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In deep neural networks, the activation function is an important component. The most popular activation functions at the moment
are Sigmoid, Sin, rectified linear unit (ReLU), and some variants of ReLU. However, each of them has its own weakness. To
improve the network fitting and generalization ability, a new activation function, TSin, is designed. The basic design idea for TSin
function is to rotate the Sin function 45° counterclockwise and then finetune it to give it multiple better properties needed as an
activation function, such as nonlinearity, global differentiability, unsaturated property, zero-centered property, monotonicity,
quasi identity transformation property, and so on. The first is a theoretical derivation of TSin function by formulas. Then three
experiments are designed for performance test. The results show that compared with some popular activation functions, TSin has
advantages in terms of training stability, convergence speed, and convergence precision. The study of TSin not only provides a new
choice of activation function in deep learning but also provides a new idea for activation function design in the future.

1. Introduction

In neural network training, backpropagation (BP) algorithm
is a basic algorithm, which was first proposed by Werbos [1]
in his doctoral thesis. Later, it was proposed again by Rumel-
hart et al. [2] and used to solve shallow neural networks.
However, due to the problems of “gradient explosion” [3] and
“gradient vanishing” [3], the deep neural network (DNN) had a
slow development before the 1990s. To solve these problems,
Hochreite et al. [4] proposed methods such as long- and short-
termmemory, residual network [5], data regularization [6], and
so on [7–9]. Among them, the improvement of activation func-
tion is of milestone significance. Krizhevsky et al. [10] adopted
the rectified linear unit (ReLU) as the activation function for the
first time and proposed the famous AlexNet, which achieved
excellent results in large-scale image evaluation and made a
historic breakthrough in the development of deep learning
(DL). Later, in order to further enhance the network perfor-
mance, researchers tried a series of activation functions derived
from ReLU, such as the leaky rectified linear unit (LReLU),
parametric rectified linear unit (PReLU), self-normalizing linear
unit, and so on, which have the property of correction linearity

[11–16]. Sitzmann et al. [17] used the Sin function as the acti-
vation function and achieved excellent results, starting a new
concept of periodic function as the activation function.

Analyzing the existing popular activation function, Sig-
moid and Tanh functions have a smooth function curve and
definite upper and lower limits, which are very effective at
solving classification problems. However, the saturation of
the function can cause the “gradient vanishing” problems.
The ReLU function can solve the “gradient vanishing” prob-
lem by its linear advantages, but there is a “Dead ReLU
Problem” [18]. The derivative functions of ReLU overcome
the “Dead ReLU Problem,” but there are problems such as
asymmetry, difficulties on choosing parameters, and so on.
The Sin function solves the above problems, but it is not
monotonic, and the activation amplitude is limited.

Based on the above background, the characteristics of the
better activation function are summarized in this paper after
a detailed analysis. Based on the Sin function after counter-
clockwise rotation by 45°, through theoretical derivation, a
new activation function, which integrates several advantages,
is proposed step by step. That is the tilted sine function
(TSin). As an activation function, the TSin has the following
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advantages: (1) it has a linear change trend, (2) it has the
periodic change characteristic; (3) it has a zero mean, (4) it
has a symmetry about the origin, and (5) it has a derivative
that has the characteristics of nonnegative and periodic
change. Compared with several kinds of typical activation
functions by theoretical analysis, TSin shows better proper-
ties. In order to verify the validity of the theory, two typical
DL experiments are designed and carried out. The results
show that the TSin has different degrees of advantages in
the stability, convergence speed, and convergence precision
in the DL training.

The remainder of this paper is organized as follows: Section 2
presents the characteristics of several typical activation functions
analyzed. Section 3 presents the development principle of TSin
activation function is elaborated. Section 4 is the experimental
verification of theoretical reasoning. Section 5 is the manuscript
conclusion.

2. Classification and Characteristics of
Activation Functions

2.1. Requirement of Activation Function Characteristics. The
significance of the activation function is to solve the linear
indivisibility problem on the premise of no dimension explo-
sion. In the neural networks, each neuron node accepts the
output of the upper-layer neurons as its own input. If the
input value is directly linear weighted and output to the next
layer, it is easy to verify that no matter how many layers the
network has, the final output is a linear combination of the
original input. Then a large neural network is like a primitive
perceptron, and its approximation capability is rather limited.

