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Online advertising has become one of themost important strategies used by companies.Tey get the valuable results from Internet
marketing and communication strategies. Terefore, it is necessary to study the click-through rate (CTR) model to search the
potential audiences in online advertising. Te advertisers desire to search for potential candidates through a large number of
queries for audiences in programmatic advertising. Facing such a large corpus, the most common method is that using two-tower
model to learn user’s queries and ad representations, and then the similarity function is applied to match the feature repre-
sentation to get the potential audiences related to the ad. However, in the process of feature extraction, there is a lack of in-
formation interaction between the two towers, resulting in the loss of details in the representation. In order to alleviate the lack of
information interaction between the networks in the two-tower model during feature extraction. In this paper, we propose a novel
model named Feature Dual Supervision Model (FDSM), which integrates by Feature Expression Unit (FEU) and Feature
Supervision Unit (FSU). Te FEU is used to extract ads or users features, and FSU generates a weight vector to supervise the
working process of the FEU. In addition, we propose a feature cross-layer with bridge connections in FDSM to achieve efective
feature interaction between ad and user representations. Finally, we conduct experiments on the Tencent Lookalike and
MovieLens datasets. Te experimental results indicate that the FDSM model outperforms other state-of-the-art CTR prediction
models in audience expansion.

1. Introduction

With the rapid development of the Internet, online ad-
vertising provides a common marketing experience when
people are accessing services using intelligent devices.
Online advertising refers to advertisements displayed in
media [1]. Diferent from traditional advertising, it has
formed a crowd as the target, product-oriented technology
delivery model. For given an ad and its historical audience
(seed users), audience expansion aims to fnd potential
audiences that are similar to the seed users for the ad. For
example, using the user’s searched keywords, topics, his-
tory of visit behaviors, interests, and so on the pro-
grammatic advertising system can accurately fnd the
potential audiences for an ad through audience targeting
technology.

Programmatic advertising (PA) refers to a kind of ad-
vertising form that applies technology to serve advertising
trading and management in big data feld. Advertisers can
programmatically purchase media resources, applying al-
gorithms and technologies to automatically achieve precise
target audiences [2]. Te technology of PA analyzes millions
of ads data in real time, which enabling PA ads to accurately
refect the interests of users at the exact moment, and they
are most likely to click on an ad. Terefore, programmatic
advertising is a new marketing technology through the
Internet and emerging technologies.

In the programmatic advertising system or recom-
mendation system, click-through rate (CTR) is an important
metric, which is defned to forecast the probability that a user
will click a display ad or recommended item on web page [3].
Ten the system determines whether the ad or item will
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display on the user’s page basing on this metric. In online
advertising, the prediction result of CTR has a great infu-
ence on the efect of online advertising. Terefore, the ac-
curacy of CTR prediction is a key factor afecting the efect of
advertising, user experience and platform revenue.

In order to improve the performance of the CTR model,
efective feature cross is the most commonly applied optimi-
zationmethod. Early studies focused on designing and utilizing
efective combination features, such as FM and FFM [4].Tese
models utilize expert experience to explore clear interactions
between features, which inevitably cost a lot of labor in the
industry. However, the current large-scale recommendation
contains a large number of original features and potential high-
order interaction features, which makes it difcult for expert-
experienced feature engineering to comprehensively cover all
interaction patterns in feature space, thus limiting the appli-
cation of shallow models in the industry.

In nearly a decade, a large number of CTR prediction
models based on deep learning are applied to explore higher-
order implicit information in feature space. In this paper, we
focus on optimizing the performance of the two-tower
model. Tis model was frst applied in the domain of
NLP. Te typical architecture is DSSM [5]. Te input of this
model is a high-dimensional term vector about a query or
a document. Ten, the DSSM passes its input through two
neural networks with two diferent inputs, respectively, and
maps them into semantic vectors in a shared semantic space.
For Web document ranking, DSSM computes the relevance
score between a query and a document with the cosine
similarity function and ranks documents by their similarity
scores to the query.

Despite great promise, there are still some problems in
two-tower model. Since the feature vectors of the user’s
query and ad separately are fed into two diferent neural
networks in the online retrieval service, and generating the
highly concentrated vector representation, which leads to
some detail information loss and sufers from a lack of
information interaction between the two towers. In order to
overcome this shortcoming, we propose a Feature Dual
Supervision Model (FDSM) based on the two-tower model
to enhance feature extraction capability and provide more
fne-grained information at the feature cross-layer. Its
network structure is summarized as follows:

Users/Ads Feature Expression: During the process of
extracting features in the user/ad tower, a feature ex-
pression unit is applied, which is made of multiple
neural networks, and the structure among of them can
be the same or diferent, but the dimension of the
output vector should be the same. At the same time, the
proposed of a feature supervision unit to monitor the
process of feature extraction. Specifcally, the feature
vector of user/ad will feed in feature expression unit
and get multiple representations correspondingly, and
then the supervision unit will give a score for every
representation. Finally, the unique expression feature is
obtained basing on all the representations and the
scores. In this paper, the fully connected network is
regarded as the feature expression network.

Feature Cross-Layer: As in the ordinary two-tower
model, the feature interaction between the extracted
representations of user and the ad is required in this
layer. In this paper, with the diference that the degree
of match performed by the cosine function, it is no
longer applied. A bridge connection module is pro-
posed in this paper to combine the ad and user ex-
pression vectors, which are then fed to the network for
feature interaction to perform CTR prediction.

Te main contributions of this work are summarized as
follows:

(i) We propose a novel Feature Dual Supervision
Model (FDSM), which can enhance the feature
extraction ability of users and ads information and
obtain features with high performance expression.

(ii) In the feature cross-layer, a bridge connection
module is proposed to connect the extracted fea-
tures, which can achieve feature interaction well, so
as to improve the prediction performance of CTR
for FDSM.

(iii) We conduct experiments on two real datasets. Te
experimental results have demonstrated that with
feature supervision unit and cross-layer with bridge
connectionmodule, FDSM outperforms other state-
of-the-art CTR prediction models in audience ex-
pansion system.

