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Dry beans are the most widely grown edible legume crop worldwide, with high genetic diversity. Crop production is strongly
infuenced by seed quality. So, seed classifcation is important for both marketing and production because it helps build sus-
tainable farming systems. Te major contribution of this research is to develop a multiclass classifcation model using machine
learning (ML) algorithms to classify the seven varieties of dry beans. Te balanced dataset was created using the random
undersampling method to avoid classifcation bias of ML algorithms towards the majority group caused by the unbalanced
multiclass dataset. Te dataset from the UCI ML repository is utilised for developing the multiclass classifcation model, and the
dataset includes the features of seven distinct varieties of dried beans. To address the skewness of the dataset, a Box-Cox
transformation (BCT) was performed on the dataset’s attributes. Te 22ML classifcation algorithms have been applied to the
balanced and preprocessed dataset to identify the best ML algorithm.TeML algorithm results have been validated with a 10-fold
cross-validation approach, and during validation, the CatBoost ML algorithm achieved the highest overall mean accuracy of 93.8
percent, with a range of 92.05 percent to 95.35 percent.

1. Introduction

People eat dry beans, which are a type of legume that is self-
pollinated. Beans are a signifcant crop on a global scale and
are popular with both farmers and consumers. Dry beans
account for nearly 50 percent of the grain legumes consumed
directly by humans in the majority of developing countries
[1]. Beans are a staple food in Sub-Saharan Africa, where
they are consumed by more than 200 million people [2]. A
system of quality control makes sure that approved seed
meets national and global quality benchmarks. For the
majority of food products, visual characteristics are the
primary criterion used by consumers when making pur-
chasing decisions [3]. Like other legume species, common
beans show the most variation in terms of growth patterns,

physical features (size, shape, and shading), maturity, and
ability to grow and adapt [4, 5]. Sorting and classifying bean
seeds manually is a time-consuming process. Additionally,
this method is inefcient and tedious, particularly when
working with large production volumes. Human inspectors
are usually in charge of checking raw materials, and it is
difcult to streamline the inspectors’ fndings. Tese con-
siderations reafrm the importance of objective measure-
ment systems. As a result, automatic grading and
classifcation methods are required.

Recent technological changes have helped researchers in
this feld a lot. Computer vision systems (CVSs) are being
used for quality control and have recently begun to be used
as an objective measurement and evaluation system [6–9].
CVS technology, which is primarily camera cum computer
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based, has been considered for sensory characteristics of
agricultural products. Tis system consists of a light source,
an image acquisition device, and computer peripherals and
software. Te digital repository systems provide this in-
formation widely with various attributes.

Equal numbers of input samples represent each output
class (or target class), which is known as a balanced dataset.
Imbalanced training data has a major negative impact on
real-time performance [10]. Te majority of the reported
studies used a target class with an uneven distribution of
observations, i.e., an imbalanced dataset.

Te main contribution of this research is to develop the
unbiased ML based multiclass classifcation model to
identify the dry bean variety with the best accuracy using the
balanced dry bean dataset available at the UCI ML digital
repository [11]. Using the preprocessed balanced dataset, the
dry bean types such as “Dermason,” “Sira,” “Seker,” “CAli,”
“Bombay,” “Horoz,” and “Barbunya” have been identifed
without losing any features available in the dataset. Te
22ML algorithms have been evaluated with 10-fold cross-
validation to identify the best ML multiclass dry bean
classifcation model. To make the model more accurate, the
BCT was used to reduce the skewness of the dataset’s at-
tributes, making them almost identical to a normal
distribution.

2. Related Work

Kilic et al. [12] used computer vision to develop the clas-
sifcation system for bean varieties. Te system consisted of
hardware and software. Te hardware was developed to
capture a standard image from the samples. Te software
part discusses segmentation, morphological operation, and
colour quantifcation of the samples. Te 69 samples have
been used in their artifcial neural network (ANN) model.
Te system’s overall performance in classifying beans was
90.56 percent.

