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In this study, we have developed a “double-empirical mode decomposition algorithm” to estimate cardiac stroke volume from
respiratory inductive plethysmography (RIP) signals. *e algorithm consists of first an ensemble empirical mode decomposition
(EEMD) to extract the cardiorespiratory components. *en, it is followed by an empirical mode decomposition (EMD) to extract
only the cardiac components. *is double approach permits (a) solving problems of mixing between cardiac and respiratory
components (mode and scale mixing), (b) cardiogenic oscillations extraction in the respiratory inductive plethysmography signal,
and (c) subsequent estimation of stroke volume. *e algorithm is applied to simulated and real RIP signals. *e simulated signals
are generated by a cardiorespiratory model previously published by the authors. *e real signals are measured via a developed
inductive vest. In the real case, the values of estimated stroke volumes are compared to the values obtained by thor-
acocardiographic filter-based method. In the simulated case, the values are compared to the simulated cardiac activity. *e results
of comparison through Bland and Altman indicate an error lying in the range ±10%. In contrast to thoracocardiography, the
proposed method consists of a promising tool for continuous noninvasive adaptive cardiac monitoring that does not need
adjusting parameters or cut-off based on ECG. Also, in comparison to echocardiography and impedance-based methods, it does
not necessitate the presence of an expert and is not too sensitive to current penetration.

1. Introduction

1.1. Background. *e mechanical cardiac activity is a vital
sign that is essentially monitored in several health cases.
However, several recent methods for continuous quantifi-
cation of ventricular volume or cardiac output include in-
travascular catheters, contact with radioactivity, availability
of practiced expert, or necessity of continuous holding of
sensing device. *ose requirements make the measurement
protocol less effective for continuous monitoring. *erefore,
noninvasive procedures have been implemented, e.g.,

transthoracic electrical bioimpedance and echocardiogra-
phy. Nonetheless, those techniques are not commonly valid
for routine use for the reason that their efficacy in clinical
situations and in continuous monitoring is still under ex-
amination [1]. On the other hand, a noninvasive technique,
named thoracocardiography (TCG), has been introduced in
[2]. It is centered on the concept of inductive plethys-
mography (IP). *e outcome of inductive plethysmography
is the sum of all variations in the volume surrounded by the
device/sensor. According to TCG during spontaneous res-
piration, movements due to breathing induce about 95% of
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the signal recorded at the placement of the xiphoid process,
while the movement due to left heart ventricle, i.e., car-
diogenic oscillations accounts for 5% [2]. Hence, TCG
targets the noninvasive recording of left ventricular stroke
volume by ECG-triggered ensemble averaging and band-
pass filtering [0.7 ∗ (heart rate) Hz–10Hz] [3] of the
resulted signal with the purpose of elimination of low fre-
quency, associated with breathing and body artifacts, as well
as of high-frequency noise. TCG leads to accurate quanti-
fication of stroke volume and cardiac output. Nevertheless,
the cut-off values of the used filter are highly dependent on
heart rate, thus TCG cannot be suitable in strong nonsta-
tionary conditions.

Several candidate methods have been scanned in liter-
ature in order to search for a suitable alternative adaptive
continuous noninvasive cardiac event detection technique.
In [4], a residual deep neural network is customized and
employed to detect passive seismic events. *e method
yields accurate detection. However, the denoising step is
achieved by an IIR Wiener filter, i.e., not adaptively by the
method itself. In [5], a proposed self-training technique is
applied to sound event detection and takes on the task of
identifying the presence of specific sound events in a
complex audio recording. Nevertheless, it is particularly
effective in extending the labeled database with concurrent
sound events in case of a lack of fully described class labels.
In [6], temporal event information was detected by utilizing
features at different scales. Although the approach is
promising, its achieved accuracy is not satisfactory for the
clinical field of stroke volume estimation. A detection
method in [7] is elaborated specifically for noninvasive
stroke volume estimation via a novel hierarchical genetic
fuzzy logic model. *e outcomes are encouraging, but they
rather indicate a dependence of stroke volume on the
variations in skin warming, age, and pulse pressure of the
patient; hence, it is not an automatic technique of stroke
volume quantification. In [8], another technique has been
suggested particularly for noninvasive stroke volume esti-
mation via indirect myocardial work evaluation. Nonethe-
less, the basic concept is based on echocardiography that is
not appropriate for continuous assessment. In [9], empirical
mode decomposition has been applied to detect the varia-
tions due to heart beating reflected in breathing waveforms
with the aim of tracking heart rate via a piezoelectric
transducer. Empirical mode decomposition (EMD) is a
nonlinear method that has been developed by Huang et al.
[10–12] to decompose nonstationary waveforms into am-
plitude modulated frequency modulated functions. EMD
does not necessitate stationarity/linearity to find out all the
embedded oscillatory components [13, 14]. Empirical mode
decomposition decomposes complex signals into intrinsic
mode functions (IMF), which are high-frequency and low-
frequency constituents. [10] illustrates that EMD outper-
forms wavelet decomposition as it is data driven and does
not need a predefined mother model [12, 15]. Furthermore,
EMD of biomedical signals yields IMFs based on the real
underlying physiological processes. For example, [16] has
illustrated the efficacy of EMD in analysis of R-R interval
variation caused by breathing—which is the result of

