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Accurate selection of embryos with the maximum implementation condition is a necessary step to increase the efectiveness of
fertility treatment in in vitro fertilization (IVF). Te deep learning algorithms presented high potential for monitoring and
visualizing embryo features such as cell numbers and their morphological development in time series manner. Due to the ability of
the computer vision and deep learning algorithms, this paper aimed to present a novel deep learning approach to distinguish
simultaneous abnormality of embryos in time-lapse systems for detecting live and non-live births in IVF. Te approach is
composed of local binary convolutional neural network (LBCNN) and long short-term memory (LSTM). Te LBCNN improved
accuracy of classifcation by employing deep and local feature sets with lower number of learnable parameters in comparison with
a standard convolutional layer. Moreover, LSTM network is employed to analyze temporal information of time-lapse embryos.
Te results indicate that the proposed approach achieves signifcant results in ROC analysis (0.98) in 5 days of monitoring
compared to state-of-the-art models. In addition, the approach showed compatible results in early diagnosis of abnormality
detection (72 hours) with 82.8% accuracy of classifcation compared to the pretrained well-known convolutional neural network
(CNN) models and baseline CNN.

1. Introduction

Computer-aided detection (CAD) is designed to reduce
experimental mistakes of physicians interpreting healthcare
data. Recently, CAD systems with the help of machine
learning approaches are utilized for diferent types of disease
treatment and detection [1]. Tese kinds of approaches
could be categorized into two types of models such as deep
[2] and shallow-based models [3].Te shallow-based models
consist of optimization algorithms (genetic algorithm,
particle swarm optimization, etc.) [4] and shallow machine
learning algorithms (support vector machine, linear re-
gression, etc.) [5]. For instance, improved machine learning-
based system based on improved adaptive particle swarm
optimization algorithm and artifcial immune recognition

system were designed for wart disease treatment [6]. Te
main advantages of these approaches are remarkable results
with less training data with fewer processing cost. Com-
monly, the deep learning approach-based frameworks for
CAD systems are utilized as pretrained well-known models
in case of deep feature learning and extractions [7].Temain
reason for utilizing transfer learning is reduction of pro-
cessing cost and enhanced efciency during training new
models. For example, the authors in [8] proposed deep and
local convolutional neural network for brain anomaly de-
tection. Furthermore, CAD systems with the help of deep
learning algorithms have grown signifcantly because of high
accuracy rate [9]. In this study, anomaly detection based on
deep learning algorithms is utilized for CAD systems.
Anomaly detection (also referred to as outlier detection)
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commonly implies the detection of rare issues, events, or
observations that deviate considerably from most data and
do not adapt to a well-defned concept of normal perfor-
mance. In the context of CAD systems, anomaly detection is
such that the process can be used to alert physicians of
abnormal physiological data that could indicate health
complications [10, 11].

Due to the efects of CAD systems on healthcare, we
presented anomaly detection with the help of deep learning
approach for in vitro fertilization (IVF) [12]. Nowadays, the
world’s population sufers from many infertility problems
that prevent normal reproduction. One of the most widely
used technologies for infertility treatment is IVF by the
collecting multiple follicles for the fertilization and in vitro
culture [13, 14]. Tis technique is a useful and non-invasive
method for reproduction since it allows to evaluate the fetus
without harm. Moreover, the time-lapse videos and photos
of fetuses are employed for fetal growth at diferent time
lapse using brief time intervals, and they can be used as an
advanced technology to record the growth of the embryos in
IVF. Tey are also widely applied in various cases, for ex-
ample, the supervision of reproduction by medical centers
during the embryonic development [15].Te embryo quality
(cleavage embryo scoring) is categorized into four main
stages. Stage one embryos have four blastomeres on day two
and eight blastomeres on day three. Teir blastomeres are of
equal size, large, round, and with clear cytoplasm and no
fragments. Although the amount and shape of blastomeres
are like stage one embryo, stage two embryos might have
10% fragments and have irregular blastomeres. In stage three
embryos, the amount of blastomeres is fewer than normal,
and the fragmentation ratio is 20% or above. Te amount of
uneven blastomeres improves in stage one and two embryos.
In stage four embryos, the structure and volume of the
blastomeres are distinct from each other, and the disinte-
gration ratio is above 50%, as presented in Table 1 [16].