Using an infrared hyperspectral imagery method that
works in the wavelength range of 390–1050 nm, Sun et al.
[13] examined a quick and nondestructive method for
categorising black bean variants. Te primary component of
the image was used to extract 16 textural and 6 morpho-
logical features by using ray level co-occurrence matrix
analysis. Hasan et al. [14] examined various categories of dry
beans and used a deep neural network-based method to
categorise them. Te outcomes indicate that their approach
was 93.44 percent accurate and had an F-1 score of 94.57
percent when applied to a dataset of seven varieties of
dry beans.

Giza3, Giza461, Misr1, Nobarya1, and Sakha1 are the fve
varieties of Egyptian faba-bean seeds studied by Abdul-
wahed et al. [15]. Tis method uses morphological features
and an ANN to grade and classify the quality of Egyptian
faba-bean seeds. Based on 15 physical traits of the seeds,
artifcial neural networks separated faba beans into
diferent types.

It was presented by Araújo et al. [16] to develop
a computer-based visual inspection system for beans that
used correlation-based multishape granulometry in order to

locate each grain in an image as well as its size and ec-
centricity. Using this method, their system correctly located
29,993 out of 30,000 grains, even when there were a lot of
“glued” grains in the image.

De Oliveira et al. [17] used ANN as the transformation
model and the Bayes as the classifer to identify the cofee
beans types such as whitish, cane green, green, and bluish-
green. Te neural network models achieved a generalisation
error of 1.15 percent, and the Bayesian classifer identifed all
samples.

Gope and Fukai [18] discussed the assessment of the
Raspberry Pi 3 system’s capacity in low-income countries for
classifying peaberries and normal beans. Tey discovered
that due to hardware constraints in the case of large-sized
images, the Raspberry Pi 3 could not complete computation
with linear support vector machines (SVMs) and k-nearest
neighbors (kNNs).

Arboleda et al. [19] created the classifcation model for
identifying cofee bean species. From 195 training images
and 60 testing images, signifcant cofee bean morphology
attributes such as bean area, perimeter, equivalent diameter,
and percentage of roundness were extracted. Te cofee
beans were automatically classifed using ANN and kNN.
ANN obtained classifcation scores of 96.66 percent.

Koklu and Ozkan [11] used CVS to develop a multiclass
classifcation of dry beans. Te CVS-derived bean images
were subjected to segmentation and feature extraction
stages, yielding a total of 16 features, 12 dimensions, and 4
shape forms from the grains. With 10-fold cross validation,
multilayer perceptron (MLP), SVM, kNN, and decision tree
(DT) classifcation models were developed, achieving overall
classifcation rates of 91.73 percent, 93.13 percent, 87.92
percent, and 92.52 percent for MLP, SVM, kNN, and DT,
respectively. Table 1 shows the methodology and perfor-
mance of various classifcation approaches for bean variety
classifcation.

In this article, the proposed multiclass classifcation
model uses the balanced dataset with 16 features and 7
varieties of dry beans. To avoid classifcation biassing of
ML algorithms towards the majority group due to the
unbalanced multiclass dataset, each dry bean type has 522
instances (522 ∗ 7) with 16 features in the processed
dataset.

3. Exploratory Data Analysis and Methodology

Te proposed multi-class classifcation model is depicted in
Figure 1. Te model’s initial stage is data preprocessing. Te
second stage of the model is the Box-Cox transformation,
and the fnal stage is ML model development.

3.1. Data. Te data science process is a methodical way to
address a data problem. In most scenarios, a data science
project will have to go through fve critical stages: problem
defnition, data processing, modelling, evaluation, and
implementation. Te dry bean dataset for this research was
obtained from the UCI ML repository, which is accessible at
[11]. It is also available as a supplementary fle with this
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article. Te dataset contains information about the images
taken with a high-resolution camera of 13,611 grains of
seven diferent registered dry beans. From the grains, a total
of 16 features were extracted. Tis study examined seven
distinct varieties of dried beans, with market conditions
dictating features such as aspect, shape, category, and
structure. Te dataset is available in.csv format for the dry
bean varieties “Dermason,” “Sira,” “Seker,” “CAli,” “Bom-
bay,” “Horoz,” and “Barbunya” with a total of 13611 in-
stances. Table 2 shows quantile and descriptive statistics for
16 features of the dry bean dataset.