When a nonlinear activation function is added before out-
put, the whole network will be nonlinear so as to obtain a
strong fitting ability. Therefore, in essence, the basic function
of the activation function is to introduce nonlinear factors into
the neural network so that the neural network can fit various
curves. And the most basic requirement of the activation func-
tion is nonlinearity.

In addition, the activation function should have the fol-
lowing characteristics as far as possible.

2.1.1. Global Differentiability. In BP, the calculation of the
loss function requires the derivative of the activation func-
tion. The differentiability ensures the existence of the gradi-
ent and further ensures the feasibility of the gradient descent
(GD) algorithm in the global region. Of course, for the sto-
chastic gradient descent (SGD) algorithm, the finite nondiffer-
entiable points will not have a great impact on the optimization
results [19].

2.1.2. Unsaturation. Saturation refers to the fact that the
gradient of the function tends to zero in some interval; as a
result, the parameter cannot be updated.

2.1.3. Zero-Center. The zero-center means symmetry and
zero mean, which makes the training more stable. The activa-
tion function of non-zero mean will lead to the the non-zero
mean signals output to the rear layer, namely bias shift [10].

2.1.4. Monotonicity. The sign of derivative is constant.
Monotony ensures that the gradient direction of the activa-
tion function will not change frequently. That speeds up the
convergence rate during training.

2.1.5. Quasi-Identity Transformation. On the premise of
nonlinearity activation, the output of the activation function
is approximately equal to the input. In this way, the ampli-
tude change between output and input will not be too much,
so as to avoid the gradient explosion, enhance the stability of
the network and make the gradient back easier.

2.1.6. Less Trainable Parameters. The existence of trainable
parameters in the activation function will slow down the
training efficiency greatly.

2.1.7. Simple Calculation. Simple calculation of the activation
function can accelerate the network training speed and shorten
the training time.

2.2. Saturation Activation Functions. Popular saturation acti-
vation functions mainly include the Sigmoid function and
Tanh function. The shapes of them are shown in Figure 1.

(1) Sigmoid is one of the most classical activation func-
tions [11], whose function and derivative are defined as
Equation (1).

f xð Þ ¼ 1
1þ e−x

f 0 xð Þ ¼ f xð Þ 1 − f xð Þð Þ:
ð1Þ

The output range of Sigmoid function is (0, 1), which has
an excellent effect on solving logistic regression problems.
The function shape is smooth. It is easy to differentiate, and
the range of the derivative is (0, 0.5).

The disadvantage is that it has saturated regions, where
the gradient is easy to vanish in BP, so the training of the
DNN cannot be completed. Non-zero mean value results in
uneven distribution of output signals. Besides, the existence of
an exponential function makes the calculation complicated.

(2) Tanh function is improved by Sigmoid, and its func-
tion and derivative are defined as Equation (2).

f xð Þ ¼ ex − e−x

ex þ e−x

f 0 xð Þ ¼ 1 − f 2 xð Þ:
ð2Þ

The Tanh inherits the smooth property of the Sigmoid
and overcomes the defect of non-zero mean value by adjust-
ing the output to (−1, 1). The Tanh image is symmetric
about the origin, and the range of the derivative function is
(0, 1).

2.3. Linear Activation Functions. Linear activation functions
are a series of variant functions based on ReLU function. The
shapes of them are shown in Figure 2.
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As the most popular activation function at present, ReLU
was first proposed by Nair and Hinton [20], which is defined
as Equation (3).

f xð Þ ¼ x x ≥ 0

0 x<0

(
: ð3Þ

In “Deep Sensity Rectifier Neural Networks,”Glorot noted
that neurons in the cerebral cortex hardly reach their maxi-
mum saturation zone [18].

Compared with the saturation activation function, the
most outstanding improvement of ReLU is that there is no
saturation area. There is no gradient vanishing phenomenon
during network training, which is significant for training the
deep network effectively. The output of ReLU is inhibited in
the negative interval to achieve the sparsity of the network
and reduce the overfitting problem to a certain extent. In
addition, the ReLU function has a small amount of computa-
tion and easy derivation, so it can train the network quickly.

