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As process technology scales, electronic devices become more susceptible to soft errors. Soft errors can lead to silent data
corruptions (SDCs), seriously compromising the reliability of a system. Researchers have explored error resilient encodings, which
leverage crash patterns to detect SDCs. Despite its importance, much still remains to be determined regarding how errors
propagate to cause SDCs or crashes. Understanding error propagation patterns could lead to more efficient implementation of
error detection. An experimental study of program behavior in the presence of faulty instruction encoding under the IA-32
architecture is described in this study. Extensive fault injection experiments including over 70,000 faults were conducted, targeting
all fields of instruction encoding. (e analysis of the obtained data shows the following: (1) If the alignment of an instruction
sequence is not preserved after injection, it causes crashes in a high probability (93.2%). (2) (e SDC rate of an alignment-
preserved category is close to that of a typical data injection. (e SDC-prone fields include the opcode field, reg field, and
immediate field. (3) Several crash patterns, such as violation of calling conventions, are revealed to extend the detection methods.
(ese findings help us identify the vulnerable parts of instruction encoding, which need to be protected against soft errors. By
applying the implications provided by the findings, we discuss feasible modifications, including swapping reg encodings, to reduce
SDC rate, thus increasing the resilience of instruction set to soft errors.

1. Introduction

Soft error has emerged as a severe challenge in electronic
system design [1]. Progressive technology scaling and
lowering of operating voltages have made contemporary and
future electronic systems more susceptible to soft errors [2].
Soft errors can produce a bit flip in the instruction encoding
flipping a single bit from 0 to 1 or vice versa. Possible
outcome types derived from this bit flip are benign, crash,
hang, or silent data corruption (SDC) [3]. When SDC oc-
curs, the program generates an erroneous output. Compared
with other outcome types, SDC is more insidious since it
occurs without any indications [4]. Applying the erroneous

output incurred by SDC may lead to loss of properties and
even casualties.

Instruction encodings are stored in memory, instruction
cache, instruction queue, instruction buffer, etc. Li reveals
that instruction buffer is one of the three largest contributors
to the architectural FIT rate on average [5]. Researchers
tackle the issue of preventing SDC using schemes such as
encoder/decoder [6] and bloom filter [7] by converting
many SDCs into crashes. (e encoder/decoder scheme
propagates the error to the most sensitive bit, which is
chosen based on the probability of causing invalid encoding
exception. Intrinsically, instruction set architecture (ISA)
can detect the error if a changed encoding produces a crash.
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Another approach changes the encodings of certain fre-
quently used instructions to increase the likelihood of
producing crashes [8]. While these schemes leverage invalid
instruction exception of ISA, they are not able to detect SDC
efficiently. We identify the following challenges.

(1) (e major crash pattern used to design a detection
scheme is invalid instruction exception. It is easy to
predict an invalid instruction exception when a bit of
encoding is flipped. However, invalid encodings
often account for a small portion of all encodings,
which restricts the range of encodings that it can
protect.

(2) (e propagation of faults in instruction encoding to
cause SDC has not been investigated.(e encoding is
considered SDC-prone if the changed encoding is
not an illegal instruction. Since many non-SDC-
prone encodings are considered vulnerable, they are
protected by the detection scheme, which is un-
necessary and leads to performance loss.

(ese issues are vital for increasing the intrinsic error
detection rate of ISA. (ere has been little work using fault
injection to study the effects of faulty encodings. To address
these issues, we inject faults into the encodings and extract
features from the results of fault injection.

In this study, we target instruction encoding of IA-32
instruction set architecture [9]. Over 70,000 faults are injected
into all fields of instruction encodings (instruction encodings
consist of optional instruction prefixes, opcode field, an
addressing form specifier consisting of the MODR/M byte
and the SIB, a displacement, and an immediate field). (e
injection traces, including massive execution information, are
also recorded. (e analysis provides detailed insight into the
behavior of the program.(e SDC or crash rates of all fields of
instruction encoding are evaluated, and the causes for high
SDC or crash rates are analyzed by investigating the injection
traces. Moreover, typical fault propagation patterns are
revealed, which provides guidelines for developing resilient
encoding. We also inject faults in the data of instruction
(register file or memory) to create a baseline for instruction
encoding. (e injection results of instruction encodings are
compared with results from data fault injection, indicating
that certain fields can be more vulnerable than data. (e
major findings include the following:

(i) A change in the alignment of an instruction se-
quence significantly increases the crash rate. A
realigned category experiences a substantially
higher crash rate (93.2%) compared with an
alignment-preserved category (59.1%).

(ii) (e opcode field in a certain instruction (such as Jcc
and MOV) and the reg and immediate field obtain
higher SDC rates compared with the SDC rate of
injections on data (14.4%). Flip in n-bit of the opcode
field in Jcc instruction causes the wrong branch to be
taken, and it obtains the highest SDC rate (46.7%).

(iii) We reveal crash patterns including realignment of
instruction sequence, addressing failure, and calling

convention violation, which extends the patterns
that can be used to derive effective error detection
mechanisms.

We discuss some feasible schemes that can be used to
modify encodings of SDC-prone fields, such as the opcode
and reg fields. (e proposed schemes set crash-prone
encodings as neighbors of certain SDC-prone encodings in
the Hamming space, which prevents the error propagation
that may cause SDC. We evaluate the proposed scheme by
fault injections, and the results show that SDC rate can be
reduced significantly.

(e rest of the study is organized as follows. Related
research is discussed in the next section. (e experimental
methodology is described in Section 3. An overview of the
injection results is presented in Section 4. (e injection
results are classified as realigned, preserved, and invalid. We
discuss results in each category separately in Sections 5∼7.
Some implications for designing resilient instruction
encoding are presented in Section 8. (e study is concluded
in Section 9.

2. Related Work

A series of prior studies were concentrated on evaluating the
effect of faulty instruction encoding and error detection
mechanisms. We classify related work into three categories,
namely (1) error detection with encoder/decoder schemes,
(2) optimization of instruction encoding resilience, and (3)
vulnerability assessment of instruction encoding.

2.1. Error Detection with Encoder/Decoder Scheme.
Martinez presented an encoder/decoder scheme to detect
errors in instruction encoding [6]. When a soft error affected
an encoded instruction and produced a bit flip, the error was
propagated by the decoding, causing a second bit flip on the
sensitive bit. Many SDC cases were converted into crashes
because an error in the sensitive bit was likely to produce a
crash. (e choice of sensitive bit affected the SDC rate of the
encoder/decoder scheme, and thus, a methodology for
profiling the vulnerability of specific ISA was proposed in
their later study [10]. A fault was considered to cause SDC if
it did not incur invalid instruction exception and memory
access exception. (ere was still a significant difference (up
to 27.0%) between the estimated SDC rate and the real SDC
rate obtained in the fault injection. A portion of predicted
SDC cases might be actually crash cases. Few crash patterns
were considered, and faults that failed to match the patterns
were identified to cause SDC. Crash propagation is
addressed in this study, revealing more crash patterns that
are needed to make a more accurate estimation.

In an encoder/decoder scheme, error detection causes a
system crash. To avoid the performance loss caused by a
system crash, Atamaner used a bloom filter with the en-
coder/decoder scheme [7]. While the instruction was being
decoded, the bloom filter was queried with the fetched in-
struction to check whether it was in the initial original
instruction set. If it was not in the set, an error occurred and
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the system stopped execution to avoid system crash. To
reduce the number of elements in the filter, a dynamic
checking of the instructions based on vector that identified
the opcodes was proposed [11].

2.2. Optimization of the Instruction Encoding Resilience.
Opcode swapping based on the usage frequency of in-
structions (OSUFI) was proposed to reduce the vulnerability
of the ISA and instruction cache. OSUFI swapped the
opcode bits between a frequently used instruction with more
vulnerable bits and a less-frequently used instruction with
less vulnerable bits [8]. (e bit was considered a vulnerable
bit if the corrupted opcode became another legal opcode for
another instruction. (e OSUFI scheme can only be used
with an ISA that has a non-negligible proportion of invalid
encodings because the definition of vulnerability is based on
the invalid encoding. When the proportion of invalid
encodings of ISA is low, all instruction bits tend to be equally
vulnerable. In this study, we obtained several findings, which
help reveal the sources of vulnerable bits.