Gardner’s classifcation criteria were used to score the
embryos. In Gardner’s classifcation, each embryo is scored
based on blastocoel size, internal cell mass, and tro-
phectoderm structure as presented in Table 2 [17].

For these reasons, the main objective of this study is to
present anomaly detection with novel deep learning ap-
proach based on time-lapse device video data. In addition,
the accuracy of implantation potential has been detected by
morphological analysis of human embryos in the early stages
of development (stage 1). In addition, the anomaly detection
in this scenario means that blastocyst structure grade is not
in A, B, and C grades based on Gardner’s classifcation [18].

In the past, the common strategy for selecting quality
embryos was mainly by examining the number of cells, the
degree of fragmentation, and the number of nuclei in the
incision stage, while poor quality embryos (based on
morphology) were discarded [19]. Today, with the im-
provement of laboratory culture conditions and further
development of physiological culture media, long cultures
up to the blastocyst stage are performed. In humans, blas-
tocyst formation begins about 5 days after fertilization, when
a fuid-flled cavity occurs in the morula, which is the early
embryonic stage of a 16-cell embryo. It is essential to select

high-quality embryos for IVF [20]. Scoring systems for
morphological evaluation of embryos have been developed
to increase the birth rate. However, these methods are not
sufcient to predict live birth, as there is no obvious link
between morphology and chromosomal aneuploidy [21].

Recently, various applications with deep learning and
computer vision methods have been proposed to enable the
automation of embryo assessments for IVF analysis. For
instance, in [22], a deep learning approach was presented
based on extracting hierarchical features from input data
instead of rule-based image processing programming. In
another similar study [23], Google’s Inception model was
applied for time-lapse images of blastocyst selection in
in vitro fertilization. Te study of [14] proposed the mul-
titask deep learning with dynamic programming approach
in the classifcation of the development of embryos based on
time-lapse images. Since stereoscopic cells have potential to
overlap at diferent sizes in the time-lapse imaging, even for
an experienced embryologist, it is difcult to count the
number of cells in a single image. Terefore, some studies
focused on early periods of embryo development. For in-
stance, a set of zygotes was analyzed and signifcant results in
blastocyst stage classifcation were obtained on the second
day after fertilization [24]. In case of recognition of ploidy
status, two-stream infated 3D ConvNet [25] proposed for
classifying time-lapse videos. Another important feld of
study in deep learning-based embryo monitoring systems
was the automatic grading of blastocysts. In the study of [26],
a convolutional neural network was proposed to detect inner
cell mass and trophectoderm grades from each image. Te
recurrent neural network was utilized on the top of the
network to classify blastocyst temporal information from
video. Another time series-based embryo classifcation study
[27] suggested the two-classifer vote-based method using
a convolutional neural network (CNN). In this study, the
number of cells of embryo was detected and classifed.
Another similar study [19] presented non-invasive classif-
cation of embryos with the help of attention branch network
(ABN). Another study examined the automatic framework,
namely, Cell-Net [12]. Tis CNN-based approach includes
residual incremental atrous pyramid for counting and
centroid localization of embryonic cells. Another study,
a computer-automated based time-lapse with image
analysis approach presented in [28]. In the case of a smaller
number of training data and improving the accuracy of
classifcation, [29] presented a novel approach, namely
HEMIGEN. Tis approach employed a Generative
Adversarial Network (GAN) for the production of one-,
two-, and four-cell time images and classifcation with
a deep neural network (DNN).

According to these studies, it is clear that most of the
research in the feld of embryo monitoring systems has been
faced with two main challenges: detection abnormalities and
qualitative classifcation. Te frst challenge is to extract
robust and advanced features for identifying one-, two-, and
four-cell embryonic stages for training deep learning
models. Another challenge is the time series training model
with recurrent neural networks to evaluate the cellular phase
divided at specifc times of embryo development. Terefore,
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we aimed to conduct a novel deep learning approach for
time series abnormality embryo detection. Tis approach
included local and deep extracted features from each input
frames of time-lapse embryoscope device. Due to fusion of
deep and local features in presented deep learning recurrent
neural network approach, the accuracy of classifcation
improved along with detection of abnormality in early
stages. To sum up, the main contributions of this paper are as
follows:

(1) Tis study proposed a novel deep learning frame-
work consisting of local and deep features in time
series manner for abnormality detection of embryo
time lapse, namely, LBCN-LSTM.

