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Motivation. In the environment of day and night video surveillance, in order to improve the accuracy of machine vision dense
crowd counting and target detection, this paper designs a day and night dual-purpose crowd counting and crowd detection
network based on multimode image fusion. Methods. Two sub-models, RGBD-Net and RGBT-Net, are designed in this paper. The
depth image features and thermal imaging features are effectively fused with the features of visible light images, so that the model
has stronger anti-interference characteristics and robustness to the light noise interference caused by the sudden fall of light at
night. The above models use density map regression-guided detection method to complete population counting and detection.
Results. The model completed daytime training and testing on MICC dataset. Through verification, the average absolute error of
the model was 1.025, the mean square error was 1.521, and the recall rate of target detection was 97.11%. Night vision training and
testing were completed on the RGBT-CC dataset. After verification, the average absolute error of the network was 18.16, the mean
square error was 32.14, and the recall rate of target detection was 97.65%. By verifying the effectiveness of the multimode medium-
term fusion network, it is found to exceed the current most advanced bimodal fusion method. Conclusion. The experimental
results show that the proposed multimodal fusion network can solve the counting and detection problem in the video surveillance
environment during day and night. The ablation experiment further proves the effectiveness of the parameters of the two models.

1. Introduction

Population estimation is the key to measuring population size.
Not only can crowd estimation control the scene capacity of
public scenes, but it is also an effective means to monitor
emergencies. Although some advanced deep learning
methods can realize the monitoring of multi-scale population
and counting in complex scenes with good lighting envi-
ronment, with the increase of population size and the in-
fluence of night light noise, it becomes difficult to pre-realize
the robust day and night population counting and target
positioning [1]. With the gradual popularization of depth
imaging and thermal imaging equipment in the monitoring
field, the depth imaging model based on depth learning can
effectively solve the dense population count under daytime
occlusion conditions [2]. The thermal imaging model based

on deep learning helps to monitor, analyze, and count people
at night. Therefore, how to solve the estimation of day and
night dense population with depth imaging and thermal
imaging becomes extremely challenging [3].

The deep learning model embedded in the traditional
monitoring equipment can solve the scene with large-scale
change and large light noise interference to a certain extent,
but there are still some shortcomings to be improved.
Traditional depth monitoring equipment cannot adapt to
the multi-scale robustness brought by near targets, nor can it
adapt to the light noise interference caused by the sudden
drop of night light [4]. As shown in Figure 1, the scale and
light intensity directly affect the population count. At
present, there are few general counting models that can
simultaneously deal with the problems of variable scale and
night vision low light.
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FIGURE 1: Images of dense crowds at different scales and different illuminations. (a) Multi-scale crowd. (b) Multi-scale crowd at night. (c)

Single-scale crowd. (d) Single-scale distant crowd.

With the help of computer vision technology based on
deep learning, target detection [5], face recognition [6],
image segmentation [7], and visual tracking [8] can be re-
alized. Different monitoring devices can achieve different
image acquisition purposes. RGB, RGBD, and RGBT
datasets are from three different types of cameras, including
visible light cameras, depth camera sensors, and thermal
imaging cameras. The visible light camera can collect the
texture information of the crowd, but it can only work in the
daytime. Thermal cameras can work during the day and at
night and can avoid the interference of visible light noise
[9-11]. But thermal imaging also has obvious disadvantages
in population counting. For example, it is difficult to detect
occluded crowd targets [12]. Based on the depth information
and spatial layout of people and scenes provided by RGBD
images, depth images can effectively distinguish the depth
difference between objects in the scene, so as to locate the
target and avoid the occlusion problem. Therefore, crowd
counting has better performance than RGB images. Many
researchers use depth images to complete crowd counting
[13]. Both RGB and RGBD images are based on the visible
light environment. However, the visible light data collected

at night may have disadvantages, such as a large amount of
light noise, which will make them ineffective under the weak
light conditions at night. Fortunately, thermal imaging data
have been shown to be effective in facilitating image analysis
and allowing daytime and nighttime scene perception [14].

Existing methods of population counting include de-
tection-based and regression-based methods [15-18]. De-
tection-based methods can count population in sparse
scenes, but they are limited in crowded scenes. Detecting
pedestrians to complete crowd counting is a simple solution.
However, there is a serious problem. When the crowd is
dense, the detector can easily fail due to the scale effect.
Regression counting depends on some visual descriptors,
such as texture features and edge features. Regression-based
methods have been widely proved to be computationally
feasible, parameter robust, and accurate in various chal-
lenging dense crowd scenarios. Regression includes direct
regression and indirect regression. The method based on
direct regression can estimate the number of people from the
scene image using the linear regression function [19, 20].
Indirect regression regresses the population density map
from the input image [21, 22] and then integrates the density
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map to predict the population number. Since the density
map can provide abundant spatial information, it reduces
the difficulty of directly mapping the image to the estimation
result. In general, the indirect regression estimation of the
population number of the density map is proved to be more
robust [23]. The proportion of the target in the image has
changed significantly from near to far. For the proportion
change problem, the viewpoint-aware multibranch CNN or
switched CNN architecture can solve this challenge. These
CNN structures are composed of multiple parallel CNN
branches with different receptive field sizes and are used to
process multi-scale feature regression from low-density
images to high-density images. In a recent five-branch
neural network, three branches are multiscale perceptual,
while the remaining two branches act as density map esti-
mators [24]. Zhou et al. [25] can realize multi-scale pop-
ulation counting in the complex scene of visible light by
using the advanced adversarial learning model method.

In the aspect of multifeature fusion, the previous
methods can only predict the density map from one-modal
data. However, multimodal fusion can show the comple-
mentary multimodal features, so it is better than single-
modal density map prediction results. Zhang et al. [26]
proposed a multimodal fusion-based population counting
model with multi-scale feature learning and fusion modules.
All modules are jointly optimized and trained in an end-to-
end manner. Effective extraction of low-level modal features
and high-level modal fusion features can estimate more
accurate density maps and more accurate population counts.
Liu et al. [27] proposed an effective multimode fusion
method, which combines depth data and thermal images
with visible light features to improve the estimation results
to a certain extent. This method discusses how to fuse the
depth information and thermal imaging information with
the visible light image and estimate the effective density map.
The number of people in a crowded scene can be accurately
calculated using Gaussian kernel. Learning features from the
original data of depth images, thermal imaging images, and
RGB images as inputs to realize the deep convolution
network has significant advantages and is more robust to
light noise, occlusion, and night lighting environment.

In terms of small target detection, the model proposed by
Xia et al. [28] adds occlusion conditions to the correlation
filtering algorithm, which can improve the robustness of
small target detection position prediction. Finally, multi-
target tracking and detection are realized by adaptive
combination of multiple models. Chen et al. [29] proposed a
learning method based on combinatorial representation,
which uses the depth residual network and the depth neural
network as generators and discriminators, respectively, and
finally realizes the super-resolution reconstruction of small
target faces, which is helpful to the detection and analysis of
key targets in dense populations. Zhang et al. [30] designed a
multifeature fusion method. The same weight is used to fuse
various manual features, and then the adaptive weight is
used to fuse manual features and depth features, which
greatly improves the detection ability of the target object.
Zhang et al. [31] proposed a method of integrating depth
features and manual features in correlation filter learning

and realized a robust target tracking and detection method
with the help of correlation filter tracking and twin network.

The main contributions of this paper can be summarized
in the following three aspects:

(i) Through the analysis of previous work, it is found
that the two-stream multifeature fusion model has
the possibility of further improvement. In this pa-
per, RGBD-Net and RGBT-Net are proposed. The
combination of these two models can realize the
round-the-clock population counting. In this paper,
three improved schemes of multimodal fusion are
designed, which are early fusion, intermediate fu-
sion, and late fusion. Extensive experiments and
evaluations were performed on the MICC [32] and
RGBT-CC [33] datasets. The medium-term fusion
scheme performs best in the comprehensive eval-
uation of training time, counting error on small
datasets, and detection recall rate; it is superior to
some existing multimode fusion methods and has
good generalization ability in the night vision en-
vironment crowd counting task.