(e IA-32 instruction set currently uses continuous
encoding of all the conditional branch instructions, in which
a single-bit error can subvert the flow of control. To address
this issue, an instruction set encoding scheme that increased
the Hamming distance between the blocks of conditional
branch instructions was proposed [12]. Any parity encoding
in the new encoding scheme has a minimum Hamming
distance of 2, which means at least two different bits between
opposite condition encodings, preventing system from
subverting the programmer’s intended flow of control.

2.3. Vulnerability Assessment of Instruction Encoding. An
architectural vulnerability factor for instruction queue and
execution unit was calculated in a previous study [13]. All
bits in the opcode field were categorized as architecturally
correct execution (ACE) bits, even for the NOP instruction.
(e vulnerability of these bits was considered in a conser-
vative manner that these bits may affect execution of a
program. However, whether these bits incur SDC, crash, or
hang was not discussed further. Hamming-distance-one
analysis [8] was found to reduce the number of ACE bits in
the frequently used encodings. If a corrupted bit made the
opcode illegal, the bit was considered an ACE bit because the
error could be detected during instruction decoding.

Several earlier studies on the duplicated instruction
technique discussed the capability of detecting faulty in-
struction encodings [14]. Error detection by duplicated
instructions (EDDI) deployed duplication of instruction for
detecting errors during usual system operation. (e cases
that cannot be covered by EDDI in the presence of faulty
instruction encodings were given by theoretical analysis.(e
study only intended to prove that technique of instruction
duplication, which was used to protect data, was not able to
protect instruction encodings. However, it did not give the
vulnerable encodings that need to be protected. (is issue is
addressed in this study by analyzing the fault injections on
encodings, and the SDC-prone fields that need to be pro-
tected are obtained.

Another series of studies concentrated on triggering bit
flips from software to craft powerful attacks and completely
subvert a system. (e Rowhammer hardware bug allows an
attacker to modify memory simply by repeatedly accessing a
given physical memory location until a bit in an adjacent
location flips [15]. Notable examples include escaping
Google’s Native Client (NaCl) sandboxing feature and
gaining kernel privileges from an unprivileged process [16].
Olesen showed that a single-bit flip in jump instruction
encoding is enough to allow any user to access a system on
most UNIX platforms [17]. Our approach can be used to find
the vulnerable portion of the code segment for memory
protection or attack surface reduction.

3. Experimental Methods

(e fault model, experimental infrastructure, and applica-
tion workload are described in this section. (e fault model
we assume is a single-bit flip within the instruction
encoding. Fault can occur in any places, which store in-
struction encoding, such as memory without ECC protec-
tion, instruction queue, instruction cache, instruction buffer,
or pipeline. We do not consider the ECC protection. ECC
only protects SRAM structures on-chip and does not protect
pipeline logic or other processor structures [18]. Certain
components may not use ECC to acquire a high perfor-
mance. Moreover, it is more scalable to increase the resil-
ience of ISA than depending on reliable hardware since all
systems applying this ISA can be resilient to faulty in-
struction encodings. Applying this fault model can reduce
limits on hardware and serve the purpose of designing re-
silient instruction encoding.

In this study, we attempt to gain insight into program
behavior when instruction encoding is corrupted. (e fault
was injected into the binary code in the system’s memory.
We injected faults exhaustively so that faults on every in-
struction and every bit could be tested. All bits in the ex-
ecuted instructions of the studied program were injected
into the experiment, providing a complete view of fault
impacts. For example, the instruction TEST EAX, EAX
(encoding 0x85C0) has two bytes (16 bits). Sixteen injections
for this instruction were run, each running with 1 of the
16 bits corrupted. In total, over 70,000 faults were injected
into the binary executables.

3.1. Workflow of Experiment. (e experiment was divided
into three stages, as shown in Figure 1:

(i) Execution profiling: We took an instruction-level
profile of execution, recorded the executed in-
structions, and located the executed instructions in
the binary executable. (is step is to make effective
injection because injection on an unexecuted in-
struction does not make a real bit flip, definitely
causing benign.

(ii) Injection map generation: Each entry of the injec-
tion map has two fields: the displacement from the
beginning of the executable file and the bit to be
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injected. An entry was generated for each bit of the
executed instructions.

(iii) Fault injection and trace recording: One entry from
the injection map was used in each injection run.
According to the displacement item, we can find the
address of the instruction and change the specific bit
from 0 to 1 or vice versa, generating a new binary
executable. (e binary executable was run, and the
program output, error code, and data trace were
recorded.

Data traces of instructions were extracted and used to
analyze error propagation. We developed an instrumenta-
tion tool, called TracePrinter, based on Pin [19]. Pin is a
dynamic binary instrumentation framework for the IA-32
and x86-64 instruction set architectures, and it enables the
creation of dynamic program analysis tools. (e tool was
used to record executed instructions in stage 1 and record
data items in stage 3. (e example data trace from the trace
file of print_tokens is shown in Figure 2. (e data trace
contains the sequence number of the dynamic instruction,
instruction address, name of the operand, and the value of
the operand before/after execution. In the example, ESP is
written and its value is recorded before and after execution.
Because it is a SUB instruction and EFLAGS is affected, the
value of EFLAGS is also recorded. TracePrinter is also
embedded in a run-time probe that probes the “/proc”
system of LINUX to record the segment boundaries.

(e error code was recorded after execution to deter-
mine the causes of the crash. A successful execution returns
0, while an unsuccessful execution returns a nonzero value.
For example, error code 139 denotes segmentation error.

3.2. Infrastructure and Benchmark. (e experiment was
conducted on an IPASON P18 with an Intel i5 processor
running Ubuntu 10.04. GCC 4.4.3 was used for compilation.
(e benchmarks studied here are from the Siemens suite

[20] and MiBenchmark suite [21]. Siemens benchmark and
MiBenchmark cover basic operations such as mathematic
calculations, task scheduling, and word processing, which
are common in an embedded environment. We choose the
benchmark because it contains abundant data flow, control
flow, and addressing operations, which are beneficial to the
analysis. (ese benchmarks were widely accepted by the
related research work [4, 22, 23]. (e programs considered
are replace (which performs string matching and replace-
ment), schedule, schedule2 (which are priority schedulers),
print_tokens (which perform lexical analysis), and qsort_s-
mall (which performs quick sort). (ese are C programs
consisting of a few hundred lines of C code. (e charac-
teristics of benchmarks are shown in Table 1. It takes 28
hours to finish the whole fault injection experiment. For a
single run in fault injection, it takes a factor of about 18
larger run-time overhead than the native run.

3.3. Outcome of Injection. Four outcomes after the injection
are listed as follows [24], which are mutually exclusive and
exhaustive:

(i) Benign, meaning the program produces the correct
output. If the error code equals 0 and the output
after the injection equals the one in fault-free run,
the outcome is benign.

TracePrinter
(Pintool)

Record the executed
instructions and
their data items

TracePrinter
(Pintool)

Record the executed
instructions and
their data items

Generate
entries for

each executed
instruction

disp0 : bit0
disp0 : bit1
disp0 : bit2

...

Change the
specific bit

according to
the entry

func( )

func( )

func( )

func( )

inject0. exe

goldenrun. trace injection map

Stage1 : execution profiling

Stage3 : fault injection
and trace recording

Stage2 : injection map generation

Binary
Executable

(. exe)

inject1. exe

inject2. exe
. . . 

inject0. trace

inject1. trace

inject2. trace
. . . 

Figure 1: Workflow of fault injection experiment.

############no.1543
//sequence number=1543, instruction address=0x8048a75
assemble= sub esp, 0x4
in rtnin_pat_set// the procedure name
Reg ESP b�aaeb8 before // the value of ESP before execution
Reg EFLAGS 286 before // the value of EFLAGS before execution
Reg ESP b�aaeb4 a�er // the value of ESP a�er execution
Reg EFLAGS 286 a�er // the value of EFLAGS a�er execution

ip 0x8048a75

Figure 2: Example data trace recorded by TracePrinter.
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(ii) Crash, which means the error causes the program to
stop execution. If the error code is a nonzero value,
the outcome is crash.

(iii) SDC, which means the program continues running
but generates an erroneous output. If the error code
equals 0, and the output is different from that in the
fault-free run, the outcome is an SDC.