3.2. Data Preprocessing. Preprocessing strategies improve
the performance of classifers [20]. Te information ex-
traction (IE) method of extracting structured content such as
entities, interactions, facts, and terms, as well as other kinds
of information that aid the data analysis pipeline in prepping
the data for the study [21]. Te distribution in the dry bean
variants of dry bean dataset is shown in Figure 2. Figure 2(a)
shows the percentage of distribution of seven dry bean
varieties, and Figure 2(b) shows the individual dry bean
variety count in the raw dataset. It is observed that the dry
bean type “DERMASON” has appeared at a maximum of
26.1 percent and the dry bean type “BOMBAY” at a mini-
mum of 3.84 percent. Te most frequently encountered
problem in data quality is the absence of feature values in
some entries. Te missing values for each instance have been
checked. Te total data set instances become 13543 from
13611 instances after dropping the duplicate instances.
Classifcation is a process that can be applied to structured or
unstructured data.Te class wise count of dry bean dataset is
3546, 2636, 2027, 1860, 1630, 1322 and 522 for DERMA-
SON, SIRA, SEKER, HOROZ, CALI, BARBUNYA, and
BOMBAY, respectively, after dropping the duplicate in-
stances. Except for the target “Class,” all feature data types
have been converted to foat.

3.2.1. Creation of a Balanced Dataset. Because of the un-
balanced multiclass dataset, learning algorithms will be
infuenced towards the majority population. In contrast, the
minority class is typically more signifcant from the per-
spective of data mining, as it may contain valuable in-
formation amidst its rarity. When encountered with such
disparities, the researchers should design an efective model
capable of handling the bias. Tis is referred to as learning
from unbalanced data [22]. In terms of balancing distri-
butions, there are methods for creating new objects for the
minority group (over sampling) and methods that eliminate
instances from the majority group (under sampling) [23].
Overftting may result from the creation of new instances for
the minority group. As a result, the random undersampling
method used in this article will make the majority group of
instances in the dry beans dataset matchable with the mi-
nority dry bean group. All of the dry bean types of instances
were brought to 522 instances uniformly using the random
undersampling method.Tis can be observed in Figure 3. To
develop the model, a balanced dataset with 3654 instances
has been considered. Each bean variety has 522 instances.

Te steps followed in the creation of a balanced dataset
are as follows:

(i) Step 1: Te majority and minority classes in the
dataset have been identifed. Te majority class
index in the preprocessed dataset is “DERMASON,”
and the minority class index is “BOMBAY,” with
3546 and 522 instances, respectively.

(ii) Step 2: Te number of instances of “BOMBAY” is
less by comparing all other classes. It is decided that
the maximum number of instances is 522 for each
variety of bean.

(iii) Step 3: Te random samples of other bean varieties
have been chosen.

(iv) Step 4: All the samples have been concatenated, and
the balanced dataset has been created.

Dataset
Checking

Missing Values

Creation of
Balanced
Dataset

Box Cox
transformation

Dataset Split
(80:20)

Training Set

Test Set

Learning
Model

Prediction
Model &

Validation

Machine Learning Classifier

Data Pre-processing

Figure 1: Proposed classifcation model.
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3.3. Box-Cox Transformation. When handling with a skewed
outcome, investigators use log transformation to normalise the
data before applying standard statistical tests, such as the t-test,
linear regression, etc. Nevertheless, log-transformed datawill not

always be normal. In such instances, BCTcan be implemented to
normalise skewed data [24]. Initially, the dry bean dataset
features were applied with log transformation. It fails with
a reduction in negative skewness. As shown in Figures 4(a)–4(p),

19.4%
26.1%

3.84%

9.71%

12%
14.2%

14.9%

DERMASON
SIRA
SEKER
HOROZ

CALI
BARBUNYA
BOMBAY

Types of Dry Beans

(a)

2027

1322

522

1630
1928

2636

3546

SEKER BARBUNYA BOMBAY CALI
Class

HOROZ SIRA DERMASON

DERMASON
SIRA
HOROZSEKER

CALI

BARBUNYA
BOMBAY

Class

0

500

1000

1500

2000

2500

3000

3500
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(b)

