e− 1
(9.63e− 2)

1.0200e + 0
(2.54e− 1)

1.1947e + 0
(4.26e− 1)

5.1341e− 1
(9.72e− 2)

DTLZ1 5.1405e + 0
(2.27e + 0)

4.1193e + 0
(1.44e + 0)

3.4648e + 1
(2.14e + 1)

3.9783e + 0
(1.45e + 0)

3.9079e + 0
(2.46e + 0)

2.8103e + 0
(1.69e + 0)

2.3748e+ 0
(1.02e+ 0)

4.4077e + 1
(1.40e + 1)

DTLZ2 9.8293e− 2
(3.67e− 3)

5.8990e− 2
(1.55e− 3)

1.0238e− 1
(1.29e− 2)

5.4934e− 2
(1.70e− 4)

5.4947e− 2
(2.57e− 4)

5.5105e− 2
(2.49e− 4)

5.6639e− 2
(6.03e− 4)

1.0454e− 1
(7.54e− 3)

DTLZ3 2.0041e + 1
(8.37e + 0)

1.0668e + 1
(5.22e + 0)

9.7820e + 1
(5.91e + 1)

1.1436e + 1
(5.42e + 0)

1.7152e + 1
(8.56e + 0)

7.5904e+ 0
(4.27e+ 0)

7.7873e + 0
(4.32e + 0)

1.2671e + 2
(3.40e + 1)

DTLZ4 1.7246e− 1
(2.01e− 1)

1.5477e− 1
(1.97e− 1)

2.2674e− 1
(1.22e− 1)

1.9844e− 1
(2.52e− 1)

5.3593e− 1
(3.20e− 1)

2.6570e− 1
(2.45e− 1)

1.2354e− 1
(1.74e− 1)

1.1168e− 1
(3.22e− 2)
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Table 5: Continued.

Problems AGEII ANSGAIII DGEA NSGAIII MOEAD ARMOEA AGEMOEA HDMOPSO

DTLZ5 4.3520e− 2
(4.17e− 4)

1.1211e− 2
(1.32e− 3)

5.7895e− 2
(1.07e− 2)

1.2431e− 2
(1.53e− 3)

3.2469e− 2
(7.07e− 4)

5.7577e− 3
(1.51e− 4)

5.7118e− 3
(1.72e− 4)

2.2555e− 2
(2.85e− 3)

DTLZ6 9.0139e− 2
(1.57e− 1)

2.3606e− 2
(4.81e− 2)

1.3535e + 0
(1.06e + 0)

2.0972e− 2
(5.03e− 3)

1.0585e− 1
(2.37e− 1)

5.1735e− 3
(5.18e− 4)

5.1700e− 3
(1.03e− 4)

7.5019e− 3
(1.07e− 3)

DTLZ7 1.3022e− 1
(5.00e− 2)

1.1682e− 1
(1.06e− 1)

4.6400e− 1
(3.09e− 1)

9.8316e− 2
(7.55e− 2)

2.3783e− 1
(2.25e− 1)

3.0406e− 1
(2.62e− 1)

2.4587e− 1
(2.55e− 1)

9.8273e− 2
(1.16e− 2)

Best/All 0/22 0/22 0/22 1/22 0/22 2/22 4/22 15/22

Table 6: HV values of HDMOPSO and MOEAs on 22 test problems.

Problems AGEII ANSGAIII DGEA NSGAIII MOEAD ARMOEA AGEMOEA HDMOPSO

ZDT1 6.0606e− 1
(2.62e− 2)

5.8450e− 1
(2.08e− 2)

4.4826e− 3
(2.09e− 2)

5.8438e− 1
(1.89e− 2)

5.1233e− 1
(7.39e− 2)

6.3314e− 1
(2.92e− 2)

6.7352e− 1
(8.65e− 3)

7.2106e− 1
(1.67e− 4)

ZDT2 2.2885e− 1
(6.09e− 2)

2.0517e− 1
(4.47e− 2)

3.0196e− 2
(8.64e− 2)

2.1195e− 1
(2.79e− 2)

8.7068e− 2
(2.21e− 2)

3.8852e− 3
(9.36e− 3)

3.4325e− 1
(2.39e− 2)

4.4479e− 1
(3.14e− 4)

ZDT3 5.4307e− 1
(2.30e− 2)