(ii) Previous work rarely fused the RGBD depth features
and thermal image features into the model at the
same time. In this paper, two cross pattern fusion
methods for crowd counting are established,
namely, RGB and RGBD, and RGB and thermal
image. In the first stage, we mainly focus on the
capture of multimodal data. In the second stage, the
RGBD multimode fusion network is used to solve
the inter-day scale diversity and occlusion inter-
ference. The RGBT multimode fusion network
solves the interference of light noise at night and
realizes robust head counting when the light in-
tensity changes suddenly. The final density maps
and head detection of the two models were used as
outputs.

(iii) In the past, there was little work on multi-scale small
target detection in dense crowds. This paper at-
tempts to combine adaptive Gaussian kernel with
multimode fusion model to improve the night vi-
sion perception ability of the two-stream model for
crowd images. In density map estimation, taking the
depth feature and thermal image feature as the
spatial priori of Gaussian kernel edge detection can
enable the model to learn more spatial features and
then complete the spatial target detection task of
dense population.

2. Related Work

Early crowd counting methods [34-36] tended to rely on
detection counting, i.e., detecting the head or body and then
counting the population. However, in very crowded scenes,
detection with high recall is difficult to achieve. Regression
density map estimation methods have gradually replaced
detection methods. For some large-scale scenes (stadiums,
squares, etc.) or some large-scale gathering activities (festival
parades, marathons, etc.), Paolanti proposed a method to



complete the crowd counting in images using the FCN
detection framework; in [37, 57], FCN model that can be
used for crowd counting is employed.

Some works use cameras to observe the dangerous sit-
uation of crowd gathering on the ground in real time to
achieve the purpose of crowd evacuation; Miao proposed a
lightweight CNN in [38], which can monitor the ground
situation in real time to ensure the safety of crowd gathering.
Compared with shallow learning methods, the crowd
counting method based on deep CNN shows a significant
performance improvement. Reference [39] proposed to
combine the adaptive feature maps extracted from multiple
layers to generate the final density map for the large variation
of pedestrian scale. Zhou et al. [40] proposed a scale ag-
gregation network to improve multi-scale representation
and generate high-resolution density maps.

Due to the closeness of the acquisition target and the
existence of angular distortion in monitoring, the crowd
images acquired from oblique viewing angles have per-
spective distortion and scale changes. Highly dense crowds
often suffer from severe occlusion and are characterized by
nonuniform scaling: for example, individuals close to the
camera are larger in scale, while individuals farther away
from the camera show only small-scale head blobs. To ad-
dress this issue, Boominathan proposed CrowdNet [41]
using a combination of both shallow and deep structures,
employing a data augmentation technique based on multi-
scale pyramid representation. The model is robust to scale
changes. However, these works did not prove to be equally
effective in nighttime images.

Samuel et al. [42] addressed the problem of counting
people from images. The method uses features based on
thermal imaging and kernel density estimation, being more
accurate and eflicient than CNN-based methods for
nighttime crowd counting. This method uses a fast feature
detector to calculate the density map. Since the images used
are taken from drones, the pedestrian targets in the images
are small, and there is no occlusion problem caused by
vertical and oblique viewing angles. There are also methods
based on RGBD image CNN networks [43-45], because this
method can reduce the occlusion problem caused by oblique
viewing angles, and the error rate of crowd counting is low.
However, the multicolumn structure leads to difficulty in
training with many redundant parameters, and although the
use of ensembles of CNNs can bring significant performance
improvements, they come at the cost of a large amount of
computation.

Considering the above shortcomings, many researchers
began to use the method of multimodal data fusion com-
bined with adaptive Gaussian kernel to replace the above
scheme. Several methods based on two-modal fusion are
used [46-48] to demonstrate the advantages of crowd
counting in terms of day and night illumination, occlusion,
and scale transformation by obtaining fused features. Two-
stream models [49, 50] are proposed to fuse hierarchical
cross-modal features to achieve fully representative shared
features. In addition, there are methods [51] that explore the
use of shared branches to map shared information into a
common feature space. Furthermore, some recent works
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[52, 53] have been proposed to address RGBD and RGBT
saliency fusion, which is also an example of a cross-modal
dense crowd counting task.

Recently, multimodal images can be used to assist head
counting and head localization [54-58]. However, methods
utilizing depth images are ineffective at night or in low light
conditions. In outdoor scenes, depth images often suffer
from noise interference. At the same time, the detection
range of depth detectors is limited, so depth-based methods
have relatively limited deployment range.

Based on the above considerations, we find that thermal
images are robust to illumination and can detect long
perceptual distances. Liu proposed [34] a multimodal dy-
namic enhancement mechanism, which can make full use of
more robust thermal modal images to increase the diversity
of crowd counting features. Multimodal learning has re-
ceived increasing attention in the field of computer vision.
By integrating RGB and thermal image data, the model
introduces soft cross-modal consistency among modalities
and optimal query learning to improve robustness.

In order to advance the detection of pedestrians in
various scenarios, multimodal learning can understand and
represent cross-modal data by fusing models. There are
various strategies for cross-modal feature fusion. These
works have played a positive role in promoting the devel-
opment of fusion models and are especially instructive for
the work of day and night crowd counting.

3. Methods

3.1. Gaussian Kernel Density Map

3.1.1. Kernel Density Estimation Method for Adaptive
Bandwidth. 1f the bandwidth of the Gaussian kernel is not
fixed but varies according to the size of the head samples, this
results in a particularly powerful method called adaptive or
variable bandwidth kernel density estimation. Some parts of
the population are highly aggregated, and some parts of the
population are less aggregated. That is to say, different parts
of the image should adopt different analysis scales, so this
paper uses an unfixed bandwidth for kernel density
estimation.

The kernel density estimation method of adaptive
bandwidth is obtained by modifying the bandwidth pa-
rameters on the basis of the fixed bandwidth kernel density
function, and its form is shown in the following formula:

1 M 1 x—x(j)
k(x)=— ,
) M z (whj)nK< wh; )

j-1
1 I 1
K (x) = ———=exp( —x"S'x),
) <2n)"|8|eXp< 7 55) 0
l o
=1 [T e
k=1
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where k(x) is the Gaussian kernel density estimation
function with bandwidth h;, M is the number of heads in the
crowd, and each Gaussian kernel density point j has a
bandwidth h;, so the bandwidth can be adaptive or variable.
« is the sensitivity factor, 0 <« <1, and is usually set to 0.5.
When a=0, the Gaussian density estimation of adaptive
bandwidth becomes the Gaussian density estimation of fixed
bandwidth. The kernel density estimate of the fixed band-
width is the kernel density estimate k(x) mentioned earlier. w
represents the parameter of the bandwidth.

3.1.2. Depth and Thermal Image Adaptive Gaussian Kernel
Density Map. The adaptive Gaussian kernel can make the
density map regression clearer and produce a regression
density map that is closer to the true density map. The
adaptive Gaussian kernel can be closer to the real head size,
and the density map generated by regression can provide the
deep network with the prior knowledge of head detection,
which can guide the position and size of the detection frame.