Figure 2: Dry bean raw dataset (a) percentage of distribution of dry bean varieties (b) dry bean varieties count of the raw dataset.
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the BCT was applied to all of the features of the dataset for
transforming the skewed data into a normal distribution. For
each attribute, the fgure on the left shows the distribution before
BCT, and the fgure on the right shows the distribution after
BCT. Te skewness can be found at the top right corner of the
fgure. Y represents the dependent (continuous) variable, while
X represents the independent variables (1, x1, x2,. . ., xk). In the
equation, the BCT [24] used to transform the skewed distri-
bution into a normal distribution without the original scale is
given (1).Temaximum likelihood technique is commonly used
to determine the parameter lambda (λ).

YBCT (Y, λ) � Xβ + σε, (1)

where

YBCT (Y, λ) �

Y
λ

− 1
λ

, if   λ≠ 0,

logY, if   λ � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

X is the covariate matrix, which includes the intercept. β
is a regression coefcient vector. σ is the variance of random
error. ε is a random error.

3.4. Machine Learning Model

3.4.1. Training and Test Dataset. Te training dataset is the
set of data used to construct the model, which contains
known features and a target. Te created model will also
need to be validated against another well-known dataset

known as the test dataset or validation dataset. To meet this
challenge, the entire known dataset can be divided into
training and a test set [25]. Te dry bean categorical classes,
namely “SIRA,” “BOMBAY,” “DERMASON,” “BARBU-
NYA,” “HOROZ,” “CALI,” and “SEKER” were converted
into integer types as 1–7, respectively. Te training and test
sets have been split in an 80 : 20 ratio, with 2923 and 731
instances with 16 features, respectively.

3.4.2. Machine Learning Algorithm (MLA) Selection. A
model built with a single method may not ofer the best
prediction for a specifc dataset. Each machine learning
technique has its own constraints and creating a model with
signifcant accuracy is difcult. Te 22 MLAs were used to
determine the accuracy of various MLAs on a balanced
dataset. It helps us to bring out a better predictive model.Te
10-fold cross validation has been performed and the mean
accuracy of 19 MLAs has been listed in Table 3. Ensemble
methods [26] such as AdaBoost classifer, Bagging classifer,
and extra tree classifer, generalised linear models [27] like
logistic regression, passive aggressive classifer, Ridge clas-
sifer, stochastic gradient descent classifer, and perceptron,
Navies Bayes models [28] like Bernoulli and Gaussian MLA,
kNN, and SVM algorithms [29], tree-based methods [30]
such as DT classifer and extra tree classifer, and discrim-
inant analysis methods [31] such as linear and quadratic
discriminant analysis. Gaussian process MLAs have been
evaluated with 10-fold cross-validation. Figure 5 displays the
mean accuracy of MLA performance with 10-fold cross
validation in descending order. Te logistic regression
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Figure 3: Balanced dry bean dataset.
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provides the highest test accuracy of 92.69 percent in the 19
MLAs and the lowest accuracy of 12.77 percent found with
the Bernoulli Naive Bayes ML classifer.

From the initial screening during validation, it is observed
that the XGBoost, RF, and CatBoost algorithms ofer greater
precision.Terefore, in the following sections, the performance
of these three algorithms with an 80 : 20 balanced dry bean
dataset and with 10-fold cross validation is described.

3.4.3. Random Forest Algorithm. Te DT modelling is an
important part of RF. It is used on several samples of the
original data obtained by the bootstrap method. Samples
of the original data are used to make the bootstrap

samples, and each sample has the same number of data
points as the original data. Te RF [32] constructs mul-
tiple DTs as well as merges them to produce more precise
and stable predictions. Te node’s importance is calcu-
lated as follows:

nij � wjCj − wleft(j)Cleft(j) − wright(j)Cright(j), (3)

where Cj � node j’s impurity value, wj � the weighted sample
size arriving at the node j, and right(j) and left(j) are the child
node from right and left split on node j, respectively.