(iv) Hang, which means resources are exhausted but the
program still cannot finish execution. Execution is
halted when the execution time exceeds a threshold
(1min).

3.4. Baseline: Data Injection Experiment. We also performed
data injection on the same benchmarks for comparison. (e
data injection results were used as a baseline for evaluating
the encoding injection results. (e fault model for data
injection is a single-bit flip within the register file or
memory. Our fault model of data injection is in line with
other work in the area [3, 4, 24]. Similar to encoding in-
jection, the injection map was generated by analyzing the
trace of fault-free execution. Each bit in the destination
operand within the executed instruction was injected.
(erefore, the number of entries in the injection map de-
pends on the length of the destination operand. During each
run, the injection was performed by altering a selected bit in
the destination operand. (e alteration was achieved using
an injection PinTool developed based on Pin [19]. We in-
jected a single-bit fault into the value of destination operand
after the instruction was executed. In total, over 650,000
faults were injected during the data injection experiment.
(e number of faults in the data injection campaign is at
least a factor 8 larger than that in the encoding injection
campaign. (e instruction encoding bit was injected once
during the encoding injection campaign. (e number of
individual bits injected in the data injection campaign de-
pends on the number of execution instructions, so more
injections are performed than encoding injection campaign.

4. Overview of Injection Results

A single-bit flip in an instruction’s encoding can affect the
alignment of an instruction sequence. We determine
whether the alignment of an instruction sequence is pre-
served and whether it significantly impacts the outcomes of
the injection results. We define the following alignment
statuses and show examples in Table 2.

(i) Realigned. A flipped instruction has a different
length compared with the original instruction,

which changes the alignment of the instruction
sequence. In the example shown in Table 2, the
length of the original first instruction is 2 bytes.
After fault injection, the length of first instruction
changes to 5 bytes, and the two subsequent in-
structions’ encodings are also affected.

(ii) Preserved. (e length of the flipped instruction is
equal to the original instruction, and thus, the
alignment of the instruction sequence is preserved.
In this example, the length of TEST EAX, EAX is
2 bytes, which equals the length of the flipped in-
struction TEST AL, AL.

(iii) Invalid. (e corrupted instruction encoding is not
defined by the ISA, and it incurs an illegal in-
struction exception. In the example, the encoding
8D C0 cannot be decoded.

(e largest proportion (71.0%) of instruction sets are in
the preserved category, followed by the realigned category
(27.3%) and the invalid category (1.7%).(e number of cases
in terms of the instruction field is shown in Figure 3. (e
instruction encodings often consist of the opcode field, an
addressing form specifier consisting of the MODR/M byte
(MOD field, R/M field, reg field) and the SIB, a displacement
field, and an immediate field. Realigned cases are incurred by
faults in the opcode, MOD, R/M field, or SIB. MOD, R/M
field, and SIB determine the addressing mode. A bit flip in
these fields may change the length of the displacement and
further change the length of the instruction. A fault in the
reg, immediate, or displacement fields only leads to a pre-
served case. Invalid cases are incurred by injections on the
opcode or MOD field.

Injection results of the alignment-based category are
shown in Table 3 (the percentage of hang for each category is
less than 2%. Due to limited space in this article, we omit the
discussion of hang cases), including the average rate and
standard deviation for each outcome rate. (e crash/SDC/
benign rates in the realigned and preserved categories are
very different, which indicates that the preservation of
original alignment of instruction sequence has an important
effect on the outcome. (e obvious difference is that the
realigned category produces a significantly higher crash rate
(93.2%) than faults in the preserved category (59.1%).
Furthermore, a higher percentage of the realigned category
tends to produce a crash in a shorter time compared with the
preserved category. (e crash rate within 10 dynamic in-
structions is shown in Figure 4. Latency is measured in terms
of the number of dynamic instructions executed by the
program from fault activation to crash [25]. 0 crash latency
means the program crashes right after the injected in-
struction is executed. (e crash rate for the realigned cat-
egory is a factor 2 larger than the crash rate for the preserved
category within 5 dynamic instructions. (e accumulated
crash percentage within 5 dynamic instructions for the
realigned category is 88.1%, while the preserved category has
a 58.0% accumulated crash percentage. Moreover, the
standard deviation in crash rates for the preserved category
(0.039) is a factor 4 larger than that of the realigned category

Table 1: Characteristics of benchmarks.

Program #Dynamic instructions #Faults injected
replace 6957 19690
schedule 6808 16679
schedule2 6650 13832
print_tokens 2903 16343
qsort_small 13456 4190
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(0.009). A lower standard deviation indicates that the crash
rates fall in a narrower range; i.e., the crash rate has a weak
dependence on the context of the program. (erefore, crash
rate for the realigned category has a weaker dependence on
the context of program than the preserved category.

(e results of data injection are used as a baseline for
SDC rates. (e SDC rate (13.7%) for the preserved category
is close to the SDC rate produced by data injection (14.4%).
SDC sources cannot be eliminated by only protecting data.
(e fields in the instruction encoding that are likely to cause
a preserved case should not be ignored when designing SDC
detectors. (e SDC rate of preserved category is 10.3%
higher than that of the realigned category. Data injection
produces the largest standard deviation in crash rate, fol-
lowed by the preserved category and realigned category.
(erefore, the crash rate produced by faulty instruction
encoding is less weakly affected by the context of program
than the crash rate produced by faulty data. (is is also true
for the benign and SDC rates. We present a detailed analysis
for each category in the following sections.

(e benchmarks cover 40.0% of instruction types of the
whole ISA. Some instructions may have very low execution
frequencies, so the probability that these instructions are
flipped by soft error is also low. (is study does not aim to
target all instruction types. Since we aim to increase the
resilience of ISA, the instructions with higher execution
frequencies should be paid more attention. Instruction

frequencies of the studied benchmarks are shown in Fig-
ure 5. (ese results show that data transfer instructions and
arithmetic instructions represent 66.6% of the instructions
used by the benchmarks. (ese values match results from
empirical studies of instruction usage [26]. Due to the
limited space, we describe the injection results of the most
frequently used instructions.

5. Experimental Results for Realigned Category

In this section, we attempt to determine why faults in the
realigned category produce a high crash rate (93.2%), short
latency, and low standard deviation. We use error code in the
trace file for the various crashes to identify crash causes. (e
distribution of crash causes for realigned cases is shown in
Figure 6. (e major cause of the high crash rate is seg-
mentation error, which encompasses 90.4% of all crash
cases.

To further determine the causes of segmentation error,
we extract the last instruction before the crash occurs and
compare the address it accesses with the segment bound-
aries. (e address is stored in the instruction’s data traces.
Segment boundaries are obtained using a run-time probe,
which probes the “/proc” of LINUX when the instruction is
executed. (e distribution of segmentation causes is shown
in the right pie chart of Figure 6. (e major causes of
segmentation errors are listed below.

5.1. Lack of Read or Write Permission. (is is primarily in-
duced using unanticipated addressing modes. For the
realigned instructions, fields of the instructions are reas-
sembled, which can easily lead to unanticipated addressing
modes. We show differences between the addressing modes
in the original instructions and instructions with changed
encoding by comparing the base register or index register
used for memory addressing in Figure 7. (e base register
and index register for a specific instruction can be queried in
its data trace. 81.6% of the original instructions involve
accessing EBP or ESP for addressing. EBP points to the
bottom of the current stack frame, and ESP points to the top
of stack. A stack operation, such as loading local variables,
uses ESP or EBP to find the stack segment. For instruction
with changed encoding, the percentage of addressing modes
using ESP and EBP drops to 19.4%. EAX has the largest

0 10000 20000 30000

immediate

displacement

SIB byte

reg

R/M

MOD

opcode

Number of cases 

Realigned
Preserved
Invalid

Figure 3: Number of cases grouped by instruction field.

Table 2: Examples of realigned, preserved, and invalid categories.

Category
Before fault injection After fault injection

Description
Encoding Assembly Encoding Assembly

Realigned

85 C0 TEST EAX,
EAX

05 C0 74 12
B8

ADD EAX,
0xB81274C0

(e most significant bit of the first instruction is changed to 0.
(e fault changes the length (2 bytes) of first instruction into
5 bytes. (e subsequent instructions are also affected. (e
immediate of MOV EAX, 0x0 is interpreted as two ADD

instructions.