The center point of the human head image label is
calculated with a standard Gaussian kernel function and
converted into a crowd density map. Assuming that C= {xy,
X2, .. ., X} is a dataset in d-dimensional space, an image has n
head instances, and the number of instances is #, then the
distribution density of the data can be expressed as follows:

72 =n—]11d gK(";""). @)

The multivariate Gaussian kernel function is given as

follows:
X — xi X — xi
K(T) = 1277 . exp (—w) (3)

Among them, the Euclidean distance between x and x; is
% — x;, h is the bandwidth, and the dimension is d. When
the bandwidth £ is equal to the head diameter 4 in the depth
image, the estimated data amount of the dense population is
n, and it can be expressed as follows:

4

" @) @

When the bandwidth k is equal to the corresponding
head diameter /=R, in the depth image,

4

n=—————.
jo;;> (d+2) (5)

When the bandwidth h is equal to the diameter
h = Rypermar of the corresponding head in the thermal image,
4
n=——0m——.
R (d+2)

thermal

(6)

For a multimodal dataset X ={x1, x,, ..., x,}, x,, repre-
sents each instance. Let its class label set be F={c;, c3, . . ., ¢/,
where the number of classes is N,. Then, the density of
instance x; with respect to category c; is calculated as follows:

— ]
a1 i#ji=1 Ry, ep(Rthermal) (7)
-L(x;) - K( ]),L(xj) =<

Among them, L(x;) and L(x;) represent the labels of
instances x; and x;, respectively. The adaptive Gaussian
kernel formula is also applicable to the depth image and
thermal image.

X;—x

3.2. Network Design

3.2.1. Design of RGBD Fusion Network. In theory, a mul-
timodal CNN with the above-mentioned early fusion can
learn the features of the two-stream model, and SFVB is the
fusion machine, as shown in Figure 2. Therefore, early fusion
is usually more expressive than mid-level fusion, which can
exploit correlations between modalities already on low-level
CNN computations. However, the higher expressiveness
comes at the cost of requiring more data for training. The
benefit of late fusion is that most of the network initialization
can be reused directly without adjusting the network weights
based on additional inputs. Unfortunately, it does not allow
the network to learn about such high-level interdepen-
dencies between individual input modalities, since only the
resulting scores at the classification level are fused.

First, for the deep branch, we preprocess the dataset and
perform initial training. The depth perceptron consists of
two branch modules; the depth feature branch consists of
four convolutional layers and three downsampling layers;
the visible light feature branch consists of six convolutional
layers, five downsampling layers, and one upsampling layer;
the size of the convolution kernel is shown in Figure 2. This
depth sensor is called RGBD-Net.

We believe that the filters needed for depth data are quite
different from those obtained by training on RGB data. For
example, we want the edge and speckle filters to be wider to
be robust to noisy depth estimation.

In general, the training effect of fully supervised learning
is the best, because fully supervised learning can annotate
most of the head posture, lighting, and image perspective in
the picture. However, the main disadvantage of full su-
pervised learning is that the cost of labeling is too high in the
face of a dense population. This paper chooses semi-su-
pervised learning point labeling method to complete the
training. The advantage is that the use of point annotations
instead of full annotations can reduce the annotation cost on
the premise of ensuring accurate positioning.

Deep MLP contains convolutional layers and max-
pooling layers to quickly reduce the spatial resolution. This
part is followed by further pooling layers, each of which
halves the spatial dimension, as shown in Figure 3. We
identify SEVB fusion points connecting depth and RGB
networks. First, the RGB and depth inputs can be directly
connected at the SEVB fusion point, and we call this model
midterm fusion. The scores for the RGB network and the
depth branch include two SEVB fusion points and finally use
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FIGURE 2: Structure diagram of early fusion depth perception network.

1x1 convolution as the classifier. The amount of upsam-
pling used in this mid-level fusion method is determined by
the desired spatial dimension in the RGB network.

The pipeline of the multimodal crowd counting network
is shown in Figures 3 and 4. Our network has two specific
modules, multi-scale feature learning module and SFVB
module (including modality alignment module and adaptive
fusion module). The feature learning module is used to
extract general and modal features of the input data. The
extracted pair of features are sent to the SFVB module to
further extract high-level semantic features, and each pair of
semantic features is aligned to the same feature space at the
same time. After using high-level semantic features to re-
gress the number of crowds, the pipeline fuses the prediction
output of the multimodal data through the adaptive fusion
module to obtain the final result.

3.2.2. Design of Thermal Imaging Fusion Network. By un-
derstanding the characteristics of different imaging princi-
ples, the study found that the feature learning of different
modal data is different. An intuitive idea is to extract their
distinguishing features separately. However, this will in-
crease the parameters of the network and may reduce the
efficiency. Furthermore, both streams also ignore modal
sharing feature learning. In order to reduce the parameters,
we use the feature extractor to obtain the information of the
two branches before using the midterm fusion, use the
modality extractor to extract the modal features, and then
fuse them, as shown in Figures 3 and 4.

For the thermal image branch, we adjust the dataset for
initial training. The thermal image perceptron consists of
two branch modules; the thermal image feature branch
consists of six convolutional layers, five downsampling
layers, and one upsampling layer; and the visible light feature
branch consists of four convolutional layers and three
downsampling layers. The kernel size of the convolutional
layer is shown in Figure 4. This thermal image perceptron is
called RGBT-Net.

3.2.3. Advantages of Two-Stream Medium-Term Fusion
Model. The feature fusion of depth image, thermal image,
and visible image is a cross-modal problem, and the feature
data may have high intra-modal variability, which makes the

task of cross-modal image feature fusion very challenging.
Medium-term integration can solve this problem to a certain
extent. The SFVB modules, RGBD-Net and RGBT-Net, can
first train each mode to a certain extent and then extract the
midterm modal features of the two branches and realize
feature fusion, as shown in Figures 3 and 4. In the two-flow
model, SFVB module can not only train some high-level
interdependent features between modes, but also ignore the
shared feature learning of modal parts. This can not only
reduce parameters, but also improve the fusion efficiency
and enhance the ability of the network to judge the hier-
archical characteristics of image depth and the ability to
judge the characteristics of night crowd thermal images.

In contrast, early fusion and late fusion have obvious
disadvantages.

Early fusion is also called feature level fusion. The
principle is to extract the distinctive features of cross-modal
images and complete the feature level fusion before the
training process. The advantage of early fusion is that it can
fully understand the high-level interdependency between
various input modes. However, the disadvantage of doing so
is that it will increase the parameters of the network and may
reduce the efficiency of model parameter generation.

Late fusion is also called decision level fusion. The
principle is to train each mode separately and then integrate
the classification prediction scores of the model output layer
after the training to generate the final decision. Therefore, it
does not allow the network to understand the high-level
interdependency between each input mode and the vari-
ability within the mode.

3.3. Density Map Guided Detection. Detection-based models
such as RetinaNet cannot detect small/tiny heads because
the detection subnet cannot adaptively adjust the anchors of
these heads. However, our network benefits from adapting
the Gaussian kernel density map with depth. The density
map shows the distribution of the head in relation to the
pixels of the Gaussian kernel in the density map. Therefore,
we propose to feed the estimated density map into the
detection network to improve the performance of detection
of small/miniature heads. Heads of different scales are de-
tected according to the decoding layers of the head RGBD
and thermal images fed back by our network learning. In
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depth image and thermal image preprocessing, the head
RGBD map and thermal image are downsampled to the
same size as the density map. For each head in M;, RGBD
and thermal image pixel values are used to reinforce our
estimated density map. Specifically, for a given training head
RGBD depth and thermal image size, it is assumed that the
size of the head to be detected is marked with a rectangular
box as the head size. Then, we generate a head frame feature
matrix M; through training and further fuse M; with the
density map function D*(x) to generate a density map
constrained by RGBD and thermal image adaptive Gaussian
kernel:

D (x) = D* (x)® M,, (8)

where ® denotes feature fusion, Dj*(x) is the density map
regression of RGBD and thermal image adaptive Gaussian
kernel constraints, M is the head box feature matrix, and
D*(x) is the adaptive Gaussian density map function.