nonlinear processes—while other techniques had many
drawbacks.

*e present work introduces a new data-driven tech-
nique for the detection of cardiogenic oscillations and stroke
volume estimation in IP without the necessity of ECG and in
a continuousmanner.*e suggested technique is formulated
in order to solve the limitations mentioned above: it is
adapted to nonlinearity and nonstationarity, does not use an
ECG reference, fully adaptive, and does not necessitate user-
dependent adjusting of parameters (as in TCG), noninvasive
in contrast to many methods used in clinical field, appro-
priate for continuous monitoring with low cost and minimal
need of expert presence (in contrast to transthoracic elec-
trical bioimpedance and echocardiography). *e suggested
adaptive method is a double empirical mode decomposition
applied to simulated as well as recorded cardiorespiratory IP
waveforms.*e signals are hence double-decomposed: (1) in
a first step, signals are decomposed by ensemble empirical
mode decomposition (explained in the following sections).
*en, (2) in a second step, selected resulted components are
redecomposed via empirical mode decomposition
(explained in the following sections) in order to separate the
extracted mechanical cardiac activity. *e following sub-
sections explain in details the information in literature re-
lated to empirical mode decomposition, confronted
limitations (mode mixing and scale mixing), ensemble
empirical mode decomposition, and double decomposition.

1.2. Empirical Mode Decomposition. A waveform can be
named IMF if it satisfies the following requirements: the
counts of extrema and zero crossings are equal or differ by
one. Also, the local mean of the curves passing by the
maxima and minima is about zero. *ese features of IMF
help subsequent accurate calculation of local frequency and
amplitude [17].

First, maxima and minima are detected in order to
interpolate two different curves between the points. *en,
the local mean of those curves is calculated and subtracted
from the original signal. *e remainder is IMF1 if it satisfies
the mentioned conditions, and IMF2 is extracted from
(original signal–IMF1). Otherwise, the procedure is re-
iterated on the remainder to find IMF1. All other IMFs are
found out in analogy to the above steps (i.e., sifting) [18].
Stopping criteria are the maximum number of iterations and
lowest acceptable local mean [11].

*e original signal s(t) is decomposed as follows:

s(t) � 
M

i�1
IMFi(t) + r(t). (1)

M: number of IMF, r(t): monotonic residue, and IMF(t)

is the IMF [18].

1.3. Mode Mixing. Intermittent waveform is an oscil-
lation—at a specific frequency—appearing or vanishing
from a signal abruptly. Hence, in EMD, intermittency takes
place when the frequency in an IMF jumps due to the
appearance or disappearance of the intermittent section,
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which leads to an IMF with different frequencies, i.e., mode
mixing. Additionally, it has been illustrated in literature that
mode mixing is not caused only by mode intermittency but
also by EMD dependence on frequency/amplitude ratio of
oscillations in a signal. *is matter of dependence has been
discussed in [19]. *e efficacy of separation by EMD de-
creases when the frequency ratio of two components is lower
than a threshold that is a function of amplitude ratio. *is is
highly noticed when one of the two components has higher
frequency and lower amplitude; it is important to emphasize
that this is the condition of breathing and cardiac compo-
nents in a respiratory IP indicated by Figures 1(a) and 1(b).
*e present work targets the processing of the cardiore-
spiratory signal in order to move it from the zone of mode
mixing to the zone of no mode mixing.