74 12 JZ 00 00 ADD [EAX], AL
B8 00 00 00

00
MOV EAX,

0x0 00 00 ADD [EAX], AL

Preserved 85 C0 TEST EAX,
EAX 84 C0 TEST AL,AL (e fault changes the operand EAX in the original instruction

into AL. (e length of the first instruction remains 2 bytes, and
thus, the consequent JZ instruction is unaffected.74 12 JZ 74 12 JZ

Invalid 85 C0 TEST EAX,
EAX 8D C0 (cannot be

decoded)
(e encoding 8D C0 cannot be decoded. (e fault incurs an

illegal instruction exception.
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percentage (40.2%) for addressing among all registers. (e
immediate byte 0x0 is interpreted as the MODR/M byte in
many instructions with changed encoding, denoting an
effective address [EAX], just as the example shown in Ta-
ble 2. EBX (12.4%) and ECX (18.0%) also take up signifi-
cantly larger portions for addressing than fault-free
execution. (ese registers are commonly used for general
storage of intermediate results during computation. When
these registers are used for addressing, the address in these
registers should be calculated and stored first. (erefore, the
value of these registers may not be ready for addressing
operation. Whether the value of the register is a legal address
is tested to verify the effect of fault on addressing.

We investigated the value of EAX using TracePrinter to
extract the value of registers during each dynamic in-
struction. TracePrinter probes the “/proc” system of LINUX

to record the segment boundaries. We mapped each EAX
value to a specific segment. (e distribution of mapped
segments of EAX values is shown in Figure 8. By analyzing
the EAX values in the traces, we find that an average of 55.9%
of EAX values does not belong to any segment. Most of these
values are small positive numbers, pointing to the reserved
section in memory. On LINUX, /proc/sys/vm/mmap_mi-
n_addr controls the lowest virtual memory address, and the
default setting is 0x10000. (e results conform to the fact
that EAX is often used to store temporary computation
results and function return values. During execution of the
realigned instructions, the value of EAX is seldom ready for
addressing.

5.2. Executing Privileged or I/O Sensitive Instructions.
Many generated instructions in the realigned instruction
sequence belong to privileged and I/O sensitive instructions,
including HLT, IN, INS, OUT, OUTS, CLI, and STI. (e
privileged instructions can be executed only when the CPL is
0 (most privileged). I/O sensitive instructions can be exe-
cuted only if the current privilege level (CPL) of the program
or task currently being executed is less than or equal to the
IOPL. In a typical protection ring model, access to the I/O
address space is restricted to privilege levels 0 and 1.
Moreover, only the kernel and device drivers are allowed to
execute I/O sensitive instructions. (ese conditions cannot
be satisfied when the realigned instructions are executed.

(e two primary reasons for segmentation error involve
the addressing convention and permission check rule de-
fined by the ISA. (e convention should be followed by all
programs developed under the ISA; thus, the standard de-
viation of crash rates is low. Both reasons cause a crash
immediately; thus, the average crash latency is low.

6. Experimental Results for Preserved Category

(e preserved category produces relatively high SDC and
benign rates compared with the realigned category. (e
preserved category accounts for 91.3% of SDC cases and
95.8% of benign cases. In this section, we attempt to un-
derstand the reasons for various behaviors of preserved
cases, especially for SDC propagation. Each field in the
instruction encoding corresponds to a varied functionality,
and a fault in each field causes different behaviors during
injection, and thus, we discuss the results of each field
separately. (e results are described as follows: (1) opcode
field, (2) MODR/M and SIB, and (3) displacement and
immediate fields. (e injection results for each instruction
field are shown in Figure 9.

Table 3: Statistics on the distribution of alignment-based categories.

Category Injected
Average rate (%) STD for the outcome rates

SDC Benign Crash SDC Benign Crash
Realigned 19295 (27.3%) 3.4 3.0 93.2 0.006 0.011 0.009
Preserved 50244 (71.0%) 13.7 26.2 59.1 0.031 0.047 0.039
Invalid 1195 (1.7%) 0 0 100 — — 0
Data injection (baseline) 658411 14.4 43.5 41.4 0.054 0.091 0.098
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Figure 4: Crash rate for the realigned category and preserved
category with 0 to 10 dynamic instructions.
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6.1. Opcode Field. (e opcode field produces an SDC rate of
13.9%, which is close to the baseline value (14.4%). A bit flip
in the opcode can change the class of instructions and thus
change the functionality of the instruction. In total, 466 types
of instruction class mutations were found in the experiment.
Figure 10 shows the instruction class mutations that
appeared more than 50 times. (e thickness of the line
indicates the number of cases. (e largest number of mu-
tations observed is MOV⟶ OR, accounting for 6.4% of all
cases. We categorize the injection results of instruction class
mutations by the original instruction’s group. (e groups

include data transfer instruction group, call-related in-
struction group, control transfer instruction group, and
arithmetic instruction group. Different colors are used in
Figure 10 to differentiate instruction groups. Statistics of
instruction class mutations are shown in Table 4. We de-
scribe the features of program behavior for each group and
introduce typical cases in the following subsections.

6.1.1. Call-Related Instruction. To understand the func-
tionality of call-related instruction, we introduce the entire
process of a call to procedure. Figure 11 shows a typical
assembly code of a call and data dependence graph. Call-
related instructions refer to CALL/PUSH/MOV ESP, EBP/
SUB ESP, offset/ADD ESP, and offset/LEAVE/POP/RET.
(ese instructions represent the essential calling convention
steps.(e line starting from a box with the site name denotes
the value stored in the site. (e black node represents the
value written to a site, and the white node represents the
value read from a site. (e edge denotes the dependence
between nodes. (e white node depends on the value stored
in the corresponding site and the address of the site if one
exists. (e value of a site after a write operation depends on
the black node. Moreover, the value produced by an in-
struction depends on some source operands of the in-
struction. We list the essential instructions in a calling
operation and explain the effects of the instructions on the
stack.

(i) Assume procedure A calls procedure B. (e calling
operation starts by using a CALL instruction. CALL
B pushes the return address of procedure A to the
stack and loads the starting address of procedure B
in the EIP register. (e return address points to the
instruction where execution of procedure A should
resume following a return from procedure B.

(ii) Execution of procedure B starts by using PUSH EBP
to save old frame pointer. EBP and ESP are sub-
sequently initialized for the stack frame of proce-
dure B. MOV EBP, ESP copies the contents of ESP
into EBP. SUB ESP, offset reserves place for local
uses.

(iii) When the invocation is over, EBP and ESP must be
restored to match the state of procedure A. EBP and
ESP can be restored in two ways. (e first way is to
use a LEAVE instruction, which we call LEAVE-way
restoring. (e effect of LEAVE equals executing
MOV ESP, EBP and POP EBP. MOV ESP, EBP
restores ESP, and POP EBP restores EBP. (e other
way is to use ADD ESP, offset and POP EBP, which
we call ADD-way restoring. ADD ESP, offset frees
space allocated for procedure B, and thus, ESP is
restored. In the end, RET loads the return address of
procedure A and procedure A resumes execution.

(e red line in Figure 11 is used to mark the propagation
path that affects return address. In ADD-way restoring, the
return address when executing the RET instruction only
depends on ESP, and in LEAVE restoring, return address
when executing the RET instruction is affected by both ESP
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Illegal
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Executing
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I/O sensitive
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Figure 6: Distribution of crash causes for realigned cases.
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and EBP. ESP affects return address during the execution
from CALL B to MOV EBP, ESP and from LEAVE to RET.
EBP affects return address during the execution from MOV
EBP, ESP to LEAVE.

We take CALL instruction as an example to describe the
effect of a fault on a call-related instruction. (ere are two
mutations from the CALL instruction, which leads to the
preserved category, CALL⟶ JMP, and CALL⟶ PUSH.

(i) (e mutation CALL⟶ JMP causes crashes at a
96.0% rate. (e CALL and JMP instructions use the
same displacement field, which means that, after the

execution of JMP, the processor that jumps to the
starting location of the procedure CALL instruction
was invoked. However, the JMP instruction does not
record return information. When the called proce-
dure finishes execution, it loads the value from the
top of the stack, which is likely to be a procedure
parameter. Since the value is not a legal address that
points to text segment, the return operation should
cause a segmentation error.