3.4. Multimodal Fusion Loss Function. RGBD and thermal
image multilayer perceptron combined with adaptive

Gaussian kernel can solve the problem of adaptive per-
ception of head size in day and night environment, where
depth perceptron and thermal image perceptron are com-
posed of RGB image and RGBD, and RGB image and
thermal image, respectively. Dual-modal image feature fu-
sion network is composed, fusing multimodal features
through the import of the middle layer of the model to
achieve feature alignment and adaptive fusion.

In this paper, an effective fusion of RGB features, RGBD
features, and thermal image features is proposed to improve
the accuracy of object recognition. We convert RGB image
and RGBD features, and RGB image and thermal image to
raw data vector input, and concatenate them; the input data
can be represented as { x,1, X2, - - X =5 X1, Xgzs -+ > Xdn)>
where { x,1, X2, . . ., X,,} represent the connection features of
RGB images and RGBD, and {x41, X4, - . ., X4} represent the
connection features of RGB images and thermal images.
Then, the parameter matrix A corresponding to the input
data can be expressed as follows:

Ap A A Ay AL () AL (rrar1) 5 AL (nara(n)
A A Aar, Agr ) Aa () A2 () Ao (rrgn(r,)) (©)
A A Ak Ak (r1) 5 Ak (rarg) Bk (rarasty 5 Ak (s (1))

The first half of A is the following:

A11sA12”'A1rn
A21’A22 o 'A2

Apcp = " (10)
A Ak -+ Ay,

The second half of the parameter corresponding to the
RGB is image vector Ap,pu:

A, (ra+1) " A
A, (ro+1)> """ s A

l(rn+rd)

2(r,+rg)

(11)

ADepth =

A (ryr1) " Ak (1)



A fhermar 1S the parameter corresponding to the RGBT
thermal image vector, and k represents all possible class labels.

[AL(re1) AL (0 ]
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R
/
=
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(13)

J sparse is the parameter corresponding to the depth image
vector, and k represents all possible class labels.

'-A,rl -

A,
ArGp = .‘2 ’ (14)

ADepth =1 . > (15)

A (16)

thermal =

The overall cost function is shown in the following
equation:

3

Tawoe = 2= 2 (3 usl) <)

2

(ARGB(A%GB),‘])
I 2
<)LDepth(ADepth),'j>

1 m—=1 5 S, ; 2
+ 5 Z </1thermal(Athermal),'j> +/3P(x) :

(17)
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The weight decay parameter Argp corresponding to the
RGB feature of the object is initialized to a smaller value to
reduce its penalty and extract more RGB features. The weight
attenuation parameter Ag; corresponding to the depth
feature is initialized to a larger value, and the penalty is in-
creased to extract fewer depth features. The weight attenuation
parameter Agypma corresponding to the thermal imaging
feature of the object is initialized to a larger value, and the
penalty is increased to extract fewer thermal image features.

3.5. Overview of Methods. The system mainly includes two-
part method: dense crowd counting and head target de-
tection. The pseudocode of the crowd counting part is shown
in Algorithm 1.

3.5.1. Training Parameter Setting. The head target detection
is shown in Figure 5. First, we mark the center point of the
head, train the crowd counting network, generate the density
map, and set the mean value of the initial parameters of the
multivariate Gaussian function y to 0.5 and the standard
deviation ¢ to 0.02. The Gaussian multivariate function
approximates the head size of the thermal image with the
Gaussian kernel function bandwidth according to the center
of the thermal image annotation. The pseudocode of the
crowd head detection part is shown in Algorithm 2.

3.5.2. Head Scale Judgment. When the bandwidth 4 of the
Gaussian kernel function is equal to the head size of the
thermal image or the head size of the thermal image, the
Gaussian kernel expansion is stopped and the Gaussian
kernel density map is generated. Otherwise, the head size
continues to be matched. As shown in Figure 5, this network
designs three fusion modes, namely, early fusion, inter-
mediate fusion, and late fusion, to complete the experiment.
In this paper, the three fusion schemes are tested separately,
so the type of current fusion mode needs to be preset before
the network runs. After the fusion mode is selected, the
density map constrained by the adaptive Gaussian kernel of
the thermal image is further fused by M; and the density map
function D, and the counting is completed. Finally, the
head detection frame is generated using the boundary of the
adaptive Gaussian kernel constrained by the density map.

4. Experiments

4.1. Dataset Introduction and Evaluation Criteria. The depth
perceptron of this crowd counting method has been ex-
perimentally evaluated on the MICC dataset (RGBD). The
thermal image perceptron has been evaluated experimen-
tally on the RGBT-CC dataset (RGBT), and the feasibility
and applicability of our proposed method have been verified
through experimental comparison. We first give the pa-
rameters of the key datasets used in the experiments. In each
dataset, the corresponding method in this paper is compared
with the most advanced crowd counting method in this
dataset, and the density map and the real and estimated
values of the crowd on the pictures of each dataset are given.
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Input: Training density map image § ={D,, .

Initializing density map image D and parameters 0
for each epoch do
Step 1:
If (h == hthermal)
Gauss kernel matching stop;
else Continue to match head size according to (5);
It (h == hDepth)
Gauss kernel matching stop;
else Continue to match head size according to (6);

Step 4: If (If (8) is true)

Step 6: Update D according to (4).
end

.., Dy}, training
Epochs N, and Adaptive Gaussian kernel initialization input initial mean = 0.5 and standard deviation o= 0.02
Onput: A dense crowd detection model with parameters & AND crowd head detection box

Step 2: Multivariate Gauss matching with all head sizes;
Step 3: Multimode features for midterm fusion, according to (9-17);

Generating density maps with adaptive Gaussian kernel constraints;
else Regenerate Gaussian density map according to (7)
Step 5: Density map guided generation of crowd head detection box;

ALGORITHM 1: Training density map guided detection for RGBD-Net/RGBT-Net.

the density map

Train the crowd counting model, markedwith
the center point of the head, and generate

deviation o= 0.02

Adaptive Gaussian kernel initialization
input initial mean p= 0.5 and standard

Continue to match head
size
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Generating density maps
with adaptive Gaussian
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FIGURE 5: System global design flowchart.

Finally, this paper conducts ablation experiments to dem-
onstrate the independent effectiveness of each method unit
in our method ensemble and finally gives the effect diagram
of day and night crowd counting.

MICC dataset. The MICC dataset is a crowd image dataset
taken from an indoor fixed scene. A total of 3,358 frames
of crowd RGB +depth images are obtained. The video
resolution is 480 x 640 pixels. The maximum number of

head annotations in a single frame is 11, and the mini-
mum number of head annotations in a single frame is 0.
There are 17,630 head annotations. The MICC dataset
contains three kinds of video sequences: stream sequence,
team sequence, and group sequence. The flow sequence
includes a total of 1,260 frames with 3,542 pedestrian
bounding box annotations, the queue sequence contains
918 frames with 5,031 pedestrian bounding box anno-
tations, and the group sequence includes 9,057 pedestrian
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Input: Training density map image §={D,, ..

Initializing density map image D and parameters 0
for each epoch do
Step 1:

If (h == hthermal)
Gauss kernel matching stop;

It (h == hDepth)
Gauss kernel matching stop;

Step 4: If (If (8) is true)

Step 6: Update D according to (6).
end

., Dy}, training
Epochs N, and Adaptive Gaussian kernel initialization input initial mean g =0.5 and standard deviation o =0.02
Onput: A dense crowd detection model with parameters & AND crowd head detection box

else Continue to match head size according to (5);

else Continue to match head size according to (6);
Step 2: Multivariate Gauss matching with all head sizes;
Step 3: Multimode features for midterm fusion, according to (9-17);

Generating density maps with adaptive Gaussian kernel constraints;
else Regenerate Gaussian density map according to (7)
Step 5: Density map guided generation of crowd head detection box;

ALGORITHM 2: Training density map guided detection for RGBD-Net/RGBT-Net.

bounding box annotations in 1,180 frames. RGB images
all correspond to RGBD images. In streaming sequences,
people walk from one location to another, and the frame
rate is lower. In the queuing sequence, the acquisition
frame rate is larger and pedestrians move slowly. In the
group sequence, people are constrained to the area of
action, as shown in Table 1.