1.4. Ensemble Empirical Mode Decomposition. To avoid
mode mixing, a new version of EMD has been implemented
in [20]: Ensemble empirical mode decomposition (EEMD)
method. EEMD inserts a random signal in order to prevent
mode mixing. Hence, IMF is actually found out as the av-
erage of different counterpart IMFs extracted in different
decompositions; every decomposition is the EMD of
(original signal +white noise), so that the different white
noises annul each other. Consequently, only the real con-
stituents remain.

1.5. Double Decomposition. Scale mixing is a drawback of
EEMD [20]. Scale mixing occurs when resulted components
do not satisfy the strict conditions of IMF due to a ceiling of
sifting iterations. In scale mixing, an achieved mode is the
sum of two successive IMFs. Hence, a possible solution
suggested in the present work is to apply a new EMD sifting
to the mode achieved by EEMD.

2. Materials and Methods

2.1. Subjects and Protocol. Totally, 25 healthy sub-
jects—seated—contributed to the recording phase. Each
subject signed the informed consent document. *e re-
cording is approved by the committee of the University
Hospital Centre of Grenoble-Alpes. *e protocol is to
breathe spontaneously and quietly during 15min.

2.2. Recording and Calculation of Volumes. *e system
Visuresp® developed by RBI, Meylan, France, is used to
measure the variations of cross-section area of thoracic and
abdominal sections through Respiratory IP vest. *e vest is
fabricated by an elastic material with a particular charac-
teristic of only horizontal extensibility. *e inductive spirals
are incorporated in the vest at thoracic and abdominal levels
with two additional straps to avoid vertical movement. *e
vest is connected to two primary and two secondary os-
cillators; the signals pass then to two frequency/voltage
converters, two filters, and an Analog to digital converter
(PowerLab, ADInstruments). *e system is connected by an
RS232 cable to a computer equipped with an acquisition

software (Chart, ADInstruments). A system of isolation is
also included. *e zero calibration is automatically per-
formed. ECG and pneumo-tachogram (Fleisch no.1) are also
monitored.

*e calibration of the RIP volume measured by the
system is conducted based on the method developed by
laboratory team PRETA-France in [21]. At the beginning of
recording, the volunteer is asked to perform a number of
successive high-amplitude respiratory cycles in order for
Visuresp® to determine the range of amplitude to be
measured. At the end of recording, RIP signal is considered
as ƛ ∗ Abdominal activity + µ ∗ *oracic activity. *e ac-
tivity means the discrete signal representing the cross section
variation measured by the vest. *e optimization of ƛ and µ
is achieved by minimizing the error between the calculated
RIP and the integral value of the airflow measured by
pneumotachography.

2.3. Cardiorespiratory Model. In the present work, the
cardiorespiratory model developed previously by our team
in [22–24] is used in order to simulate the variations of
respiratory, cardiorespiratory, and cardiac volumes. Briefly,
the model includes two modules: respiratory (breathing
pattern, alveolar volume, and pleural pressure) and cardiac
(cardiac activity, chest wall mechanics, and volume vari-
ations (i.e., simulated IP)). *e cardiac module is a wave
generator. *e model takes also into consideration mod-
ulation of left ventricle (LV) stroke volume due to
breathing.

2.4. Parameter Identification and Sensitivity Analysis.
Parameter identification and qualitative sensitivity analysis
have been conducted using Berkeley Madonna® software inorder to determine the most sensitive parameters. *ose
parameters are varied with the purpose of generating a set of
physiological simulations to which our algorithm will be
applied.

2.5. Simulations. According to sensitivity analysis, the most
sensitive parameters are cardiac rate (HR) and breathing
frequency (BF), which lead to frequency ratio (f ). Also,
amplitude ratio (a) between respiratory and cardiac activ-
ities is important. In our work, the variations of these pa-
rameters from a simulation to another generated a set of
seven stationary and nonstationary amplitude modulated
simulated RIP signals (more than 1000 cycles). It is worthy
to note that these parameters are related to RIP components
frequency and amplitude ratio that affects RIP empirical
decomposition behavior. *e simulations ratios are pre-
sented in Table 1.