(ii) (emutation CALL⟶ PUSH causes crashes with a
substantially lower rate (50.8%) than CALL ⟶
JMP. Although the push operation affects ESP, it
may not affect the return operation if the procedure
applies LEAVE-way restoring. EBP is unaffected,
and thus, the correct return address is loaded when
the RET instruction is executed. Otherwise, if the
procedure applies ADD-way restoring, it is likely to
cause a segmentation error because ESP is corrupted
and a bad return address is used, which is similar to
the situation of mutation to JMP.We find that, in the
CALL⟶ PUSH mutation, the caller procedures
apply LEAVE-way restoring in all SDC or benign
cases.

MOV EBP, ESP is a heavily used instance of MOV reg1,
reg2. (e mutation MOV reg1, reg2⟶ OR reg1, reg2
incurs a high crash rate (63.4%). (e destination operand
EBP is used for addressing, and even slight changes to EBP
cause illegal access to memory. Moreover, SUB ESP, offset is
a heavily used instance of SUB reg, imm. SUB ESP, offset is
used to reserve a place for local use. (erefore, the mutation
causes an erroneous ESP and incurs a high crash rate. Other
call-related instructions PUSH/LEAVE/RET also produce
crashes with high rate.
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To conclude, bit flips in the opcode field of call-related
instructions probably cause crashes because it affects loading
of return address. Whether loading of return address is
affected depends on the restoring style of the caller proce-
dure (ADD-way or LEAVE-way). If the return address is
affected, all cases cause crashes without any exceptions in the
experiments. (e result is aligned with our prior approach,
which tried to inject faults to ESP or EBP [27]. (e prior
approach showed that if a proper return address was not
loaded it tended to incur crash.

6.1.2. Control Transfer Instruction. (e control transfer
instruction discussed here includes JMP and Jcc instruc-
tions. JMP instruction transfers program control to a dif-
ferent point in the instruction stream without recording
return information. One finds that the crash rate with JMP
instructions is much lower than CALL instruction. (e
mutation JMP⟶ JCXZ produces a high benign rate. JCXZ

checks ECX or CX for 0. If ECX equals 0, it performs a jump
to the target address, which is the same as in the JMP in-
struction, so the bit flip does not cause any change to the
execution and leads to benign. If ECX does not equal 0, it
continues with the instruction following the JCXZ in-
struction that may lead to an SDC.

(e Jcc instruction checks the state of the EFLAGS
register, and if the flags are in the specified state, a jump to
the target instruction is performed as specified by the
destination operand. ttt-bit and n-bit specify a condition
asserted or negated for the Jcc instructions. Flips in ttt-bit or
n-bit of the opcode field change the branch condition instead
of the instruction class. n-bit indicates whether the condition
for Jcc instruction or its negation should be used. Injections
on n-bit produce the highest SDC rate (46.7%) in the ex-
periment. A bit flip in n-bit causes execution of the opposite
branch. We show an example in Figure 12. In the original
source code, the condition of an if statement is proc!� 0.
When the n-bit is flipped, the JZ instruction (encoding 74) is

Table 4: Statistics on bit flips in opcode field.

Inst group Original inst⟶ changed
inst Injected

Average rate (%) Sites may be affected

SDC Benign Crash
(%) EIP Return

address EFLAGS Dest
operand

Source
operand

Call-related
instruction

CALL⟶ JMP 177 2.3% 0% 96.0 √
CALL⟶ PUSH 177 31.6% 16.9% 50.8 √ √

MOV reg1, reg2 (MOV EBP,
ESP)⟶ OR reg1, reg2 112 8.9% 27.7% 63.4 √ √ √

SUB reg, imm (SUB ESP,
offset)⟶ CMP reg, imm 108 4.6% 26.9% 67.6 √ √ √

SUB reg, imm (SUB ESP,
offset)⟶ AND reg, imm 108 6.5% 14.8% 77.8 √ √ √

SUB reg, imm (SUB ESP,
offset)⟶ OR reg, imm 108 6.4% 26.9% 64.9 √ √ √

PUSH⟶ POP 151 3.3% 4.0% 92.7 √
PUSH⟶ INC 151 3.3% 6.6% 90.1 √ √
LEAVE⟶ DEC 62 0 0 100 √ √
LEAVE⟶ RET 63 0 0 100 √ √

RET no argument⟶ RET
intersegment 90 0 0 100 √ √

Control transfer
instruction

JMP⟶ JCXZ 66 27.3% 56.1% 16.7 √
Jcc⟶ Jcc (ttt-bit) 636 21.1% 58.0% 18.9 √
Jcc⟶ Jcc (n-bit) 212 46.7% 13.7% 37.7 √

Arithmetic
instruction

CMP mem, imm⟶ SUB
mem, imm 91 12.1% 76.9% 11.0 √ √

CMP mem, imm⟶ XOR
mem, imm 91 13.2% 75.8% 9.9 √ √

CMP mem, imm⟶ SBB
mem, imm 91 12.1% 75.8% 12.1 √ √

Data transfer
instruction

MOV mem, reg⟶ OR
mem, reg 382 24.1% 33.8% 40.3 √ √

MOV mem, reg⟶ LEA
reg, mem 350 22.3% 21.7% 52.9 √ √

MOV mem, reg⟶ MOV
reg, mem 382 23.6% 23.0% 50.8 √ √

MOV reg, mem⟶ OR reg,
mem 478 15.7% 43.3% 40.8 √ √

MOV reg, mem⟶ POP 401 12.7% 13.7% 73.3 √ √
MOV reg, mem⟶ MOV

mem, reg 478 15.9% 25.7% 56.0 √ √
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changed into JNZ instruction (encoding 75). (e condition
is changed in every execution after the flip; i.e., this is a
permanent effect. (e effect is equivalent to introducing a
logic bug in the if statement, thus changing the condition
into proc� 0. Benign cases make up 13.7% of the results.
Using the definition proposed by Wang et al. [28], a branch
instruction is considered a Y-branch if the negated branch
outcome does not affect the final output from the program.
Most benign cases involve the structure of the if statement,
which tests several conditions. If one of these conditions is

true, it returns true. If at least two of the conditions evaluate
to be true, the flip in n-bit of one Jcc instruction does not
change the execution of the body of the if statement.

(e ttt-bit gives the condition to test and produces
benign with a high rate (58.0%). (e primary cause of the
high benign rate is one-to-many mappings from the value of
EFLAGS to the conditions denoted by the encoding of ttt-
bit. In the example shown in Figure 12, the ttt-bit is flipped
and the JZ instruction is changed into a JBE instruction. (e
condition of the if statement is changed into proc >0. If the
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Figure 11: A snippet of typical assembly code of a call to procedure. (a) LEAVE-way restoring. (b) ADD-way restoring.
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variable proc is greater than 0 when executing the if state-
ment, both proc!� 0 and proc >0 are satisfied, and thus, the
bit flip does not modify the direction of the branch.

6.1.3. Arithmetic Instruction. Bit flips in the opcode field of
an arithmetic instruction produce prominently higher rates
of benign (around 75%) compared with the baseline (the
benign rate of data injection, 43.5%). (e CMP instruction
sets the status flags in the EFLAGS register according to the
comparison results. Following CMP instruction, Jcc in-
struction performs a jump if EFLAGS is in the specified state.
CMP instruction can be mutated into other arithmetic in-
structions, including SUB/XOR/SBB instructions. (ese
mutations can alter EFLAGS and the destination operand,
and they share a similar benign rate. CMP mem, imm⟶
SBB mem, imm or XOR mem, imm changes EFLAGS and
the destination operand. CMP mem, imm⟶ SUB mem,
imm only modifies the destination operand. (e SUB in-
struction modifies EFLAGS in the same manner as the CMP
instruction, and thus, the subsequent Jcc instruction is
unaffected by the flip. (e difference between the two in-
structions is whether to store the subtraction result. After
subtraction, the SUB instruction stores the result in the
destination operand, while the CMP instruction keeps the
original operand. If the faulty value is not loaded again, the
effect of executing CMP instruction is equivalent to exe-
cuting SUB instruction, and the fault is masked.

6.1.4. Data Transfer Instruction. (e data transfer instruc-
tions move data between memory and the general purpose
and segment registers. (e MOV instruction is used most
frequently and makes up 43.6% of the total executed in-
structions. MOV reg1, reg2 was discussed in the call-related
instruction section. Here, we discuss mutations from MOV
mem, reg or MOV reg, mem, as shown in Table 4.