RGBT-CC dataset. The RGBT-CC dataset is a large-scale
RGB-thermal crowd counting dataset proposed by Sun Yat-
Sen University. This dataset contains a large number of
RGB-thermal images collected using photothermal cameras
in scenes such as shopping malls, streets, and subway sta-
tions. The RGB images are cropped and preprocessed by the
dataset publisher from a high resolution of 2,048 x 1,536 and
resized to a resolution of 640 x 480, and the thermal image
resolution is 640 x 480. The dataset includes 2,030 pairs of
annotated RGB-thermal images: 1,013 pairs of daytime
crowd images and 1,017 pairs of nighttime crowd images.
The dataset has 138,389 pedestrians labeled with point
annotations, with an average of 68 pedestrians per thermal
image. The RGBT-CC dataset is a close-range collection of
urban populations with a wide range of densities, as shown
in Table 1. Therefore, this dataset is more challenging.

Metrics. We use mean absolute error (MAE) and mean
squared error (MSE) to evaluate different methods based on
commonly used metrics in existing crowd counting work:

1 .
MAE =NZ§V|Z—Z,-I,

=N
_ b PRy
MSE = N El (z:-%),

(18)

where N is the total number of test images, z; is the actual
number of people in the ith test image, and Z; is the esti-
mated number of people in the ith image.

4.2. Dataset Parameter Setting and Training

MICC dataset. Since the three sequences of flow, group, and
queue have the same scene and participant characteristics,
20% of the RGB images of the flow, group, and queue scenes
and their corresponding RGBD images can be input as the
training set, and the remaining 80% of the RGB images and
their corresponding RGBD images are used as the test set.
This dataset is for training a crowd counting network with
depth perception.

RGBT-CC dataset. RGBT-CC is the benchmark RGBT
dataset, which includes two types of images: bright and dark.
The bright training set includes 510 pairs of images, the
validation set includes 97 pairs of images, and the test set
includes 406 pairs of images; the dark training set includes
520 pairs of images, the validation set includes 103 pairs of
images, and the test set includes 394 pairs of images; these
images were randomly assigned to the final three new sets:
training, validation, and test. Finally, 1,030 image pairs were
used for training, 200 image pairs were used for validation,
and 800 images were used for testing.

Training settings. We train the RGBD-Net and RGBT-Net
models end to end. The Gaussian parameters of the adaptive
Gaussian kernel are set by the mean value to 0.5 and the
standard deviation to 0.02. The RGBD-Net and the RGBT
Net are trained on the MICC dataset and the RGBT-CC
dataset. The network selects the momentum random gra-
dient descent (SGD) during training, sets the initial learning
rate to 0.005, and sets the momentum to 0.85. Its
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TABLE 1: Parameter information for MICC dataset and RGBT-CC dataset.
Dataset Resolution Color Num Max Min Ave Total Modality
MICC 480 x 640 RGB+D 3,358 11 0 5.2 17,630 RGB + depth
RGBT-CC 640 x 480 RGB+T 4,060 82 45 68 138,389 RGB + thermal
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FIGURE 6: The training process. (a) Learning rate setting curve. (b) Time variation curve of training and saving weights. (c) Loss function

variation curve. (d) Total training time variation curve.

convergence speed is fast, and the training process is shown
in Figure 6. Our methods are all implemented under the
PyTorch framework. In terms of hardware, three NVIDIA
1080 Ti GPU graphics cards and four Intel® E5-2630 v4
CPUs are used to ensure the performance requirements of
graphics cards and computing units.

4.3. Comparison with State-of-the-Art Methods

4.3.1. Crowd Counting

(1) MICC dataset. We collect the specific data of the state-of-
the-art methods in the field of crowd counting, give the
performance of these methods on the MICC dataset, and
give the comparison results between the method used in this
paper and the current state-of-the-art crowd counting
methods in different categories. From Table 2, it can be
found that the performance of different categories of ad-
vanced methods shows regular changes, so this paper only
compares the results of methods in recent literature, as
shown in Table 2.

Object detection method. RetinaNet [59] utilizes ResNet and
efficient pyramid feature network and adopts anchor boxes
to detect crowd size error: MAE =1.641, MSE =2.554. The
structure of DetNet [60] is improved on the basis of
ResNet50 because ResNet50 itself has excellent performance
and improves detection, so the results are in the MICC
dataset. The MAE and MSE indicators achieved an im-
provement of 0.1 and 0.172. Idress et al. [61] used multi-
source features including SIFT and head detection to achieve

TaBLE 2: Comparison of the different state-of-the-art methods on
MICC dataset.

Model MAE MSE
RetinaNet [59] 1.641 2.554
DetNet [60] 1.541 2.382
Idrees et al. [61] 1.396 2.642
MCNN [62] 1.5 2.259
CSRNet [63] 1.359 2.125
Cascaded-DCNet [64] 0.836 1.031
MCNN-adaptive [61] 1.489 2.114
CSRNet-adaptive [61] 1.343 2.007
RDNet [65] 1.38 2.551
Ours (RGBD-Net-adaptive) 1.025 1.521

a 0.145 improvement in the MICC dataset MAE metric
compared to DetNet for detecting crowd numbers. Although
these detection frameworks can detect some small-scale
targets, because there is no effective strategy designed, the
target detection method is obviously unable to cope with the
dense and small crowds with serious occlusion.

Density regression method. The advanced regression
methods are all methods based on CNN density map re-
gression [62-64]. The accuracy of advanced methods based
on CNN density map regression is significantly higher than
that of detection-based methods. For example, the results of
CSRNet [63] are better than those of Idrees et al. [61] with
0.011 and 0.145 improvement in MAE and MSE metrics for
MICC dataset, and MCNN is better than DetNet in terms of
MAE and MSE metrics with 0.041 and 0.123 improvement.
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However, the density regression method lacks deeper spatial
features, so the method will be more likely to fail and cannot
localize pedestrian spatial locations. But Cascaded-DCNet
[64] improves on spatial feature extraction; it is a cascaded
depth-aware counting network that jointly performs head
segmentation and density map regression on MICC datasets.
In terms of MAE and MSE indicators, it achieved excellent
scores of 0.836 and 1.031.

Density regression-guided detection method. The density
regression-guided detection method makes full use of the
RGBD image dataset to add depth perception and adaptive
Gaussian kernel to the deep network to realize the crowd
counting method of regression-guided detection. MCNN-
adaptive and CSRNet-adaptive are based on the density map
regression. The depth perception branch is added, thus
achieving 0.1 and 0.172 improvement over MCNN [62] and
0.016 and 0.118 improvement over CSRNet [63] in terms of
MAE and MSE metrics on the MICC dataset. The accuracy
of crowd counting can be significantly improved, and the
position of the detection frame can be obtained. However,
such methods do not surpass Cascaded-DCNet on the
MICC dataset, because Cascaded-DCNet performs maxi-
mum pooling on the head region in the depth image.
Therefore, the failure of the depth map can be avoided.
However, the expensive labeling cost limits the further
application of monitoring domain counting and detection
tasks. The advanced RDNet [65] utilizes box annotations for
head detection. It is worth noting that the original MICC
dataset contains head box annotations and we only use the
center of each box as its point annotation.

As shown in Figure 7, we select images from the MICC
dataset with the most to the few head counts for testing. We
use a depth-aware fusion network and an adaptive Gaussian
kernel and estimate the head density map. By observing the
results on the MICC dataset, we can see that the final result
of our network achieves MAE=1.025 and MSE=1.521,
surpassing all the above methods, because Cascaded-DCNet
[64] uses strong head segmentation. Supervised method,
while we only use the center point of each head annotation as
a weakly supervised method for training.