Tis paper is organized as follows: Section 2 introduces
the mainstream model of CTR and its development context.
Section 3 illustrates the design details of FDSM model
proposed in this paper. Section 4 shows the details and
results of the experiment. Section 5 summarizes the paper
and prospects for the future work.

2. Related Works

In this section, general models related to CTR are sum-
marized and introduces models about semantic matching in
the NLP domain and then illustrates promotion applications
of the two-tower model in the system of programmatic
advertising and recommendation.

Early research focused on the design and utilization of
efective combinatorial features, such as FM [4] and FFM
[6]. Tese models mainly exploit expert experience on ex-
ploring explicit interaction between features. In recent years,
CTR prediction models based on deep learning have
emerged to explore higher-order implicit information in
feature space. Deep learning-based CTR prediction models
follow the pattern of “feature embedding & feature in-
teraction.” Te representative models include Wide&Deep
[7], DeepFM [8], DCN [9], PIN [10], DIN [11], PNN [12],
and the two-tower model [5], which jointly learn explicit and
implicit feature interaction and fnally output matching
information.

With the application of deep learning in natural lan-
guage, many neural network models have been proposed to
address semantic matching problems. Tese approaches are
divided into two categories: representation-based learning
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and interaction-based learning. Te models with a two-
tower structure are typical characteristics of
representation-based approaches, such as DSSM [5], CLSM
[13], LSTM-RNN [14], and ACR-I [15]. Each tower uses
a diferent neural network to generate a semantic repre-
sentation of the query or document. A matching function,
such as inner product, is then applied to measure the
similarity between the metric query and the document. Te
interaction-based approaches learn the complicated rele-
vance patterns between queries and documents. Te
mainstream models are MatchPyramid [16], Match-SRNN
[17], DRMM [18], and K-NRM [19].

In the feld of advertising and recommendation, the
MV-DNN [20] extend the two-tower to jointly learn from
features of items from diferent domains and user features by
introducing a multiview deep learning model, which can
learn the user’s behavior patterns according to the rich user
behavior features and improve the user experience on the
web service. In advertising display system, Baidu proposed
MOBIUS [21], which base on two-tower, to maximize CPM
and reduce the diference between ranking and matching in
the retrieval stage. However, the two-tower model sufers
from a lack of information interaction between the re-
spective towers as well as the imbalance of category data
afects the performance of the model. Terefore, the DAT
model not only customizes an augmented vector for each
query and item to mitigate the lack of information in-
teraction, but also proposes category alignment loss to align
the item representation of uneven categories.

3. Methodology

In this section, we frst defne the problem of audience
targeting and CTR prediction, then illustrate our proposed
model in detail.

3.1. Problem Formulation. Given a seed set S, and a candi-
date set C, audience targeting aims to extend S via selecting n

users T from C (usually |S|≪ |C|), such that the potential
users T are similar to S. In this problem, each user u is
usually represented by a low-dimensional dense vector that
encodes the information of users’ demographic profles and
online behaviors [22]. In order to search similar users based
on a seed set, we apply the CTR prediction methods.

As a binary classifcation task, CTR represents a prob-
ability whether a user will click an ad campaign or an item
displayed online system. Specifcally, for given a training
set containing N samples (X, y), we indicate the input of
a model as X � x1, x2, . . . , xf , which contains f features.
X includes user features as well as ad features. All the
features could be not only categorical, such as gender or
occupation, but also continuous, such as the price about an
item. y ∈ 0, 1{ } is the label of a sample, where y � 1 in-
dicates that the user with positive feedback for an ad
campaign, such as clicking on the advertisement, pur-
chasing the product or downloading the APP, otherwise
y � 0. Terefore, the CTR prediction model calculates the

probability P(y � 1|X) for each instance X. Table 1 shows
the notations in this paper.

3.2.TeDetails of FeatureDual SupervisionModel. As shown
in Figure 1, the overall framework of our proposed Feature
Dual Supervision Model (FDSM) in this paper, which in-
cludes three modules: the feature embedding layer, the
feature expression layer, and feature cross-layer. Te em-
bedding layer transforms the instance X into a low-
dimensional dense vector. Te feature expression layer ex-
tracts efcient feature representations of users and ads
features, respectively. Te purpose of the cross-layer is to
discover relationships between features, which predict the
probability of CTR about whether the user will click the ads.

3.2.1. Embedding Layer. Te CTR prediction model based
on deep learning follows the “feature embedding & feature
interaction” paradigm [23]. Te embedding module embeds
each feature for an instance to a d-dimensional embedding
vector. For the ith fled, the feature embedding vector can be
obtained from the embedding lookup table as follows:

ei � Ei,xi
, (1)

where ei is the embedding vector, xi denotes the ordinal
encoding of the ith feld about instance X. Ei ∈ RSi×d is the
embedding matrix, and Si, d are the size of the lookup table
for the ith feld and embedding size, respectively. If the feld
is multivalent, the mean pooling of feature embedding as the
feld embedding representation:

ei �
Ei,xi1

+ Ei,xi2
+ · · · + Ei,xin

n
, (2)

where n is the number of feature value in the ith feld.
Terefore, we denote the output of embedding layer for
a instance X, which contains f feature felds, as the em-
bedding matrix as follows:

EX � e1, e2, . . . , ef . (3)

In this work, we divide an instance X into two parts
according to the characteristics of user and ad, denoted as
Xu � x1, x2, . . . , xμ  and Xa � xμ+1, xμ+2, . . . , xμ+] , re-
spectively, where μ + ] � f, as shown in the left part in
Figure 1. Te corresponding embedding representations of
user and ad are obtained through the embedding layer as

EXu � e1, e2, . . . , eμ ,

EXa � eμ+1, eμ+2, . . . , eμ+] .
(4)

3.2.2. Feature Expression Layer. In this part, we illustrate the
symbols frst. Te initial representations of user and ad in
embedding matrix are concatenated and the mean pooling is
expressed as follows:
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where “⊕” is vector concatenation operation, and eu, eu are
the user u embedding vector and mean pooling vector,
equally, ea, ea are the ad a embedding vector and mean
pooling vector. Tus, the vector of eu and ea can be con-
catenated together as the ad supervision vector eua, the
vector of ea and eu can be concatenated together as the user
supervision vector eau, which as follows:

e
ua

� e
u ⊕ e

a
; e

au
� e

a ⊕ e
u
, (6)

where eua ∈ R(μ+1)d, eau ∈ R(]+1)d.
Users feature expression: For the part of user feature

expression is shown in the middle part of Figure 1, which
consists of the Feature Expression Unit (FEU) and the
Feature Supervision Unit (FSU), where FEU is responsible
for the extraction of user information from the user em-
bedding vector eu, while FSU supervises the process of user
information extraction basing on the user supervision vector
eau. Finally, the highly condensed representation vector of
user information will be obtained through both units. Te
details are as follows.