(2) Te proposed LBCN-LSTM demonstrated signif-
cant results in the accuracy rate and receiver oper-
ating characteristic (ROC) curve analysis compared
to experimented baseline CNN-LSTM and pre-
trained models.

(3) Tis proposed approach achieved compatible results
in early diagnosis of anomalies in embryo moni-
toring. Furthermore, the present technique is unique
and has much more advantages compared to the
traditional methods in terms of training cost.

(4) We presented a public access embryo monitoring
database.

Te rest of this paper is categorized as follows. Section 2
presents methodology. Section 3 presents experimental re-
sults, and fnally the last section gives the conclusion.

2. Methodology

Figure 1 illustrates the summary of the approach which is the
automated system for detecting abnormalities in embryo
monitoring. Te time-lapse image sequence in time series
manner is fed into the proposed deep learning framework.
For each input image, deep and local features are considered

as extracted contribution of the LBCNN [30]. Furthermore,
last layer of this CNN approach contains 2D global average
pooling layer connected to the fully connected layer as input
of LSTM network to leverage temporal information. Finally,
the last layer of the LSTM network contains SoftMax
function with one node hidden layer to detect anomaly in
embryo time-lapse monitoring with Y1, Y2, . . . , Yn outputs.
In the following paragraphs, the input images, the LBCNN,
and the LSTM are described in more detail.

2.1. LBCNN. In this study, we applied the local binary
convolutional neural network (LBCNN) in the deep learning
approach to decrease the computational complexity of
CNNs with better classifcation accuracy. Te LBCNN is
inspired by open-source codes available in the following
link: https://github.com/whoisraibolt/LBCNN. Te LBC
layer consists of fxed sparse binary flters, an activation
function, and a set of trainable weights which reduces with
optimizing algorithm. Local binary convolutional neural
network (LBCNN) consists of LBC layers. Each local binary
pattern (LBP) [31] extracted 8 resulting sums of all the bit
maps which achieves the same results of eight 3× 3 con-
volutional flters followed by simple binarization. Te pre-
defned weight vector v includes [20, 21, 22, 23, 24, 25, 26, 28].
In this case, LBP can be reformulated as follows:

y � 
8

i�1
σ bi × X( .vi. (1)

In this formula, x ∈ Rd is defned as vectorization of the
input images, bi represents sparse convolutional flters, σ is
the non-linear binarization (Heaviside step function) op-
erator, and y is the result of LBP image. In this case, LBCNN
includes m fxed convolutional flters and input image is
fltered by LBC, which produces m variance feature maps
(bit maps). Te Heaviside step function is employed for
backpropagation in the LBC layer with sigmoid or ReLU

Table 1: Blastocyst stage and descriptions [16].

Blastocyst stage Stage Description
Early blastocyst 1 Blastocoel that is less than half of the volume of the embryo
Blastocyst 2 Blastocoel that is half of or greater than half of the volume of the embryo
Full blastocyst 3 Blastocoel completely flling the embryo

Expanded blastocyst 4 Blastocoel volume larger than that of the early embryo, with a thinning zona
pellucida

Hatching blastocyst 5 Trophectoderm starting to herniate though the zona pellucida
Hatched blastocyst 6 Blastocyst has completely escaped from the zona pellucida

Table 2: Blastocyst grading system and descriptions [17].

Blastocyst structure Grade Description

Inner cell mass
A Tightly packed, many cells
B Loosely grouped, several cells
C Very few cells

Trophectoderm
A Many cells forming a cohesive epithelium
B Few cells forming a loose epithelium
C Very few large cells
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diferentiable activation function. Each LBC layer feeds
feature map as input (xl) to the next layer, and generalized
multichannel input is presented as follows:

x
t
l+1 � 

m

i�1
σ 

s

b
s
i × x

s
l

⎛⎝ ⎞⎠.v
t
l,i, (2)

where t and s are output and input channels, respectively.
Te last step in calculating the total weight of the activations
can be implemented through a convolution operation with
(1 × 1) size flters. Consequently, each LBC layer contains
two blocks of convolutional layers with fxed and non-
learnable weights continually. Te architecture of LBCN
layer is presented in Figure 2.