5.4222e− 1
(1.73e− 2)

3.1248e− 2
(4.54e− 2)

5.3874e− 1
(1.11e− 2)

5.8582e− 1
(5.62e− 2)

5.8511e− 1
(5.30e− 2)

5.8154e− 1
(1.81e− 2)

6.5930e− 1
(5.18e− 4)

ZDT4 2.1891e− 1
(1.74e− 1)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

1.6314e− 1
(1.11e− 1)

8.3158e− 3
(2.36e− 2)

5.6042e− 2
(9.66e− 2)

7.2109e− 1
(1.94e− 4)

ZDT6 1.4324e− 1
(7.39e− 2)

0.0000e + 0
(0.00e + 0)

3.7415e− 1
(7.16e− 2)

0.0000e + 0
(0.00e + 0)

2.7816e− 1
(3.84e− 2)

2.6587e− 3
(7.76e− 3)

6.8723e− 2
(4.98e− 2)

3.8917e− 1
(1.28e− 4)

UF1 4.9545e− 1
(7.03e− 2)

5.1256e− 1
(3.37e− 2)

9.6182e− 2
(7.52e− 2)

4.9318e− 1
(5.06e− 2)

4.2186e− 1
(4.74e− 2)

5.5831e− 1
(2.44e− 2)

5.5828e− 1
(3.20e− 2)

5.8358e− 1
(5.07e− 3)

UF2 6.0395e− 1
(1.02e− 2)

6.1498e− 1
(7.79e− 3)

5.1072e− 1
(2.83e− 2)

6.1363e− 1
(6.45e− 3)

5.5211e− 1
(2.50e− 2)

6.3112e− 1
(6.46e− 3)

6.3627e− 1
(6.09e− 3)

6.7344e− 1
(5.90e− 3)

UF3 1.7440e− 1
(2.58e− 2)

1.8893e− 1
(8.50e− 3)

1.1804e− 1
(2.74e− 2)

1.8488e− 1
(7.68e− 3)

3.0498e− 1
(3.55e− 2)

2.0647e− 1
(2.47e− 2)

2.1327e− 1
(1.86e− 2)

4.4309e− 1
(4.02e− 2)

UF4 2.9950e− 1
(6.87e− 3)

3.1424e− 1
(3.80e− 3)

2.7710e− 1
(1.02e− 2)

3.1270e− 1
(4.40e− 3)

2.8594e− 1
(6.95e− 3)

3.3215e− 1
(3.56e− 3)

3.3372e− 1
(3.93e− 3)

3.6976e− 1
(4.36e− 3)

UF5 6.5633e− 3
(1.76e− 2)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

3.4451e− 4
(1.53e− 3)

0.0000e + 0
(0.00e + 0)

3.0366e− 2
(4.49e− 2)

2.5807e− 2
(4.27e− 2)

1.9772e− 2
(2.21e− 2)

UF6 3.0354e− 2
(4.03e− 2)

1.0728e− 2
(1.60e− 2)

0.0000e + 0
(0.00e + 0)

9.3560e− 3
(1.44e− 2)

9.3876e− 2
(6.38e− 2)

4.8097e− 2
(3.11e− 2)

3.7781e− 2
(3.16e− 2)

1.3127e− 2
(1.40e− 2)

UF7 2.8984e− 1
(8.79e− 2)

3.2586e− 1
(6.92e− 2)

1.8432e− 2
(2.96e− 2)

3.2919e− 1
(6.85e− 2)

2.2900e− 1
(6.15e− 2)

3.6263e− 1
(7.07e− 2)

3.8745e− 1
(8.00e− 2)

5.0640e− 1
(6.73e− 3)

UF8 1.7267e− 1
(5.81e− 2)

2.2906e− 1
(3.97e− 2)

2.1604e− 2
(2.25e− 2)

2.2585e− 1
(3.84e− 2)

1.5686e− 1
(6.22e− 2)

3.0044e− 1
(2.17e− 2)

2.9239e− 1
(3.78e− 2)

3.5290e− 1
(1.67e− 2)

UF9 2.2393e− 1
(7.64e− 2)

2.5375e− 1
(5.14e− 2)

6.5632e− 2
(5.11e− 2)

2.5881e− 1
(4.10e− 2)