An individual attribute’s feature importance is
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Figure 4: Distribution plot of BCT for the balanced and preprocessed dry bean dataset. (a) Area. (b) Perimeter. (c) MajorAxisLength.
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Table 3: MLA accuracy.

S.Nos MLA names MLA parameters MLA test accuracy mean
1 LogisticRegressionCV {“Cs”: 10, “class_weight”: None, “cv”: None, “. . .” 0.926949
2 ExtraTreesClassifer {“bootstrap”: False, “ccp_alpha”: 0.0, “class_. . .” 0.921751
3 BaggingClassifer {“base_estimator”: None, “bootstrap”: True, “b. . .” 0.921614
4 LinearDiscriminantAnalysis {“covariance_estimator”: None, “n_components”:. . . 0.911628
5 KNeighborsClassifer {“algorithm”: “auto”, “leaf_size”: 30, “metric. . .” 0.902326
6 DecisionTreeClassifer {“ccp_alpha”: 0.0, “class_weight”: None, “crit. . .” 0.898222
7 GaussianNB {“priors”: None, “var_smoothing”: 1e-09} 0.897127
8 ExtraTreeClassifer {“ccp_alpha”: 0.0, “class_weight”: None, “crit. . .” 0.88632
9 LinearSVC {“C”: 1.0, “class_weight”: None, “dual”: True,. . . 0.877839
10 GaussianProcessClassifer {“copy_X_train”: True, “kernel”: None, “max_it. . .” 0.842681
11 NuSVC {“break_ties”: False, “cache_size”: 200, “clas. . .” 0.835021
12 SGDClassifer {“alpha”: 0.0001, “average”: False, “class_wei. . .” 0.677018
13 SVC {“C”: 1.0, “break_ties”: False, “cache_size”:. . . 0.664432
14 PassiveAggressiveClassifer {“C”: 1.0, “average”: False, “class_weight”: N. . . 0.647469
15 RidgeClassiferCV {“alphas”: array([ 0.1, 1. , 10. ]), “class_w. . .” 0.647196
16 AdaBoostClassifer {“algorithm”: “SAMME.R′, “base_estimator”: Non. . . 0.597127
17 Perceptron {“alpha”: 0.0001, “class_weight”: None, “early. . .” 0.518878
18 QuadraticDiscriminantAnalysis {“priors”: None, “reg_param”: 0.0, “store_cova. . .” 0.412038
19 BernoulliNB {“alpha”: 1.0, “binarize”: 0.0, “class_prior”:. . . 0.12777
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fii �
 j: node j splits on featurei nij

 k ∈ all nodes nik
. (4)

3.4.4. Extreme Gradient Boost. XGBoost [33] is a framework
of the gradient boosting machine (GBM), a well-known
algorithm for supervised learning. It is appropriate to
both classifcation and regression tasks.

If DS is the set of data containing “m” attributes, then for
“n” occurrences

DS � xi, yi( : i � 1 . . . , n, xi ∈ R
m

, yi ∈ R . (5)

Let ŷi be the ensemble tree model’s target value con-
structed using the equation.

ŷi�ϕ xi( � 

K

k�1
fk xi( , fk ∈F. (6)

Here K denotes the model’s total number of trees and fk

denotes the model’s kth tree. Classifcation and Regression
Trees (CART) serve as the base learner for Gradient Boosted
Trees, which is a popular machine learning algorithm for both
classifcation and regression problems. F’s functional space is f,
and the set of feasible CARTs is F.

3.4.5. Cat Boost Classifer. Categorical boosting (CatBoost)
is a Yandex-developed open-source boosting library [34].
CatBoost implements oblivious DTs (binary trees in which

the same features have been used to create left and right
splits for every level of the tree), thereby limiting the number
of features split per level to a single instance, which aids in
reducing prediction time. In the dataset “D” of dry beans, for
every instance has “m” features in a vector “x” and the target
dry bean class type, y.

