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Due to the rapid development of image data and the necessity to analyze it to extract meaningful information, heterogeneous
systems have gained prominence. One of the most critical aspects of distributed systems is load balancing. When it comes to the
distribution of workload in a balanced manner in a cluster, some heterogeneous systems are used for image processing. When
workloads are allocated in these systems, the computational power of the processors is not considered. As a result, in these
heterogeneous systems for image processing applications, an uneven workload distribution issue is found. A workload dis-
tribution programming framework is presented and discussed in this paper. Te proposed strategy consists of two parts. As a frst
step, image data is split into optimal split sizes and distributed across nodes, then the image data is distributed across CPU and
GPU in a second step for processing. A heterogeneous environment is created by combining the CPU and GPU.TeOpenCL Java
bindings are used to set up both the CPU and GPU to run the program. To assess the performance of the suggested technique,
certain tests are carried out and compared to current platforms. For image processing applications in heterogeneous clusters, the
proposed workload distribution approach distributed image data efciently.Te results of the proposed solution (Hadoop+GPU)
show that using an efective workload allocation mechanism in heterogeneous systems reduces average execution time while
improving overall application performance.

1. Introduction

A vast quantity of digital data is created everywhere in today’s
technology world from many sources such as the Internet,
networked cameras, mobile phones, sensors, and so on.
Digital data used to be measured inMegabytes and Gigabytes,
but today it is measured in terabytes and petabytes. Because
70% of digital data is unstructured, such a large volume of
data needs additional storage and processing power [1].
Unstructured data includes images, which are a two-di-
mensional representation of pixels with variable intensity
values, among other forms. In addition, images include in-
trinsic data-level parallelism that must be handled to extract

relevant information, a process termed image processing. It is
useful in a variety of applications, including medical imaging,
satellite imaging, document analysis, and so on.

Te constraints of limited memory capacity and data
access speed arise when storing such a vast amount of data
on a single processing device, impacting the performance of
the application. Due to these problems and the programs’
high computing demands, it was impossible to improve the
performance of a single CPU or processing system. Due to
the need to maximize the efciency of running data inde-
pendently of one another across several computing units in
parallel, distributed and parallel architectures had to be
developed.
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Hadoop is a well-known and simple-to-use technology
with a loosely linked design and distributed environment.
Te Hadoop Distributed File System (HDFS) and the
MapReduce programming methodology make up Hadoop.
Google’s fle system (GFS) is based on HDFS, which is a free
and open-source version of it. In essence, it uses a map-
reduce method to distribute enormous amounts of data
across commodity computers, which is used by a variety of
companies including Yahoo, Amazon, Facebook, and
Google. Te maps reduction technique provides dependable
data synchronization, load balancing, as well as dynamic
allocation of jobs among multiple, compute units.

Te GPU architecture is confgured so that the hardware
has several multiprocessors. Each multiprocessor is com-
posed of a collection of SIMD (Single Instruction Multiple
Data) architecture-based 32-bit processors. Every clock
cycle, a multiprocessor executes the same instruction on a
group of threads known as a warp.Te quantity of threads in
the warp determines the size of the warp. Each streaming
multiprocessor (SM) has 8 scalar thread processors (SP), and
the block’s threads share 16 kb of on-chip memory for
communication. Programmers write two diferent types of
code for GPU execution: kernel and host code. Te kernel
code is executed concurrently on the GPU. Te CPU’s host
code manages data transmission between the GPU and main
memory, as well as starting kernels on the GPU.

Massive parallel processing cores combined with GPU
are provided by heterogeneous clusters, which give high
speed and scalability data dissemination to faraway con-
sumers. Because of the commodity PCs’ network and GPU
capability, it is adaptable. Heterogeneous computing is the
utilization of heterogeneous architectures by applications.
Figure 1 demonstrates how heterogeneous architectures are
made up of various processor types, each of which has a
distinct set of advantages and disadvantages, such as GPUs
and CPUs with multiple cores. A variety of hardware can be
used on these platforms, varying in power consumption and
performance [2]. As a result, heterogeneous systems im-
prove performance while lowering energy usage [3].