As presented in Figure 3, the proposed model includes
residual LBCN blocks with diferent hidden layer sizes. Te
residual LBCN block consists of two LBCNs with batch
normalization and three Conv2D layers. Furthermore, the
frst LBCN layer is fused to last Conv2D layer for each block.

Moreover, we utilized diferent hidden unit sizes for the
LBCN blocks. Te efcient and high accuracy model is
selected with four layers of LBCN with hidden unit size [512,
256, 128, 64] architecture, named as LBCNN-4L, according
to the experimental results. Te architecture of the
LBCNN-4L is presented in Table 3.

2.2. LSTM Networks. Te recurrent neural network (RNN)
[32] model has been widely employed for sequential data
analysis in machine learning. Nevertheless, RNN has limi-
tations in terms of learning long-term dependencies due to
the vanishing of gradients during several backpropagation
processes. Te LSTM [33] network has been developed to
reduce the weaknesses of RNN models for long periods of
time. Te LSTM is an RNN-enhanced version that can
process long-term consecutive data with a low gradient
vanishing rate compared to other algorithms. Te LSTM
algorithm with long-term memory can predict multivariate
time series data with high accuracy. Te LSTM block
structure can model time series predictions such as long-
term dependencies. Terefore, this paper employed LSTM
networks in case of predicting the data in time series.

3. Experimental Results

Table 4 indicates the model confguration for the proposed
approach. Moreover, experimental analysis was conducted
based on default input image size of well-known pretrained
networks such as VGG16 [34], Resnet-50 [35], Inception V3
[36], MobileNet V2 [37], and Xception [38] with training
confguration. In addition, for fair comparison of these
models, we set up optimization algorithm (Adam), activa-
tion function (ReLU), momentum (0.9), weight decay
(1e− 6), mini-batch size (16), and epochs (1000). Further-
more, we utilized Adam optimization algorithm due to frst-
order gradient of stochastic objective functions because of
adaptive values of lower-order moments. In this case, Adam
has advantage for problems that are in conditions of large
parameters [39]. Furthermore, the input window size of
LBCNN and baseline CNN is set up (1024, 1024). In case of
learning rate due to fne-tuning of the pretrained models, the
rate is lower than that of LBCNN and baseline CNN, re-
spectively, with 0.0001 and 0.01.

3.1. EmbryoDatabase. Te analysis data were obtained from
Vitrolife Embryoscope device in Istanbul Aydin University.
Tis database contains eight non-healthy embryos and
twelve healthy embryos with 102 hours of monitoring. One
example of healthy and non-healthy embryo is presented in
Figure 4. In this fgure, healthy and non-healthy videos in
specifc times such as 2, 20, 50, and 90 hours are presented.
Tese embryo data were labeled by Dr. Esra Sen. Te
experimented datasets used to support the fndings of this
study are available from the corresponding author upon
request.

3.2. Architecture Analysis Details. To test the efect of the
input image window size on the classifcation accuracy for
the LBCNN model, we utilized diferent window sizes in-
cluding (128×128), (256× 256), (512× 512), and
(1024×1024) and compared the model results. As presented
in Figure 5, the test images of each video of the blastocyst are
extracted and the model is trained with SoftMax classif-
cation layer with a single node for the anomaly detection.

Te blastocyst image dataset is split into three sets: train,
validation, and test sets, with 70%, 20%, and 10% ratio. Te
results showed that the input size of image with 1024× 1024
in the LBCNN achieved a highest accuracy among the other
input image sizes for baseline CNN such as (512× 512) and
(256× 256). In addition, the result of Table 5 shows that the
LBP features with convolutional layers increased the accu-
racy of classifcation compared to baseline convolutional
layers. Te architecture of LBCNN and baseline CNN is
based on four layers with 3× 3 kernel size convolutional
layer with nodes 512, 256, 128, and 64.