(i) (e mutation MOV ⟶ OR encompasses the
largest proportion of bit flips in the opcode field.
(e MOV and OR instruction encodings only differ
in the most significant bit, and they share the same
destination operand and source operand encoding.
(e mutation affects the value of destination op-
erand and EFLAGS. (e fault in EFLAGS is often
masked by the next CMP or other arithmetic in-
struction. (e change in the value of destination
operand is the main factor that causes SDC-prone
propagation. Whether or not the fault incurs an
erroneous destination operand depends on the
value of destination operand and source operand.
A bitwise comparison between the destination
operands of MOV and OR instruction is shown in
Table 5. Only if the bit of destination operand before
execution is 1 and bit of source operand is 0, MOV
and OR will have different corresponding bit values
of destination operand. Otherwise, they arrive at the
same bit value of the destination operand. For ex-
ample, execution of MOV AL, BL produces AL� 13
when AL� 5(0101b) and BL� 13(1101b). If it

executes OR AL, BL, we still have the result AL� 13.
In particular, when the destination operand equals
0, MOV and OR reach the same value of destination
operand.(erefore, the mutationmay not cause any
change to the value of destination operand.
We assume that the value of the destination and
source operand bits obey uniform distributions; i.e.,
the probability of the bit value 1 is 0.5, and n is used
to represent the length of the destination operand.
(e mask probability is (0.75)n when the MOV and
OR instructions produce the same value of desti-
nation operand. When the length of the destination
operand is 8 bits, the mask probability is equal to
0.758 ≈ 10.0%. (e distribution of EAX values is
shown in Figure 8. Most non-address values are
small positive numbers. (ese values may possess
many zero bits, especially in higher bits, which
increase the actual mask probability.

(ii) MOVmem, reg can be mutated into LEA reg, mem.
(e LEA instruction computes the effective address
of the second operand and stores it in the first
operand. For example, by flipping a bit, MOV
[ESP], EAX is mutated into LEA EAX, [ESP]. (e
effective address of [ESP] is ESP, thus executing
LEA EAX, [ESP] has the same effect as executing
MOV EAX, ESP. (e mutation affects the value of
the register and memory location. (e register is
often for temporary use. We investigated the traces
of such a mutation. After execution of LEA reg,
mem, the specific register written by the LEA in-
struction is always rewritten by another instruction

if (proc==0)
{
 ...
}

Source
Code

JNZ 8048A3F

AssemblyEncoding

85 c0

75 1c 

TEST EAX, EAX
(0111 010 1)
ttt-bit:010
n-bit:1

if (proc!=0)
{
 ...
}

Source
Code

JZ 8048A3F

AssemblyEncoding

85 c0

74 1c 

TEST EAX, EAX
(0111 010 0)
ttt-bit:010
n-bit:0

if (proc>0)
{
 ...
}

Source
Code

JBE 8048A3F

AssemblyEncoding

85 c0

76 1c 

TEST EAX, EAX
(0111 011 0)
ttt-bit:011
n-bit:0

a flip to n-bit

a flip to ttt-bit

Figure 12: Example of flips in ttt-bit and n-bit in the Jcc
instruction.
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before the next read operation, which means the
result of LEA is not used by any other instructions.
Although the LEA instruction changes the value of
the register, it has no effects on subsequent com-
putation. According to the definition in AVF
analysis, LEA reg, mem is a dynamically dead in-
struction [13]. Because the memory location is not
written using LEA instructions, the value of the
memory location should be different from that after
the originalMOV instruction is executed.(emajor
factor that causes SDC-prone propagation is the
faulty memory location. (erefore, the effect of
executing LEA instructions is equivalent to that of
deleting the original MOV instruction.

(iii) MOV mem, reg⟶ MOV reg, mem changes the
direction of data operation.(emutation may affect
the register and memory location. MOV reg,
mem⟶MOVmem, reg also changes the direction
of data operation. Both mutations produce higher
SDC rates than the baseline. Whether it causes SDC
depends on how the memory location and register
are used in the subsequent computation, and thus,
error propagation is context-dependent.

To conclude, all mutations of an MOV instruction
change the value of the destination operand. In some mu-
tations (MOV mem, reg⟶LEAreg, mem, MOV mem,
reg⟶MOVreg, mem, MOV reg, mem⟶MOVmem, reg),
the value of the source operand is also affected. (e SDC
rates of these mutations vary due to differences in the effects
of the operand on computation.

6.2. MODR/M and SIB. (e MOD field (2 bits) combines
with the R/M field (3 bits) to form 32 possible values (8
registers and 24 addressing modes) [9]. (e MOD field
determines whether a displacement byte follows the MODR/
M byte. (e instruction lengths according to MOD, R/M,
and BASE fields are shown in Table 6. We can find 4 sets of
formats with identical instruction length,
{#1,#7},{#2,#6},{#3,#8}, and {#4,#9}.

Either {#2,#6} or {#4,#9} has at least 2 different bits, and
thus, a bit flip cannot transform one format to another, and a
flip in the MOD field that leads to the preserved category has
two possible modes, as shown in Figure 13.(e experimental
results show that most cases fall in the realigned category.
96.8% and 1.5% of all injections fall in the realigned and
preserved categories, respectively.

Regarding bit flips in the R/M field, the modes in which
the instruction length is changed are listed in Figure 14. (is
can also change the memory location or the register rep-
resented by the R/M field. 64.4% of all injection results fall
into the preserved category. Injection on the R/M field
produces a crash rate of 75.5% because it specifies the
addressing mode. (e reg field specifies a general purpose
register operand and produces a higher SDC rate (17.3%)
than the baseline (14.4%). A change in the reg fieldmay affect
the value of the original register and the register with the
changed encoding.

(e SIB is required by certain encodings of the MODR/
M byte as a second addressing byte.(e base-plus-index and
scale-plus-index forms of 32 bit addressing require the SIB.
(e SIB includes scale, index, and base fields. For the SIB, the
flip mode that leads to an instruction length change is
#1⟶#2 or #2⟶#1. (e preserved category encompasses
up to 93.2% of injection results. Injection on the SIB pro-
duces a benign rate of 42.1%. By investigating the traces, we
find that 59.2% of benign cases are caused by none encoding
of index register. (e index field specifies the register
number of the index register. It is allowed that none of the
index registers is specified in the index field (encoded
“100b”). When none is specified in the index register, only
the base field determines the effective address, and thus, a bit
flip in the scale field has no effect on the address. For ex-
ample, the SIB 0x20 (00 100 000b, scale field� 00b, index
field� 100b) and SIB 0x60 (01 100 000b, scale field� 01b,
index field� 100b) refer to the same displacement [EAX].
(us, the bit flip in the SIB from 0x20 to 0x60 does not
change the effective address and produces a benign case.

6.3. Displacement and Immediate Fields. Injection on the
displacement field produces a higher crash rate (74.1%) than
the baseline (41.4%). (e results are shown in terms of the
number of bits (8 bit, 32 bit) and usage (instruction address,
data address) in Figure 9. Displacement as instruction ad-
dress is used by control transfer instruction, such as CALL
and JMP. (e crash rate produced by injection on the
displacement field as an instruction address is approximately
12% higher than the case where injection on the displace-
ment field is a data address. (e number of valid addresses
with execution permission is often much lower than the
number of valid addresses with read and write permissions.
Usually, only text segment and certain memory mapping
segments have execution permission. (e crash rate pro-
duced with a 32 bit displacement is approximately 25%
higher than that produced with an 8 bit displacement. Faults
in higher bit are more likely to reference a different segment,
and thus, it is easier to produce a segmentation error.

Injection on the immediate field produces a higher rate
of SDC (19.8%) than the baseline (14.4%). Immediate is often
used to represent a data value instead of an address, and a
fault in the immediate field leads to a high rate of benign and
SDC. (e statistics of the immediate field do not show a
significant gap between varied numbers of bits, which is
different from displacement field.(e difference between the
SDC and benign rates for 32 bit and 8 bit immediate fields is
less than 5%.