*ose simulations are created based on physiological
scenarios where basic amplitude ratio (tidal volume/stroke
volume) lies approximately in the range [5–20], and basic
frequency ratio (breathing frequency/heart rate) lies ap-
proximately in the range [1/3–1/8]. For example, superficial
high frequency breathing leads to rise in f and fall of a; rapid
and profound breathing leads to rise in f and a; drug
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intoxication leads to a fall in f and a; and emotional stress
leads to a rise in a and a fall in f. Note that the values
presented in Table 1 are 1/f and 1/a. Moreover, the simu-
lations include the transit from one physiological case to
another, i.e., nonstationary situations.

2.6. Ensemble Empirical Mode Decomposition. Simulated
RIP and real recorded inductive plethysmography signal Vth
are decomposed by EEMD. *e number of sifting iterations
is limited to 10 in order to avoid over-sifting [20]. A set of
10000 white noise signals with amplitude of 1.6 times the
r.m.s of RIP signal has been used. *e r.m.s VR of RIP signal
has been approximated to the r.m.s of the respiratory
component:

VR �

�����

1
M



M

k�1




[S (k)]
2. (2)

S(k) is the k th sample of RIP signal. *e r.m.s (VR) has
been calculated over the number of all samples (M). *e
signal/noise ratio has been determined as follows:

σb

VR

� 1.6, (3)

where σb is the added white noise standard deviation.
*e average of the corresponding IMFs from several tests

is then calculated. In the final result, a signal/noise (εr ) ratio
was acceptable if near 10%.
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Figure 1: (a) Region of work in the case of cardiorespiratory signal obtained by RIP (modified image [19]).*e dotted lines define the region
of physiological variations of amplitude (a) and frequency (f) ratio. *e bad separation of modes exists in zones 2 and 3. Our suggested
double decomposition represents passing fromA to B. (b)*e target of the proposed algorithm is to eliminate mode mixing by changing the
amplitude and frequency ratios of respiratory and cardiac activities from the mode mixing situation to the no-mode mixing situation.
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σr

Vc

� 0, 1 � εr, (4)

where σr is the residual noise standard deviation and Vc is
the r.m.s of the cardiac component estimated using the
amplitude ratio a. We can consider, as indicated in [20] that

σr �
σb��
N

√ . (5)

Hence,
��
N

√
�

σb ∗ a
VR ∗ εr

�
1.6∗ a
εr

. (6)

*e physiological range of a is between 5 and 20 (e.g., if a
preliminary value of a� 6 is chosen, N is then equal to 104).

2.7. Double Decomposition and Cardiac Component
Reconstruction. As illustrated in the work flowchart in
Figure 2, a new round of sifting has been applied to modes
containing CR mixing.

As mentioned, the algorithm generates a mixture of
EEMD scales on certain IMF.*is phenomenon is related to
the criterion of stopping the sifting operation that takes place
on a static number of iterations. *is creates a loss of res-
olution in the separation of different components. *is
mixing has been detected automatically by Teager–Kaiser
energy operator in order to detect the variations in energy
present in a signal containing a mixing of two components.
*e calculated value at an index k is the difference between
the squared amplitude of the component at that k and the
product of the amplitude at k− 1 with the amplitude at k+ 1.
When the Teager–Kaiser value exceeds the threshold
0.00005, a mixing is identified.

It is noteworthy that several simulations have been
conducted in the present work and all of them gave the
same type of results with a scale mixing in IMF4 and IMF5.
*e sum of those two IMF gives a cardiac signal con-
taining certain breathing harmonics. *e solution pro-
posed here is the double decomposition. Figure 1(a)
illustrated the interest thereof. While the original signal
was located in zone 3, the signal of the sum of IMF4 and

Table 1: Simulated situations. HR� heart rate, Fr: breathing frequency, f: frequency ratio, a: amplitude ratio.

Situation 1/f 1/a
Situation 1 (stationary) 4 (HR� 1; fr� 0.25) [0.1–0.17]
Situation 2 (nonstationary) f 1� 7.1; f 2� 7.8 (HR1� 1, HR2� 2.2; Fr1� 0.14, Fr2� 0.28) [0.05–0.15]
Situation 3 (non–stationary) f 1� 3.6; f 2� 7.2 (HR1� 1, HR2� 2; Fr1� 0.28, Fr2� 0.28) [0.04–0.16]
Situation 4 (stationary) 3 (HR� 0.75; Fr� 0.25) [0.1–0.15]
Situation 5 (stationary) 7 (HR� 1; Fr� 0.14) [0.05–0.15]
Situation 6 (nonstationary) f 1� 7.1; f 2� 7.8 (HR1� 1, HR2�1.8; Fr1� 0.14, Fr2� 0.23) [0.05–0.15]
Situation 7 (nonstationary) (Progressive rise of HR: [1.4–3.3]; progressive rise of fr: [0.2–0.5]) [0.05–0.08]