The analysis of the qualitative results shows that our
method performs well on the MICC database. The main
reason is that our proposed network learns more spatial
context information using a better depth-sensing network
and an adaptive Gaussian kernel, which is consistent with
our original motivation. The results verify the effectiveness
of our method.

(2) RGBT-CC dataset. The RGBT-CC dataset is a heatmap
crowd counting dataset published by Sun Yat-Sen Univer-
sity. As shown in Table 3, the comparison results between the
method used in this paper and the current advanced crowd
counting methods of different categories are given. Because
the current experimental new method of the Sun Yat-Sen
University team is the first to propose RGBT-CC and use the
dataset to complete the comparison of different fusion
models, on the basis of this scheme, our method is improved
and compared with experiments. We still use classical
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counting models such as MCNN [33], SANet [69], CSRNet
[33], and Bayesian Loss [70] as the backbone networks for
experimental reference. Compared with the best result of
Bayesian Loss [70], our model has improved MAE and MSE
by 0.54 and 0.53 on the RGBT-CC dataset. Similarly, our
method is compared with multiple best-performing multi-
modal fusion models of UCNet [66], HDFNet [67], and
BBSNet [68], and compared with the best-performing
BBSNet [7], it is found that our model has 1.4 and 0.34
improvement in MAE and MSE on the RGBT-CC dataset. In
the literature of the Sun Yat-Sen University team, the in-
tegration of the IADM “early fusion” mechanism into the
classical counting model networks such as MCNN [33],
SANet [69], CSRNet [33], and Bayesian Loss [70] can im-
prove the performance of the model. The MAE and MSE of
MCNN +IADM [33] have an improvement of 2.12 and 2.14;
the MAE and MSE of SANet+IADM [33] have an im-
provement of 3.81 and 7.88; the MAE and MSE of
CSRNet + IADM [33] have an improvement of 2.56 and
4.35; and the MAE and MSE of Bayesian Loss + IADM [33]
have a 3.09 and 4.49 improvement. The difference is that
instead of using the “early fusion” method to take the
concatenation of RGB and thermal images as input, we use
the “midterm fusion” method to make a comparison with
the “early fusion” method. In addition, we finally complete
the density map regression using an adaptive Gaussian
kernel. After comparison, it is found that our “midterm
fusion” model and “early fusion” have an almost equivalent
improvement in MAE and MSE on the RGBT-CC dataset.

We demonstrate the effectiveness of our method in
generating density maps from thermal images under dif-
ferent lighting conditions, and we select images with dif-
ferent lighting conditions as count objects on the RGBT-CC
dataset. The light conditions in the first column of pictures
gradually become darker from top to bottom. What is most
obvious is that the first picture is a daytime indoor scene and
the bottom one is a nighttime street scene, as shown in
Figure 8. The second column of pictures is the thermal map
under different lighting conditions. The third column of
pictures is the crowd density map of BL + IADM [33] under
different lighting conditions. The fourth column of pictures
is the population density map of BL + RDNA under different
lighting conditions.

Figure 8

In order to verify the effectiveness of our method in
generating density maps under different crowd conditions,
we selected images with different crowd conditions as the
counting objects on the MICC dataset. The first column of
images from top to bottom gradually decreases, as shown in
Figure 7. The second column of pictures is the depth map
under the condition of different numbers of people. The
third column of pictures is the crowd density map of
CSRNet-adaptive under different lighting conditions. The
fourth column of pictures is the population density map of
CSRNet + RDNA under different population density con-
ditions. Figure 7 shows the results on three real datasets. We
pretrain the depth perceptron and regressor. From the
generated density map results on the MICC dataset, the
density map of our method is very close to the ground-truth
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FIGURE 7: Visualization results from ShanghaiTech, UCF_CC_50, and UCF-QNRF datasets. From left to right: the input images, ground

truth, and results of SCLNet.

TaBLE 3: Comparison of the different state-of-the-art methods on
RGBT-CC dataset.

Model MAE MSE
UCNet [66] 33.96 56.31
HDFNet [67] 22.36 33.93
BBSNet [68] 19.56 32.48
MCNN [33] 21.89 37.44
SANet [69] 21.99 416
CSRNet [33] 20.4 35.26
Bayesian Loss [70] 18.7 32.67
MCNN +IADM [33] 19.77 30.34
SANet + IADM [33] 18.18 33.72
CSRNet + IADM [33] 17.94 30.91
Bayesian Loss + IADM [33] 15.61 28.18
Ours (RGBT-Net) 18.16 32.14

density map of CSRNet-adaptive, which to some extent
proves the effectiveness and counting performance of our
depth perceptron. The fusion feature of the features of the
depth map plays an effective role when the number of
crowds becomes smaller and smaller, thus proving the ef-
fectiveness of this method.

4.3.2. Crowd Detection. At present, it is difficult for the head
detection of dense crowds to detect the human head under
obvious occlusion and different lighting; especially at night,
the detection will fail. In order to solve the occlusion
problem and the effectiveness of night head detection on
small pixel heads, this paper uses two perceptrons: depth
perceptron and thermal image perceptron. Head counting
and regression-guided detection can be accomplished with

the help of an adaptive Gaussian kernel, as shown in Fig-
ure 9. In Figure 9, the first row is the result of density re-
gression-guided head detection based on depth
perceptron + adaptive Gaussian kernel. The first image is
from the MICC dataset, the second image is the corre-
sponding depth image, the third image is the original an-
notation frame, and the fourth picture is the annotation
frame estimated by the method in this paper. In Figure 9, the
second row is the result of density regression-guided head
detection based on thermal image perceptron +adaptive
Gaussian kernel. The first image is from the RGBT-CC
dataset, and the second image is the corresponding thermal
image. The first three pictures are the original annotation
boxes, and the fourth picture is the annotation boxes esti-
mated by the method in this paper. The method used in this
paper is to use the center of the annotation box from the
dataset as the training target to locate the boundary of the
estimated box according to the adaptive Gaussian kernel and
the corresponding perceptron. First, we extract the head
position points (green points) from the ground-truth an-
notations, and then we extract the head position points (red
points) in the density map using the layer perceptron and
RGBD depth fusion. From Figure 9, the depth sensor can be
used to detect all heads in the room, the thermal image
sensor can detect people’s heads in the nighttime envi-
ronment, and the heads of people occluded under the dark
image can still be detected. The ROC curves of front fusion,
midrange fusion, and end fusion of the RGBD-Net and
RGBT-Net networks combined with the adaptive Gaussian
kernel are shown in Figures 10(a) and 10(b).

This paper collects the target detection methods related
to the dense population in the past three years, classifies the
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FIGURE 8: Visualization results from ShanghaiTech, UCF_CC_50, and UCF-QNRF datasets. From left to right: the input images, ground
truth, and results of SCLNet.

(d)

FiGure 9: Crowd detection results on deep datasets and crowd detection results on thermal image datasets. (a) RGBD crowd. (b) RGBD
crowd detection. (c) RGBT crowd. (d) RGBT crowd detection.

methods into RGBD and RGBT, and conducts comparative ~ method proposed in this paper is evaluated by comparing
tests on the ShanghaiTechRGBD and KAIST datasets. The  the accuracy of all the methods in three different lighting
application scenarios of the methods are divided into three  scenarios. After analyzing the results in Table 4, it is found
types: day, night, and day and night. The effectiveness of the ~ that the method used in this paper has the best accuracy in
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FIGURE 10: (a) Depth perceptron + adaptive Gaussian kernel early fusion; depth perceptron + adaptive Gaussian kernel late fusion; depth
perceptron + adaptive Gaussian kernel mid fusion precision-recall curves of all object classes and all object classes and average precision-
recall curves of our method. (b) Thermal image perceptron + adaptive Gaussian kernel early fusion; thermal image perceptron + adaptive
Gaussian kernel mid fusion; thermal image perceptron + adaptive Gaussian kernel late fusion precision-recall curves for all object classes
and all object classes and mean precision-recall curves of our method.

both RGBD and RGBT modes and performs best especially
in the environment of day and night.