7. Experimental Results for Invalid Category

When an invalid instruction occurs, we use XED to decode
the flipped encoding to find which part of the encoding
causes the error. XED is a software library for encoding and
decoding IA-32 instructions [9]. Two types of errors ob-
tained from XED are “GENERAL_ERROR” and
“BAD_REGISTER.” 99.6% of the invalid instruction cases
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refer to “GENERAL_ERROR,” while the remaining cases
refer to “BAD_REGISTER.”

(i) “GENERAL ERROR” indicates an invalid MODR/M
byte encoding. LEA instruction computes the ef-
fective address of the source operand and stores it in
the destination operand. (e encoding 11B in the
MOD field of LEA instruction is not allowed by ISA.
11B in the MOD field denotes that both source
operand and destination operand are registers,
which violates the definition of LEA instruction. (e
source operand of LEA instruction should be a
memory address. (e instruction loads a far pointer
from the second operand into a segment register and
also reserves 11B in the MOD field, including LDS
(load pointer to DS), LES (load pointer to ES), and
LFS (load pointer to FS).

(ii) “BAD_REGISTER” indicates an invalid register
encoding. When an instruction operates on a
segment register, the reg field in the MODR/M byte
is called the sreg field and is used to specify the

segment register. (e IA-32 architecture has 6
segment registers. (e sreg field encoding can be
3 bits long, and two encodings (110B and 111B) are
reserved.

8. Implications

(e main challenge in designing resilient instruction
encoding is to reduce the SDC rate. (e injection results
show that faults in certain fields can easily cause crashes, and
only a few encodings of instruction fields are SDC-prone.
(e observations can potentially help reduce the SDC rate in
ISA or fault-tolerant systems. In this section, we compare the
results of the typical RISC architecture and IA-32 archi-
tecture, and we provide some advice on the design of re-
silient instruction encoding and validate our proposed
resilient instruction encoding through fault injections.

8.1.Comparisonwith theRISCArchitecture. We compare the
SDC rates and crash rates of fault injections on typical RISC
and CISC ISA. (e impact of an ARM Cortex-M0 (umb
ISA on reliability to soft errors was examined by Martinez
[10].(eARMCortex-M0(umb ISA is a RISC architecture
with fixed length of 16 bit instructions. (eir evaluation
shared the same fault model and injection setup as that
presented here, so their injection results can be compared
with ours. (eir injection campaign was also exhaustive. All
bits in all instructions for each test program were tested.
Once each test ended, the program was reset to guarantee
that it was error-free before running a new test. (e tests
were run with Keil μVision Debugger. (e SDC rate of the
injections on the (umb ISA varies significantly from that
on the IA-32 architecture. (e programs in the (umb ISA
produce an SDC rate ranging from 50.1% to 58.0%. In our
experiment, the SDC rates range from 7.2% to 14.2%. (eir
subject programs are matrix multiplication, quicksort,

Table 5: Comparison of execution results for MOV and OR instructions.

Bit of dest operand before
execution

Bit of source
operand

Bit of dest operand after OR
executes

Bit of dest operand after MOV
executes

Having same dest bit
value

0 0 0 0 √
1 0 1 0 ×

0 1 1 1 √
1 1 1 1 √

Table 6: Instruction length according to binary encodings of MOD, R/M, and BASE fields.

#Format MOD R/M BASE(SIB) Instruction length (bits)
1

00
100 101 48

2 000∼100,110,111 16
3 101 — 40
4 000∼011,110,111 — 8
5 01 100 — 24
6 000∼011,101∼111 — 16
7 10 100 — 48
8 000∼011,101∼111 — 40
9 11 — — 8

BASEMOD

1010 0

1011 0

R/M

100

100

MODE1:
(Length=48)

0 0

1 0

101

101

MODE2:
(Length=40)

flip

flip

(#1)

(#7)

(#3)

(#8)

Format

Figure 13: Bit flip in the MOD field, leading to the preserved
category.
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bubble sort, and binary search, which include algorithms
using iterations, recursion, function calls, and arrays. (e
same program quicksort was tested in their and our injection
campaigns. (eir results with quicksort show an SDC rate of
50.1%, which is 39.6% higher than the SDC rate observed in
our experiment. IA-32 ISA can produce lower SDC rates
than (umb ISA, and thus, it is more resilient to soft errors.
Without any error detector deployment, the SDC rate can be
decreased by switching from (umb ISA to IA-32 ISA.

We analyze the factors that contribute to the SDC rate of
ISA. (e instructions in the RISC architecture have a fixed
length, which is a vital factor determining fault propagation.
A change in the instruction encoding in the RISC archi-
tecture does not incur an alignment change, and thus, only
one instruction’s encoding is altered. We have shown that
this leads to a high crash rate if the instruction alignment is
not preserved. (e reason why the realigned instruction
sequence can easily cause a crash is explained in Section 5.
Although the experiment was performed in IA-32 ISA, one
can infer that a variable instruction length in another CISC
ISA may also produce a high crash rate. When the fault
causes realignment of the instruction sequence, multiple
instructions’ encoding may be altered. (e instruction in the
realigned instruction sequence is unpredictable since any
field can be interpreted as opcode field, producing abnormal
behavior.

Other factors, such as addressing mode, memory or-
ganization, and calling conventions of specific ISA archi-
tectures, may affect fault propagation and further affect SDC
rate or crash rate. In(umb ISA, the return address is stored
in link register (LR) instead of on the stack. (erefore, bit
flips in the opcode field of call-related instructions do not
directly affect return address. A fault in a call-related in-
struction can alter return address in the IA-32 architecture,

as shown in Section 6.1. Furthermore, the addressing mode
of (umb ISA is much simpler than that in the IA-32 ar-
chitecture. (umb ISA supports two basic addressing modes
([reg + reg], [reg + disp]), and the length of the displacement
field is 5 bits. Aside from these two modes, the IA-32 ar-
chitecture also supports [reg + reg + disp],
[reg∗ scale + reg + disp] and a longer displacement field
(8 bit, 16 bit, or 32 bit). A fault in a longer displacement field
tends to cause crashes at a higher rate, which can be validated
by our fault injections on displacement field. (e crash rate
produced by a fault in a 32 bit displacement field is ap-
proximately 25% higher than the crash rate produced by a
fault in an 8 bit displacement field as a different segment is
more likely to be addressed.

(e comparison shows that the SDC rate observed in the
IA-32 ISA architecture is much lower than that seen with
(umb ISA.(e variable instruction length in CISC ISA can
produce a high crash rate in the presence of a fault and
reduce the chance that an SDC occurs. (e conclusion may
be helpful to decide between two alternatives having similar
performance, overhead, or power, and then, considering
reliability could serve to do a tiebreak.

8.2. Implication for Design of Resilient Instruction Encoding.
We propose several modifications to the instruction set
encoding scheme that increases the Hamming distance
between certain vulnerable encodings and increase the
probability of a crash. We use the Hamming distance to
denote the number of different bits between two encodings.
Encoding B is a neighbor of encoding A if their Hamming
distance is 1. As we assume faults are caused by a single-bit
flip, the encoding becomes its neighbor in the Hamming
space after the flip. Mutations of different instruction classes
produce different SDC or crash rates. Changing the neighbor
of a specific encoding can affect the SDC rate or crash rate.
By reshuffling the encoding of the current instruction set,
one finds a trade-off where the crash rate can increase, while
the SDC rate can decrease. We show some possible changes
in the following fields by applying the findings obtained in
the experiment.

(i) opcode field. Certain mutations from frequently
used instructions produce high SDC rates. For
example, MOV⟶ OR takes up the largest portion
in all mutations and produces a high SDC rate. We
can modify the encoding to set MOV and RET
instructions as neighbors in the Hamming space
instead of MOV and OR instructions. (e RET and
MOV instructions differ in their instruction lengths.
(e mutation causes realignment of the instruction
sequence, which tends to cause a crash. Moreover,
as a call-related instruction, RET probably causes a
crash when it is generated by a bit flip. When a RET
instruction is flipped into an MOV instruction, it is
also likely to cause a crash.(e overall SDC rate due
to faults in the opcode field of ISA is dominated by
mutations from frequently used instructions. After
reshuffling the encodings, the overall crash rate
should increase and the SDC rate should decrease.