1.1. Problem Statement. By efciently processing a vast
amount of image data, state-of-the-art heterogeneous
frameworks for image processing applications provide high
performance. It is important to note that for these tech-
niques to achieve good application performance, they need a
minimum amount of support to distribute data between
nodes and between CPUs and GPUs based on processing
power. Nevertheless, this can be achieved by utilizing a load
balancing technique that divides and distributes data be-
tween the nodes as well as between the CPU and GPU on
each node, depending on their computational capabilities.
As a result, an efective workload allocation policy must be
implemented to improve application performance.

1.2. Aims and Objectives. Te following aims and objectives
are deemed to support the problem description and will take
us to the desired goal:

(i) To give programmers an easy-to-use image pro-
cessing framework that automatically distributes
workload over a heterogeneous cluster, resulting in
improved performance

(ii) Within the node, automatically partition image data
between CPU and GPU

1.3. Contributions

(i) A new method for partitioning data into optimal
split sizes which ensures locality for computations
by ensuring that images within the given split
cannot exceed the boundaries of the split

(ii) To maximize resource efciency and minimize data
transfer, splits are dispersed across nodes and within
nodes according to their computational capabilities

(iii) Instead of acquiring expensive supercomputers or
specialist vector machines, a commodity computer
systems cluster can readily manage huge amounts of
image data

Te rest of the paper is organized as follows:
Section 2 describes the literature review, Section 3

proposed the framework, Section 4 is results and analysis
while Section 5 contains the conclusion and future work.

2. Literature Review

It aims to provide image processing in a heterogeneous
environment by combining multicore CPU and GPU
methods. In a heterogeneous cluster, diverse computing
capability processors are paired together to ofer a pro-
gramming framework that allows for an optimal split size,
even/balanced job assignment, and maximum resource
efciency.

2.1. Image Processing in aDistributed Environment. In image
processing applications, distributed systems have quickly
become the preferred platform because of their fast-pro-
cessing speed, scalability, and efciency. It is feasible to
handle large quantities of uploaded image data using dis-
tributed systems. Due to the growth of distributed systems,
applications with large storage and processing needs are
becoming more and more popular. Data sharing, device
sharing, device connectivity, and task distribution fexibility
are all advantages of distributed systems versus single
processor systems. Many open-source programming para-
digms, such as Spark, have been created to assist in efcient
data processing in distributed environments [7],

Te UC BerkeleyMapReduce and Storm6 Spark [4] tools
allow appealing computations such as data mining and
machine learning. Te storm is a distributed real-time
computing system that successfully handles unbounded data
streams.TeMapReduce architecture is a popular choice for
large data analysis because of its capacity to handle semi-
structured and unstructured data in parallel [2].

In addition to image processing applications [5], face
and gesture recognition [6], face tracking [7], video
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detection of textual words from online lecture videos [9],
as well as video surveillance [10], the Apache Hadoop
framework has been used in many other applications. Te
Hadoop MapReduce architecture was used to create a
satellite image application for a Qatari environmental
study center [11]. Hadoop has also been used to manage
enormous amounts of image data in content-based image
retrieval (CBIR) [12].

2.2. GPU-Based Image Processing. Using the OpenGL
graphics library, the GPU was employed for feature ex-
traction and tracking [13]. GPUs have been employed in
applications such as Canny edge detection [14], satellite
image processing [15], and medical image processing [16].
Te GPU is faster than the CPU at processing the integral of
photos, as shown in a study of face detection using the viola-
jones method [17]. When image data is generated in real-
time from satellites and must be processed fast, GPUs have
been employed for image smoothing [18] and cloud removal
[19] operations. It has been demonstrated that GPUs can be
used in the medical feld to detect brain tumor cells,
complete several stages of operations, and provide fantastic
performance when processing large amounts of image data
rapidly [20].

2.3. Image Processing Using Heterogeneous Hadoop Clusters.
Using parallel processing cores and GPUs, heterogeneous
clusters assist in delivering data at high speeds and scalability

to distant consumers [21]. To efectively analyze large
amounts of data, the CUDA on the Hadoop framework was
employed [22], which improves application performance by
combining Hadoop’s distributed computing capabilities
with the GPU’s high parallel processing structure [23, 24].
Mars is a framework that combines GPU capabilities with
the Hadoop framework, and it is designed to process web
documents (searches and logs) [25]. Tere are also three
frameworks that combine GPU and Hadoop for high per-
formance, though they were designed for specialized sci-
entifc tasks rather than image processing.Tese frameworks
include MAPCG [26], StreamMR [27], and GPMR [28].
Hadoop Image Processing Interface (HIPI) was created to
handle large amounts of tiny image data efectively; however,
it does not support GPU [29].