2.9108e− 1
(5.77e− 2)

3.1461e− 1
(4.40e− 2)

2.9501e− 1
(5.19e− 2)

6.3437e− 1
(2.37e− 2)

UF10 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

3.4782e− 2
(2.76e− 2)

3.0422e− 5
(1.16e− 4)

0.0000e + 0
(0.00e + 0)

3.1914e− 1
(4.40e− 2)

DTLZ1 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

DTLZ2 5.4387e− 1
(2.34e− 3)

5.4919e− 1
(2.81e− 3)

4.4879e− 1
(2.60e− 2)

5.5562e− 1
(6.43e− 4)

5.5533e− 1
(6.50e− 4)

5.5668e− 1
(7.25e− 4)

5.5633e− 1
(7.20e− 4)

4.7654e− 1
(1.15e− 2)

DTLZ3 0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

0.0000e + 0
(0.00e + 0)

DTLZ4 5.0701e− 1
(1.04e− 1)

5.0866e− 1
(8.65e− 2)

3.9182e− 1
(8.39e− 2)

4.8909e− 1
(1.19e− 1)

3.2464e− 1
(1.68e− 1)

4.6540e− 1
(1.06e− 1)

5.2232e− 1
(8.82e− 2)

5.1071e− 1
(1.03e− 2)

DTLZ5 1.7846e− 1
(1.15e− 3)

1.9462e− 1
(8.57e− 4)

1.6149e− 1
(8.23e− 3)

1.9336e− 1
(1.04e− 3)

1.8245e− 1
(5.75e− 4)

1.9839e− 1
(2.37e− 4)

1.9854e− 1
(1.87e− 4)

1.8259e− 1
(3.45e− 3)

DTLZ6 1.6313e− 1
(3.65e− 2)

1.8686e− 1
(3.31e− 2)

4.4790e− 2
(7.18e− 2)

1.8986e− 1
(2.64e− 3)

1.6070e− 1
(5.38e− 2)

1.9938e− 1
(2.48e− 4)

1.9957e− 1
(7.46e− 5)

1.9487e− 1
(4.19e− 3)

DTLZ7 2.3918e− 1
(6.10e− 3)

2.6170e− 1
(1.22e− 2)

1.5277e− 1
(6.87e− 2)

2.6464e− 1
(9.25e− 3)

2.4079e− 1
(1.66e− 2)

2.4795e− 1
(2.58e− 2)

2.5682e− 1
(2.65e− 2)

2.6668e− 1
(3.33e− 3)

Best/All 0/22 0/22 0/22 0/22 1/22 2/22 3/22 14/22
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Figure 9: Continued.
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obtained from Table 5 that DTLZ4 has obvious advantages
over other algorithms compared to DTLZ7, it can be seen
from Figure 7 that it is not obvious compared to the
ANSGAIII and AGEMOEA on DTLZ4. Nothing is more
stable than the ANSGAIII and AGEMOEA and the average
value is no better than it except for outliers. Although there
are no outliers in DTLZ7, there is still a little difference
compared with the ANSGAIII and NSGAIII.

Figure 10 shows the IGD convergence trajectory ob-
tained by HDMOPSO and MOEAs running 10000 times in
ZDT6, UF4, and DTLZ6. HDMOPSO is compared with the
MOEAs, it not only has an absolute advantage in the
convergence speed, but also shows an obvious advantage in
the convergence value, which also reflects the fast conver-
gence speed of the particle algorithm.

Finally, Figure 11 shows the Pareto front simulation of
HDMOPSO and MOEAs on ZDT4. It can be seen from the
figure that the algorithms in this paper almost all converge to

the Pareto front, and the distribution is good. No other
algorithm has a convergent Pareto front.

-rough the above analysis of the comparison of
HDMOPSO andMOEAs, HDMOPSO performs better in 22
test problems and 15 test problems with IGD values. Figure 9
also shows good stability. 14 of HV performed better. From
Figures 10 and11, it can be seen briefly that HDMOPSO has
obvious advantages in terms of convergence speed and
convergence. Especially, it shows obvious advantages
compared with MOEAs in the ZDT and UF test problems.
-erefore, HDMOPSO is more competitive than MOEAs.

