
Research Article
IntelligentMiningofAssociationRulesBasedonNanopatterns for
Code Smells Detection

D. Juliet Thessalonica ,1 H. Khanna Nehemiah ,1 S. Sreejith,1 and A. Kannan2

1Ramanujan Computing Centre, Anna University, Chennai 600025, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Correspondence should be addressed to H. Khanna Nehemiah; nehemiah@annauniv.edu

Received 14 May 2022; Revised 17 December 2022; Accepted 31 January 2023; Published 13 April 2023

Academic Editor: Danilo Pianini

Copyright © 2023 D. Juliet Tessalonica et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Software maintenance is an imperative step in software development. Code smells can arise as a result of poor design as well as
frequent code changes due to changing needs. Early detection of code smells during software development can help with software
maintenance. Tis work focuses on identifying code smells on Java software using nanopatterns. Nanopatterns are method-level
code structures that refect the presence of code smells. Nanopatterns are extracted using a command-line interface based on the
ASM bytecode analysis. Class labels are extracted using three tools, namely inFusion, JDeodorant, and iPlasma. Rules are extracted
from nanopatterns using the Apriori algorithm andmapped with the extracted class labels. Best rules are selected using the Border
Collie Optimization (BCO) algorithm with the accuracy of the k-NN classifer as the ftness function. Te selected rules are stored
in the rule base to detect code smells. Te objective is to detect a maximum number of code smells with a minimum number of
rules. Experiments are carried out on Java software, namely jEdit, Nutch, Lucene, and Rhino. Te proposed work detects code
smells, namely data class, blob, spaghetti code, functional decomposition, and feature envy, with 98.78% accuracy for jEdit, 97.45%
for Nutch, 95.58% for Lucene, and 96.34% for Rhino.Te performance of the proposed work is competitive with other well-known
methods of detecting code smells.

1. Introduction

Software maintenance is an important stage of the software
development life cycle.Te purpose of maintenance is to add
functionality to the software system while maintaining its
original functioning. Tese changes may appear as new
requirements or previously planned but not implemented.
Such changes afect either the algorithmic level or the
specifcation level. Correcting faults, adapting to changing
user requirements over time, updating hardware/software
specifcations, altering the components to remove unde-
sirable side efects, and optimizing the code to execute more
quickly are all themaintenance tasks necessary to ensure that
the system continues to meet user needs.Te imperativeness
of software maintenance is to update and enhance the
software after deployment to improve system performance.

Maintenance begins after the software is built and made
available to end users.

Maintenance includes strengthening existing capabilities,
correcting errors, evaluating, and amending software to satisfy
changing requirements [1]. Corrective, adaptive, perfective,
and preventative maintenance are the four diferent categories
of software maintenance. Corrective software maintenance
addresses the bugs and faults in software applications that can
infuence the design, logic, and code. Adaptive software
maintenance addresses software modifcations that occur as a
result of a change in the operating environment. Perfective
softwaremaintenance allows updating the software to improve
its value according to user demands. Preventive software
maintenance is a change in the software that detects and
corrects latent faults before it becomes efective faults. Tese
maintenance activities are hindered by code smells.

Hindawi
Scientific Programming
Volume 2023, Article ID 2973250, 18 pages
https://doi.org/10.1155/2023/2973250

mailto:nehemiah@annauniv.edu
https://orcid.org/0000-0002-7224-232X
https://orcid.org/0000-0002-3984-7490
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2973250

Code smells are distinct faws related to improper
structure, inappropriate object communication, and poor
readability, all of which can negatively afect maintainability.
Code smells are typically the result of deviations from ob-
ject-oriented programming standards, which arise as a result
of modifcations made to software code to meet frequently
changing customer requirements. Code smells are indicators
of problems with the coding or design of the software. It can
reduce the software’s lifespan by making it difcult to
maintain and evolve. According to Fowler [2], code smells
are not inherently dangerous. Tey serve as a notifcation to
the developers that the codemay contain critical errors. Each
smell has multiple symptoms that require a unique iden-
tifying mechanism [3]. Te fve code smells considered in
this work are presented in Table 1. Tese code smells in-
troduce excessive complexity and need more time to un-
tangle the code.

Common approaches to detect code smells are search-
based, metric-based, symptoms-based, visualization-based,
probabilistic, cooperative-based, and manual [4]. Te ap-
proaches to detect code smells fall into diferent categories,
as shown in Table 2.

Reviewing related studies in similar areas reveals that the
following issues remain challenging. Te presence of code
smells has been addressed by both researchers and practi-
tioners, and they have proposed various methods, as outlined
in Table 2, to detect them. However, none of these approaches
addressed the uncertainty of the detection process. Tere is
always a degree of uncertainty on whether a class in a program
is a smell or not.Terefore, detection results should be reported
with a probability corresponding to the degree of uncertainty of
the detection process, as proposed by Khom et al. [5]. Te
results provided by the detection tool are usually diferent,
making it challenging to compare them. Diferent tools may
employ diferent metrics and thresholds to recognise a code
smell depending on their detection rules. Terefore, machine
learning techniques have been used to build a tool and assessed
using 32ML algorithms as proposed by Arcelli Fontana et al.
[6]. Metric-based detection rules based on software metrics
should be reported with the threshold values [7]. Detecting
code smells and applying refactoring on one specifc model can
afect other related models. Refactoring suggested at the model
level cannot be applied to the source code level. Terefore, a
model-level refactoring method using a multiobjective evolu-
tionary algorithm can be used to determine the optimal se-
quence of refactoring, as proposed by Mansoor et al. [8].

To fnd code smells, the approach described in this work
uses association rules generated from nanopatterns. A
pattern specifes structural connections between the classes
through call or inheritance. In addition, it involves actions
and interaction sequences among these classes. A pattern
includes the classes, objects, and connections that make up
the pattern’s static structure, as well as behavioural pattern
dynamics, such as messages that participants exchange. Both
static and dynamic aspects are common in design patterns.
Design patterns are reusable templates for structuring
software Unifed Modelling Language (UML) diagrams [9].
Nanopatterns are basic properties displayed by Java methods
that can be traceable on a method or a procedure. Tey are

traceable, which means they can be expressed as a simple
formal condition on a Java method’s attributes, types,
names, and bodies [9]. Static analysis of Java bytecode
identifes them. Bytecode is the compiled intermediate code
that a Java virtual machine must translate to machine code.
Te bytecode instruction contained in Java class fles are
enriched in semantic information and indicate the execution
process of the source code [10]. Although Gil and Maman
[11] popularised the term “nanopattern” in 2005, their main
focus was on micropatterns. Design patterns that are au-
tomatically recognised and used at a lower level of ab-
straction are connected to micropatterns. Host and Ostvold
[12] later suggested a collection of Java method attributes,
which Singer [13] referred to as nanopatterns. Table 3
provides an outline of the diferent types of patterns
available in the software.

Jeremy Singer has created a command tool to fnd
nanopatterns in bytecode class fles based on the ASM
bytecode analysis [14]. Te detection tool iterates through
a bytecode array looking for particular bytecode in-
structions to suggest particular nanopatterns. It is de-
veloped in Java and comprises 600 source lines of the
code. A list of all methods and their associated nano-
patterns is generated by the tool. An outline of the 17
fundamental nanopatterns grouped into four categories is
presented in Table 4. Te relationship between nano-
patterns and code smells that already exists is the driving
force for the choice of nanopatterns for code smell de-
tection. ObjectCreator, FieldReader, FieldWriter, Loop-
ing, Exceptions, LocalWriter, and ArrayReader are
nanopatterns that frequently appear in code smell pro-
cedures. Similar to this, SameName, NoReturn, Leaf, and
StraightLine nanopatterns are prevalent in noncode smell
approaches [15, 16].

In this work, a framework that uses rule generation and
rule optimization to identify code smells has been proposed.
Nanopatterns form the basis for the rules, which are
extracted from the open-source software, namely jEdit,
Nutch, Lucene, and Rhino, using a command-line interface.
Datasets comprising methods and their corresponding
nanopatterns without class labels are created from the open-
source software. Te class labels are the code smells present
in each class or method, which are extracted using the tools,
namely iPlasma, JDeodorant, and inFusion. Diferent tools
generate diferent results depending on the computation of a
specifc set of software metrics ranging from standard ob-
ject-oriented metrics to metrics defned in ad hoc ways for
the purpose of code smell detection, which is difcult to
interpret. As a result, the results of three tools considered in
this work are intersected to generate an acceptable class
label. Dataset containing nanopatterns without class labels
are considered for association rule mining. Te Apriori
algorithm is used to generate frequent itemsets. Association
rules are generated from the frequent itemsets and mapped
to class labels. Te Border Collie Optimization (BCO) al-
gorithm is used to choose the best rules, and each rule is
evaluated using the accuracy of the k-NN classifer as the
ftness function. Te optimal rules are stored in the rule base
to detect code smells.