We can employ a unit FEU, which are made of the
multiple fully connected networks; each network can extract
the users’ representations for the embedding vector in-
dependently. Generally, a single network only focuses on
partial information during the process of extraction, which

Table 1: Notations for the proposed model FDSM.

Symbol Defnition
X Te instance contains user and ad characteristics on dataset
EX Te embedding matrix of instance X

ei Te embedding vector of the ith feld about instance X

Xu/Xa Te characteristics of user u’s and ad a’s
EXu /EXa User u’s embedding matrix and ad a’s embedding matrix
eu/ea User u’s embedding vector and ad a’s embedding vector
eu/ea User u’s mean pooling vector and ad a’s mean pooling vector
eua/eau Ad a’s supervision vector and user u’s supervision vector
hLi

Te output from the last hidden layer in the ith fully connected network
Au/Aa User u’s multirepresentation and ad a’s multirepresentation from FEU
wu/wa User u’s supervised weight vector and ad a’s supervised weight vector
Iu/Ia User u’s feature expression vector and ad a’s feature expression vector
Ib Te vector from bridge connection unit
y Te prediction of CTR from FDSM

Users\Ads information Supervision factor Output Fully-connected network

Embedder

Embedder

x1 x2 xμ

x1 x2 xv

FEU

FEU

FSU

FSU

C C

C

C C

C

P
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Features Expression Layer

Ia

Iu

S

S

ŷ

∑

Sigmoid

Bridge Connection

Cross Layer

S SupervisionP PoolingC Concatenation Average∑

Embedding Layer

Figure 1: Te overview of our proposed model FDSM with FEU and FSU.
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cannot completely cover the characteristic about user. In
order to address this challenge, multiple fully connected
networks were applied to jointly discover users’ implicit
features jointly. A single deep fully connected network in
FEU, with each deep layer having the following formula:

hl � ReLu WT
l hl−1 + bl ; l � 1, 2, · · · , (7)

where hl−1 ∈ Rdl−1 and hl ∈ Rd
l are the (l − 1)-th and l-th

hidden layer, respectively;Wl ∈ Rdl−1×dl is the weightmatrix for
the layer from (l − 1)th to lth; bl ∈ Rdl is bias vector for the l-th
layer. In particularly, there is for the frst layer, where h0 � eu.
Terefore, the user feature representation vector as output
come from the last hidden layer in the ith fully connected
network, and the matrix derive from the FEU unit with m fully
connected networks can be summarized as follows:

hLi
� f e

u
( , (8)

Au
� hL1

, hL2
, . . . , hLm

 , (9)

where f(·) denotes the fully connected network, the output
vector of the ith network is the representation of the user’s
features, the subscript “L” denotes the last layer of the hidden
layer in the fully connected network; and the matrix
Au ∈ RdL×m denotes the output from the FEU with m

networks.
As for the unit of FSU, which is composed of a single

fully connected network, the input is the user supervision
vector eau. Diferent from the FEU, the activation function of
ReLU is never applied in the last layer of a fully connected
network, where the softmax activation function is applied,
denoted as

hL � softmax WT
LhL−1 + bL ,

wu
� hL � f e

au
 ,

(10)

where the wu ∈ Rm is the user supervised weight vector,
which the dimensionality as the number of fully connected
network in the FEU. Te softmax activation function in the
last layer normalizes the output into a probabilistic
representation.

From the above exposition, it is clear that not only has
the matrix Au, with m representation vectors, been derived
from the FEU unit according to the user embedding
representation, but also the m-dimensional user super-
vised weight vector wu is obtained through the FSU unit
based on the user supervised vector. Finally, the output
from both units as materials, the process of supervision
operation is as
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�

1
m



m

i�1
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· w
u
i

�
1
m
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· w

u
1 + hL2

· w
u
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· w
u
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1
m
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  ·

w
u
1

w
u
2

⋮

w
u
m
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1
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,

(11)

where Iu ∈ RdL is the representation of the user’s fnal form,
in this paper, which is called the user feature expression
vector after implementing supervision.

Ads feature expression: Te method of extracting ad
representation in this part is completely consistent with the
way of user feature expression. Here, the input of FEU unit is
ad embedding vector ea, while the input of the FSU unit is an
ad supervision vector eua. Terefore, the output matrix,
supervised weight vector, and ad’s feature expression vector
are as follows:

Aa
� hL1

, hL2
, . . . ,hLn

 ,

wa
� hL � f e

ua
 ,

Ia
�
1
n



n

i�1
hLi

· w
a
i �

1
n
Aawa

.

(12)

In this module, we set n as the number of fully connected
networks in FEU unit, then the output matrix Aa ∈ RdL×n

hold n ad representation vectors, similarly, the dimension of
ad supervised weight vector wa ∈ Rn is n; Ia ∈ RdL is ad’s
feature expression vector.

According to the above introduction process, FEU unit is
composed of multiple fully connected networks. FEU can
extract features representation matrix A from the same user
or ad based on equation (9). Diferent networks can focus on
features of specifc domains, but the number of feature tasks
processed by multinetwork learning methods is limited
[24, 25]. Terefore, FSU unit is used to generate supervised
weight vector w to make comprehensive judgment of
multiple feature representations. Te specifc calculation
process is shown in equation (11). Te FSU unit generates
a decision weight wi for every vector hLi

in, and then hLi
× wi

is operated to obtain the evaluation vector. Finally, all
vectors in A are operated in the same way with all super-
visory factors from FSU, and the mean value of all evaluation
vectors is calculated. In this way, FEU and FSU work to-
gether to enhance feature extraction and presentation in
online advertising systems.