The most fatal defect of ReLU is that the undifferentiated
signal discarding in the negative interval may lead to the
permanent death of some neurons, which is the “Dead ReLU
problem.” Moreover, the non-negative nature of ReLU deter-
mines that it does not have zero mean value.

LReLU function is based on ReLU and partial leakage of
negative interval signals, which is defined as Equation (4).

f xð Þ ¼ x x ≥ 0

αx x<0

(
: ð4Þ

The α is afixed parameter in the interval (0, 1). LReLU solved
the “Dead ReLU problem,” but the activation effect is sensitive
to the α value. Besides, the mean of LReLU is also non-zero.

Based on LReLU, PReLU takes α as trainable and obtains
the value from data training. PReLU is defined as same as
LReLU, namely Equation (4).

Based on LReLU, ELU replaces the activation mode in a
negative interval with an exponential function. ELU is
defined as Equation (5).

f xð Þ ¼ x x ≥ 0

αex − α x<0

(
: ð5Þ

SELU is a variant of ELU, which is defined as Equation (6).

f xð Þ ¼ λ
x x ≥ 0

αex − α x<0

(
: ð6Þ

The α and λ are determined values. The approximate
values are α ≈ 1:6733 and λ ≈ 1:0507, respectively. As a lin-
ear activation function, SELU not only solves the “Dead
ReLU problem” but also realizes the normalized processing
of sample signals.

2.4. Periodic Activation Function. The Sin function was first
used as the activation function by Sitzmann et al. [17]. The
shapes of function and derivative are shown in Figure 3, and
the expressions are shown in Equation (7).

f xð Þ ¼ sin xð Þ
f 0 xð Þ ¼ cos xð Þ : ð7Þ

As a kind of typical periodic function, Sin can be differ-
entiated everywhere, and the derivative is cosine function,
which can be regarded as the result of the phase shift of Sin
by π=2. Moreover, Sin has neither the gradient vanishing
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FIGURE 1: Shapes of typical saturation activation function and derivative. (a) Sigmoid and (b) Tanh.
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problem of the saturated function nor the “Dead ReLU prob-
lem” of ReLU. Sin has perfect symmetry about the origin.
However, the monotony is destroyed due to the periodic
cycle, and the limit of output amplitude makes it impossible
to approach the identity transformation.

3. The Derivation and Characteristic Study of
TSin Function

In order to make up for the defect of Sin, a new activation
function is explored, which inherits the advantages of Sin
and remains the monotonicity and quasi-identity transfor-
mation. Then it is considered that rotate the Sin function and
use the transformed function as the activation function. This
new function is named the tilted Sin function. The composi-
tion and properties of TSin are discussed in detail.

3.1. Definition of TSin.The basic design idea of TSin is to rotate
the Sin function π=4 reverse firstly. The line which the function

extends will change from the x-axis to y ¼ x. Next, adjust the
parameters of amplitude and phase one by one to achieve the
optimal characteristics, and then the TSin is obtained.

Define the original function before rotation as follows:

y ¼ A sin wx þ φð Þ A>0ð Þ: ð8Þ
According to the symmetry demand, there isφ ¼ 0. Rotate

the original coordinate system x − y as well as the original
function counterclockwise as the angle of θ ¼ π=4. Define
the new rotated coordinate system as coordinate system a − b.
Then the new rotated function is expressed in coordinate
system a − b as follows:

b ¼ A sin waþ φð Þ: ð9Þ

The images of the original function and the rotated one
are shown in Figure 4. According to the “rotation theorem,”
there are the following:
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FIGURE 2: Shapes of typical linear activation function and derivative. (a) ReLU, (b) LreLU, (c) PReLU, and (d) SELU.
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b

a

 !
¼ −sin θ cos θ

cos θ sin θ

 !
y

x

 !
: ð10Þ

Then, in the original coordinate system x − y, the rotated
function is as follows:

y cos θ − x sin θð Þ ¼ A sin ω ⋅ x cos θ þ y sin θð Þ þ φð Þ:
ð11Þ

Define it as TSin function. This is an implicit function
that can be expressed as follows:

F x; yð Þ ¼ y cos θ − x sin θð Þ − A sin ω ⋅ x cos θ þ y sin θð Þ þ φð Þ
F x; yð Þ ¼ 0:

ð12Þ

According to the rule of derivation, there is the follow-
ing:

dy
dx

¼ −
∂F=∂x
∂F=∂y

¼ sin θ þ Aω cos θ ⋅ cos ω ⋅ x cos θ þ y sin θð Þ þ φð Þ
cos θ − Aω sin θ ⋅ cos ω ⋅ x cos θ þ y sin θð Þ þ φð Þ :

ð13Þ

The derivative dy=dx is a periodic function, and its
threshold value is jointly determined by A and ω. According
to “Occam’s razor,” setω ¼ 1. Substitute φ ¼ 0; θ ¼ π=4 into
Equation (11) and we get the derivative as follows:

dy
dx

¼ 1þ A cos x þ yð Þ= ffiffiffi
2

pÀ Á
1 − A cos x þ yð Þ= ffiffiffi

2
pÀ Á : ð14Þ

As shown in Figure 4, the TSin derivative dy=dx reaches a
maximum at the origin 0;ð 0Þ. To satisfy the mapping rela-
tion as a function in the coordinate system x − y, the follow-
ing relationship holds:

dy
dx

¼ 1þ A
1 − A

>0

⇒ 1þ Að Þ 1 − Að Þ>0

⇒ A<1:

ð15Þ

Set A different values in the feasible region (0, 1). The
shapes of TSin derivative in different A are as shown, respec-
tively, in Figure 5.

As the figure shows, TSin derivatives in different A have
the same periodicity, which is T ¼ ffiffiffi

2
p

π. Just like the Sin,
TSin gets the maximum in kT ¼ ffiffiffi

2
p

kπ k 2 Zð Þ and gets
the minimum in kþ 0:5ð ÞT ¼ 2kþ 1ð Þ π= ffiffiffi

2
p

k 2 Zð Þ. When
x ¼ 0 and x ¼ π=

ffiffiffi
2

p
, the specific effect of A value on the

extreme point is studied. We get the following:

dy
dx

¼
1þ A
1 − A

x ¼ y ¼ 0ð Þ
1 − A
1þ A

x ¼ y ¼ πffiffiffi
2

p
� �

8>><
>>: : ð16Þ

As A adds from 0 to 1, the maximum of derivative
increases from 1 to þ1, and the minimum decreases from
1 to 0. The change trends are shown in Figure 6. In fact, when
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A is set the limiting value 1, TSin is the standard Sin in
coordinate system a − b, and when A is set the limiting
value 0, TSin is the identity function y ¼ x. When A is too
large, the function gradient changes too fast, and the training
is easy to be unstable. On the other hand, when A is too
small, the function is too close to linearity, and the conver-
gence speed is too slow. According to the experimental expe-
rience, the effect is better when A ¼ 0:5.

Summarize the above derivation process. The standard
TSin function and derivative are defined as follows:

F x; yð Þ ¼ y − xð Þ − ffiffiffi
2

p
A sin

ffiffiffi
2

p

2
x þ yð Þ

� �
¼ 0

y0 ¼ dy
dx

¼ 1þ A cos x þ yð Þ= ffiffiffi
2

pÀ Á
1 − A cos x þ yð Þ= ffiffiffi

2
pÀ Á 0<A< 1ð Þ:

ð17Þ

In the actual experiments, it is found that when training
the DNN by BP, if the derivative of the activation function is
greater than 1 in some regions, then the loss function is easy
to cause gradient explosion after multiple backward trans-
missions. Therefore, generally, the maximum absolute value
of the derivative should be not more than 1 in the actual
network training. According to 0<A< 1 in Equation (15),
when cos x þ yð Þ= ffiffiffi

2
pÀ Á ¼ 1; y0 gets max value y0max ¼

1þ Að Þ= 1 − Að Þ for TSin, and y0max>1 is constant. Accord-
ing to the generalized incremental rule [21], if the relative
amplitude of the derivative is kept constant, the normal
training of network parameters will not be affected.