2 Scientifc Programming

Te remainder of this paper is organized as follows:
Section 2 presents an overview of related works on nano-
patterns and code smell detection. Section 3 outlines the
proposed framework. Section 4 presents the results and their
analysis. Finally, the conclusion and the scope for future
work are presented in Section 5. Table 5 presents the ab-
breviations used in this work in alphabetical order.

2. Related Works

Tis section highlights the works carried out by other re-
searchers related to nanopatterns and code smells.

Singer et al. [13] have constructed a command-line tool
to extract the nanopatterns in Java class fles based on the
ASM bytecode analysis toolkit. With the aid of association

Table 1: Outline of code smells considered in this work.

Code smell Outline
Data class Class containing just the data, but cannot independently operate on the data
Blob Class with more attributes and operations

Spaghetti code Class containing methods with very large implementations invoke a single, multistage process fow and do not
use an appropriate structuring mechanism

Functional
decomposition Class with the intent of performing a single function

Feature envy Class attributes use another class attribute to perform computation rather than doing itself

Table 2: Outline of code smell detection approaches.

Approaches Outline
Search-based Solves optimization problems to fnd the best possible subset of solutions
Metric-based Creates a rule based on metrics and respective thresholds
Symptom-based Describes symptoms as class roles and structures that are transformed into detection algorithms
Visualization-
based Semiautomated process of visually representing data with metrics using visual metaphors

Probabilistic Related to the degree of uncertainty of a class that indicates an occurrence of code smell
Cooperative-based Improves performance and accuracy in detecting code smells by executing activities cooperatively

Manual Te human-centric process that requires a great human efort, extensive analysis, and interpretation efort from
software maintainers to fnd design fragments that correspond to code smells

Table 3: Outline of software patterns.

Pattern Outline
Design pattern Package level nontraceable patterns that provide a repeatable solution to common software design problems
Micropattern Class-level traceable patterns that provide formal conditions of the structure of a Java class
Nanopattern Method-level traceable patterns that provide a group of reusable methods frequently used in Java class

Table 4: Outline of fundamental nanopatterns.

Category Name Outline

Calling

NoParams Takes no arguments
NoReturn Returns void
Recursive Calls itself recursively
SameName Calls another method with the same name

Leaf Does not issue any method calls

Object-orientation

ObjectCreator Creates new objects
FieldReader Reads feld values from an object
FieldWriter Writes values to the feld of an object

TypeManipulator Uses typecast or instance of operations

Control fow
StraightLine No branches in a method body
Looping One or more control fow loops in a method body

Exceptions May throw an unhandled exception

Data fow

LocalReader Read values of local variables on a stack frame
LocalWriter Writes values of local variables on a stack frame
ArrayCreator Creates a new array
ArrayReader Reads values from an array
ArrayWriter Writes values to an array

Scientifc Programming 3

rule mining and Shannon entropy, the identifed nano-
patterns have been assessed. Two case studies have been
presented: the frst compares the relative object-oriented and
diversity of two well-known Java benchmarking suites,
SPECjvm98 and DaCapo; the second applies method-based
clustering to the same Java benchmarking suites using
nanopatterns as learning features. Both research studies have
employed nanopatterns to produce concise summaries of
Java methods, increasing their accuracy and efciency. An
extensive and diverse corpus of Java applications has been
evaluated using a nanopattern identifcation technique to
locate methods that exhibit nanopattern, yielding a 100%
overall coverage score. Te corpus contained 43,880 classes
and 306,531 methods. Since the evaluation was given a
perfect score, every approach had at least one nanopattern.
Te mean number of nanopatterns per method is typically
4.9.

Bruneton et al. [14] have developed an ASM toolkit, a
Java manipulation tool to generate and manipulate Java
classes. ASM employs the visitor design pattern in contrast
to Java manipulation methods such as BCEL [17], SERP [18],
and JOIE [19] to represent objects of classes. Te visitor
design pattern changes methods and the entire structure of a
class without creating a new object for each bytecode in-
struction. ASM outperforms BCEL and SERP by 12 and 18
times, respectively.

Sultana et al. [16] have created a model to extract
nanopatterns and predicted vulnerabilities for each method
using an extraction tool based on the ASM bytecode analysis
toolkit. Welch’s t-test has been used to assess the

relationship between vulnerabilities and nanopatterns, and
the model has been trained using the nanopatterns as fea-
tures. Utilizing nanopatterns as characteristics, three ma-
chine learning technique, namely naive Bayes, support
vector machines, and logistic regression, has been used to
predict vulnerability. Te same techniques have been used
with software metrics, and their efectiveness with nano-
patterns has been compared. Te results indicate that
nanopatterns have a reduced false-negative rate of 21%
compared to software metrics, which have a false-negative
rate of 34.7% for classifying vulnerable methods.

Lu and Xu [20] have developed a toolkit named Kafer to
facilitate the study of Java bytecode and the creation of
software engineering tools for Java bytecode programs. Te
source code has been implemented in Java programming
language, which runs on Windows and Sun Workstations.
Users had a set of tools for slicing (Bslice), testing, main-
taining (maintener), and gathering metrics on Java bytecode
using this prototype implementation. Te bytecode in-
structions in the source code can be changed when the
maintener calls the Bslice to generate a slice and display it in
the displayer. Te quality of the software can be displayed
using McCabe’s metric. McCabe’s cyclomatic complexity
metric ensures that programs with high McCabe numbers
(greater than 10) are difcult to understand and therefore
have a higher probability of containing defects.

Mignon and de Azevedo da Rocha [21] have presented a
mechanism to reduce the execution time of a Java program.
Te mechanism performed bytecode transformation,
extracted nanopatterns, and measured execution time to

Table 5: Abbreviations Used.

Abbreviation Phrase
ACO Ant colony optimization
ABC Artifcial bee colony algorithm
AC Associative classifcation
ACSM Average concept similarity
APR Active pruning rules
BA Bat algorithm
BC Brain class
BCO Border collie optimization
BI-ADIPOK Bi-level anti-pattern detection and identifcation using possibilistic optimized k-NNs
BM Brain method
CBA Classifcation based on associations
CBE Class from the base example
CIM Class from the initial model
CLOC Changing lines of code
CSA Cuckoo search algorithm
EGAPSO Euclidean distance based genetic algorithm and particle swarm optimization
FA Firefy algorithm
GA Genetic algorithm
GP Genetic programming
HCA Hill climbing algorithm
HPSOM Hybrid particle swarm optimization with mutation
LSA Latent semantic analysis
MARC Mining association rules from code
ML Machine learning
PEA Parallel evolutionary algorithm
PSO Particle swarm optimization
UML Unifed modelling language

4 Scientifc Programming

determine whether a method should be eliminated from the
code. In addition, rules that specify which methods are not
included in the execution process have been extracted uti-
lizing the composition of nanopatterns. When specifc
methods have been eliminated, Java Grande Forum (JGF)
benchmark suite and DaCapo have revealed a 23% im-
provement in JGF and a 43% in DaCapo programs.

Batarseh [22] has compared nanopatterns with design
patterns and micropatterns. A collection of reusable
methods known as nanopatterns has been widely applied in
Java development. Te system design has been described by
design patterns. A class with no functions and only static
members has been described by micropatterns. Tree
middle-sized systems, including a car navigation system
using micropatterns, a fight black box simulator using
design patterns, and a ticketing system using nanopatterns,
have been the focus of experiments. Te domain, size, and
classes have been the same across all three systems. Te
amount of time required for development has been used to
compare the three approaches. Patterns including Singleton,
Bridge, and Façade have been used in fight black box
simulators, while Joiner, DataManager, and Sink have been
used in vehicle navigation systems, and ActionTriggered,
Display, Initialize, Getter, Setter, Delete, Update, and Pro-
cessing has been used in ticketing systems. Building the
aforementioned systems required 20% for nanopatterns,
28% for design patterns, and 30% for micropatterns in total.
Te results demonstrate how nanopatterns for Java software
minimize time, efort, and cost.

Saranya et al. [23] have proposed a hybrid approach that
uses particle swarm optimization with mutation (HPSOM)
for the detection of code smells. Fivecode smells: blob,
spaghetti code, functional decomposition, data class, and
feature envy have been investigated. Te method has gen-
erated code smell detection rules by using a collection of
software metrics and a set of code smell examples as input.
Nineopen-source projects, including JFreeChart, Gantt-
Project, Apache Ant 5.2, Apache Ant 7.0, Nutch, Log4j,
Lucene, Xerces-J, and Rhino, have been used to test the
methodology. Te efectiveness of the approach has been
compared to that of genetic algorithm (GA), particle swarm
optimization (PSO), parallel evolutionary algorithm (PEA),
and genetic programming (GP). Tis approach detects code
smells with the highest precision of 97% on the GanttProject
and a recall of 98% on the Log4J, respectively.