3.2.3. Feature Cross-Layer. Trough the previous de-
scription, we obtained the feature expression vectors Iu and
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Ia for user and ad. Both of them imply important in-
formation of the features, which can represent the in-
formation of user and ad more efectively. At this point, the
feature cross-layer is designed to explore the relationship
between a user and an ad, which plays an important part to
obtained high performance of CTR prediction in ad service
system. Its structure is shown in the right part of Figure 1.
Te expression vectors of user and ad are passed through the
bridge connection module, and then the output vectors are
fed to the multiple fully connected networks to achieve the
prediction of user’s click-through rate for a given an ad. In
this paper, the operation of the bridge connection based on
expressions is designed as follows:

Ib
� Iu ⊙ Ia

( ⊕ Iu ⊕ Ia
, (13)

where the operation “⊙ ” represents the Hadamard product,
and the vector Ib ∈ R3dL is the output of the bridge
connection unit.

Finally, we use k fully connected networks to form
a feature cross-module. Similar to the feature expression,
where the output of the last layer with a single neuron of
each fully connected network in the feature cross-module is
expressed as follows:

hL � Sigmoid WT
LhL−1 + bL , (14)

where the value hL ∈ [0, 1] of the output node of the network
represents the probability of user clicking an ad, and bL is
a bias. Terefore, the output of the ith network in the cross-
layer and the combined output of k networks are

hLi
� f Ib

 ,

y �
1
k



k

i�1
hLi

,

(15)

where y is the prediction of CTR for the whole model
through the average operation.

In the two-tower model, the cosine function was
applied to calculate the CTR for the representation of the
ad feature and the user feature to get the potential au-
dience related to the ad. Te feature cross-layer with
bridge connection module proposed in this paper has
a certain signifcance to improve the accuracy of the
model. First, the Hadamard product is used to calculate
the matching degree between feature representations,
and the prerealized lower-order features are crossed.
Second, the extracted user and ad feature vectors are
taken as part of the input of the deep network, enabling
the model to explore the higher-order implicit in-
formation among the features [7]. Finally, the result of
the Hadamard product is spliced with the feature vectors
of users and ads as the input of the network to form
a bridge connected module, as shown in equation (13). In
this way, the feature cross-layer can discover the po-
tential relationship between low- and high-order features
at the same time.

Te binary cross-entropy loss is widely used in CTR
prediction task, which is defned as follows:

Logloss � −
1
N



N

i�1
yilog yi(  + 1 − yi( log 1 − yi(  , (16)

where N is the number of samples in training set. yi and yi

denote the ground truth and the predicted click probability,
respectively. We defne y � σ(φ(x)), where φ(x) represents
the model function given input features x, which contains
user and ad information, and σ(·) is the sigmoid function to
map y to [0, 1]. Te core of CTR prediction modeling lies in
how to construct the model φ(x) and learn its parameters
from training data. In this work, the prediction y will be
compute by average operation from the multiple predictions
in cross-layer.

3.3. Te Discussion of Feature Dual Supervision. Multiple
networks model can jointly learn from diferent features, so
that it can result in improved accuracy for CTR prediction
task [24, 26, 27]. Each fully connected network in the
feature expression unit (FEU) has diferent ability to extract
information for diferent features, so multiple networks are
used to extract the same user or ad features to obtain
multiple representations to strengthen the expression
ability of the FEU. Multiple networks learning are
a promising method to learn relationships among diferent
features. However, these approaches deal with a limited
number of characteristic tasks [24, 25]. Terefore, in order
to alleviate the limitation and combine multiple repre-
sentations, we propose a feature supervision unit (FSU).
Tis unit consists of a single fully connected network,
which gains supervised access under a supervised vector as
input. In the description of the feature expression layer of
the FDSM model, the user and ad feature representations
are extracted in the same way. When user feature vector is
extracted in the FEU unit, the inputs of the user’s FSU unit
are the full-volume information of the ad and the mean
pooling features of the user; similarly, when the ad feature
vector is extracted in the FEU, the inputs of the ad’s FSU
unit are the full-volume information of the user and the
mean pooling features of the ad. Due to the input char-
acteristics of the supervision unit, the operation of su-
pervision has a two-level meaning.

Firstly, during the process of extracting the feature vector
of the user, the user supervised vector contains ad full-
volume information. And the input of the supervision unit
contains the full-volume features of the user when the ad
features are expressed, which belongs to the characteristics
of the opposite side and this way means dual. It shows that
the efective representation of users is infuenced by the
advertising information, and the efective representation of
ads is infuenced by the features that users care about, which
is the frst meaning of supervision.

Secondly, adding the same-side mean pooling feature
vector for the supervised vector, the FSU unit can be used to
discover the cross-information between users and ads in
advance, making the supervision more sufcient, which is
the second meaning of supervision.Te underlying meaning
of the whole is that users’ behavioral decisions are made
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under the information of the ad, while the extraction of
efective information of the ad is expressed with the features
that are concerned with the user. Terefore, the fusion
process of the two levels is dual supervision for feature
expression.

3.4. Audience Expanded by FDSM. Tere are many methods
of audience targeting in online advertising, such as geo-
targeting. In this paper, we focus on the user profle and the
abundant behaviors to expand audiences. We train the
FDSM model from an advertiser’s point of view through
a large collection of ad campaigns that involves a large
number of seed and nonseeded users. Specifcally, given an
ad a and a candidate pool C, the potential user set T ⊂ C is
obtained according to the click rate, and then the ad a is
displayed to these users through the ad delivery system. In
order to search the potential audiences of an advertising
campaign more efciently, we frst train the FDSM model
in all advertising campaigns to obtain the prior model.
After that, rich behavioral information of users, such as
keywords queried by users and behavioral interests, is
collected from the online advertising system. Te prior
model is used to conduct microtraining on the new
feedback log data of the ad a to obtain the customized
model. Finally, the potential audiences of the ad are found
by using the customized model. Te overall process is
shown in Figure 2.