After the testing the input size of the image, we analyzed
the efects of the deep network on the accuracy of the ab-
normality detection. In this experiment, we designed three
diferent models with four diferent node sizes for each
LBCN block. Te three experimented LBCNN models are
named as LBCNN-4L, LBCNN-5L, and LBCNN-6L with

LBCNN

LBCNN

LBCNN

LSTM

LSTM

LSTM

Yt

Y2

Y1

Visual
FeaturesInput Sequence

Learning Output

Figure 1: LBCNN-LSTM model for time-lapse embryo anomaly
detection.
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Figure 2: LBCN layer architecture.
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Figure 3: Te architecture of LBCN block.

Table 3: Details of the architecture of LBCNN-4L network.

Layer (type) Output shape Param # Connected to
Input (input layer) (1024, 1024, 3) 0
Lbc_1 (LBC) (1024, 1024, 3) 13824 Input
conv2d_2 (Conv2D) (1024, 1024, 3) 8192 lbc_1
lbc_2 (LBC) (512, 512, 512) 294912 conv2d_2
conv2d_3 (Conv2D) (512, 512, 512) 262144 lbc_2
conv2d_4 (Conv2D) (512, 512, 512) 262656 conv2d_3
lbc_3 (LBC) (512, 512, 512) 4718592 conv2d_4
conv2d_5 (Conv2D) (512, 512, 512) 262144 lbc_3
add_1 (Add) (512, 512, 512) 0 conv2d_3 and conv2d_5
lbc_4 (LBC) (256, 256, 512) 4718592 add_1
conv2d_6 (Conv2D) (256, 256, 256) 131072 lbc_4
conv2d_7 (Conv2D) (256, 256, 256) 65792 conv2d_6
lbc_5 (LBC) (256, 256, 512) 2359296 conv2d_7
conv2d_8 (Conv2D) (256, 256, 256) 131072 lbc_5
add_2 (Add) (256, 256, 256) 0 conv2d_6 and conv2d_8
lbc_6 (LBC) (128, 128, 512) 2359296 add_2
conv2d_9 (Conv2D) (128, 128, 128) 65536 lbc_6
conv2d_10 (Conv2D) (128, 128, 128) 16512 conv2d_9
lbc_7 (LBC) (128, 128, 512) 1179648 conv2d_10
conv2d_11 (Conv2D) (128, 128, 128) 65536 lbc_7
add_3 (Add) (128, 128, 128) 0 conv2d_9 and conv2d_11
lbc_8 (LBC) (64, 64, 512) 1179648 add_3
conv2d_12 (Conv2D) (64, 64, 64) 32768 lbc_8
conv2d_13 (Conv2D) (64, 64, 64) 4160 conv2d_12
lbc_9 (LBC) (64, 64, 512) 589824 conv2d_13
conv2d_14 (Conv2D) (64, 64, 64) 32768 lbc_9
add_4 (Add) (64, 64, 64) 0 conv2d_12 and conv2d_14
Average pool (GlobalAveragePooling2) (64) 0 add_4
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Conv layer (3 × 3 window size). Te input block for all
experimental models is (1024 × 1024) with the input block
containing two layers of LBC with batch normalization and
Conv 2D continually. Besides, we utilized hidden unit sizes
[512, 256, 128, 64], [512, 256, 128, 64, 32], and [512, 256, 128,
64, 32, 16] continually for LBCN blocks of LBCNN-4L,
LBCNN-5L, and LBCNN-6L models, respectively.

Contrary to the highest accuracy in the LBCNN-4L and
LBCNN-5L, the lowest accuracy was obtained in the
LBCNN-6L. Te main reason for the inefciency of the
LBCNN-6L model is the lack of training data. According to
the experimental results of the studied articles [1–10], it is
clear that a large number of training data have great impact
on the performance of large structure of convolutional
neural networks. Besides, the results showed that similar
results were obtained from the LBCNN-4L and LBCNN-5L.
To reduce the processing cost, we selected the LBCNN-4L.
Terefore, throughout the work, the architecture of the
LBCNN is selected as 4 layers with (1024 × 1024). Te ar-
chitecture of the LBCNN-4L is presented in Figure 4, and the
details are presented in Table 6.