Saranya et al. [24] have addressed the problems with the
rule-based approach and introduced a method for detecting
smells utilizing the similarities between the software proj-
ects. Te Euclidean distance-based genetic algorithm and
particle swarm optimization (EGAPSO) method have been
validated on two projects namely Log4J and GanttProject.
Te method has considered a class from the base example
(CBE), software metrics, and a class from the initial model
(CIM) as arguments and returned detected code smells from
CIM. Five code smells namely, functional decomposition,
blob, feature envy, spaghetti code, and data class, have been
investigated. Recall of 96.3% and precision of 84.6% values
have been found to be efective when compared to state-of-
the-art techniques.

Tjortjis [25] has presented a method for Mining Asso-
ciation Rules from Code (MARC) to capture program
structure, system knowledge, and assisting software man-
agement. Code parsing, rule mining, and rule grouping have
been included in the methodology. Code has been initially
parsed to add records, variables, and attributes to a database.
Te database has been used to extract association rules. Te
strength of the association rules linking the entities’ items
has been grouped together. COBOL programs have been
used to test the methodology, and the results show that
72.75% of the created abstraction matched the expert mental
model.

Rajab [26] has proposed a new Active Pruning Rules
(APR) algorithm to increase predictive accuracy while
minimizing rule redundancy. Te algorithm has been
implemented in two steps. Rules have been extracted using
an Apriori algorithm based on minimum support and
minimum confdence in the frst step. Te second step in-
volves sorting the identifed rules based on their support and
confdence, and then tested on training data to identify those
that can cover examples of data. Any rule that can cover at
least one training data example has been added, and any rule
that cannot cover has been removed from the classifer. APR
produced 32 rules as opposed to 99 for the Classifcation
Based on Associations (CBA) associative classifer. APR
slightly increased predictive power while simultaneously
reducing the size of the classifer. Te experimental results
reveal that APR outperforms other AC and rule-based
classifers.

Zang [27] has proposed an approach based on an im-
mune optimization mechanism for optimizing associative
classifcation rules. Both the rule searching and rule selection
procedures take place at the same time as the immune cell
population evolves. Te optimization approach uses the
clonal selection principle and immune memory mechanism
to search for association rules. Te approach has generated a
wide range of local optimum solutions that have potential
association classifer candidate rules. A new test instance can
be classifed using the classifcation model once it has been
constructed. Te proposed approach outperforms the
standard associative classifcation (AC) algorithm in terms
of runtime and accuracy, by achieving 92% for categorical
and test datasets.

Mattiev and Kavsek [28] have proposed a new associative
classifer that selects strong class association rules based on
the overall coverage of the training set. Te proposed
classifer has the advantage of producing fewer rules on
larger datasets while maintaining classifcation accuracy
than existing classifers. Te frequent itemsets have been
discovered using the Apriori algorithm. Once all frequent
itemsets from a training dataset have been identifed, class
association rules are created.Te rules have been arranged in
decreasing order of confdence and support for the classi-
fcation. Te proposed method achieved an accuracy of
84.9% among all classifcation methods.

Awan and Shahzad [29] have proposed semisupervised
associative classifcation using the ant colony optimization
algorithm (ACO).Te frequent patterns are identifed by the
algorithm. Te associative classifcation rules have been

Scientifc Programming 5

created by combining the class labels with frequent patterns.
Te antecedent is a pattern, and the consequent is a class of
each rule. Te confdence of each rule has been calculated,
and confdent rules are added to the rule list. Te rule list has
been sorted in descending order of confdence, followed by
support. Te constructed rules have been pruned to remove
duplicate rules. Te accuracy of the test set has been de-
termined using the rule list. Te experimental results show
that the algorithm achieved an accuracy of 100%.

Pritam et al. [30] have evaluated code smells to predict
changing classes in software. Te authors proved that code
smells, as compared to code metrics, can more accurately
predict class changes. An open-source tool named Changing
Lines of Code (CLOC) has been used to examine two
versions of the same fle to analyse the number of lines that
have changed from the prior version of the software. After
calculating the exact changes for each class, code smells have
been detected using the Understand tool. Experiments have
been conducted on AOI, Checkstyle, Freeplane, JKiwi, Joda,
JStock, JText, LWJGL, ModBus, OpenGTS, OpenRocket,
Quartz, Spring, and SubSonic. On the aforementioned
software, six machine learning algorithms have been applied,
namely naive Bayes, Multilayer Perceptron, Logitboost,
Bagging, Random Forest, and Decision Tree. Te results
show that multilayer perceptron has been the most efective
algorithm with a sensitivity of 70% and specifcity of 67% to
predict class changes using code smells.

Khari et al. [31] have implemented a testing tool with test
suite generation and optimization functionality. Test data
have been generated using black-box testing techniques
namely boundary value testing, robustness testing, worst-
case testing, robust worst-case testing, and random testing.
Te test data have been optimized using the artifcial bee
colony algorithm (ABC) and cuckoo search algorithm
(CSA). Te optimized test suite generates the actual output
when applied to the software. By comparing actual and
expected output, faults have been detected in the software.
Experiments have been conducted on 10 sample programs
for the optimization of the test suite. Te results show that
the average path coverage value for ABC over 10 programs is
90.3% while that for CSA is 75.4%.

Khari et al. [32] have proposed an approach for
generating test suites and optimizing them during soft-
ware testing. Te approach focused on generating test
suites using fve Java programs. For each program, a
control fow graph has been manually created to deter-
mine McCabe’s cyclomatic complexity. Te approach
considered that the cyclomatic complexity of the program
under test is equal to the number of test cases per test
suite. Te best test suites have been selected from the
previously generated test suites using the six algorithms,
namely hill climbing algorithm (HCA), bat algorithm
(BA), cuckoo search algorithm (CS), frefy algorithm
(FA), particle swarm optimization (PSO), and artifcial
bee colony algorithm (ABC). Te results indicate the path
coverage of ABC for the fve programs is 97.8%, 99.8%,
50%, 97.92%, and 80%, respectively.

Son et al. [33] have explored all the software defect
prediction literature available from 1995 to 2018 using a

multistage process. A total of 156 studies have been selected
in the frst step, and inclusion-exclusion criteria have been
applied to the resultant set to remove studies that do not
match the objectives. Te inclusion criteria have included
the empirical study of software defect prediction using
software metrics and studies that provide empirical analysis
using statistical, search-based, and machine learning tech-
niques. A quality analysis has been conducted to assess the
relevance of studies. Meaningful information, namely au-
thors, the title of publication, year of publication, datasets,
and techniques used, have been extracted to perform data
synthesis. Data synthesis accumulates the information col-
lected from the data extraction process to build a response to
research questions. Te results are useful for the software
engineering domain as well as for conducting empirical
studies because step-by-step solutions are provided for
questions raised in the article.

Zhang et al. [34] have suggested an approach DeleSmell
to identify code smells using a deep learning model. A
refactoring tool has been developed to convert a normal
method into a brain method (BM) and a normal class into a
brain class (BC).Te iPlasma tool has been used to extract 24
structural metrics for BC code smell and 21 metrics for BM
code smell. Latent semantic analysis (LSA) has been used to
calculate the average concept similarity (ACSM) to measure
the cohesion of the source code. Te extracted features have
been taken as input to the classifer. Te classifer contains
GRU-attention and CNN branch in parallel for feature
selection. Te selected features have been concatenated and
sent to SVM for fnal classifcation. Experiments have been
conducted on fop-core, JAdventure, MiniTwist, commons-
lang, and redomar to detect BC and BM code smells. Te
results show that the approach achieved an average
F-measure of 97.02% for BC and 98.22% for BM code smell
detection.

Boutaib et al. [35] have developed a tool named Bilevel
Anti-pattern Detection and Identifcation using Possibilistic
Optimized k-NNs (BI-ADIPOK) that is capable of detecting
and identifying code smells under certain and uncertain
environments where uncertainty occurs at the level of class
labels. Uncertainty factors are issued by human experts,
which may result in a decrease in the quality of the result
produced by detectors. BI-ADIPOK has used two levels of
the code smell identifcation phase: the upper level generated
a set of optimized PK-NNs parameters which were opti-
mized using the lower level. Te generated detectors have
been trained on the chosen smell type to identify the specifc
code smells. Experiments have been carried out on Gantt-
Project, ArgoUML, Xerces-J, JFreeChart, Ant-Apache, and
Azureus to detect diferent code smells, namely blob, data
class, feature envy, long method, duplicate code, long pa-
rameter list, spaghetti code, and functional decomposition.
Te results show that the recall precision curve varies be-
tween 0.902 and 0.932 for the uncertain environment and
between 0.928 and 0.955 for a certain environment.