Te online advertising system collects a large amount
of campaign data and caches it in the ofine database. Te
ofine data platform periodically processes the data
generated in the past period, and then uses the data to
train FDSM to obtain the prior model. Te online plat-
form is responsible for processing the data in the recent
period to get the feedback data of a certain ad campaign,
and then the customized model of the campaign will be
obtained according to the feedback information. Finally,
the customized model is used to retrieve potential audi-
ences closely related to the campaign in the pool of
candidate users in the data management platform (DMP),
and the Top-N audiences are ranked according to the CTR
to implement the campaign. Te system transmits the
users’ feedback logs about the ads through the data
highway to both the ofine database and the online
feedback database, and the whole system forms a closed-
loop decision process.

4. Experiment

Tis section describes the experimental scheme in detail,
including experimental datasets, comparison models, eval-
uation metrics, experimental details, comparisons results,
ablation study, and discussion.

4.1. Datasets. Tencent Lookalike dataset(https://algo.qq.
com/archive.html): Te public dataset for Tencent Ads
competitions in 2018 is based on the advertisers providing
more than one hundred seed sets, which contain a large
number of user characteristics and aim to expand potential

audiences for these campaigns. To ensure the security of
service data, all data is desensitized. Te whole dataset is
divided into a training set and a testing set. Each adver-
tisement has eight categorical features: ad ID, advertiser ID,
campaign ID, creative ID, creative size ID, ad category,
product ID, and product type. Each user contains 19 fea-
tures: including age, gender, education, carrier, consump-
tion ability, geographical location, house, type of Internet
access, fve groups of interest categories, three groups of
topics, and three groups of keywords.

MovieLens dataset (https://grouplens.org/datasets/
movielens/): Te public dataset contains 6,040 users; each
of them consists of user ID, gender, age, occupation, and zip
code, and holds 3,883 movies, each movie including movie
ID, title, and genres. And it was rated by user with a score
that among of 5 scale, and recorded timestamp for the rating
behavior. In this study, in order to ft the audience targeting,
we frstly according to the movie genres and the normalized
years, the years were extracted from themovie title, to cluster
all the movies into 50 groups thought k-means method. Each
group was regarded as an ad group, and target audiences
were found for each ad group. Meanwhile, in order to make
the sample data suitable for CTR prediction task, we con-
verted the rating data into a binary classifcation data [11].
Specifcally, we label the original rating with 4 and 5 to be
seed users (labeled as 1), and the rest are recorded as nonseed
users (labeled as 0). Finally, based on the sequence of the
timestamps of eachmovie being rated by users, the sample of
80% rating numbers with the top time is used as the training
set, and the rest is used as the testing set. Tis results in 80%
training data and 20% testing data for each ad group.
Training data in all ad groups are taken as training sets, and
all test data constitute testing sets.

Statistics about the datasets are shown in Table 2. Te
ratio of positive to negative samples in the Tencent Lookalike
dataset is 1 : 20, while the ratio of positive to negative
samples in the MovieLens dataset after processing is close to
1 :1. Te training set and testing set corresponding to each
ad/ad group contain both seed and nonseed users. Te users
in the testing set are regarded as candidates for testing. In the
system of audience targeting proposed in this paper, in order
to obtain a prior model in the ofine data, as shown in
Figure 2, we take the training set of Tencent Lookalike
according to 50% of the positive and negative samples of
each seed set as the ofine data and the rest data as online

Offline
DataBase Prior Model Customized

Model
Online

FeedBack

Audience
Retrieval

Audiences
Sort

Service Log

DMP
Candidates

TopN Audiences

Ads Service

Data Highway

Figure 2: Audience targeting framework based on FDSM model.
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data. In this method, the ofine data and online data are
obtained to simulate the whole audience targeting process.
For the training set of MovieLens, we consider it as both
ofine and online data.

In the two-tower model, the initial application feld is
natural language processing. Tencent Lookalike dataset not
only contains user profle information, but also text in-
formation such as search keywords, favorite topics, and
interests of users. FDSM model is improved on the basis of
the two-tower model, so it can be used as the data set of
experiments. Te FDSM model proposed in this paper
belongs to the CTRmodel, so it is necessary to addmore data
for experiments to show the advantages of this model.
MovieLens is a dataset frequently used by the CTR model,
and it is very convincing to use this dataset for experiments.

4.2. Baselines. In online advertising audience targeting, we
compare our proposed model FDSM with the following
baseline methods.

FM [4] combines the advantages of support vector
machine and factorization model, which has demon-
strated its efectiveness in many CTR prediction tasks.
MLP is popular structural model that embed each
feature for a sample into an embedded vector, then
obtains a dense embedding representation through
concatenation operation, and feeds it into a fully
connected network to automatically learn the CTR
prediction.
DeepFM [8] adds deep neural network as the deep part
on the basis of FM model, so that the model can learn
higher-order feature interactions.Te interaction terms
of FM and the output of deep network will be model for
CTR prediction.
PNN [12] model applies a product layer after em-
bedding layer and multiple fully connected layers to
explore the high-order feature interactions.
Two-tower [5] is a popular model in retrieval tasks. In
this paper, the user features are input into the user
tower and the ad features are input into the ad tower, by
which the user and advertisement features are mapped
into a shared semantic space. Te cosine function is
applied to calculate the matching scores by the
extracted expression vectors of user and ad.
DCN [9], which proposed a deep cross-network to
perform high-order feature interactions in an explicit
way. In addition, it integrated a deep neural network.
Te output from both networks to achieve CTR pre-
diction task together.

Wide&Deep [7], which difers from the DCN model, it
adds a “wide” part on top of DNN. As a general learning
framework that combines a wide network and deep
neural network to achieve the advantage of both. Te
output of the last layer of DNN and “wide” part are
inputted a linear model to complete the CTR
prediction task.
AFN+ [28], AFN applies logarithmic transformation
layer to learn adaptive-order feature interactions.
AFN+ further integrates AFN with a deep network.