3.3. Embryo Anomaly Detection. After experimental results
by the blastocyst anomaly detection, we examined time
series-based embryo anomaly detection with the LSTM

neural network. To study the efects of LBP features in
proposed approach, we compared LBCNN+LSTM with
baseline CNN+LSTM considering the training cost and
accuracy. For the appropriate comparison between two
models, we applied the same input image windows size,
layer, and size of hidden nodes for the baseline CNN.
Normal convolutional layer with same size of nodes is
employed rather than the baseline model of the LBCN. Te
architecture of baseline CNN is presented in Table 7. Fur-
thermore, we applied the same confguration of LSTM for
both systems for the appropriate comparison. Tis confg-
uration is obtained with the help of the grid search meth-
odology by the highest accuracy. In this paper, the LSTM
sequential model is designed to analyze the time series
anomaly detection of the developing time-lapse embryo
monitoring. A linear stack of layers is utilized in two layers
with return sequences. Te frst layer of the LSTM layer
contains 600 memory units and it returns sequences. Te
second layer includes 600 memory units. After each LSTM
layer, the dropout layer is applied. Finally, the last layer has
a fully connected layer with a SoftMax activation function
with one node for detecting anomaly.

ROC curve analysis is used to show the connection
between two possible approaches between sensitivity and
specifcity. Te ROC curve results showed that LBCNN has
better area under the ROC curve (AUC) than baseline CNN.

Table 4: Values of the parameters in the proposed approach used in this study.

CNN model Image
size Optimization Activation

function Momentum Decay Mini-batch Learning
rate Epoch

Pretrained
models Default size Adam ReLU 0.9 1e− 6 16 0.0001 1000

LBCNN (1024,
1024) Adam ReLU 0.9 1e− 6 16 0.01 1000

Baseline CNN (1024,
1024) Adam ReLU 0.9 1e− 6 16 0.01 1000

2.0 h 20.0 h 50.0 h 90.0 h

(a)

2.0 h 20.0 h 50.0 h 90.0 h

(b)

Figure 4: Monitoring the embryo time lapse with Vitrolife system. (a) Non-healthy embryo. (b) Healthy embryo.

(a) (b)

Figure 5: Blastocyst images extracted from time-lapse device. (a) Healthy embryo. (b) Non-healthy embryo.

Table 5: Diferent windows sizes for input image for LBCNN.

Input image (128×128) (256× 256) (512× 512) (1024×1024)
LBCNN 0.78 0.82 0.96 0.98
Baseline
CNN 0.62 0.79 0.93 0.95

Table 6: Diferent architectures for LBCNN model.

Model LBCNN-4L LBCNN-5L LBCNN-6L
Accuracy of classifcation 0.98 0.98 0.96
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As shown in Figure 6, the LBCNN and CNN succeeded at
0.985 and 0.989, respectively.

To examine the training cost, we conducted the test
between LBCNN and CNN in Figure 7. Both systems are
analyzed in specifc number of epochs and compared with
accuracy of classifcation measurement. LBCNN and base-
line CNN are trained with diferent values of learning
epochs, and their accuracies of training and testing for each
size of epochs are presented in Table 3. In this case, we
selected diferent number of epochs such as 10, 25, 50, 75,
and 100 for training of LBCNN and baseline CNN. Te
lowest accuracy rate in baseline CNN is achieved in 10
epochs with 32%; in contrast, the LBCNN model attained
37% of accuracy rates. Furthermore, both experimented
models achieved same accuracy rates with 55%. In addition,
in 100 epochs, LBCNN compared with CNN model im-
proved accuracy rates with 8%. In conclusion, these results
show that the proposed method ensured better accuracy in
a smaller number of training epochs because of few number
of trainable parameters compared with the baseline CNN.

Other reason for this advantage can be explained by
extracting robust and enhanced features from entire video
for classifcation. For better visualization of extracted fea-
tures, we employed t-distributed stochastic neighbor em-
bedding (t-SNE). Figure 8 shows that LBCNN extracted
more enhanced features and the anomaly embryo t-SNE
features were clearly separated from normal ones compared
to baseline CNN. In this fgure, the healthy and non-healthy
features are presented in blue and red points (Figure 8).