Te following conclusions are drawn from a review of
numerous studies in the literature. To begin, a command-
line tool based on the ASM bytecode analysis toolkit can be
used to extract nanopatterns. Second, there is a link between

6 Scientifc Programming

nanopatterns and code smells, and they can be traced. Tis
work proposes a framework for detecting code smells from
the software system using rules generated from the nano-
patterns. Initially, nanopatterns are extracted from the Java
software using a command-line based on the ASM bytecode
analysis toolkit. Te code smells are extracted using the
inFusion, JDeodorant, and iPlasma tools. Tese code smells
serves as the class label for each method. Frequent itemsets
are generated from the nanopatterns using the Apriori al-
gorithm. Strong association rules are extracted from the
frequent itemsets and mapped to the class label. Te best
rules are selected using the BCO algorithm and stored in the
rule base for detecting code smells.

3. Materials and Methods

Te proposed work for detecting code smells using nano-
patterns includes subsystems, namely nanopattern extrac-
tion, class label extraction, rule extraction, mapping class
labels with rules, and rule selection, as shown in Figure 1.

3.1. Nanopattern Extraction. A command-line interface
based on the ASM bytecode analysis is used to extract
nanopatterns from Java bytecode class fles. ASM is a tool for
analysis and manipulation that enables the conversion of
Java classes into binary formats. To extract nanopatterns,
Java bytecode, an intermediate language between Java source
code and assembly code is created. Te tool searches a
method bytecode array for certain bytecode instructions that
refect specifc nanopatterns [12]. Te tool for detecting
nanopatterns can be downloaded as a jar fle and run by
typing java -jar np.jar CLASSFILE. Te ASM bytecode
manipulation library is used by the jar fle.

Te steps to extract nanopatterns from the jEdit software
are outlined as follows:

Input: jEdit Java Source Code
Process:
Step 1: compile the Java source code and convert it into
Java class fle.
Step 2: extract the seventeen fundamental nanopatterns
for each method using ASM-based command-line
interface, as shown in Table 6.
Output: nanopatterns without the class label.

3.2. Class Label Extraction. Diferent software design mea-
surement tools apply diferent methods for the detection of
code smells. Code smell detection tools can be compared
based on their performance. Comparing code smell detec-
tion tools with their results is a difcult task because diferent
tools or plug-ins are built for diferent environments, code
smells, and languages. Many code smells detection tools
apply directly/indirectly diferent object-oriented source
code metrics to detect a large number of code smells. Most
tools have a textual output format, making it difcult to
understand. Te majority of code smell detection tools
appear to be research prototypes or open-source projects. In

comparison to commercial tools, research prototypes are
less mature.

In this work, code smells are extracted from existing
tools, namely inFusion, JDeodorant, and iPlasma tool. Te
reason behind choosing these tools is that they are built for a
common environment and support the detection of code
smells in Java source code. JDeodorant is an Eclipse plug-in
that locates design faws in software, also referred to as “bad
smells,” and fxes them by performing the proper refac-
torings. Te software engineering group at the Department
of Applied Informatics at the University of Macedonia in
Tessaloniki, Greece, and the Software Refactoring Lab
Department of Computer Science and Software Engineering
at Concordia University in Canada have collaborated to
create the tool. inFusion is engineered to put the develop-
ment team in control over the architecture and design of the
project. It aims to make quality control for software projects
efective and feasible. iPlasma is an integrated environment
for quality analysis of object-oriented software systems. It
supports each stage of analysis, from model extraction
through high-level metrics-based analysis, such as the de-
tection of code smells. Tree key benefts of iPlasma include
its scalability, integration with additional analysis tools, and
expansion of supported analysis. Diferent tools produce

Java Software

Nano Patterns Extraction Class Label Extraction

Nano Patterns
without Class Label Nano Patterns

with Class Label

Rule Extraction

Rules with
Class Labels

Map Class
Labels with

Rules

Train Data Test Data

Performance
Evaluation

Rule Selection

Border Collie
Algorithm (BCO)

Fitness
Function

Rule Base

Figure 1: System framework.

Scientifc Programming 7

diferent conclusions on the same systems due to changes in
the defnitions and threshold values of source code metrics
used for detecting code bad smells. As a result of this issue,
the fndings of three tools are intersected to provide ac-
ceptable code smells.

Te steps to extract code smells from the jEdit software
are outlined as follows:

Input: jEdit Java source code
Process:
Step 1: using inFusion, JDeodorant, and iPlasma tools
to analyse the jEdit software
Step 2: select the jEdit software from each of the tool
Step 3: identify the fawed classes and methods
Step 4: identify fve code smells, namely data class, blob,
spaghetti code, functional decomposition, and feature
envy in the fawed classes and methods
Step 5: intersect the code smells that the three tools have
identifed to obtain common code smells, as shown in
Table 7
Output: code smells as class labels

3.3. Rule Extraction. Mining Association rules were intro-
duced in 1993 by Agarwal [36]. In this work, association
rules are generated from the dataset containing nano-
patterns using the Apriori algorithm [37]. All itemsets that
have a minimum of 4% support have been generated as
frequent itemsets. Te association rule is an implication
expression of the form, X⟶ Y where X and Y are disjoint
itemsets, i.e., X∩Y � ∅. Te strength of an association rule
can be measured in terms of its confdence. Support value is
the frequency of the occurrence of X and Y or P(X∪Y).
Confdence is the conditional probability of X and Y or
P(Y|X). All the rules that satisfy prespecifed minimum
confdence can be generated from the nanopatterns, as
shown in Table 8.

Te steps taken in the Apriori algorithm are outlined as
follows:

Input: nanopatterns without a class label as a dataset
Process:

Step 1:fnd all 1-itemsets and frequent 1-itemsets
candidates from the dataset
Step 2: fnd all frequent 2 and 3-itemsets withminimum
support of 4%, as shown in Figure 2
Step 3: generate a hash structure for storing k-itemsets
Step 4: generate association rules from the frequent
k-itemsets with a confdence greater than 50%, as
shown in Table 9
Output: association rules

3.4. Mapping Class Labels with Rules. After discovering the
possible association rules they need to bemappedwith the class
labels. Te class labels are the code smells detected from three
open-source tools, as discussed in Section 3.2. Table 10 shows
nanopatterns with class labels. Te extracted nanopatterns and
class labels are then associated by method mapping.

Te steps taken in the method mapping are outlined as
follows:

Input: nanopatterns for each method, class labels for
each method
Process:
Step 1: assign key values for each method (m1,m2, and
m3) in the class label extraction, as class labels blob
(BL), feature envy (FE), and data class (DC) in map1
Step 2: assign key values for each method in the nano-
pattern extraction, as nanopatterns (n1 to n17) in map2
Step 3: check for equality by verifying that the methods
in map1 are equal to the methods in map2
Step 4: if map1equals map2, then copy the corre-
sponding class label in map1 to map2
Output: nanopattern with class labels

Let A � a1, a2, . . . , am be a fnite set of all attributes in
dataset. C � c1, c2, . . . , cn is a set of classes, g(x) is a set of
transactions containing ruleItem x, and |g(x)| is the number
of transactions containing x.

Te confdence of ruleItem <ruleItem, ci> is the ratio of
the number of transactions that contain the ruleItem in class
ci and the number of transactions containing the ruleItem, as
in equation (1).

Table 6: jEdit software-nanopattern without class label.

Method FieldReader FieldWriter StraightLine Looping ArrayRreader ArrayWriter Exceptions
isKeyInTable 0 0 1 1 0 0 1
SetObject 0 0 0 0 1 0 1
isRightClickPopupEnabled 0 1 1 0 1 0 0
setRightClickPopupEnabled 1 0 0 0 0 0 0
isKnownExtension 0 0 1 0 1 1 0
handleTracks 0 0 0 0 0 0 1
translateDate 0 0 1 0 0 0 0
DoSearch 0 0 0 0 0 0 0
MapField 1 0 0 1 0 0 0
setTokenMarker 1 0 1 0 0 0 0

8 Scientifc Programming

Conf 〈ruleitem, ci〉(�
g 〈ruleitem, ci〉(

| g(ruleitem)|
× 100. (1)

Considering the frst ruleItem
FieldR eade r � > ObjCreator from Table 9 that occurs in the
transaction IDs 1, 4, 9, and 10 as given in Table 10. It is denoted
as g(〈FieldR eade r � >ObjCreator〉) � 1, 4, 9, 10{ }, class
blob occurs in the transaction IDs 1, 4, and 10 and denoted as
g(Blob) � 1, 4, 10{ }, while feature envy occurs in the trans-
action IDs 2 and 6 and denoted as g(Feature Envy) � 2, 6{ },
data class occurs in the transaction IDs 5 and 8 and denoted as
g(DataClass) � 5, 8{ }, functional decomposition occurs in
transaction IDs 3 and 7 and denoted as
g(Functional Decomposition) � 3, 7{ }, and spaghetti code
occurs in transaction ID 9 and denoted asg(Spaghetti Code) �

9{ }.
Te transaction IDs containing 〈FieldR eade r �

>ObjCreator〉⟶ Spaghetti Code are (〈FieldR eade r � >
ObjCreator〉)∩g(Spaghetti Code) � 1, 4, 9, 10{ }∩ 9{ } � 9{ },
so the support for 〈FieldR eade r � >ObjCreator〉⟶
Spaghetti Code is 1. Hence, this rule is not mapped with the
class label spaghetti code. Te transaction IDs containing
〈FieldR eade r � >ObjCreator〉⟶ Blob are (〈FieldR
eade r � >ObjCreator〉)∩g(Blob) � 1, 4, 9, 10{ }∩
1, 4, 10{ } � 1, 4, 10{ }, so the support for 〈FieldR eade r

� >ObjCreator〉⟶ Blob is 3. Te confdence of
〈FieldR eade r � >ObjCreator〉⟶ Blob will be calculated
for the rule having greater support as (| g

(1, 4, 10) | / | g(1, 4, 9, 10) |) × 100 � (3/4) × 100 � 75%.
Since this rule 〈FieldR eade r � >ObjCreator〉⟶ Blob has

greater support and confdence, it is mapped with the class label
blob.

Similarly, the support and confdence for the other
ruleItems to the class labels are calculated. Te selected rules
with class label are stored in the dataset. Te dataset is then
split into training and testing set in the ratio 80 : 20.

3.5. Rule Selection. A large number of rules with minimum
support and confdence are generated in the rule extraction
phase. Te best rules are selected using the BCO algorithm.
Te algorithm requires binary transformation, in which the
dataset is transformed into binary data in the form of 1 s and
0 s, with 1 indicating the presence of an item and 0 indicating
its absence. Each individual is represented as a separate rule.
Let N be the total number of items in the dataset. Each
ruleItem is represented by two bits, each of which can be
either 0 or 1, as shown in Table 11.Te frst bit has a value of
1 if the item is present in the rule, and 0 otherwise. Te
second bit indicates whether the item is in the antecedent
(takes 1) or consequent (takes 0). A ruleItem (RI) can be
represented in either of four possible combinations. Te
attributes should be restricted to the antecedent side of the
rule, and the class label should be restricted to the conse-
quent side of the rule. As a result, in individual encoding, the
Bit 2 value of the class label is 0, and the Bit 2 value of the
ruleItem is 1.

Te rule selection uses the Border Collie bio-inspired
algorithm to select the optimal rule containing the code
smell methods. Te accuracy of the k-NN classifer is used as

Table 8: Nanopatterns without class label.

TID FieldReader FieldWriter StraightLine Looping ArrayReader ArrayWriter Exceptions ObjCreator LocalReader LocalWriter
1 1 0 1 1 0 1 1 1 1 0
2 0 0 0 0 1 0 1 1 0 0
3 0 1 1 0 1 0 0 0 1 1
4 1 0 0 0 0 0 0 1 1 1
5 0 0 1 0 1 1 0 0 0 0
6 0 0 0 0 0 0 1 1 1 0
7 0 1 1 0 0 0 0 0 0 1
8 0 1 0 0 0 1 0 1 1 0
9 1 0 0 1 0 1 0 1 0 1
10 1 1 1 0 0 0 0 1 1 1

Table 7: Code smells detected using inFusion, JDeodorant, and iPlasma.

Code smell
inFusion JDeodorant iPlasma

jEdit Nutch Lucene Rhino jEdit Nutch Lucene Rhino jEdit Nutch Lucene Rhino
Blob 3 17 5 15 8 25 2 11 5 11 3 13
Feature envy 8 5 7 11 10 10 3 7 5 4 5 9
Functional decomposition 4 0 2 7 0 0 0 1 2 0 1 7
Spaghetti code 2 0 5 6 0 0 3 2 2 1 2 5
Data class 7 21 13 28 5 18 15 24 4 22 11 19
Total 24 43 32 67 23 53 23 45 18 38 22 53

Scientifc Programming 9

the ftness function for the Border Collie algorithm. After the
training, the larger portions (i.e., 80%) of the rules are di-
vided further into the ratio of 80 : 20, 80% is used for training
the rules, and 20% is used for testing the constructed k-NN
classifer. Te k-NN stores the training data and uses it to
classify new observations based on the value of the k-closest
stored points. Te k-value plays a signifcant role in

determining which rules are appropriate to use to maximize
the k-NN classifer’s accuracy. Based on the optimum ftness
value the rules are selected. At this optimal k-value, the
classifer’s accuracy improves as well. Te parameter settings
of the Border Collie Optimization algorithm are presented in
Table 12.

Border Collies are an afectionate, smart, and energetic
breed of dogs. Tey are extremely intelligent, athletic, and
can be easily trained. Tese dogs are usually healthy and
active, having a normal life span of about 12 to 15 years. It
can be said that watching a Border Collie herd sheep is like
watching a master craftsman at work. Herding is an inherent
ability they are born with. Even when a puppy is introduced
to the herd for the frst time, they demonstrate immense
control over the sheep. Border Collies follow three herding
techniques, namely gathering, stalking, and eyeing. In
Border Collie Optimization (BCO), a population of three
dogs, and sheep is considered. A group consisting of three
dogs and sheep is visualized while initiating the algorithm.

Items Support

Items Support

Items Support

Iteration 3 Frequent 3-itemsets
Items Support

(FieldReader, ObjCreator,
LocalReader) 0.04

Items Support
(FieldReader, ObjCreator,

LocalReader) 0.04

Iteration 1

Frequent 1-itemsetsFieldReader 0.05
FieldWriter 0.04
Straightline 0.05

Looping 0.02
ArrayReader 0.03
ArrayWriter 00.4
Exceptions 0.03
ObjCreator 0.07
LocalReader 0.06
LocalWriter 0.05

FieldReader 0.05
FieldWriter 0.04
Straightline 0.05
ArrayWriter 0.04
ObjCreator 0.07
LocalReader 0.06
LocalWriter 0.05

Frequent 2-itemsets

Iteration 2

(FieldReader, FieldWriter) 0.01
(FieldReader, Straightline) 0.01
(FieldReader, ArrayWriter) 0.02
(FieldReader, ObjCreator) 0.04
(FieldReader, LocalReader) 0.03
(FieldReader, LocalWriter) 0.03
(FieldWriter, Straightline) 0.03
(FieldWriter, ArrayWriter) 0.02
(FieldWriter, ObjCreator) 0.02
(FieldWriter, LocalReader) 0.03
(FieldWriter, LocalWriter) 0.03
(Straightline, ArrayWriter) 0.02
(Straightline, ObjCreator) 0.02
(Straightline, LocalReader) 0.03
(Straightline, LocalWriter) 0.03
(ArrayWriter, ObjCreator) 0.03
(ArrayWriter, LocalReader) 0.02
(ArrayWriter, LocalWrter) 0.01
(ObjCreator, LocalReader) 0.05
(ObjCreator, LocalWrter) 0.03
(LocalReader, LocalWrter) 0.03

Items Support
(FieldReader, ObjCreator) 0.04
(ObjCreator, LocalReader) 0.05

Figure 2: Frequent 1, 2, and 3 itemsets.

Table 9: Possible association rules.

Itemsets Confdence
FieldReader≥ObjCreator 0.8
ObjCreator≥ FieldReader 0.57
ObjCreator≥ LocalReader 0.71
LocalReader≥ObjCreator 0.83
(FieldReader, ObjCreator) ≥ LocalReader 1.00
(FieldReader, LocalReader) ≥ObjCreator 1.33
(LocalReader, ObjCreator) ≥ FieldReader 1.33

10 Scientifc Programming

Ta
bl

e
10
:N

an
op

at
te
rn
s
w
ith

cl
as
s
la
be
ls.

TI
D

Fi
el
dR

ea
de
r

Fi
el
dW

ri
te
r

St
ra
ig
ht
Li
ne

Lo
op

in
g

A
rr
ay
Re

ad
er

A
rr
ay
W
ri
te
r

Ex
ce
pt
io
ns

O
bj
C
re
at
or

Lo
ca
lR
ea
de
r

Lo
ca
lW

ri
te
r

C
la
ss

la
be
l

1
1

0
1

1
0

1
1

1
1

0
BL

2
0

0
0

0
1

0
1

1
0

0
FE

3
0

1
1

0
1

0
0

0
1

1
FD

4
1

0
0

0
0

0
0

1
1

1
BL

5
0

0
1

0
1

1
0

0
0

0
D
C

6
0

0
0

0
1

0
1

1
1

0
FE

7
0

1
1

0
0

0
0

0
0

1
FD

8
0

1
0

0
1

1
0

1
1

0
D
C

9
1

0
0

1
0

1
0

1
0

1
SC

10
1

1
1

0
0

0
0

1
1

1
BL

N
ot
e.
BL

:b
lo
b,

FE
-f
ea
tu
re

en
vy
,F

D
:f
un

ct
io
na
ld

ec
om

po
sit
io
n,

SC
:s
pa
gh

et
ti
co
de
,a
nd

D
C
:d

at
a
cl
as
s.