4.3. EvaluationMetrics. In this study, we use four metrics to
measure the performance among of models. In the feld of
CTR prediction, AUC (Area under ROC Curve) is a widely
used metric [29], which refects the ranking quality of the
prediction sample, and a higher AUC indicates a better CTR
prediction performance. In this paper, according to the
meaning of audience targeting, we calculate the AUC score
for each ad in the testing set, and then calculate the average
AUC of all ads, denoted as GAUC. In addition, we use the
equation (16) to calculate the loss of audience prediction for
each ad in the testing set; the smaller loss means better model
performance. Te average value is the fnal test result, which
is denoted as Logloss. We also apply another two metrics:
Precision@K% and Recall@K% [22], which indicates that
after retrieval from candidate users, the Top-N candidates is
selected as the target user to calculate precision and recall
rate of the model. Tey are defned as follows:

Precision@K% �
|S∩T|

|T|
,

Recall@K% �
|S∩T|

|S|
,

(17)

where S denotes the set of the seed of a certain ad campaign,
and T denotes the set of the top targeting audiences after
predicted with number of K% × |S| by the audience ex-
pansion model for the ad. In this study, according to the
approximate ratio of positive and negative samples in the
whole dataset, we set K for Tencent Lookalike dataset and
MovieLens dataset as 5 and 50, respectively.

4.4. Implementation Details. In this section, we will in-
troduce the experimental environment and parameter de-
tails. As for the experimental parameter details, for the sake
of fairness, we set the ofine learning rate parameter λoff and
the online learning rate parameter λon for the training
process of prior model and the customized model in the
audience targeting system. Both of the learning rates of
ofine and online stage about Tencent Lookalike, which are
tuned from 0.00002 to 0.0002 and the step is 0.00002. While
for the MovieLens, the ofine learning rate parameter is the
same as the Tencent dataset, the online learning rate ranges
from 0.0001 to 0.001 with a step of 0.0001. In the FDSM
proposed in this paper, the parameters [m, n, k] of Feature
Expression Unit (FEU) and the number of fully connect
networks in the cross-layer are set as [6, 6, 5] in Tencent

Table 2: Statistics of the experimental datasets.

Dataset Lookalike MovieLens
Ads/movies 173/∗ 50/3883
Seeds 421961 461206
Nonseeds 8376853 337438
Candidates 2265989 201565
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Lookalike and [8, 4, 8] in MovieLens, and the hidden layer
structure of all fully connect networks networks in FSU and
cross-layer is [128, 64]. For all other models, the hidden layer
structure of all networks is [256, 128, 64]. Te dimension of
the embedding vector is 64. In the ofine experiment, the
ofine full data is used for training, 8 ad campaigns are
sampled and the minimum sample size is 512 for every ad in
each generation, and the training times of the prior model is
one epoch. In the online process, according to the order of
the online training data of an ad campaign, 512 samples are
applied in each iteration to train the prior model with three
epochs to get the customized model. Te Adam [30] is
applied as the optimizer to optimize network weight pa-
rameters both online and ofine. In the experiment, all
models were coded in Python language on PyTorch l.6.0. We
conduct our experiments with platform is CPU version of
Intel Xeon Silver 4210 with 2.2GHz. Te memory of the
device is 32GB, and GPU version is independent graphics
card GTX2080Ti.

4.5. Model Comparisons. In this part, we will analyze the
experimental results from Table 3, Figures 3 and 4. Where in
Table 3 are shown the ten prior models obtained for each
model trained with all ofine learning rate parameters λoff ,
and each prior model obtains ten training customized
models through diferent online learning rate parameters
λon. Finally, the optimal results are obtained for each model
tested with one hundred custom models. Each coordinate of
Figures 3 and 4 represents the average value that the ten
customized models are obtained by training all prior models
of each method under one λon, then ten groups of test in-
dicators under all parameters were calculated. From the
results, we can summarize as follows:

(1) As shown in Table 3, among the performance results
of all CTR prediction models, the best performances
are highlighted in bold, and the best baseline results
are highlighted in the underline. As can be observed
from the table, the proposed FDSM model has been
improved in diferent degrees in Lookalike and
MovieLens datasets. For example, on Lookalike
dataset, FDSM surpasses the suboptimal MLP model
over 1.03% on GAUC metric, and improves 2.83%
and 2.86% for precision and recall, respectively, with
lower Logloss metric values than the other baseline
models. On the MovieLens dataset, the FDSMmodel
outperforms the PNNmodel by 0.80% on the GAUC
metric, comparing with the AFN+model, the cor-
responding precision and recall rates are improved
by 0.62% and 0.67%, and the Logloss metric values
are also lower than those of other baseline models.
Tis demonstrates that the FDSM model can extract
more fne-grained feature expression of the users and
ads after supervised operation, so as to fnd accurate
matching patterns between feature information in
feature cross-layer. And it also shows the efective-
ness of the FDSMmodel in CTR prediction tasks and
audience prediction.

(2) In Figures 3 and 4, they present the average per-
formance of the GAUC and Logloss metrics for all
models in the online stage on both datasets. Figure 3
represents the results of the tests on the Lookalike
dataset. In this fgure, we can clearly observe that the
FDSMmodel outperforms the other baseline models
in both metrics on average under all parameters of
online learning rate. Figure 4 shows the online test
results of all models on the MovieLens dataset. We
can see that the average performance of the FDSM
model on GAUC and Logloss does not reach the
optimum when the online learning rate parameter is
below 0.0002, but after 0.0002, the average perfor-
mance outperforms the other baseline models and is
able to achieve the global optimum average per-
formance on the GAUC metric. As for the Logloss
metric, the performance reaches the optimum after
0.0005. It further illustrates that the FDSM model
outperforms than other baseline models in average
performance.

(3) On the Lookalike dataset, through the experimental
results of Table 3, we can observe that the optimal
performance of the FMmodel is lower than the other
models, and the average performance refected from
Figure 3 is also the worst, due to the fact that FM is
a shallow structure, which can only be limited to
second-order interaction. Other models all involve
deep networks; second-order and higher-order fea-
ture interaction can be found at the same time.
Terefore, the performance of them exceeds FM.Te
optimal and average performance of the PNN model
is also unsatisfactory, and one possible reason is that
the model applies the inner product of features as
part of the deep network input, and it is the same as
the FM model, where the second-order feature in-
teraction afects the deep network fnds higher-order
information. Te performance of the AFN+model is
close to PNN, and its logarithmic transformation
layer is also applied to the advance feature in-
teraction, only with an additional exponential factor,
so its performance on this dataset is close to that of
the PNN.