Mathematically, the target assessment of the ith cate-
gorical data of the kth element of dry bean dataset D for dry
beans can be expressed as follows:

x
i
k �

 xj ∈ Dk 1xi
k
�x

j

k

. yj + ap

 xj ∈ Dk 1xi
k
�x

j

k

+ a
; if Dk � xj: σ(j)< σ(i) ,

(7)

when a> 0. When the ith component of CatBoost’s input
vector xj is equal to the ith component of input vector xk, the
indicator function 1

xi
k
�x

j

k

returns the value 1. Te parameters
“a” and “p” (prior) prevent underfowing in the equation. σ
is a permutation at random.

3.5. Results andDiscussion. Teuse of diverse bean varieties in
dry bean cultivation actually inhibits the production of uniform
crops. As a result, the resulting product, which includes a set of
dried bean species, incurs economic losses. To address this issue,
the purpose of this study is to distinguish the seven classes of dry
beans cultivated in Turkey, as determined by the Turkish
Standards Institute (TSE). Te dry beans dataset has been
processed through the developed model. Te confusion matrix
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of threeMLAs, namely RF, XGBoost, and CatBoost, is shown in
Figure 6. Confusion matrices enable a more detailed visual-
isation of results and a comparison of actual and predicted
values. In Figure 6, “SIRA,” “BOMBAY,” “DERMASON,”
“BARBUNYA,” “HOROZ,” “CALI,” and “SEKER” are denoted
as 0, 1, 2, 3, 4, 5, and 6.Te correctly predicted sample numbers
can be found in the diagonal part of the confusion matrix. Te
misclassifed instances are available in other parts of the con-
fusion matrix. For example, in Figure 6(c), for the dry bean
variety “SIRA,” the correctly identifed test set instances were 84.
Seven test instances were identifed as “DERMASON,” two
instances were identifed as “BARBUNYA,” three instances were
identifed as “HOROZ,” two instanceswere identifed as “CALI,”
and two instances were identifed as “SEKER.” Figure 7 shows
the receiver operating characteristic (ROC) curve that shows the
performance of the RF, XGBoost, and CatBoost ML classif-
cation algorithms. ROC is the plot between true positive and

false positive. In ROC, the area under the curve (AUC) rep-
resents the degree or measure of separability. It shows the
model’s capability of distinguishing between dry bean classes. It
is observed that the CatBoost algorithm provides the AUC value
for the “SIRA” dry bean type as 0.99, and for other dry bean
types such as “BOMBAY”, “DERMASON”, “BARBUNYA”,
“HOROZ”, “CALI”, and “SEKER” has an AUC value of 1.
Table 4 provides the performance metrics like precision, recall,
and f1-score of the three ML algorithms, and Table 5 provides
the ML model accuracy with an 80 : 20 dataset. Te accuracy of
the model has been improved by about 1.49 percent using the
balance dataset and the CatBoost ML algorithm.

Among the 22MLAs tested, it is observed that the CatBoost
ML classifer provides the best performance. Table 6 shows the
performance comparison with the existing method. Te Cat-
Boost ML classifer performs well as compared to the existing
method under balanced instances for seven dry bean types.
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Figure 6: Confusion matrix of (a) random forest, (b) XGBoost, and (c) CatBoost ML classifcation algorithms.
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ROC Curves for XGBClassifier
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ROC Curves for CatBoostClassifier
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Figure 7: ROC curve of (a) random forest (b) XGBoost, and (c) CatBoost ML classifcation algorithms.

Table 4: Performance metrics of proposed MLAs for the seven varieties of dry beans.

ML classifers Classes Precision Recall f1-score

Random forest

Sira 0.85 0.83 0.84
Bombay 1 1 1
Dermason 0.92 0.91 0.91
Barbunya 0.93 0.94 0.94
Horoz 0.94 0.95 0.94
CAli 0.94 0.95 0.95
Seker 0.95 0.94 0.94

XGBoost

Sira 0.83 0.84 0.84
Bombay 1 1 1
Dermason 0.93 0.89 0.91
Barbunya 0.95 0.95 0.95
Horoz 0.93 0.96 0.94
Cali 0.95 0.97 0.96
Seker 0.95 0.93 0.94

CatBoost

Sira 0.88 0.84 0.86
Bombay 1 1 1
Dermason 0.94 0.94 0.94
Barbunya 0.94 0.94 0.94
Horoz 0.94 0.97 0.95
Cali 0.94 0.97 0.95
Seker 0.95 0.93 0.94
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Table 5: ML model accuracy for 80 : 20 data split.