As shown in Table 5, compared with the most advanced
methods (DetNet, RDNet, and CGD), the one of this paper
has the best detection accuracy on the ShanghaiTechRGBD
dataset. These methods are based on the detection module,
and there is a certain gap in performance with the feature
fusion and regression guidance detector in this paper. The
performance of this detector is better than DetNet, RDNet,
and CGD. It can be observed from the results that the
detector (YOLO-T) that only processes thermal images does
not perform as well as YOLO4-RGBT. After using RGBT, it
can be observed that the performance of YOLO4-RGBT is
similar to YOLO4-T, but YOLO4-T is slightly lower. After
analysis, it is believed that this may be because the use of
multimodal post-fusion feature learning can improve the
target judgment of YOLO4-RGBT network. Among them,
the average accuracy (AP) of YOLO4-RGB detector is the
worst, which proves the advantage of data fusion in day and
night target detection.

4.4. Ablation Study

4.4.1. Effectiveness of Depth Perceptrons. We conduct ab-
lation experiments on the effectiveness of depth perceptrons
for crowd counting. As shown in Table 6, four different
variables are selected for qualitative analysis, and we con-
struct a depth-sensing network from RGB and depth images
using “early fusion,” “medium fusion,” and “late fusion.”
There will be obvious differences in the fusion networks of
different stages. We only use the adaptive Gaussian kernel
AGK in the reference comparison: MAE=1.367,
MSE =2.458. But compared to the use of only the adaptive
Gaussian kernel AGK to finally make the regression of the

TaBLE 4: Comparison of the different state-of-the-art methods on
RGBT-CC dataset.

Model + MAE MSE
MCNN [33] N/A 21.89 37.44
SANet [69] N/A 21.99 41.6
CSRNet [33] N/A 20.4 35.26
Bayesian Loss [70] N/A 18.7 32.67
MCNN +IADM [33] N/A 19.77 30.34
MCNN [33] +RTNA 18.04 29.16
SANet + IADM [33] N/A 18.18 33.72
SANet [69] +RTNA 17.98 32.04
CSRNet + IADM [33] N/A 17.94 30.91
CSRNet [33] +RTNA 17.82 30.14
Bayesian Loss + IADM [33] N/A 15.61 28.18
Bayesian Loss [70] +RTNA 15.48 27.96
Ours (RGBT-Net + AGK) — 18.16 32.14

density map, the depth-aware network can constrain the
edge expansion of each Gaussian kernel to be more effective
for dense crowds, which means that the combination of the
adaptive Gaussian kernel function AGK with RGBD depth
information awareness is helpful in crowd counting and
MAE and MSE are smaller. MAE =1.004 and MSE =1.489
for AGK + RGBD-Net (front fusion) on the MICC dataset.
MAE=1.025 and MSE=1.521 for AGK+RGBD-Net
(midrange fusion) on the MICC dataset. MAE =1.256 and
MSE =1.925 for AGK+RGBD-Net (end fusion) on the
MICC dataset. The reason for this result is as follows:

(a) In the process of “early fusion” of the RGB branch
and the depth branch, the RGB image and the depth
image can be directly connected from the initial
input stage to build the first convolutional layer. We
refer to this form of fusion as early fusion. The CNNs
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TaBLE 5: Comparison of the different state-of-the-art target detection methods in day and night.

Methods Type Dataset Day (AP) Night (AP) Day + night (AP)
DetNet [71] RGBD ShanghaiTechRGBD 0.383 — —
RDNet [71] RGBD ShanghaiTechRGBD 0.610 — —

CGD [71] RGBD ShanghaiTechRGBD 0.727 — —
YOLO4-RGB [72] RGBT KAIST 0.684 0.298 0.465
YOLO4-T [72] RGBT KAIST 0.641 0.617 0.625
YOLO4-RGBT [72] RGBT KAIST 0.648 0.609 0.618
Ours RGBD ShanghaiTechRGBD 0.825 0.806 0.816

Ours RGBT KAIST 0.726 0.715 0.721

TaBLE 6: Comparison of different feature fusion and normalization
methods for the MICC dataset.

Method MAE MSE
AGK 1.367 2.458
AGK + RGBD-Net (front fusion) 1.004 1.489
AGK + RGBD-Net (midrange fusion) 1.025 1.521
AGK + RGBD-Net (end fusion) 1.256 1.925

built in the RGB branch and depth in the early fusion
can enhance the dependencies of independent net-
work flows by fully learning the features of the two
modalities. Therefore, early fusion can theoretically
fully understand the high-level interdependencies
and accuracy advantages between various input
modalities more than intermediate fusion. However,
the cost of the higher accuracy advantage is that
training may require more data, but the current
RGBD dataset is not as large as the RGB dataset, so
the early fusion is limited by the amount of data.

(b) The weights of the RGBD branch are first trained
using midterm fusion, and the RGBD depth branch
can be merged into a 1 x 1 convolutional layer before
one max-pooling layer of the RGB network. This is
done so that the RGBD CNN branch can use weights
that have been pretrained on the RGB branch and
the network can fully understand the high-level
interdependencies between the various input mo-
dalities. This will greatly reduce the total training
time and does not require more RGBD training data,
which also satisfies the actual problem of insufficient
RGBD datasets. Although the final accuracy is not as
small as the error of early fusion, the difference is not
much. MAE and MSE are only 0.021 and 0.032, so
the sacrificed accuracy is completely acceptable to us
compared with training more data and consuming
more time.

(c) The RGB network and the RGBD depth branch can
be combined into a multimodal classifier at the last
concatenated layer of the network. This fusion mode
is called late fusion. The advantage of late fusion is
that the network weights do not have to be initialized
repeatedly, which can be reused despite additional
input network weights. Unfortunately, it does not
allow the network to learn about such high-level
interdependencies  between individual input

modalities, since only the resulting scores at the
classification level are fused.

Therefore, the midterm fusion+AGK method of the
depth perceptron used in this paper can meet the premise of
lack of time and training data, and the accuracy of
MAE =1.025 and MSE =1.521 is also satisfactory to us.

4.4.2. Effectiveness of Thermal Image Perceptrons. We
conduct ablation experiments on the effectiveness of thermal
image perceptrons. As shown in Table 7, four different
variables are selected for qualitative analysis. We use the
methods of “early fusion,” “mid-phase fusion,” and “late
fusion” to construct a thermal image perception network
from RGB and thermal images, and fuse them at different
stages. There will be obvious differences in the network of
AGK, and we only use MAE =22.46 and MSE = 38.97 in the
reference comparison of AGK. But compared to the use of
only AGK to finally make the complete density map re-
gression, the thermal image-aware network can constrain
the edge expansion of each Gaussian kernel to be more
effective for dense crowds, which means that the adaptive
Gaussian kernel function AGK with RGBT thermal image
information awareness is more effective. The combination is
helpful in crowd counting, and the MAE and MSE errors are
smaller. MAE =18.01 and MSE =31.49 for AGK + RGBT-
Net (front fusion) on the MICC dataset. The MAE =18.16
and MSE=32.14 for AGK + RGBT-Net (midrange fusion)
on the MICC dataset. The MAE = 19.35 and MSE = 34.71 for
AGK+RGBT-Net (end fusion) on the MICC dataset.
Therefore, the midterm fusion + AGK method of the thermal
image perceptron used in this paper can meet the premise of
lack of time and training data, and the accuracy of
MAE =18.16 and MSE =32.14 is also satisfactory to us.