EEMD

IMF1

Cardiac IMF IMF2
IMF3

IMFm

EMD

Extracted
Vh Cardiac IMF

First
decomposition

Second
decomposition

IMF with
Cardiorespiratory

mixing

Figure 2: Work flowchart (double decomposition strategy). Vh is the cardiac volume.
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IMF5 is in Zone 1. *e EMD can then separate effectively
cardiac and respiratory components [25, 26]. *e main
parameters used in EMD application are type of extrema
detection, type of envelope interpolation, maximum
number of sifting iterations, maximum accepted value for
the difference between upper and lower envelopes in an
IMF, maximum number of obtained IMF, and masking-
assisted decomposition. *e values of parameters used in
EMD were chosen as follows: extrema detection algorithm
used in [19], Spline interpolation, 2000, zero, unlimited,
and not used, respectively.

2.8. Stroke Volume Comparison. For simulated data, left
ventricle volume signal (VIv) is used as the reference cardiac
activity. Stroke volumes of extracted cardiac activity are
hence compared with stroke volumes (SV) of simulated
cardiac activity.*e used statistical test is Bland and Altman.
On the other hand, for real stationary data, cardiac com-
ponent extracted by a thoracocardiography filter (FIR with
order 200) has been used as the reference. More than 170
cycles were used for comparison. *e zone in ± R-R interval
around the inspiration-expiration transition has been ex-
cluded because it suffers from CR harmonics overlapping.
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*e method of evaluation of concordance by Bland and
Altman consists of the calculation of the difference between
the values obtained by two different techniques as well as the
average of those values. When the concordance between two
series of values is perfect, the summation of arithmetic
differences between the values is null. Also, the average of
differences is defined as the bias. *e variability of those
differences indicates whether the twomethods have different
natures. In brief, Bland and Altman helps efficiently in
judging the interchangeability between the two methods. In
the present work, two thresholds of concordance are fixed
based on the 95% interval of confidence (±30%). *e dif-
ferences are expressed as percentages of values averages.
Bland and Altman graphs have been plotted via MedCalc®.
3. Results and Discussion

Figure 3 illustrates the results obtained after the application
of EEMD to a stationary simulated CR signal. IMF1 and
IMF2 are likely composed of noise. *e cardiac signal seems

to spread over the IMF3, IMF4, and IMF5. Mode mixing
effect does not appear. However, there is a respiratory
component on IMF4 and IMF5 (scale mixing). *e
remaining IMFs concern respiration.

*e algorithm generates scale mixing on IMF4 and
IMF5. *e sum of these two IMF gives a cardiac signal
containing some respiratory harmonics. *e solution
proposed here is the double decomposition. Figure 4 il-
lustrates the result of EMD applied to the sum of IMF4 and
IMF5. *e figure indicates an effective separation. Only
IMF1 concerns the cardiac signal. In order to proceed to the
reconstruction of the cardiac component, the considered
IMF are IMF2 and IMF3 of the EEMD result and IMF1 of
the EMD result.

*e test of Bland and Altman (Figure 5) emphasizes the
matching between the results and the criteria set out and
searched in literature [2]. *e relative difference between the
simulated stroke volume (SV_model) and estimated stroke
volume (SV_DD) has a value of less than± 30% (95%
confidence interval).
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*e second objective of the present work is to analyze the
performance of the algorithm in a case of variation in
cardiorespiratory behaviour. Figure 6 shows an absence of
mode mixing in the application of EEMD to nonstationary
RIP signal. It also shows that changes in heart rate and
breathing are correctly detected on the IMFs.

Figure 7 illustrates the second decomposition applied to
the sum of IMF4 and IMF5. Only IMF1 concerns the cardiac
component.*e test of Bland and Altman (Figure 8) certifies
obtaining a limit of agreement consistent with the required
criterion of interchangeability [2].