ωij ← ωij þ αδixj

δi ¼ φ0 við Þei:
ð18Þ

So the derivative can be corrected by scaling down its
amplitude. The normalized corrected derivative is as follows:

ŷ0 ¼ dy
dx

=max
dy
dx

� �

¼ 1 − A
1þ A

⋅
1þ A cos x þ yð Þ= ffiffiffi

2
pÀ Á

1 − A cos x þ yð Þ= ffiffiffi
2

pÀ Á : ð19Þ

3.2. Property of TSin. Set A ¼ 0:5, and the graph of TSin and
related functions are shown in Figure 7. Look at the TSin
function with the graph.

First, look at the TSin represented by the blue curve,
which has the necessary nonlinearity as an activation func-
tion. The curve is singularly symmetric about the origin and
has zero mean property. It oscillates periodically along the
identity function y ¼ x and intersects the identity function at
the fixed periodic points. Observing the derivative curve in
cyan, it can be found that not only is TSin differentiable in
the whole region, but the derivative oscillates periodically
between 1/3 and 3. The constant positive derivative indicates
that the TSin has a strict monotony, and there is no satura-
tion region, which completely avoids the possible gradient
vanishing during network training.

Finally, observe the normalized modified derivative curve
in red. After the maximum value is normalized, the possible
gradient explosion is limited. For the TSin, the only parame-
ter is A, which does not require separate training and is
generally chosen A ¼ 0:5 according to experience.

4. Experiment and Analysis

Above, from the theoretical level, the excellent properties of
TSin as activation function are introduced. The following
specific verification is carried out through the design experi-
ments. There are two experiments in which a general fully
connected DNN and a deep convolutional neural network
(CNN) are designed.

4.1. Fully Connected DNN Experiments. A simple digital
image recognition experiment is designed as an example of
fully connected DNN. The learning aim is to realize the
recognitions of 5 × 5 pixel blocks representing 1–10 digits,
as shown in Figure 8.

Each image is transformed into a 5 × 5 logical matrix and
sent to the input node as input. The outputs and labels are
10 × 1 classification vectors. The structure of the DNN
designed is shown in Figure 9. There are five layers of fully
connected DNN, including three hidden layers, and each
hidden layer contains 20 nodes.

The activation function of the output layer is set as the
classification function Softmax. The activation function of
the hidden layer is set as TSin, ReLU, LReLU, and Sin, respec-
tively, where the leak parameter of LReLU is α ¼ 0:5. In each
epoch, 10 simple numbers are sent into the network in turn
for training, and 100 epochs of training are completed. The
learning algorithm is SGD, the learning rate is 0.01, and
no node discarding mechanism is set. Experiments are
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FIGURE 5: The shapes of TSin derivative in different A.
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conducted using MATLAB. The hardware used includes Intel
Xeon Silver 4210 CPU and NVIDIA TITAN RTX GPU. The
variation trend of the mean absolute errors using the different
activation functions between 100 epochs is recorded and
shown in Figure 10.

As shown in Figure 10, with the increase of training, all
curves have a process of decreasing first and then tending to
be stable. The changes of the black curve, green curve, and
blue curve are similar. They all converge to about −20 dB
finally. By comparison, the red curve drops faster and
reaches a minimum of −100 dB. It shows that TSin, as an
activation function, has far more advantages than other

classical activation functions in fully connected DNN. After
85 epochs, it is found that the error comes into an upward
trend. According to the law, during the process of DNN
training, it is very likely that the training has entered the
over-fitting stage since then, which is a normal situation in
the training. That also verifies the validity of the experiment
in a certain sense.

4.2. CNN Experiments Based on MNIST. The CNN experi-
ment uses the classical MNIST datasets. MNIST contain
70,000 hand-written digital images, each of which is a 28 ×
28 pixel black and white image. In order to save training
time, the first 5,000 images in MNIST are selected for the
experiment. The data used for training and testing are 4,000
and 1,000, respectively, a ratio of 8 : 2.

The each 28 × 28 2D matrix converted from the 28 ×
28 pixel image is fed into a simple CNN as input. This net-
work consists of a convolutional layer, a pooling layer, a hid-
den layer, and an output layer. A schematic diagram of the
network structure is made, as shown in Figure 11, for a more
intuitive representation of the network.