ML models
Accuracy in percentage

Unbalanced dataset Balanced dataset
Random forest 92.06 93.29
XGBoost 92.10 93.57
CatBoost 92.76 94.25

Table 6: Performance comparison with the existing method with 80 : 20 split.

Models ML algorithms Precision Recall f1-score Accuracy in
percentage

Koklu and Ozkan [11]

MLP 0.93 0.93 0.93 91.73
SVM 0.94 0.94 0.94 93.13
DT 0.89 0.88 0.88 87.92
kNN 0.93 0.93 0.93 92.52

Proposed method
Random forest 0.93 0.93 0.93 93.29

XGBoost 0.93 0.93 0.93 93.57
CatBoost 0.94 0.94 0.94 94.25

Table 7: 10-Fold cross validation accuracy.

Fold nos
No. of instances (90 :10)

Random forest XGBoost CatBoost
Training sets Test sets

1 3288 366 92.89 94.53 94.53
2 3288 366 91.25 93.16 95.35
3 3288 366 92.34 92.07 94.81
4 3288 366 93.44 91.25 92.89
5 3289 365 92.05 92.87 93.97
6 3289 365 93.42 93.15 93.42
7 3289 365 95.06 93.15 93.69
8 3289 365 92.32 90.95 92.87
9 3289 365 93.97 95.06 94.52
10 3289 365 91.78 92.05 92.05

Mean accuracy in percentage 92.9 92.8 93.8
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CatBoost ML excels at solving classifcation problems with
heterogeneous data.

3.5.1. Model Performance with Cross-Validation (CV).
Te three algorithms RF, XGBoost, and CatBoost have been
validated with 10-fold cross validation with 90 :10 data split.
In cross-validation with k folds, the original dataset is
randomly subdivided into “k” mutually exclusive subgroups
or “folds” (F1, F2, . . .Fk) of roughly equal size. Tere are k
training and testing iterations. In iteration “i” the test set is
partition Fi, while the remaining segments, subgroups, or
folds are used to train themodel collectively [29]. Table 7 and
Figure 8 show the 10-fold cross validation accuracy of the
three MLAs. In 10-fold cross validation, the CatBoost ML
algorithm achieves the highest overall mean accuracy of 93.8
percent, with a range of 92.05 percent to 95.35 percent.

4. Conclusion

Classifcation of dry bean seed varieties is critical for seed
uniformity and quality assurance. Compared to human in-
spectors, the system possessed two signifcant advantages. It
produces higher, reproducible, and objective sample classif-
cation, and also excludes the possibility of human inspectors
misclassifying specimens. Initially, the dry bean dataset features
has been applied with log transformation. It fails with a re-
duction in negative skewness.Te BCTwas applied to all of the
features of the dataset for transforming the skewed data into
a normal distribution. A model constructed using a single
method may not provide the best forecast for a given data set.
Eachmachine learning technique has its own set of restrictions,
making it challenging to create a model with substantial ac-
curacy. Te accuracy of various MLAs on a balanced dataset
was determined using the 22 MLAs. It supports us in de-
veloping amore accurate predictive model.Te accuracy of the
model has been improved by about 1.49 percent using the
balance dataset and the CatBoostML algorithm.Te developed
models’ high success rates across all metrics indicate that they
are efective at classifcation.Te overall systemmean accuracy
of a balanced dataset is obtained as 93.8 percent for the
CatBoost ML model. Te results indicate that the proposed
CatBoost ML classifer can be used efectively to classify
a variety of dry bean variants. Additionally, this developed
framework can be applied to various kinds of dry beans from
various regions. Te model is developed without losing any
features from the dataset. Te ML model can be upgraded
further by combiningML, deep learning, and novel algorithms.
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Miret, and F. J. Heredia, “Research progress in imaging
technology for assessing quality in wine grapes and seeds,”
Foods, vol. 11, no. 3, p. 254, 2022.

[8] M. J. Cejudo-Bastante, F. J. Rodŕıguez-Pulido, F. J. Heredia,
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