3. Proposed Framework

In the section before, some of the challenges that result in an
uneven work distribution in a diversifed context were
covered.Te creation of a programming framework that can
efciently distribute data across nodes, and then within each
node between CPUs and GPUs based on their processing
capabilities, in a heterogeneous environment, is required to
address these issues.

According to Figure 2, the proposed programming
framework demonstrates how heterogeneous data may be
distributed efciently in a large amount of image data. Te
process involves two phases

Master 1 (Active)

NODE 1

GPU CPU

• Name node
• Resource manager

Master 2 (Stand by)

NODE 2

GPU CPU

• Name node
• Resource manager

Daemons running on Slave node 1

NODE 3

GPU CPU

• Data node
• Node manager

Daemons running on Slave node 2

NODE 4

GPU CPU

• Data node
• Node manager

Daemons running on Slave node 3

NODE 5

GPU CPU• Data node
• Node manager

Heterogeneous Hadoop Cluster

Figure 1: A generic diagram of the heterogeneous Hadoop cluster.
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(1) Data Distribution among Nodes: the nodes in the
cluster will distribute data during this phase

(2) Distribution of Workload between CPU and GPU:
data is dispersed to individual nodes and then dis-
tributed within each node between the CPU and
GPU in this step

Tis work focuses on efciently workload distribution in
a heterogeneous cluster.

3.1. Proposed Distribution of Workload among Nodes.
Workloads can be divided into Hadoop workloads and
cluster node workloads. Te nodes process the data when it
has been received. Images must be evenly distributed across
cluster nodes in this study to make the best use of the
cluster’s processing and memory capabilities. A new dis-
tribution policy is advised for the distribution of photos. Te
images were chosen for the suggested technique in the same
size, even if the photographs come in a variety of sizes, and
each split will include one or more images. However, doing
so would degrade performance because one image cannot be
split into numerous parts.

Images in the proposed distribution scheme are grouped
together so that every split contains many images that ft
within the split size. To prevent the image from exceeding

the split boundaries, the split size is determined by the image
size. Figure 3 depicts several photos that have been divided
and are ready to be distributed among nodes, while Figure 4
depicts the ideal split size based on the block default size.

To address the issue of uneven splits, when photos are
dispersed unevenly across splits, the split size must be

Image Input Data
Images Storage

Data Division into equal size splits

HDFS

Data distribution among the nodes

Ideal
SPLIT Size

Ideal
SPLIT Size

Ideal
SPLIT Size

Ratio Calculation
Data distribution with-in the node

Ideal
SPLIT Size

Ideal
SPLIT Size

Images Images Images Images

Images GPU
CPU

Number of images allocated to CPU Number of images allocated to GPU

Figure 2: Proposed framework for workload distribution.

Split 1 Split 2 Split 3 Split 4 Split 5

Input Data

Figure 3: Partitioning data into splits.
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calculated depending on the sizes of the images. When
choosing an input split size in HDFS, the Input split size
must be set according to the image size, then several images
of the same size can be accommodated.

3.1.1. Selection of Input Split Size. Te ideal input split size
represents I here, the default split size represents D, the
image size represents S, and no represents the maximum
number of images that can be accommodated by the ideal
input split. Te total number of images in the dataset
represents Ti, and the number of splits with an equal dis-
tribution represents Sn.

Ideal input split size� I.
Size of Image� s.
Size of Input split of default Hadoop� d.
Size of ideal split that can accommodate the number of

images� no.
Divide d by s and use the foor function to disregard the

fractional component to compute no. To get I, multiply s by
no.

no � ⌊d/s⌋,

I � no∗ s.
(1)

Tis method computes output splits based on the size of
the input image, and no image can cross two input splits.

3.2. Workload Distribution between CPUs and GPUs within a
Node. A heterogeneous cluster has coprocessor GPUs,
which are faster than CPUs. As a result, job assignments
must be based on the processors’ computational capabilities
for best performance. A new efective workload allocation
technique in a heterogeneous Hadoop cluster is suggested to
achieve excellent performance for image processing
applications.