3.4. Comparison of Time Series-Based Extracted Deep and
Local Features. In the second step, we examine diferent
well-known pretrained models as a deep feature extractor
with the LSTM for the video classifcation in Table 8. In
addition, these results are compared with the LBCNN as
input for time series classifcation model (LSTM). Te
embryo video dataset is split into three sets: train, validation,
and test sets, with the ratio of 70%, 20%, and 10%.Te results
indicated that the best experimental result is obtained by
Resnet-50 + LSTM with the values 0.97, 0.98, 0.93, and 0.98.
In addition, the second highest accuracy is obtained by
LBCNN+LSTM with the values 0.96, 0.95, 0.96, and 0.96,
respectively, for accuracy, precision, recall, and F1-score,
respectively. Furthermore, the lowest accuracy was achieved
by the LeNet 5 + LSTM with 0.76. Based on these experi-
mental results, it can be concluded that the LBCNN can
extract robust features and achieve signifcant accuracy with
few number of learnable parameters compared to VGG16,
Inception V3, and Xception models.

3.5. Early Diagnosis of Embryo Anomaly. To test the early
diagnosis of embryo anomaly, we conducted a test by the
diferent time sections, and we selected fve diferent time-
lapse videos, namely, 12 h, 24 h, 48 h, 60 h, and 72 h, as
presented in Figure 9 by the standard morphology of em-
bryo. Tis fgure separately presented each class of the data
(train and test). For instance, the class of 12 h contains the
video frames from 0.0 h up to 12.0 h. Similarly, the 24 h class
contains the video frames from 0.0 h up to 24.00 h.

Table 7: Baseline CNN architecture details.

Layer (type) Output shape Connected to
Input (input layer) (1024, 1024, 3)
conv2d_1 (Conv2D) (1024, 1024, 3) Input
conv2d_2 (Conv2D) (1024, 1024, 3) conv2d_1
conv2d_3 (Conv2D) (512, 512, 512) conv2d_2
conv2d_4 (Conv2D) (512, 512, 512) conv2d_3
conv2d_5 (Conv2D) (512, 512, 512) conv2d_4
conv2d_6 (Conv2D) (512, 512, 512) conv2d_5
conv2d_7 (Conv2D) (512, 512, 512) conv2d_6
add_1 (Add) (512, 512, 512) conv2d_4 and conv2d_7
conv2d_8 (Conv2D) (256, 256, 512) add_1
conv2d_9 (Conv2D) (256, 256, 256) conv2d_8
conv2d_10 (Conv2D) (256, 256, 256) conv2d_9
conv2d_11 (Conv2D) (256, 256, 512) conv2d_10
conv2d_12 (Conv2D) (256, 256, 256) conv2d_11
add_2 (Add) (256, 256, 256) conv2d_8 and conv2d_12
conv2d_13 (Conv2D) (128, 128, 512) add_2
conv2d_14 (Conv2D) (128, 128, 128) conv2d_13
conv2d_15 (Conv2D) (128, 128, 128) conv2d_14
conv2d_16 (Conv2D) (128, 128, 512) conv2d_15
conv2d_17 (Conv2D) (128, 128, 128) conv2d_16
add_3 (Add) (128, 128, 128) conv2d_13 and conv2d_17
conv2d_18 (Conv2D) (64, 64, 512) add_3
conv2d_19 (Conv2D) (64, 64, 64) conv2d_18
conv2d_20 (Conv2D) (64, 64, 64) conv2d_19
conv2d_21 (Conv2D) (64, 64, 512) conv2d_20
conv2d_22 (Conv2D) (64, 64, 64) conv2d_21
add_4 (Add) (64, 64, 64) conv2d_18 and conv2d_22
Average pool (GlobalAveragePooling2) (64) add_4

Scientifc Programming 7



As shown in Table 9, the LBCNN+LSTM can achieve
the highest accuracy in the 72 h class compared to well-
known pretrained models. In this class, Resnet-50, VGG16,
and Inception V3 models with LSTM achieved 80.3, 78.9,
and 79.7% accuracy of classifcation, respectively. Te
fnding also indicated that the proposed method achieved
successful results compared to the well-known pretrained
models like VGG16, LeNet 5, Resnet-50, Inception V3,
MobileNet V2, and Xception. Te main reasons of im-
provement of embryo early detection in the proposed system
can be explained by the employing deep and local combined
features for the classifcation.