Scientifc Programming 11

Te sheep go out for grazing in diferent directions and the
dogs are responsible for bringing them back to the farm [38].

Te steps involved in the BCO algorithm for rule se-
lection are presented as follows:

Input: Rules with class labels—Training Data
Process:
Step 1: Initialize the population of N Border Collies
(solution) and sheep at random. Each Border Collie
and sheep is a possible solution (rule) that contains
nanopatterns of length “n.” If the corresponding
nanopattern is selected for the rule, it is represented
as “1”, else as “0”.
Step 2: Calculate the ftness function of each Border
Collies and sheep (rule) using the accuracy of the
k-NN classifer. Each rule is evaluated with the
classifcation accuracy as given in equation (2).

Classif ication accurcay �
Number of instances classif ied correctly
Total number of instances classif ied

. (2)

(i) Te Border Collie, a lead dog with a greater level of
ftness (classifcation accuracy), has been recognised
as the most accurate solution. Te dogs—lead dog,
right dog, and left dog—and sheep—gathered sheep,
stalked sheep, and eyed sheep—are named after
their diminishing ftness levels.

(ii) Te individual with the best ftness (f itf) is desig-
nated as the lead dog, in every iteration and is re-
sponsible for mainly gathering.

(iii) Individuals with the 2nd and 3rd best ftness values
are chosen as left and right dogs. A tournament
selection method is applied to choose left and right
dogs. Tese dogs mainly participate in the stalking
and eyeing of the herd. Teir ftness values are
referred to as (f itle) and (fitri), respectively.
Step 3: Te optimum solution is the dogs to lead the
sheep to the farm. Tey travel from one point in the
feld to the farm.Te distance covered and direction
of the sheep and dogs are controlled by velocity,
acceleration, and time.
Step 3a: Te velocity of dogs is calculated using
equations (3) to (5).

Vf(t + 1) �

��������������������������

Vf(t)
2

+ 2 × Accf(t) × Popf(t)

, (3)

Vri(t + 1) �

��������������������������

Vri(t)
2

+ 2 × Accri(t) × Popri(t)

, (4)

Vle(t + 1) �

��������������������������

Vle(t)
2

+ 2 × Accle(t) × Pople(t)

, (5)

where Vf(t + 1), Vri(t + 1), and Vle(t + 1) denote
velocity at a time (t+ 1) for lead, right, and left dogs.
Vf(t),Vri(t), and Vle(t) denote velocity at a time (t)

for lead, right, and left dogs. Accf(t), Accri(t), and
Accle(t) denote acceleration of the lead, right and
left dogs. Popf(t), Popri(t), and Pople(t) denote
positions of the lead, right, and left dogs.
Step 3b: Te velocity of the sheep is calculated using
the three herding techniques namely gathering,
stalking, and eyeing based on the value of Dg given
in the following equation:

Dg � f itf − f its − f itle + f itri(− f its(, (6)

where Dg compares the ftness of sheep to that of the
ftness of lead dog and mean ftness of left and right
dogs, f itf is the ftness of lead dog at time (t), f itle is the
ftness of left dog at time (t), f itri is the ftness of right
dog at time (t), and fits is the ftness of sheep at time (t).

(i) If the value of Dg is positive, it indicates that the
sheep is nearer to the lead dog. In this case, the
velocity of the gathering sheep is calculated using
the following equation:

Vsg(t + 1) �

������������������������������

Vf(t + 1)
2

+ 2 × Accf(t) × Popsg(t)

,

(7)

where Vsg(t + 1) is the velocity of the gathered
sheep at a time (t+ 1),Vf(t + 1) is the velocity of the
lead dog at a time (t+ 1), Accf(t) is the acceleration
of the lead dog at a time (t), and Popsg(t) is the
location of the gathered sheep at a time (t).

(ii) If the value of Dg is negative, it indicates that the
sheep is nearer to the left and right dogs. In this case,
the velocity of the stalking sheep is calculated using
the equations (8) to (10):

Table 11: Rule representation in BCO.

RI1 RI2 RI3 . . . Class label
Bit 1 Bit 2 Bit 1 Bit 2 Bit 1 Bit 2 . . . Bit 1 Bit 2

Table 12: Parameter settings for BCO.

Parameter Value
Initial number of individuals
(N) N� 30 (3 dogs and N− 3 sheep)

Velocity of each individual 0

Time of each individual Random number between 1 and
30

Acceleration of each individual 1
Maximum no. of iterations 100

12 Scientifc Programming

Vri �

���������������������������������������

Vri t + 1) tan θ1((
2

+ 2 × Accri(t) × Popri t(

(8)

where Vri(t + 1) is velocity of the right dog at time
(t+ 1), Accri(t) is the acceleration of the right dog at
time (t), Popri(t) is the location of the right dog at
time (t), and θ1 is the random angle between right
dog and stalked sheep.

Vle �

��������������������������������������

Vle t + 1) tan θ2((
2

+ 2 × Accle(t) × Pople t(

(9)

where Vle(t + 1) is velocity of the left dog at time
(t+ 1), Accle(t) is the acceleration of the left dog at
time (t), Pople(t) is the location of the left dog at
time (t), and θ2 is the random angle between left dog
and stalked sheep.

Vss(t + 1) �
Vle + Vri

2
, (10)

where Vss(t + 1) is the velocity of staked sheep at
time (t+ 1), Vle is the velocity of the left dog, and Vri

is the velocity of the right dog.
(iii) Te sheep that have entirely lost their way must be

kept an eye on.Te velocity calculation of the eyeing
sheep is computed using the following equation:

Vse(t + 1) �

�����������������������������

Vle(t + 1)
2

− 2 × Accle(t) × Pople(t)

,

(11)

where Vse(t + 1) is the velocity of the eyed sheep at
time (t+ 1), Vle(t + 1) is velocity of the left dog at
time (t+ 1), Accle(t) is the acceleration of the left
dog at time (t), and Pople(t) is the location of the left
dog at time (t).
Step 3c: Te acceleration calculation of dogs and
sheep is given in the following equation:

Acci(t + 1) �
Vi(t + 1) − Vi(t)(

Timei(t)
, (12)

where Acci(t + 1) is the acceleration of all dogs and
sheep, viz., if(t + 1), Accle(t + 1), Accri(t + 1),
Accsg(t + 1), Accss(t + 1) and Accse(t + 1), and
i ∈ f, le, ri, sg, ss to se

Step 3d: Te time calculation of dogs and sheep is
given in the following equation:

Timei(t + 1) � Avg
d

i�1

Vi(t + 1) − Vi(t)(

Acci(t + 1)
, (13)

where Timei(t + 1) is the average time of traversal
of each individual of dimension d.
Step 4: Update the population of dogs using
equation (14) to (16):

Popf(t + 1) � Vf(t + 1) × Timef(t + 1) +
1
2
Accf(t + 1) × Timef(t + 1)

2
, (14)

where Popf(t + 1) is the location of lead dog at time
(t+ 1), Vf(t + 1) is the velocity of the lead dog at
time (t+1), Timef(t + 1) is the time required by the

lead dog to move to Popf(t + 1), and Accf(t + 1) is
the acceleration of lead dog at time (t+ 1).

Pople(t + 1) � Vle(t + 1) × Timele(t + 1) +
1
2
Accle(t + 1) × Timele(t + 1)

2
, (15)

where Pople(t + 1) is the location of left dog at time
(t+ 1), Vle(t + 1) is the velocity of the left dog at
time (t+1), Timele(t + 1) is the time required by the

left dog to move to Popf(t + 1), and Accle(t + 1) is
the acceleration of left dog at time (t+ 1).

Popri(t + 1) � Vri(t + 1) × Timeri(t + 1) +
1
2
Accri(t + 1) × Timeri(t + 1)

2
, (16)

where Popri(t + 1) is the location of right dog at
time (t+ 1), Vri(t + 1) is the velocity of the right dog

Scientifc Programming 13

at time (t+1), Timeri(t + 1) is the time required by
the right dog to move to Popf(t + 1), and Accri(t +

1) is the acceleration of right dog at time (t+ 1).