In detail, the convolutional layer consists of 20 sets of 9 ×
9 filters. The convolutional layer output first passes the
experimental activation function. Then it is sent to the 2 ×
2 average pooling layer. The pooling layer output is sent to a
fully connected layer of 100 nodes. After activated by the
experimental activation function again, the fully connected
layer output is sent to the next fully connected layer of
10 nodes. Finally, the output is classified by Softmax. Table 1
summarizes the detailed information of the network as
follows:

The experimental activation functions are set as TSin,
ReLU, LReLU, and Sin. And the CNN is trained 10 epochs
with different experimental activation functions respec-
tively by the same training data. In order to improve the

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

A

y′(0)

ðaÞ
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

A

y′(π cos θ)

ðbÞ
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training speed as much as possible under the premise of
training stability, the learning algorithm is chosen as
minibatch learning method, the batch size is 100, and
the learning rate is 0.01. At the same time, the momentum
method [21] is adopted to adjust the weight to make the
training more stable. The momentum hyperparameter is
set at 0.95. Experiments are conducted using MATLAB.
The hardware used includes Intel Xeon Silver 4210 CPU
and NVIDIA TITAN RTX GPU. With the increase of
training times, the change of mean absolute errors and
accuracy using different activation functions are recorded,
as shown in Figure 12.
Figure 12(a) shows the change of the mean absolute of
loss value with training using different experimental acti-
vation functions. The whole process can be roughly
divided into two stages. In the first stage, loss decreases
rapidly with training. Then, due to the limitation of net-
work structure, loss gradually tends to converge slowly.
By comparing the smoothed curves in the figure, it can be
seen that, in the decline stage, the red curve representing
the TSin has the fastest decline speed, and the following
are the blue curve representing the Sin, the green curve

FIGURE 8: Simple digital images of 1–10.
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FIGURE 9: The structure of five layers fully connected DNN.
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representing the LReLU and the black curve representing
ReLU, respectively. In the convergence stage, TSin has
the smallest convergence value, followed by Sin and
ReLU, and L ReLU has the largest convergence value.
Figure 12(b) shows the change of the prediction accuracy
in training with the training progress, which is also
roughly divided into two stages. In the first stage, the
accuracy rate increases rapidly. As the training becomes
saturated, the accuracy rate tends to be stable slowly. By
comparing the four curves, it can be found that the red
curve representing TSin has the fastest rising speed in the
rising stage, and the following are the blue curve repre-
senting Sin, the green curve representing LReLU, and the
black curve representing ReLU. In the stationary stage,
the accuracy rate of TSin is in the highest position, which
is slightly higher than that of Sin, followed by LReLU and
ReLU. Besides, in the data test, the test accuracy rate of
TSin is 91.0%, that of SIN is 90.7%, that of ReLU is 90.3%,
and that of LReLU is 89.3%. Based on the above, it can be
proved that the TSin has certain advantages compared
with other typical activation functions in the CNN
training.

4.3. CNN Experiments Based on CIFAR-10. The CNN exper-
iment uses the CIFAR-10 datasets. The CIFAR-10 datasets
consist of 60,000 images, with a total of 10 categories. Each is
a 32 × 32 pixel RGB color image. In order to save training
time, the first 5,000 images in CIFAR-10 are selected for the
experiment. The data used for training and testing are 4,000
and 1,000, respectively, a ratio of 8 : 2.

Each image is divided into three channels; each channel
is a 32 × 32 matrix, and each image is converted into a 3 ×
32 × 32 3D matrix as fed into a simple CNN. This network
consists of two convolutional layers, two pooling layers, a
hidden layer, and an output layer. A schematic diagram of
the network structure is made, as shown in Figure 13, for a
more intuitive representation of the network.

In detail, the convolutional layers consist of 30 sets of 5 ×
5 filters and 50 sets of 3 × 3 filters, respectively. After acti-
vated by the experimental functions, the data are sent to the
2 × 2 average pooling layers. The last pooling layer output is
sent to a fully connected layer of 100 nodes. After activated
by the experimental activation function again, the fully con-
nected layer output is sent to the next fully connected layer of
10 nodes. Finally, the output is classified by Softmax. Table 2

TABLE 1: The detailed structure of the simple CNN for training MNIST.