DeepFM difers from PNN in that the results of the
second-order interaction do not participate in the
deep network, but enter the linear model together
with the output of the deep network and fnally get
the prediction results, so this model performs better
than PNN, but the experimental results are lower
than Wide&Deep, MLP, and DCN models.
Wide&Deep combines the output of a shallow
structure “Wide” and a deep network, and the
prediction results are obtained through the linear
model, while DCN is combined with a deep cross-
network and a deep network. For MLP, the high
optimal performance in the baseline model is ob-
tained by using only the deep network, which shows
the powerful capability of the model. Two-tower’s
performance is still lower, probably due to the use of
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Table 3: Results of comparison experiment on Lookalike and MovieLens.

Datasets Lookalike MovieLens
Model GAUC Logloss Precision@5% Recall@5% GAUC Logloss Precision@50% Recall@50%
FM 0.7076 0.1661 0.2225 0.2295 0.6974 0.6171 0.7188 0.6214
MLP 0.7291 0.1616 0.2403 0.2479 0.7003 0.6119 0.7193 0.6211
DeepFM 0.7272 0.1620 0.2385 0.2462 0.7001 0.6094 0.7192 0.6210
PNN 0.7165 0.1642 0.2280 0.2351 0.7016 0.6112 0.7205 0.6218
Wide&Deep 0.7285 0.1617 0.2399 0.2478 0.6975 0.6110 0.7171 0.6183
Two-tower 0.7221 0.1725 0.2393 0.2470 0.7011 0.6091 0.7191 0.6208
DCN 0.7287 0.1617 0.2401 0.2477 0.6982 0.6162 0.7184 0.6199
AFN+ 0.7170 0.1648 0.2214 0.2282 0.7002 0.6097 0.7209 0.6228
FDSM 0. 366 0.1601 0.24 1 0.2550 0. 0 2 0.60 2 0. 254 0.62 0
Te best performances are in bold.
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Figure 3: Te average of GAUC and Logloss of diferent models on Loolalike dataset during online stage.
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cosine function in cross-layer, and the low accuracy
of matching between users and ads. Trough anal-
ysis, it can be seen that the performance of the model
applied to explicit second-order feature interaction is
low, such as FM, PNN, andDeepFM.Te reasonmay
be that listing all cross-features, including irrelevant
ones, will introduce noise feature combinations and
reduce model performance [28]. However, the
performance is better for models that do not involve
explicit second-order feature interaction on Look-
alike data, such as Wide&Deep, MLP, and DCN
models.

(4) On the MovieLens dataset, FM, Wide&Deep, DCN,
and DeepFM have lower both optimal performance
in Table 3 and average performance presented in
Figure 4. PNN, AFN+, MLP, and tow-tower have
higher optimal and average performances. From the

above analysis, it is clear that FM is limited to
second-order interaction and therefore has lower
performance. While Wide&Deep, DCN, and
DeepFMmodels all use a combination of the outputs
of nondeep network and deep network, compared
with PNN,MLP, and two-tower models that only use
deep networks, their ability to match information is
weaker in the shallow structure. Te AFN+model
applies adaptive-order feature interaction as the
shallow structure, its coefcient factors can be au-
tomatically adjusted and weaken the ability of the
shallow structure; and it cooperates with the deep
network to achieve CTR prediction, which indicates
the strong performance of deep networks together.

(5) Why do all the models perform so diferently on the
two datasets? In the previous dataset introduction,
we know that the Lookalike dataset contains not only
the user profle information, but also the keywords
and topic features of the user’s query, which belongs
to the text corpus, and if these features are not
extracted, it will be difcult to directly perform
feature interaction to discover the relationship be-
tween features, and even afect the ability of other
structures, such as FM, PNN, and DeepFM. As for
MovieLens dataset, there is only the user profle
information and rating, and no text information.
Terefore, feature interaction can be performed in
advance and will not afect the performance of deep
networks, such as PNN and AFN+ model. Trough
the above, it can be seen that the models applied to
deep networks can all achieve feature extraction and
higher-order interaction of features at the same time.
In the FDSM model, we propose the FEU, FSU units
and cross-layer with bridge connection based on the
two-tower model, all of which use the deep network,
which not only strengthens the feature extraction
ability, but also enables more efcient features
interaction.

4.6. Ablation Study. In ablation study, basing on the two-
tower model, we will conduct experiment to analyze the
infuence on the number of fully connected networks in
Feature Expression Units (FEUs) and feature cross-layer in
the FDSM model, the Feature Supervision Units (FSU) and
the cross-layer with bridge connection.

4.6.1. Ablation Experiment Setup. As described the imple-
mentation details, we still conduct experiments under the
same setting of learning rate parameters, and each group of
experimental achieves the optimal performance among 100
groups of results. It is mainly divided into two aspects; the
specifc arrangement is as follows.

Firstly, in order to explore the infuence of the number of
feature networks in the two-tower model, we set the
structure parameters of [m, n] as [6, 6] on Lookalike dataset,
while [8, 4] on MovieLens dataset. Te cosine function on
the feature cross layer was still used, which is denoted as
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multinetwork two-tower (MNTT). To study the infuence of
Feature Supervision Unit (FSU) on the basis of MNTT, as
introduced in the discussion of feature dual supervision, two
levels of supervision need to be set, so the input of the
supervision unit is replaced. In the frst method, the user
supervision vector is set to ea, and the ad supervision vector
is set to eu. Tis method is denoted as FDSMa. In the second
method, we set the user supervision vector to eau and the ad
supervision vector to eua, which is denoted as FDSMb.

Secondly, to explore the efect of the proposed bridge
connection unit in the feature cross-layer, we replaced the
cosine function with k fully connected networks in the two-
tower model, where k is set to 5 on Lookalike dataset and 8
on MovieLens dataset. For the bridge connection in feature
cross-layer, we will rebuild of the bridge vector Ib, which
was proposed in Section 3. In the frst method, the con-
catenation operation is applied to combine features ex-
pression vector of users and ads from their tower,
respectively, that is Ib � Iu ⊕ Ia , which is fed into k fully
connected networks, denoted as TTa In the second method,
the input vector of the fully connected networks through the
bridge unit proposed in this paper, that is
Ib � (Iu ⊙ Ia)⊕ Iu ⊕ Ia, which denoted as TTb Trough these
two methods, the efectiveness of the proposed feature cross-
layer with bridge structure will be verifed.