3.6.Discussion. We also evaluated the diferent methods and
compared them with this study by the quality analysis and
the abnormality detection of embryo in video or image

analysis (Table 10). It can be concluded that the quality
analysis with single blastocyst image by Khosravi et al. [23]
had better accuracy compared to CNN-LSTM with video
analysis technique by Kragh et al. [26]. Moreover, the
LBCNN-LSTM approach achieved better results in abnor-
mality detection with AUC� 0.98 compared to study of Tran
et al. [22], Lee et al. [25], and Sawada et al. [19] with the
results of AUC curve analysis at 0.93, 0.74, and 0.93, re-
spectively. In addition, among the proposed approaches by
the abnormality detection, the results of the LSTM with
attention map [19] have still signifcant result. In this case,
we can conclude that the blastocyst morphology analysis has
more efects than time series analysis on the abnormality
detection. Furthermore, Payá et al. [40] proposed a super-
vised contrastive learning framework for grading and
anomaly detection of embryos which achieved 0.94 AUC in
abnormality detection. Nevertheless, this comparison is
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Figure 9: Time-lapse embryo development.

Table 8: Embryo video anomaly detection results based on diferent pretrained model’s architectures.

Model Accuracy Precision Recall F1-score
VGG16 + LSTM 0.91 0.89 0.84 0.86
LeNet 5 + LSTM 0.76 0.75 0.75 0.76
Resnet-50 + LSTM 0.97 0.98 0.93 0.98
Inception V3+ LSTM 0.96 0.95 0.94 0.96
MobileNet V2 + LSTM 0.95 0.93 0.93 0.93
Xception + LSTM 0.96 0.97 0.92 0.97
Baseline CNN+LSTM 0.95 0.94 0.94 0.94
LBCNN+LSTM 0.97 0.98 0.93 0.98

Table 9: Diagnosis of embryo anomaly in diferent periods based on accuracy.

Model
Time

24 h 36 h 48 h 60 h 72 h
VGG16 + LSTM 30.4 42.8 69.2 70.1 78.9
LeNet 5 + LSTM 22.8 30.8 52.1 55.6 55.6
Resnet-50 + LSTM 31.9 48.7 69.3 67.1 80.3
Inception V3+ LSTM 30.9 41.9 67.2 66.9 79.7
MobileNet V2 + LSTM 29.3 35.7 59.1 65.1 65
Xception + LSTM 30.1 47.6 61.3 66.9 73.9
Baseline CNN+LSTM 22.8 36.8 60.2 62.3 70.1
LBCNN+LSTM 30.  7.9 69.8 75.2 82.8
Te proposed approach (LBCNN+LSTM) experimental results declared as bold values.
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superfcial and unreliable because the researchers used
diferent databases in terms of size and number of items.

 . Conclusion

Tis study presented the approach by fully automated deep
learning to analyze the blastocyst morphology in case of
anomaly detection from time-lapse imaging of human
embryos. In this paper, we presented a novel deep learning
approach, namely, LBCN-LSTM. Tis approach achieved
signifcant results in case of accuracy of classifcation and
ROC curve analysis compered to existing well-known
pretrained models and state-of-the-art algorithms. Te
main advantage of this model is utilizing deep and local
features in end-to-end manner with employing fewer
number of trainable parameters compared to baseline CNN.
In addition, this model can detect embryo anomaly based on
Gardner’s classifcation in early stage (stage 1) based on
blastocyst stage table with higher accuracy rate compared to
existing models. Te results showed that the proposed
LBCNN-LSTMmodel can be an efcient model for the real-
life application regarding the accuracy of the diagnosis,
process cost, and early detection of the abnormality of the
human embryo in time-lapse incubator.

Data Availability

Te human embryos dataset used to support the fndings of
this study have been deposited in the Sajad EINY repository
(sajadeiny@aydin.edu.tr). Tis dataset is available under
certain terms and conditions upon request.
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