4.6. Computational Complexity of HDMOPSO. -e com-
plexity of HDMOPSO algorithm mainly depends on the
complexity of the three parts in Section 3 of this article. -e
following will be analyzed one by one according to the three
parts. First, in the maintenance of the external archive, the

UF10
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Figure 9: IGD value Statistical boxplot of HDMOPSO and MOEAs on ZDT1, ZDT2, ZDT4, ZDT6, UF1-5, UF7-10, DTLZ4, and DTLZ7
problems. (1, 2, 3, 4, 5, 6, 7, and 8 in each Statistical boxplot represent AGEII, ANSGAIII, DGEA, NSGAIII, MOEAD, ARMOEA,
AGEMOEA, and HDMOPSO, respectively).
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Figure 10: IGD values convergence trajectory of HDMOPSO and MOEAs comparison on ZDT6, UF4, and DTLZ6 problems.
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strategy of rebuilding the hypercube is used and there is only
one operator. So complexity is O(m× div) (m is the target
number. div is the number of divisions of the coordinate
axes). Second, the complexity of the opposite mutation with
nonlinear decreasing is O (N) (N is the number of particles)
according to the pseudocode in Figure 3. -irdly, the setting
of the social part based on the method of combining hy-
perspace and distance mainly consists of three parts. First,
the hypercube are selected one by one and the optimal
positions of each hypercube are averaged. Second, each
particle finds its nearest average position. Finally, the particle

determines the flight of the social part according to the
shortest average position it finds. So the complexity of the
third part is O(A× a) +O(N×A×m) +O(N) (A is the
number of optimal solutions to store in the external archive.
a is the number of optimal solutions in the hypercube).
According to the operation rules of the symbol O, the
complexity above can be simplified as O
(A(N×M+a)+m× div).

In addition, tic and toc codes in MATLAB software are
also used to calculate the running time of each algorithm
when evaluating (FEs) 10,000 times (unit: second) It can be
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Figure 11: -e Pareto front simulation of HDMOPSO and MOEAs on ZDT4 problem.
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seen from Tables 7 and 8 that HDMOPSO is almost in the
same order of magnitude as MOPSOs and MOEAs in most
of the test problems, but HDMOPSO algorithm is still a little
slower than other algorithms. However, statistics after op-
eration depend on computer hardware, software and other
environmental factors. -erefore, the data at this time is for
reference only.

5. Conclusions and Future Work

In this paper, a multiobjective particle swarm optimization
combining hypercube and distance is proposed. Establish a
combination of hypercube and distance in the external
archive to set the social part of the particle speed update, and
improve the optimization ability of the algorithm. In

Table 7: Running times of HDMOPSO and MOPSOs on 22 test problems.