MOD R/M

00 1 0 0

R/M'

0 0 0

00 1 0 0 1 1 0

00 1 0 0 1 0 1

00 1 0 1 1 1 1

00 1 0 1 0 0 1

01 1 0 0 0 0 0

01 1 0 0 1 1 0

01 1 0 0 1 0 1

10 1 0 0 0 0 0

10 1 0 0 1 1 0

10 1 0 0 1 0 1

flip

Figure 14: Bit flips in R/M field leading to the realigned category.
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(ii) reg field. (e original and redesigned encodings of
the reg field are shown in Figure 15. For example,
the original encoding of EAX in the reg field is 000b,
and its neighbors in the Hamming space are ECX
(001b), EDX (010b), and ESP (100b). We can swap
the encoding of EBP and ECX to set EBP as a
neighbor of EAX. (e values of EAX seldom belong
to any segment, as was described in Section 5.
Moreover, it was concluded in Section 6.1 that
changes in the value of EBP can easily cause a crash,
so the mutations EAX⟶ EBP or EBP⟶ EAX
probably cause a crash. After the swap, one would
expect the new encoding to produce a higher crash
rate than the original encoding. Moreover, we swap
encoding (EDX, ESI) to set ESI as the neighbor of
EAX. Usually, ESP, EBP, ESI, and EDI store ad-
dresses, which are denoted by red nodes in Fig-
ure 15. EAX, EBX, ECX, and EDX often store non-
address values, which are mostly small positive
numbers (the distribution of the EAX value is
shown in Figure 7). (e swaps put EAX/EBX/ECX/
EDX in the neighbor position of ESP/EBP/ESI/EDI.
(e mutation of any reg encoding probably creates
an erroneous address and incurs a crash case. Either
two encodings of EAX/EBX/ECX/EDX have the
Hamming distance of 2, which prevents the oc-
currence of SDC-prone mutations.

(iii) MOD, R/M, and SIB fields. Modifications to certain
encodings in the MOD, R/M, and SIB fields can be
made to increase the percentage of faults in the
realigned category when bit flips occur in these
fields. We take the MOD field as an example. In
Section 6.2, it was shown that a bit flip in the MOD
field that causes a fault in the preserved category
only has two modes (shown in Figure 13): {#1, #7}
and {#3, #8}. We can alter the encoding of the MOD
field to increase the Hamming distance between {#1,
#7} and {#3, #8}.(erefore, all flips in theMODfield
lead to faults in the realigned category. As stated
before, faults in the realigned category produce
crashes with a much higher rate than faults in the
preserved category, and thus, the modification in-
creases the overall crash rate.

8.3. Evaluation of New Encoding Scheme. We propose a
change to the encoding of opcode field to set RETinstruction
and MOV instruction as neighbors in the Hamming space
instead of MOV and OR instruction. (e neighboring
encodings of MOV mem, reg are shown in Figure 16. (e
MOV and OR instructions only differ in the most significant
bit, and they share the same destination operand and source
operand encoding. We describe the injection results of
MOV⟶OR in the discussion of data transfer instruction of
Section 6.1. (e RET (1 byte) and MOV (≥2 bytes) in-
structions differ in their instruction lengths. In the old
encoding scheme, the mutation MOV⟶ OR results in a
preserved case. According to our new encoding scheme, the
mutation MOV⟶ RET results in a realigned case.

(e idea is achieved by reshuffling the encoding of the
current instruction set. Table 7 shows the mapping from the
encoding in the old instruction set to the encoding in the
new instruction set. (e encoding of opcode field of MOV
mem, reg is 0x89, which is neighboring to the encoding of
opcode field of OR mem, reg(0x09). Note that MOV mem,
reg has MOD byte, so it is at least two bytes. (e encoding of
RET instruction is 0xC3, and it is only one byte.

After the reshuffling, the encoding of opcode field of OR
mem, reg is set to 0xC3. (e encoding of RET is set to 0x09.
So, RET instruction becomes a neighbor of MOV instruction
in the Hamming space.

We construct a hypothetical processor structure for
evaluating the new encoding scheme, which is proposed by
Xu et al. [12]. Assuming the existence of a hypothetical
processor that incorporates the new instruction encoding,
whenever an instruction from the text segment is picked for
fault injection, it is mapped from the old encoding to the
new one. (en, a bit in the mapped new instruction is
selected to obtain an erroneous instruction in the new
encoding. (e erroneous instruction is then mapped back
to the old instruction encoding and is executed on the
processor. We believe that this process can accurately
emulate fault injection for the new encoding on the current
processor.

For example, consider instruction MOV DWORD
PTR [ESP], EAX (encoding � 0x89 04 24) from the text
segment of a current IA-32 executable. Assume that the
most significant bit is flipped (from 1 to 0), and it results in
0x09 04 24. (is value is mapped back to the old encoding
scheme using the table, resulting in 0xC3 04 24. So, the
instruction to be executed should be RET (0xC3) and
ADD AL, 0x24 (0x04 24). RET is then executed on the
current processor.

(e results for the injections on the most significant
bit of opcode field of MOV instruction under old
encoding scheme and new encoding scheme are shown in
Figure 17. In the original fault injection experiment, the
mutation MOV mem, reg - >OR mem, reg incurs a high
rate of SDC (15.7%). (e fault injections on the in-
struction encoding with the new encoding scheme show
that the mutation MOV mem, reg - > RET incurs a crash
rate of 100% and no SDCs. So, the opcode field of MOV
mem, reg is much less SDC-vulnerable than that of
original encoding scheme.

EAX (000)

ECX (001)

EDX (010)

EBX (011)

ESP (100)

EBP (101)

ESI (110)

EDI (111)

EAX (000)

EBP (001)

ESI (010)

EBX (011)

ESP (100)

ECX (101)

EDX (110)

EDI (111)

Figure 15: Hamming space of the original and redesigned reg field
encodings.
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9. Conclusion

In this study, we characterized the behavior of a program
under faulty instruction encodings. We injected over 70,000
faults into binary executables and analyzed trace files to seek
causes of SDC-prone or crash-prone errors.(e key findings
from the experiments are summarized as follows:

(i) Whether the alignment of instruction sequence is
preserved strongly affects the observed crash rates.
Faults in the realigned category produce crashes
with high rate (93.2%), short latency, and low
standard deviation. If the alignment is preserved,
the SDC rate (13.7%) is close to the SDC rate of
injections on data (14.4%), meaning that instruction
encoding can also be major source of SDC.

(ii) SDC-prone fields include the reg field, opcode field,
and immediate field. Bit flips in n-bit produce the
highest SDC rate (46.7%) because a bit flip causes

the opposite branch to execute. (ese fields are
vulnerable parts of code segments and need to be
protected against soft errors or bit flip attacks.

(iii) By investigating the injection traces, we reveal the
following crash patterns. By leveraging realignment
of instruction sequence and calling convention vi-
olation, we also show some implications for de-
signing resilient instruction encoding.

(i) Realignment of instruction sequence, activated by
faults in opcode, MOD, and R/M fields.

(ii) Addressing failure, activated by faults in displace-
ment. (e crash rates of the displacement field vary
wildly due to the number of displacement bits and
their usage.

(iii) Calling convention violation, activated by faults in
the opcode field of call-related instructions. Crashes
are caused since the loading of the return address is
affected.

In future studies, we plan to estimate the reliability of
specific ISA by calculating the mutation probability and
SDC rate. For these instruction types that are not targeted
in this study, if the mutation from the uncovered in-
struction to its neighbor matches any crash patterns or SDC
patterns, we can predict the program behavior when the
encoding of the instruction is flipped. We intend to eval-
uate the detection rate of software-implemented fault
tolerance in the presence of faulty instruction encoding.
Furthermore, we plan to perform fault injections on RISC
ISA to get insight into the fault propagation under RISC
ISA and make a comparison between the propagation
patterns of different ISAs.
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Figure 16: Neighboring encodings of MOV mem, reg in the old encoding scheme and new encoding scheme.

Table 7: OR and RET instruction encoding mapping.

Mnemonics Old encoding of opcode field New encoding of opcode field
OR mem, reg 09 C3
RET C3 09

MOV mem, reg → Or mem, reg

SDC
Benign

Crash
Hang

MOV mem, reg → RET

SDC
Benign

Crash

0.2

15.7
43.3

40.8

Hang

0100

Figure 17: Results for the injections on the most significant bit of
opcode field of MOV instruction under old encoding scheme and
new encoding scheme.
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