Step 5: Update the population of sheep using
equation (17) to (19):

Popsg(t + 1) � Vsg(t + 1) × Timesg(t + 1) +
1
2
Accsg(t + 1) × Timesg(t + 1)

2
, (17)

where Popsg(t + 1) is the location of gathered sheep
at time (t+ 1), Vsg(t + 1) is the velocity of gathered
sheep at time (t+ 1), Timesg(t + 1) is the time

required by the gathered sheep to move to Popf(t +

1), and Accsg(t + 1) is the acceleration of gathered
sheep at time (t+ 1).

Popss(t + 1) � Vss(t + 1) × Timess(t + 1) −
1
2
Accss(t + 1) × Timess(t + 1)

2
, (18)

where Popss(t + 1) is the location of stalked sheep at
time (t+ 1), Vss(t + 1) is the velocity of stalked
sheep at time (t+ 1), Timess(t + 1) is the time

required by the stalked sheep to move to Popf(t +

1), and Accss(t + 1) is the acceleration of stalked
sheep at time (t+ 1).

Popse(t + 1) � Vse(t + 1) × Timese(t + 1) −
1
2
Accse(t + 1) × Timese(t + 1)

2
, (19)

where Popse(t + 1) is the location of eyed sheep at
time (t+ 1), Vse(t + 1) is the velocity of eyed sheep
at time (t+ 1), Timese(t + 1) is the time required by
the eyed sheep to move to Popf(t + 1), and
Accse(t + 1) is the acceleration of eyed sheep at time
(t+ 1).
Step 6: Repeat steps 2 to 5 until the solution con-
verges or maximum number of iterations is reached.
Te rule subset with maximum classifcation ac-
curacy obtained by the k-NN classifer is treated as
the optimal subset.
Output: optimal rule subset

Te rule selection uses Border Collie bio-inspired
algorithm to determine optimal rule subsets. BCO starts
with a random set of solutions. Each rule or solution is
evaluated using the accuracy of the k-NN classifer. Te
k-NN fnds the k-nearest neighbours to perform rule
selection. Te parameters of BCO are tuned after repeated
experiments. Te algorithm is set for diferent runs and a
diferent number of rules are selected at an individual run.
Te values are varied to analyse how the parameters afect
the algorithm’s performance. Te process is repeated until
the solution converges, or 100 iterations are performed to
determine the best set of rules. After selecting the best
rules, they are stored in Rule Base. Table 13 represents the
number of rules before and after performing rule selec-
tion. Table 14 represents a subset of rules from the optimal
rule subset.

4. Results and Discussion

Te work has been implemented in Java 1.8. Te experi-
ments are conducted using open-source software, namely
jEdit, Nutch, Lucene, and Rhino. jEdit is a text editor with
hundreds of developing plugins and functionality that are
reliable and easy to use. Nutch is an open-source Java search
engine implementation. Lucene is software for information
retrieval. Rhino is a JavaScript interpreter and compiler for
the Mozilla/Firefox browser written in Java. Table 15 rep-
resents the number of classes, code smells, and lines of code
for the software used.

Te proposed work selects the optimal rule subsets using
Border Collie bio-inspired algorithm with the accuracy of the
k-NN classifer as the ftness function. Te algorithm selects
rules depending on the performance of the classifer. Te rules
are selected based on the accuracy of the k-NN classifer, which
is largely dependent on the k-value. In order to determine the
optimum value of k, a range of k-values between 1 and 30 is
used, and the error mean rate is calculated for each k. Since the
error rate does not vary signifcantly after k� 17 as shown in
Figure 3, k� 17 is chosen as the threshold value of k. At optimal
k-value, the model accuracy is improved.

Te proposed algorithm uses BCO that selects 35 rules
out of 58 in jEdit, 12 rules out of 19 in Nutch, 9 rules out of
15 in Lucene, and 16 rules out of 27 rules in Rhino, re-
spectively. Te performance of the proposed work is mea-
sured in terms of accuracy, precision, recall, specifcity, and
defned using equations (20)–(23):

14 Scientifc Programming

Accuracy �
TP + TN

TP + FP + TN + FN
, (20)

Precision �
TP

TP + FP
, (21)

Recall �
TP

TP + FN
, (22)

Specif icity �
TN

TN + FP
, (23)

where TP is the number of true positives, TN denotes the
number of accurately predicted negatives, FP denotes the
number of negatives predicted as positives, and FN denotes

the number of positives predicted as negatives. Te con-
fusion matrix obtained for jEdit, Nutch, Lucene, and Rhino
are shown in Table 16.Te competitive results achieved from
the aforementioned software are shown in Table 17. Te
proposed work produced an accuracy of 98.78% for jEdit,
97.45% for Nutch, 95.58% for Lucene, and 96.34% for Rhino,
respectively. Te proposed work is compared to other well-
known techniques for code smell detection (see Table 18), as
the authors used the same open-source software to detect
code smells. However, the techniques PSO, GP, GA, PEA,
and HPSOM express rules as a set of software metrics and
thresholds rather than set of nanopatterns. Software metrics
are measures of software characteristics. Nanopatterns are
traceable fundamental characteristics of a method or a
procedure. When considering rules from both the

Table 13: Outline of the number of rules.

Software
No. of rules

Before rule selection After rule selection (BCO)
jEdit 58 35
Nutch 19 12
Lucene 15 9
Rhino 27 16

Table 14: Subset of rules from optimal rule subset.

Rules for detection Code smell
IF ObjectCreator AND FieldReader BL
IF Exception AND ArrayReader FE
IF FieldWriter AND LocalWriter FD
IF ArrayWriter AND Looping AND LocalWriter SC
IF ArrayReader AND ArrayWriter DC
BL: blob, FE-feature envy, FD: functional decomposition, SC: spaghetti code, and DC: data class.

Table 15: Outline of software.

Software Release Number of classes Number of smells KLOC
jEdit v.5.1.0 316 27 101
Nutch v.1.1 207 79 39
Lucene v.1.4.3 154 41 33
Rhino v.1.7R1 305 82 57

Error rate vs K-values

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Er
ro

r r
at

e

5 10 15 20 25 30 350
K-values

Figure 3: Error rate for range of k-values.

Scientifc Programming 15

characteristics, competitive recall, and precision values are
seen for nanopatterns, as shown in Table 18.

5. Conclusion and Scope for Future

Te proposed work to detect code smells using rules
extracted from nanopatterns has been designed and
implemented. Nanopatterns and the class labels are
extracted from the software. Rules are generated from the
input nanopatterns using the Apriori algorithm and asso-
ciated with the class labels. Rule selection has been per-
formed using the BCO algorithm with the k-NN classifer.
Te accuracy of the k-NN classifer was employed as the
ftness function to maximize the classifcation accuracy of
the rule set. Te optimal rule subsets that are selected by the
BCO algorithm are stored in the Rule Base. Te framework
has been trained and tested using software, namely jEdit,
Nutch, Lucene, and Rhino. Compared to other works, the
proposed work produced a precision of 90% and a recall of
93%.

Future research would incorporate additional code
smells recommended by Fowler to ensure its applicability.
Te research would also incorporate design patterns and
micropatterns to detect code smells. Although this work only
focuses on detecting code smells, it can be enhanced to
include corrective approaches as well.

Data Availability

Tedata for this study are available from previously reported
studies. Te open-source software used in this research is
available at Qualitas Corpus https://qualitascorpus.com/.
Te authors confrm that the codes used in this study are
available on GitHub at https://github.com/IRTJULIET/
Nano-Patterns-Code-Smells/commits/V1.1.

Conflicts of Interest

Te authors declare that they have no conficts of interest
regarding the publication of this paper.

Acknowledgments

Te authors thank Visvesvaraya Ph.D. Scheme for Elec-
tronics and IT for the fnancial support of the research work.

References

[1] A. Abran and H. Nguyenkim, “Measurement of the main-
tenance process from a demand-based perspective,” Journal of
Software Maintenance: Research and Practice, vol. 5, no. 2,
pp. 63–90, 1993.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Longman, Westford, MA, USA, 1999.

Table 16: Confusion matrix for jEdit, Nutch, Lucene, and Rhino.

Software Actual and predicted Correctly identifed Incorrectly identifed

jEdit Correctly identifed 23 4
Incorrectly identifed 4 76

Nutch Correctly identifed 72 6
Incorrectly identifed 6 309

Lucene Correctly identifed 36 3
Incorrectly identifed 62 159

Rhino Correctly identifed 76 7
Incorrectly identifed 5 322

Table 17: Performance measures.

Software Accuracy (%) Recall (%) Specifcity (%) Precision (%)
jEdit 98.78 95.34 96.39 93.71
Nutch 97.45 94.87 98.09 92.50
Lucene 95.58 92.30 96.36 85.71
Rhino 96.34 92.85 97.05 86.66

Table 18: Comparison of proposed work with existing works.