Problems FEs MOPSO MOPSOCD dMOPSO SMPSO NMPSO MPSOD CMOPSO HDMOPSO
ZDT1 10000 1.8954e− 01 2.1995e− 01 3.0756e− 01 1.5614e− 01 5.9784e + 00 9.8553e− 01 9.6836e− 01 6.2169e + 00
ZDT2 10000 9.6836e− 01 1.8677e− 01 3.0587e− 01 1.5278e− 01 5.7637e + 00 8.5288e− 01 9.3910e− 01 6.3731e + 00
ZDT3 10000 1.6025e− 01 1.3933e− 01 3.1736e− 01 1.5136e− 01 3.7805e + 00 8.8155e− 01 3.6910e− 01 5.2505e + 00
ZDT4 10000 1.4136e− 01 1.1535e− 01 3.3401e− 01 1.2446e− 01 1.2178e + 00 4.0052e− 01 4.4006e− 01 4.1853e + 00
ZDT6 10000 1.6083e− 01 3.0051e− 01 3.0535e− 01 1.4522e− 01 6.9666e + 00 6.0061e− 01 1.9409e + 00 1.1422e + 01
UF1 10000 1.5675e− 01 1.3745e− 01 3.4933e− 01 1.5089e− 01 5.5508e− 01 1.1290e + 00 2.4897e− 01 3.5535e + 00
UF2 10000 1.8101e− 01 1.4694e− 01 4.0179e− 01 1.6999e− 01 9.5793e− 01 1.1746e + 00 2.8913e− 01 9.6000e + 00
UF3 10000 1.8831e− 01 2.4739e− 01 3.6602e− 01 1.7367e− 01 1.0686e + 00 1.1528e + 00 2.8029e− 01 4.0495e + 00
UF4 10000 1.6966e− 01 1.5075e− 01 3.8537e− 01 1.6703e− 01 2.6208e + 00 1.2591e + 00 2.9030e− 01 9.8464e + 00
UF5 10000 1.6004e− 01 1.5048e− 01 3.8623e− 01 1.5731e− 01 5.4259e− 01 1.0700e + 00 2.9916e− 01 1.3402e + 01
UF6 10000 1.7337e− 01 1.5025e− 01 3.9267e− 01 1.6589e− 01 5.3052e− 01 1.1377e + 00 2.9791e− 01 2.6452e + 00
UF7 10000 1.6423e− 01 1.4502e− 01 3.4968e− 01 1.6433e− 01 7.6412e− 01 1.1829e + 00 3.1794e− 01 8.6314e + 00
UF8 10000 2.2966e− 01 1.7421e− 01 3.9023e− 01 2.1134e− 01 1.5602e + 00 9.6623e− 01 5.5715e− 01 4.8477e + 00
UF9 10000 2.2266e− 01 1.7022e− 01 3.8962e− 01 2.0454e− 01 1.3716e + 00 1.0086e + 00 5.3158e− 01 8.8649e + 00
UF10 10000 1.9929e− 01 1.7375e− 01 3.7649e− 01 1.9299e− 01 6.3617e− 01 9.8017e− 01 4.5164e− 01 1.4856e + 00
DTLZ1 10000 1.9451e− 01 1.7336e− 01 4.2895e− 01 1.7963e− 01 1.9483e + 00 1.4728e + 00 3.4286e− 01 4.4390e + 00
DTLZ2 10000 2.5668e− 01 2.1649e− 01 4.0326e− 01 1.9691e− 01 2.8527e + 00 1.4684e + 00 1.4363e + 00 3.8444e + 00
DTLZ3 10000 3.6626e− 01 1.8473e− 01 4.4459e− 01 1.9127e− 01 1.0501e + 00 1.0501e + 00 3.6626e− 01 1.9394e + 00
DTLZ4 10000 2.4343e− 01 1.7660e− 01 4.4017e− 01 1.9800e− 01 2.8646e + 00 1.2343e + 00 1.2343e + 00 9.8830e− 01
DTLZ5 10000 2.5944e− 01 1.9055e− 01 4.4258e− 01 2.0864e− 01 2.2953e + 00 9.3072e− 01 9.1520e− 01 2.3477e + 00
DTLZ6 10000 2.4352e− 01 3.2588e− 01 4.4845e− 01 2.1578e− 01 3.6248e + 00 1.3673e + 00 8.9641e− 01 5.3365e + 00
DTLZ7 10000 2.3549e− 01 3.5500e− 01 3.5500e− 01 2.0576e− 01 2.9453e + 00 6.8225e− 01 9.0226e− 01 1.0615e + 01

Table 8: Running times of HDMOPSO and MOEAs on 22 test problems.