*e third objective of the present work is to test the
algorithm performance on a population of healthy subjects.
Figure 9 shows the result of EEMD application to a real
cardiorespiratory signal. Figure 10 illustrates the double
decomposition applied to the sum of IMF4 and IMF5. In
order to reconstruct the cardiac wave, the following IMFs are
considered: IMF 2 and 3 of the EEMD added to IMF1-3 of
the EMD applied to the sum (IMF4+ IMF5).

Figure 11 illustrates the values SV_DD (estimated stroke
volumes) cycle to cycle depending on their position relative
to the beginning of the corresponding respiratory cycle (65
cardiac cycles for the subject n°7). We eliminate the cycles in
the transition zone inspiration-expiration. *e stroke vol-
ume estimated in the inspiratory phase and preceding the
“forbidden zone” values are lower than those estimated at
the end of expiration. *is observation confirms that the
findings are consistent with those described in [2, 3].

Figure 12 illustrates the interchangeability between es-
timated stroke volumes (of real CR signals) and TCG (of real
CR signals).*is figure has been derived from the analysis of
170 cycles obtained on a set of seven healthy subjects and
detected automatically. *e automatic method has a good
accuracy of cycle detection; 10 cycles were false positives and
2 cycles were false negatives.

For real stationnary data, we use thoracocardiography
as our reference (170 cycles). In the case of nonstationary
real data, we will have, first, to determine a suitable non-
stationary protocol and second to compare our stroke
volumes results to echocardiography. *e algorithm has
been efficient when applied to our simulated situations. We
will have to raise this number in order to construct a
population of simulated situations taking into account
other sensitive parameters variability. *is population will
present the tests by which the algorithm application can be
optimised.

In addition, our algorithm should be optimised in order
to account for stroke volume measurement in harmonics
overlapping zone. Finally, we need to decrease the calcu-
lation time of the algorithm (2 hours for a recording of
2minutes). As a preliminary approach to find a solution to
time consumption, the EEMD has been conducted in a
“complementary” style; in other words, a complementary
ensemble empirical mode decomposition (CEEMD) has
been applied to signals instead of standard EEMD. *is
approach has been applied—as a trial—to nonstationary
simulated scenario (situation 2) through achieving 50 pairs
of complementary ensemble modes with positive and
negative added white noises (noises that cancel each other).
Hence, IMF is actually found out as the average of different
counterpart IMFs extracted in different decompositions.*e
decomposition yielded good IMFs with eliminated residue
noise similar to the level achieved by EEMD with a fast
procedure that did not exceed (1/60) of the time consumed
by EEMD.

*e novelty of the work lies mainly in two levels: (1) on
the level of used instrument: the user-friendly, continu-
ous, wearable, low-cost, and noninvasive monitoring of
stroke volume via cardiorespiratory plethysmography.
*e main noninvasive methods currently used for stroke
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volume estimation are thoracic electrical bioimpedance
[27] and transthoracic echocardiography [28]. However,
in transthoracic echocardiography protocol, at least one
intensivist in each unit who is an expert on transthoracic
echocardiography should be available. Moreover, pitfalls
and limits of transthoracic echocardiography need to be
known by the users to avoid misinterpretations [29]. Also,
in thoracic electrical bioimpedance protocol [30], body
composition, skin status, electrodes adhesiveness, and
obesity are critical factors that affect current penetration.
(2) On the level of implemented algorithm (a) the sug-
gested double empirical decomposition solves one of the

challenging issues in wearable technology that is the
absolute need of artefact detection and reduction [31]; the
proposed method eliminates artefact adaptively based on
the inherent physiological model. In addition, (b) the
cardiac activity is extracted and separated from other
activities in an intuitive accurate way, and (c) it is more
adaptive than TCG that is triggered by heart rate and ECG.

In the present work, several aspects have been taken into
account for improvement of results (1) noise and artefacts
are removed as undesired intrinsic mode functions. Hence,
their effects are highly eliminated by discarding those IMFs
as unwanted. (2) Also, the amplitude of the measured
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Figure 6: IMF1-10 obtained after the application of EEMD to a nonstationary simulated RIP signal.
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cardiorespiratory signals is calibrated via careful calculation
of the correct coefficients of the weighted summation of the
thoracic and the abdominal cross-sectional variations based
on initial values of pneumotachograph airflow [32]. (3) In
addition, the signal to noise ratio and the limit of iterations
and noise additions in EEMD have been examined deeply
with the intention of finding the best parameter values, since
the method is very sensitive to noise level. (4) *e com-
parison between our results and TCG results considers only
the zones of signals that are studied by TCG in order to
standardize the investigation.