4.4.3. Effectiveness of Advanced Networks Based on Depth
Perceptron. We use MCNN, CSRNet, RetinaNet, DetNet,
Idrees et al., and RDNet as backbone networks for com-
parative experiments. The performance of all the compar-
ative methods is shown in Table 8. It can be observed that all
our new attempts to add RDNA on all backbones consis-
tently outperform the corresponding backbones. For ex-
ample, compared with the “mid-stage fusion” model of the
backbone network MCNN, MCNN + RDNA on the MICC
dataset has a 0.295 and 0.45 improvement in MAE and MSE,
respectively; compared with the “mid-stage fusion” model of
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TaBLE 7: Comparison of different feature fusion and normalization methods for the RGBT-CC dataset.
Method MAE MSE
AGK 22.46 38.97
AGK + RGBT-Net (front fusion) 18.01 31.49
AGK + RGBT-Net (midrange fusion) 18.16 32.14
AGK + RGBT-Net (end fusion) 19.35 34.71
TaBLE 8: Comparison of the different state-of-the-art methods on MICC dataset.
Model MAE MSE + MAE MSE
MCNN [62] 1.5 2.259 +RDNA 1.205 1.719
MCNN-adaptive [61] 1.489 2.114 N/A — —
CSRNet [63] 1.359 2.125 +RDNA 1.195 1.723
CSRNet-adaptive [61] 1.343 2.007 N/A — —
RetinaNet [59] 1.641 2.554 +RDNA 1.489 1.962
DetNet [60] 1.541 2.382 +RDNA 1.356 1.861
Idrees et al. [61] 1.396 2.642 +RDNA 1.299 1.849
RDNet [65] 1.38 2.551 +RDNA 1.289 1.787
Cascaded-DCNet [64] 0.836 1.031 N/A — —
Ours (RGBD-Net + AGK) 1.025 1.521 — — —

the backbone network CSRNet, on the MICC dataset,
CSRNet + RDNA has an improvement of 0.164 and 0.402 in
MAE and MSE, respectively; compared with the “midterm
fusion” model of the backbone network RetinaNet, on the
MICC dataset, RetinaNet+RDNA has 0.152 and 0.592
improvement in MAE and MSE, respectively. Compared
with the “midterm fusion” model of the backbone network
DetNet, DetNet + RDNA has an improvement of 0.185 and
0.521 in MAE and MSE, respectively, on the MICC dataset;
compared with the “fusion” model, the backbone net-
work + RDNA of Idrees et al. has an improvement of 0.097
and 0.793 in MAE and MSE, respectively, on the MICC
dataset; on the MICC dataset, the backbone net-
work + RDNA of RDNet has an improvement of 0.091 and
0.764 in MAE and MSE, respectively; our method is more
accurate than MCNN-adaptive and CSRNet-adaptive net-
works in terms of RGBD-Net+ AGK fusion, because our
method explicitly learns the interdependency and comple-
mentarity of RGB and RGBD, while MCNN-adaptive and
CSRNet-adaptive simply add depth-adaptive discriminative
capabilities without mutually enhancing network features.
The reason why RGBD-Net+ AGK does not exceed Cas-
caded-DCNet is that Cascaded-DCNet uses “early fusion.”
Our fusion method is midterm fusion. The reason for early
fusion superiority over midterm fusion has been given in the
previous section. But Cascaded-DCNet outperforms our
method only by 0.189 and 0.49 in MAE and MSE, respec-
tively. This comparison demonstrates the effectiveness of the
state-of-the-art networks based on depth perceptrons.

4.4.4. Thermal Image Perceptron-Based Advanced Network
Effectiveness. 'The performance of all comparative methods
is shown in Table 4. It can be observed that all instances of
our method consistently outperform the corresponding
backbone networks. For example, MCNN+IADM and

SANet + IADM have an 18.9% relative performance im-
provement on RMSE compared to their “early fusion”
model. Furthermore, our CSRNet + IADM and BL + IADM
achieve better performance on all evaluation metrics com-
pared to other advanced methods (i.e., UCNet, HDFNet, and
BBSNet). This is because our method explicitly learns spe-
cific shared representations and mutually enhances each
other, while other methods simply fuse multimodal features
without mutual enhancement. Therefore, our method can
better capture the complementarity of RGB images and
thermal images. This comparison demonstrates the effec-
tiveness of our RGBT crowd counting method.

First, we use MCNN, SANet, CSRNet, and Bayesian
Loss as the backbone networks to participate in com-
parative experiments. The performance of all comparative
methods is shown in Table 4. It can be observed that all our
new attempts to add RDNA on all backbones consistently
outperform the corresponding backbones. For example,
compared with the backbone network MCNN model,
MCNN + RDNA on the MICC dataset has a 2.12 and 8.28
improvement in MAE and MSE, respectively; compared
with the model of the backbone network CSRNet,
CSRNet + RDNA has an improvement of 2.58 and 5.12 in
MAE and MSE, respectively, on the MICC dataset;
compared with the model of the backbone network
Bayesian Loss, Bayesian Loss+RDNA has an improve-
ment of 3.22 and 4.71 in MAE and MSE, respectively, on
the MICC dataset; for MCNN + IADM, SANet+IADM,
and Bayesian Loss+IADM, our method is in RGBD-
Net+ AGK fusion. The accuracy exceeds these two net-
works because IADM uses “early fusion.” Our fusion
method is midterm fusion. The reason why early fusion
exceeds midterm fusion has been given in the previous
section. This comparison demonstrates the effectiveness of
the state-of-the-art networks based on thermal image
perceptrons.
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FIGURE 11: Performance of model transfer learning.

5. Conclusions

In this paper, we propose a heatmap fusion network (RGBD-
Net and RGBT-Net) for crowd counting in daytime and
night vision environments, and a guidance detection method
combined with adaptive Gaussian kernel. A population
counting and density estimation method based on cross-
modal fusion of RGB, RGBD, and thermal images is
established. A large number of experiments and evaluations
have been carried out on the MICC and RGBT-CC public
datasets. This method is superior to the existing multimodal
two-stream fusion population counting method in terms of
training time and retrieval recall. At the same time, it has a
good promotion effect on the RGB population counting task.
In the multimode fusion model, the medium-term fusion
model can be used to extract the channel features of the
image, and the Gaussian model can be used to extract the
spatial edge constraint features of the image for the final
population count estimation. This method has achieved
satisfactory results in population counting. In terms of
guidance detection, RGBD-Net+AGK and RGBT-
Net+ AGK can realize day and night vision counting and
detection of dense population. From the results, the RGBD-
Net + AGK model has completed the daytime training and
testing on the MICC dataset. Through verification, the av-
erage absolute error of the model is 1.025, the mean square
error is 1.521, and the target detection recall rate is 97.11%.
The average absolute error of the RGBT-Net + AGK model
in the RGBT-CC open dataset is 18.16, the mean square error
is 32.14, the detection recall rate is 97.65%, and the ro-
bustness to occlusion and night complex scenes is good. This
day and night counting method can solve the application of
some actual scenarios. One possible application in the future
is to use UAVs to count the number of people and locate
special targets in the battlefield background, and help the
UAVs (or UAV groups) integrated with search and strike to
form effective attacks (or reasonable distribution of the
attacked objects) above the crowd, so as to maximize the
attack power.

6. Discussion

The comprehensive use of RGBD-Net and RGBT-Net can
realize the day and night crowd counting and detection.
However, the method in this paper has the disadvantage that
the generalization ability of target detection in other datasets

is not good. In this paper, the trained model is used to
complete the target detection on the Shanghai Science and
Technology dataset, and it is found that as long as there is an
occluded head, it is not detected, as shown in Figure 11. This
is one of the important reasons that, in the future, we will
extend our proposed method to the field of UAV night
vision attack and video crowd counting and detection, es-
pecially to improve the real-time processing ability of the
entire algorithm.
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