Problems FEs AGEII ANSGAIII DGEA NSGAIII MOEAD ARMOEA AGEMOEA HDMOPSO
ZDT1 10000 1.6906e + 01 4.7437e− 01 4.2843e− 01 2.9046e− 01 1.7671e + 00 6.4435e− 01 2.5825e− 01 6.2169e + 00
ZDT2 10000 1.3348e + 01 4.4615e− 01 4.2499e− 01 2.9139e− 01 1.7384e + 00 3.3364e− 01 2.4050e− 01 6.3731e + 00
ZDT3 10000 1.4356e + 01 4.5518e− 01 4.0627e− 01 2.8519e− 01 1.7178e + 00 8.8620e− 01 2.6861e− 01 5.2505e + 00
ZDT4 10000 8.1142e + 00 3.9137e− 01 3.3979e− 01 2.7679e− 01 1.6371e + 00 2.7897e− 01 2.4642e− 01 4.1853e + 00
ZDT6 10000 8.1726e + 00 4.0665e− 01 3.8004e− 01 2.7077e− 01 1.6758e + 00 2.7440e− 01 2.1910e− 01 1.1422e + 01
UF1 10000 2.1910e− 01 4.8534e− 01 4.2519e− 01 2.8050e− 01 1.8027e + 00 3.9434e− 01 2.3187e− 01 3.5535e + 00
UF2 10000 3.0681e + 01 4.8148e− 01 4.5153e− 01 2.9503e− 01 2.0535e + 00 9.2059e− 01 3.0219e− 01 9.6000e + 00
UF3 10000 1.5124e + 01 4.8845e− 01 4.4217e− 01 3.0029e− 01 2.0223e + 00 4.1813e− 01 2.5723e− 01 4.0495e + 00
UF4 10000 6.6710e + 01 4.8374e− 01 4.5074e− 01 3.1567e− 01 1.9588e + 00 1.0578e + 00 2.9759e− 01 9.8464e + 00
UF5 10000 5.5514e + 00 4.6839e− 01 4.1768e− 01 2.9088e− 01 1.9183e + 00 3.2421e− 01 2.3231e− 01 1.3402e + 01
UF6 10000 7.9447e + 00 4.6724e− 01 4.2344e− 01 2.9147e− 01 1.9433e + 00 3.3038e− 01 2.3917e− 01 2.6452e + 00
UF7 10000 2.2273e + 01 4.5917e− 01 4.2218e− 01 2.8460e− 01 2.0121e + 00 4.4279e− 01 2.5829e− 01 8.6314e + 00
UF8 10000 1.0657e + 01 5.7163e− 01 4.1730e− 01 3.2666e− 01 2.1912e + 00 2.0018e + 00 4.8602e− 01 4.8477e + 00
UF9 10000 1.0713e + 01 5.5393e− 01 4.1814e− 01 3.1820e− 01 2.5255e + 00 1.4048e + 00 3.9560e− 01 8.8649e + 00
UF10 10000 8.5054e + 00 5.5813e− 01 4.1871e− 01 3.2024e− 01 2.5230e + 00 1.0070e + 00 2.7937e− 01 1.4856e + 00
DTLZ1 10000 5.0505e + 00 5.7524e− 01 4.2878e− 01 3.2626e− 01 2.4902e + 00 9.6535e− 01 3.6443e− 01 4.4390e + 00
DTLZ2 10000 8.7972e + 01 5.2632e− 01 4.6034e− 01 3.6273e− 01 2.4898e + 00 4.6962e + 00 7.8888e− 01 3.8444e + 00
DTLZ3 10000 1.0630e + 02 5.2184e− 01 3.9689e− 01 3.8554e− 01 2.4625e + 00 4.2094e + 00 7.3357e− 01 1.9394e + 00
DTLZ4 10000 1.0630e + 02 5.2184e− 01 3.9689e− 01 3.8554e− 01 2.4625e + 00 4.2094e + 00 7.3357e− 01 9.8830e− 01
DTLZ5 10000 1.8164e + 02 6.6040e− 01 3.8343e− 01 4.0999e− 01 2.5314e + 00 4.1013e + 00 6.1905e− 01 2.3477e + 00
DTLZ6 10000 1.8625e + 01 6.8678e− 01 4.2519e− 01 4.1715e− 01 2.5983e + 00 3.8306e + 00 7.1626e− 01 5.3365e + 00
DTLZ7 10000 2.0237e + 01 5.7245e− 01 3.7660e− 01 3.7607e− 01 2.4422e + 00 4.0381e + 00 6.4493e− 01 1.0615e + 01
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addition, a nonlinear decreasing opposite mutation strategy
is also used. It not only increases the exploration ability, but
also prevents the algorithm from premature convergence.
Finally, the hypercube technology is used to control the
external archive, which improves the computing power of
the algorithm while also increasing the diversity of the al-
gorithm. HDMOPSO is compared with MOPSOs and
MOEAs. -e results show that HDMOPSO has good per-
formance, especially the ZDT and UF test problems have
strong competitiveness compared with MOPSOs and
MOEAs. -erefore, the strategy of this paper is an effective
improvement of particle swarm optimization in solving
multiobjective optimization problems.

In the future research work, on the one hand, the op-
timization of the algorithm is studied. It can be seen from the
data in this paper that the optimization effect of the algo-
rithm is poor in complex problems, so more effective
strategies are needed to solve most of MOPs. On the other
hand, the main reason proposed by the algorithm is that it
can effectively solve practical problems in reality, so it is one
of the key points of further research to solve practical
problems in reality.
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