Software
PSO GP GA PEA HPSOM Proposed

work
PR RE PR RE PR RE PR RE PR RE PR RE

jEdit 86 90 84 77 77 85 87 88 92 95 96 95
Nutch 90 86 82 86 83 84 88 87 90 92 93 95
Lucene 92 82 84 78 82 84 91 86 94 88 86 92
Rhino 89 93 81 84 86 81 89 92 95 95 87 93
PR: precision and RE: recall. Bold values denote the highest precision and recall values.

16 Scientifc Programming

https://qualitascorpus.com/
https://github.com/IRTJULIET/Nano-Patterns-Code-Smells/commits/V1.1
https://github.com/IRTJULIET/Nano-Patterns-Code-Smells/commits/V1.1

[3] Z. Soh, A. Yamashita, F. Khomhand, and Y. G. Guéhéneuc,
“Do code smells impact the efort of diferent maintenance
programming activities?”vol. 1, pp. 393–402, in Proceedings of
the 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1,
pp. 393–402, IEEE, Osaka, Japan, May 2016.

[4] J. P dos Reis, F. B. e Abreu, G. de Figueiredo Carneiroand, and
C. Anslow, “Code smells detection and visualization: a sys-
tematic literature review,”Archives of Computational Methods
in Engineering, vol. 29, pp. 1–48, 2021.

[5] F. Khomh, S. Vaucher, Y. G. Guéhéneuc, and H. Sahraoui, “A
bayesian approach for the detection of code and design
smells,” in Proceedings of the 2009 Ninth International
Conference on Quality Software, pp. 305–314, IEEE, Jeju,
Korea (South), January 2009.

[6] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques
for code smell detection,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1143–1191, 2016.

[7] D. J. Tessalonica, H. K. Nehemiah, S. Sreejith, and
A. Kannan, “Metric-based rule optimizing system for code
smell detection using salp swarm and cockroach swarm al-
gorithm,” Journal of Intelligent & Fuzzy Systems, vol. 43, no. 6,
pp. 7243–7260, 2022.

[8] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-
view refactoring of class and activity diagrams using a multi-
objective evolutionary algorithm,” Software Quality Journal,
vol. 25, no. 2, pp. 473–501, 2017.

[9] A. Trivedi, J. S. Takur, and A. Gupta, “Code nano-pattern
detection using deep learning,” in Proceedings of the 13th
Innovations in Software Engineering Conference on Formerly
known as India Software Engineering Conference, pp. 1–6,
NewYork, NY, USA, February 2020.

[10] D. Yu, J. Yang, X. Chen, and J. Chen, “Detecting java code
clones based on bytecode sequence alignment,” IEEE Access,
vol. 7, pp. 22421–22433, 2019.

[11] J. Gill and I. Maman, “Micro patterns in Java code,” in
Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and appli-
cations, pp. 97–116, San Diego, CA, USA, October 2005.

[12] E. W. Host and B. M. Ostvold, “Te programmer’s lexicon,
volume I: the verbs,” in Proceedings of the Seventh IEEE In-
ternational Working Conference on Source Code Analysis and
Manipulation (SCAM 2007), pp. 193–202, IEEE, Washington,
D.C, USA, September 2007.

[13] J. Singer, G. Brown, M. Luján, A. Pocock, and P. Yiapanis,
“Fundamental nano patterns to characterize and classify java
methods,” Electronic Notes in Teoretical Computer Science,
vol. 253, no. 7, pp. 191–204, 2010.

[14] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code
manipulation tool to implement adaptable systems,”
Adaptable and extensible component systems, vol. 30, no. 19,
2002.

[15] K. Z. Sultana, A. Deo, and B. J. Williams, “Correlation analysis
among java nano patterns and software vulnerabilities,” in
Proceedings of the 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), pp. 69–76, IEEE,
Singapore, April 2017.

[16] K. Z. Sultana, B. J. Williams, and A. Bosu, “A comparison of
nano patterns Vs. Software metrics in vulnerability predic-
tion,” in Proceedings of the 2018 25th Asia-Pacifc Software
Engineering Conference (APSEC), pp. 355–364, IEEE, Nara,
Japan, May 2018.

[17] M. Dahm, Byte Code EngineeringSpringer, Berlin, Heidelberg,
1999.

[18] A. White, “Serp,” 2007, http://Http://Serp.Sourceforge.Net.
[19] G. A. Cohen and D Kaminsky, “Automatic program

transformation WithJOIE,” in Proceedings of the USENIX
Annual Technical Conference, vol. 98, NewYork, NY, USA,
June 1998.

[20] J. Z. C. Lu and B. Xu, “A toolkit for Java bytecode analysis,” in
Proceedings of the Seventh IASTED International Conference
on Software Engineering and Applications, pp. 482–487,
Berlin, Heidelberg, January 2003.

[21] A. D. S. Mignon and R. L. de Azevedo da Rocha, “An ap-
plication of composite nano patterns to compiler selected
profling techniques,” in Proceedings of the 6th International
Conference on Software and Computer Applications,
pp. 186–190, NewYork, NY, USA, February 2017.

[22] F. Batarseh, “Java nano patterns: a set of reusable objects,” in
Proceedings of the 48th Annual Southeast Regional Conference,
pp. 1–4, Oxford, MS, USA, April 2010.

[23] G. Saranya, H. K. Nehemiah, and A. Kannan, “Hybrid particle
swarm optimisation with mutation for code smell detection,”
International Journal of Bio-Inspired Computation, vol. 12,
no. 3, pp. 186–195, 2018.

[24] G. Saranya, H. Khanna Nehemiah, A. Kannan, and V. Nithya,
“Model level code smell detection using egapso based on
similarity measures,” Alexandria Engineering Journal, vol. 57,
no. 3, pp. 1631–1642, 2018.

[25] C. Tjortjis, “Mining Association Rules from Code (MARC) to
support legacy software management,” Software Quality
Journal, vol. 28, no. 2, pp. 633–662, 2019.

[26] K. D. Rajab, “New associative classifcation method based on
rule pruning for classifcation of datasets,” IEEE Access, vol. 7,
pp. 157783–157795, 2019.

[27] L. Zhang, “Associative classifcation using an immune opti-
mization algorithm,” in Proceedings of the 2012 IEEE Inter-
national Conference on Automation and Logistics,
pp. 179–184, IEEE, Zhengzhou, China, Augest 2012.

[28] J. Mattiev and B. Kavsek, “Coverage-based classifcation using
association rule mining,” Applied Sciences, vol. 10, no. 20,
p. 7013, 2020.

[29] H. H. Awan and W. Shahzad, “Semi-supervised associative
classifcation using ant colony optimization algorithm,” Peer
Journal Computer Science, vol. 7, p. 676, 2021.

[30] N. Pritam, M. Khari, R. Kumar et al., “Assessment of code
smell for predicting class change proneness using machine
learning,” IEEE Access, vol. 7, pp. 37414–37425, 2019.

[31] M. Khari, P. Kumar, D. Burgos, and R. G. Crespo, “Optimized
test suites for automated testing using diferent optimization
techniques,” Soft Computing, vol. 22, no. 24, pp. 8341–8352,
2018.

[32] M. Khari, A. Sinha, E. Herrerra-Viedma, and R. G. Crespo,
“On the use of meta-heuristic algorithms for automated test
suite generation in software testing,” in Toward Humanoid
Robots: Te Role of Fuzzy Sets, pp. 149–197, Springer, Cham,
Champa, 2021.

[33] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. M. Phuong,
and P. H. Tong, “Empirical study of software defect
prediction: a systematic mapping,” Symmetry, vol. 11,
no. 2, p. 212, 2019.

[34] Y. Zhang, C. Ge, S. Hong, R. Tian, C. Dong, and J. Liu,
“DeleSmell: code smell detection based on deep learning and
latent semantic analysis,” Knowledge-Based Systems, vol. 255,
Article ID 109737, 2022.

Scientifc Programming 17

http://Http://Serp.Sourceforge.Net

[35] S. Boutaib, M. Elarbi, S. Bechikh, C. A. C Coello, and
L. B. Said, “Uncertainty-wise software anti-patterns de-
tection: a possibilistic evolutionary machine learning ap-
proach,” Applied Soft Computing, vol. 129, Article ID
109620, 2022.

[36] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” in Proceedings
of the 1993 ACM SIGMOD international conference on
Management of data, pp. 207–216, Washington, D.C, USA,
January 1993.

[37] C. Afori and M. Craus, “Grid implementation of the Apriori
algorithm,” Advances In Engineering Software, vol. 38, no. 5,
pp. 295–300, 2007.

[38] T. Dutta, S. Bhattacharyya, S. Dey, and J. Platos, “Border collie
optimization,” IEEE Access, vol. 8, pp. 109177–109197, 2020.

18 Scientifc Programming