Several points represent sources of challenging com-
plexity in the suggested method, starting from the phase of
recording to the phases of calibration, simulation, de-
composition, extraction, and comparison with reference:
(1) the level of sensitivity of the implemented vest is a
critical aspect as it determines the quality of recording and
hence the correctness of measured cardiogenic oscilla-
tions. Without that required high level of correctness, the
processed signals would not reflect a real cardiac activity;
(2) the precise calibration of the weights of thoracic and
abdominal variations is a highly important step. *at step
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Figure 9: IMF1-10 obtained after the application of EEMD to a real cardiorespiratory signal.
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ensures a truthful representation of both cardiac and
breathing activities in the processed signal, otherwise the
whole subsequent work would be based on an erroneous
cardiac reference; (3) the robust simulation of a cardiac
activity embedded in a cardiorespiratory activity: the
developed model represents a reference that must be
realistic. For example, the simulated cardiac amplitude,
cardiac frequency, and their variations through inspira-
tion, transit, and expiration should absolutely be very well
manipulated in analogy with physiology; (4) since the
comparison—applied to real signals—considers the TCG
reference, it was necessary to choose a test that judges
interchangeability not superiority, this is due to the fact
that a better method cannot be found out without a golden
invasive method. *e Bland and Altman test was therefore
used; (5) the selected parameters in EEMD and in EMD in
first and second decompositions, respectively, are too
critical and should be cautiously tuned. *e level of noise,

the number of counterpart decompositions, the number of
sifting, the noise tolerance, the IMF asymmetry tolerance,
and the type of interpolation are all essential parameters
that must be carefully adjusted in order to direct the
technique accurately towards the desired cardiac com-
ponents; (6) the automatic technique and the threshold
that should be used to track the mode and scale mixing
were the object of a successful exhaustive experimentation
by the authors. EMD and EEMD are every so often “too
empirical,” which yields to a difficulty of catching a
general rule about the outcomes; (7) the skipping of real
cardiorespiratory overlapping zones in inspiration-expi-
ration transition periods by the suggested method is a
disappointing choice that should be made since TCG
cannot consist of a reference in those zones; and (8) fi-
nally, the processing cost and time are high. However, as
indicated above, initial attempts of CEEMD indicate a big
reduction of time and calculation cost.
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*e future extended work will be the comparison with
electrical bioimpedance and transthoracic echocardiography
as they are the available tools for cardiorespiratory moni-
toring. Also, the investigation and optimization of the used
device will be conducted in order to examine the used

electrodes and their positions, as well as the possibility of
better personalization of the vest [33]. Moreover, a pertinent
automatic selection of cardiac IMF should be implemented.

Table 2 presents the main limitations of the available
techniques that were targeted in the present work.
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4. Conclusion

In this article, an implemented vest has been used
according to the cardiorespiratory inductive plethysmog-
raphy principle. *en, a double decomposition algorithm
has been applied to simulated and real measured cardio-
respiratory signal in order to extract cardiac activity. *e
simulated signals are generated by a previous model built
by the authors. In the CR model, a first step has been
achieved to the simulation of the physiological shapes of
mechanical cardiac activity as well as respiratory waves.*e
double decomposition includes two steps: first step is an
ensemble empirical mode decomposition. *e second step
is an empirical mode decomposition of selected compo-
nents extracted from step 1. Both steps need the careful
setting of specific parameters like the level of added noise
and limit of iterations. *e results show that this algorithm
is a promising nonlinear method for efficient cardiogenic
oscillations extraction in inductive plethysmography sig-
nal. It is more user friendly for continuous monitoring
compared with available techniques such as transthoracic
echocardiography. Also, it is more adaptive as compared
with thoracocardiography.

*e suggested method consists an encouraging step
towards noninvasive detection of cardiac activity in a
continuous manner with low cost and need of expert
presence. Also, it is a promising tool—for quantification of
stroke volume—embedded in a fully mobile device.

A further optimization step is necessary in order to
measure the cardiac activity in CR harmonics overlapping
zones. Moreover, the explored inductive vest should be
studied for better personalization. Finally, a quantitative
comparison should be made with approved techniques like
electrical bioimpedance.
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