Tis load balancing method is visually explained in
Figure 5. Tis phase involves splitting up each map task into
fxed-size images. Te map function is called every time a
split occurs, which takes an input pair of a key and value. By
using the map function, each image in the split is read. By
applying the proposed approach, the map function checks
ratios for all images within the split and assigns images based
on their computational capabilities to the CPU and GPU. A
sample image is executed simultaneously on CPU and GPU
to determine the execution time of both CPU and GPU on
an algorithm. An image ratio is created by comparing the
execution times of each processor and comparing howmany

63 MB
SPLIT Size

63 MB
SPLIT Size

63 MB
SPLIT Size

63 MB
SPLIT Size

63 MB
SPLIT Size

64 MB Block size 64 MB Block size 64 MB Block size 64 MB Block size 64 MB Block size

Figure 4: Partitioning image data into ideal split sizes.
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Figure 5: Data distribution within a node between CPU and GPU
based on their computing capabilities.
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Figure 6: Basic fow chart of the proposed work.
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images the GPU and CPU can process simultaneously. Te
Efcient Workload Distribution Implementation details
process and basic fow chart of the proposed work are
depicted in Figure 6 as below.

3.3. Efcient Workload Distribution Implementation. Tis
section describes the implementation of the proposed
approach.

Splits are formed by defning three variables in the
setSplitSize() method of the class CPU-GPU given in Table 1.
Using HDFS block size as a reference for split size calcu-
lation, one can specify the following formats for fle in-
formation: (i) fle size, (ii) default split size, and (iii) optimal
split size. Te default split size is substituted by the optimal
determined split size thanks to the conf setting in run ().

Te sample image, image width, and image height are the
three inputs for the CalculateRatio() function, which cal-
culates the ratio. Te Concate() method is used to combine
the images based on the ratio that will be sent to the GPU,
the image class detail is given in Table 2. A method on the
GPU called GPUdetect() is used to generate an edge de-
tection operation based on the width, height, and the total
number of pixels in an image. Once the photos have been
processed, they are separated once more to separate out each
individual image, which is then saved in an output fle. Te
(key, value) pair is created by using two parameters in the

map () function of the ImageMapper class to specify details
about the packaged photos and their actual data, the CPU-
GPU, and the ImageMapper Class are shown in Table 1 and
Table 2, respectively, while the variations in execution time

Table 1: Te CPU-GPU class.

Class
Public class CPU-GPU
Methods

Public static setSplitSize()
Each division size is determined using this method.

Public static GPUDetect (foat pixels, int width, int height).
Processing of GPU is determined using this method.

Public void CalculateRatio (BuferedImage bi, int width, int height).
Te ratio between GPU and CPU can be calculated using this method.

Public static void Concat (BuferedImage bi, int c).
Using this method, the images are concatenated into a single bundle.

Public static bufered image[] Split (int c, int width, int height).
Tis method divides data into equal splits.

Table 2: Te ImageMapper class.

Class
Public static class ImageMapper extends mapper< bundle header, image bundle, text intwritable>
Methods
Protected
void

Map (bundle header key, image bundle value, context), the mapper that consumes the split and processes it is determined
by this method.

Table 3: Variations in execution time (milliseconds) for CPU and
GPU for edge detection.

Image resolution CPU GPU
1024× 768 81 42
1600× 900 110 50
1920×1080 236 61
2560×1440 382 69

Table 4: Average execution time (milliseconds) for CPU and GPU
for edge detection.

Image resolution CPU GPU
1024× 768 81 42
1600× 900 110 50
1920×1080 236 61
2560×1440 382 69

CPU GPU
Platforms
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Figure 7: Average execution time (milliseconds) of CPU and GPU
using a single image.
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(milliseconds) for CPU and GPU for Edge Detection details
are given in Table 3.

4. Results and Analysis

In this section, all the results of the conducted experiments
are shown and analyzed in detail.

4.1. Comparative Analysis of CPU and GPU. Te results in
Table 4 and a bar chart diagram in Figure 7 show the

execution times for four diferent resolution images on a
CPU and GPU, respectively, in milliseconds. In the ex-
periment, it was discovered that when the image size rose,
both the CPU and GPU execution times also increased;
however, the GPU execution times increased more slowly
than the exponentially rising CPU execution times. Te
variations in execution times for the CPU and GPU are seen
in Figures 8 and 9, respectively. Table 5 demonstrates that as
image size increases, the variance in GPU execution time is
less than it is for CPU execution [27]. By demonstrating the
efect of increasing image size on calculation time, this

Figure 8: Variations in execution time of a single image on CPU.