4.6.2. Te Impact of the Supervision Unit. In order to explore
the impact of FSU, we set the FDSMa and FDSMb models
based on MNTT for the study. Te reason for using the
MNTTmodel instead of the two-tower model is to avoid the
infuence of the number of diferent networks in the process
of feature extraction. Another reason is that the softmax
function is applied in the output of the FSU for the supervised
weight factor, so the FSU unit fails when [m, n] is set to [1, 1],
which makes it impossible to make a fair comparison. As
shown in Table 4, the performance of the FDSMa and FDSMb
models exceeds that of MNTT on both datasets. It illustrates
that the supervision unit can enhance the feature extraction
capability of the FEU. It can also be found that the perfor-
mance of supervision in the FDSMb method is signifcantly
better than that in the FDSMa method, which indicates that
the same-side information can discover the correlation be-
tween users and ads information in advance, and fnally
obtain more fne-grained users and ads information in the
feature extraction layer. Finally, through the above analysis, it

can be clearly found that the multinetwork feature extraction
unit and feature supervision unit proposed in this paper not
only have strong feature extraction ability, but may also be
able to adapt to diferent datasets.

4.6.3. Te Impact of Bridge Connection. In order to explore
the impact of multi-network with bridge connection in
cross-layer, we will analyze the experimental results of two-
tower, TTa, and TTb. According to the results in Table 4, the
performance of TTa and TTb are higher than that of Two-
Tower, which indicates that multi-network is more accurate
than cosine function in calculating the matching degree
between user and ad. Te performance of TTa is lower than
TTb, indicating that the bridge connection with the Hada-
mard product can better calculate the matching degree
between two expression vectors.Terefore, the feature cross-
layer with bridge connection proposed in this paper has
excellent information matching ability.

Trough the introduction of this part, it is shown that the
proposed FSU and feature cross-network with bridge-
connected module have high performance in CTR pre-
diction. By summarizing all the results in Table 4, we can fnd
that the performance of the FDSM model is better than that
of the other CTRmodels, which indicates that the method of

Table 4: Results of ablation study.

Datasets Lookalike MovieLens
Model GAUC Logloss Precision@5% Recall@5% GAUC Logloss Precision@50% Recall@50%
MNTT 0.7193 0.1678 0.2280 0.2244 0.7026 0.6082 0.7206 0.6221
FDSMa 0.7268 0.1635 0.2401 0.2471 0.7042 0.6100 0.7245 0.6263
FDSMb 0.7289 0.1644 0.2403 0.2472 0.7047 0.6075 0.7235 0.6254
Two-tower 0.7221 0.1725 0.2393 0.2470 0.7011 0.6091 0.7191 0.6208
TTa 0.7283 0.1619 0.2412 0.2489 0.7011 0.6112 0.7192 0.6209
TTb 0.7288 0.1619 0.2414 0.2490 0.7013 0.6089 0.7197 0.6214
FDSM 0. 366 0.1601 0.24 1 0.2550 0. 0 2 0.60 2 0. 254 0.62 0
Te best performances are in bold.
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combining the FSU and the feature cross-network with
bridge connection has higher performance than either part.

4.7. Complexity Analysis Experiment. In this study, experi-
mental tests were conducted on Lookalike dataset to cal-
culate the number of parameters and online running time of
each model, as shown in Figure 5. In this picture, the x-axis
represents the model and the y-axis represents the parameter
scale. Te (×104) describes the unit of the number of model
parameters and (s) describes the online running time of the
model, whose unit is second. To clarify, W&D stands for
Wide&Deep model and T-T stands for Two-Tower model.

First, it illustrates that the FDSMmodel proposed in this
paper has the largest number of parameters because it ap-
plies multiple networks, while other models are all single
network. Terefore, the FDSM model consumes more
memory. Second, compared with baseline models, the online
running time of FDSM is less than that of DeepFM and
PNN, butmore than othermodels. In general, in terms of the
number of parameters and online running time, the model
does not have an absolute advantage, but reaches closely the
average performance. However, according to the results
from Table 3, FDSM can achieve the best performance at the
expense of certain memory and time. Hence, with the
continuous improvement of hardware performance, FDSM
model can be better applied to online advertising system.

5. Conclusion

In this paper, we propose a novel CTR model called the
Feature Dual Supervision Model (FDSM) for advertising
audience targeting system. Tis model is based on the two-
tower model, aiming at the shortcoming of the two-tower
model in the process of feature extraction, the lack of in-
formation interaction between the towers leads to the loss of
details in the feature. In the FDSM model, Feature Ex-
pression Unit (FEU) and Feature Supervision Unit (FSU) are
designed.Te FEU unit is used to extract features from users
or ads information to obtain a representation matrix with
multiple feature representations. And the supervised weight
vector is generated by the FSU unit. Ten the supervised
weight vector is applied to achieve supervision of the rep-
resentation matrix to obtain a unique representation. In
addition, we propose feature interaction with bridge con-
nection to fnd more efcient matching patterns for user and
ad representation. Finally, we conducted a large number of
experiments, and through comparative experiments, it is
shown that our proposed FDSM model surpasses many
classical CTR models, and it is also found that the FDSM
model may be adapted to more diferent contexts. Te ef-
fectiveness of the proposed FEU, FSU, and bridge-connected
cross-networks are illustrated by the ablation experiments.

In future work, we will further study the efects brought
by diferent neural networks of FEU and FSU units, such as
convolution neural networks (CNN) or adding attention
mechanism in the networks. In addition, diferent designs
will be made for the feature cross layer. By studying diferent
bridge connection modules and exploring diferent network

infuences, such as setting residual network (ResNet), so that
the more efcient feature input is explored to achieve ef-
cient matching of information in the feature cross-layer.

Data Availability

Te data can be obtained from the following link https://
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