Figure 9: Variations in execution time of a single image on GPU.
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experiment illustrates how the GPU can be used to improve
application performance by considering the overhead of
loading data from CPU memory to GPU.

4.2. Varying/Increasing Number of Images on GPU. Te ex-
periment in Figure 10 demonstrates how the integration of
images afects the performance of the program on a GPU. Te
x-axis represents the number of images integrated with each
other, while the y-axis shows the execution duration in mil-
liseconds. In Tables 6 and 7, the execution time and standard
deviation for this experiment are presented by integrating four
images of diferent resolutions (1, 2, 3, and 4 images). Based on
experiments, a single image with a resolution of 1024× 768 is
processed independently in 42 milliseconds, but four images
with the same resolution are combined in 51 milliseconds.
According to the experimental results, the variation in exe-
cution time is directly attributed to the number of exchanges
between the CPU and GPU for the transfer of each image and
the subsequent writing of the result to the CPU. So, these data
shifting and loading processes are executed for each individual
image, but when it comes to image integration, all the inte-
grated photos are handled in one cycle.

4.3. Comparative Analysis of Performance on Diferent
Platforms. Figure 11 shows the average execution time for
the suggested solution (Hadoop +GPU) versus current
approaches. For all resolutions of photos displayed in Ta-
ble 5, the suggested framework takes much less time to
execute than other current frameworks (HIPI, HIPI +GPU,
Hadoop +GPU). Te results of the proposed solution

(Hadoop +GPU) show that using an efective workload
allocation mechanism in heterogeneous systems reduces
average execution time while improving overall application
performance. Table 8 demonstrates the signifcant execution
time variance between the suggested method
(Hadoop +GPU) and the existing platforms (HIPI,
HIPI +GPU, and Hadoop +GPU). Te fndings of the

Table 5: Average execution time (milliseconds) for proposed approach (Hadoop +GPU) vs existing platforms.

Resolution of image HIPI HIPI +GPU Hadoop +GPU Proposed approach (Hadoop+GPU)
1024× 768 221 184 149 97
1600× 900 260 225 192 133
1920×1080 442 371 269 172
2560×1440 686 489 342 191
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Figure 10: Average execution time (milliseconds) of an increasing
number of images on a GPU.

Table 6: Average execution time (milliseconds) while scaling the
number of images on a GPU.

Resolution of image
No. of images

I II III IV
1024× 768 42 45 49 51
1600× 900 50 54 58 60
1920×1080 61 63 67 71
2560×1440 69 74 80 88

Table 7: Increase in execution time of an increasing number of
images on a GPU.

Resolution of image
No. of images

I II III IV
1024× 768 3 3 3 3
1600× 900 4 4 3 3
1920×1080 4 4 3 3
2560×1440 4 4 3 3

HIPI HIPI+GPU Hadoop+GPU Proposed
Approach

(Hadoop+GPU)

Platforms

1024×768
1600×900

1920×1080
2560×1440
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Figure 11: Average execution time (milliseconds) for proposed
approach (Hadoop +GPU) vs existing platforms.
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experiment show that the main factor that signifcantly
improves application performance and completely utilizes
the resources available is the suggested efcient workload
allocation policy.

5. Conclusion and Future Work

Te goal of this paper is to introduce a novel programming
framework utilizing the Hadoop MapReduce programming
model and graphics processing units (GPUs). Te suggested
technique ofers these advantages over existing approaches
for image processing applications on heterogeneous clusters.
A new method for partitioning data into optimal split sizes
ensures locality for computations by ensuring that images
within the given split cannot exceed the boundaries of the
split, to maximize resource efciency and minimize data
transfer, splits are dispersed across nodes and within nodes
according to their computational capabilities and instead of
acquiring expensive supercomputers or specialist vector
machines, a commodity computer systems cluster can
readily manage huge amounts of image data.

As a result, future work will focus on developing a split
size that can easily support varied image sizes and divide
them among nodes as well as inside each node between CPU
and GPU. Real-time image processing refers to the com-
pletion of certain activities in a set period. In certain image
processing applications, a stream of images is created that
must be processed within a certain amount of time to ensure
that an image does not miss its deadline. Te suggested
technique in heterogeneous systems will be used to process
this stream of images within the stated timeframe in the
future study.
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