Layer name Input size Process Output size Parameter size Activation function

Input layer None None 28 × 28 None None
Convolutional layer 28 × 28 9 × 9 Convolution 20 channels 20 × 20 × 20 9 × 9 × 20 Experimental function
Pooling layer 20 × 20 × 20 2 × 2 Average pooling 10 × 10 × 20 None None
Hidden layer 10 × 10 × 20 Fully connection 100 100 × 2;000 Experimental function
Output layer 100 Fully connection 10 10 × 100 Softmax
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FIGURE 12: The change of mean absolute errors and accuracy using different activation functions. (a) Loss tendency and (b) accuracy
tendency.
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summarizes the detailed information of the network as
follows:

The experimental activation functions are set as TSin,
ReLU, LReLU, and Sin. And the CNN is trained 10 epochs
with different experimental activation functions respec-
tively by the same training data. The learning algorithm is
the same as in Section 4.2, namely, the minibatch learning
method. The batch size is 100. The learning rate is 0.01. At
the same time, the momentum method [21] is adopted to
adjust the weight to make the training more stable. The
momentum hyperparameter is set at 0.95. Experiments
are conducted using MATLAB, and the hardware used
is Intel Core i9 CPU. With the increase of training times,
the change of mean absolute errors and accuracy using
different activation functions are recorded, as shown in
Figure 14.
Figure 14(a) shows the change of the mean absolute of
loss value with training using different experimental acti-
vation functions. Similar to the experimental results in
Section 4.2, the curves also decline rapidly at first and
then gradually and slowly tend to converge. Comparing
the smoothed curves, it is shown that the red curve repre-
senting the TSin has the fastest decline speed in the
decline stage. The following is the black curve represent-
ing ReLU. In the convergence stage, TSin has the smallest
convergence value, followed by ReLU and LReLU, and
Sin has the largest convergence value.

Figure 14(b) shows the change of the prediction accuracy
in training with the training progress. The early curves
experienced a short period of instability. As the training
becomes saturated, the accuracy rate tends to be stable
slowly. By comparing the four curves, it can be found
that the red curve representing TSin has the fastest rising
speed, and the following is the blue curve representing
Sin, the black curve representing ReLU, and the green
curve representing LReLU.

In the data test, the test accuracy rate of TSin is 27.0%,
that of Sin is 20.5%, that of ReLU is 22.9%, and that of LReLU
is 15.2%. That highlights the advantages of TSin functions.

Based on the above experiments, it can be proved that the
TSin has a better activation ability in both the fully connected
DNN and the CNN. Compared with the experiments in
Section 4, the more activation times in a network, the
more obvious the effect will be, which is also in line with
the theory in Section 3.

The only note is that the above experiments are proofs
based on general experimental datasets in order to highlight
the advantages of TSin in general datasets. As for the struc-
ture of the network, there may be better specific structures
for specific datasets. For example, compared with MNIST
datasets, the correct rate of CIFAR-10 datasets is significantly
reduced overall. The reason may be that CIFAR-10 are mul-
tichannel RGB images, which are more complex than
MNIST. Correspondingly, the network structure may need

Conv Pool Dense Dense

Input
Output

Conv Pool

FIGURE 13: The schematic diagram of a simple CNN for training CIFAR-10.

TABLE 2: The detailed structure of CNN for training CIFAR-10.

Layer name Input size Process Output size Parameter size Activation function

Input layer None None 32 × 32 × 3 None None
Convolutional layer 32 × 32 × 3 5 × 5 Convolution 30 channels 28 × 28 × 30 5 × 5 × 30 Experimental function
Pooling layer 28 × 28 × 30 2 × 2 Average pooling 14 × 14 × 20 None None
Convolutional layer 14 × 14 × 20 3 × 3 Convolution 50 channels 12 × 12 × 50 3 × 3 × 50 Experimental function
Pooling layer 12 × 12 × 50 2 × 2 Average pooling 6 × 6 × 50 None None
Hidden layer 6 × 6 × 50 Fully connection 100 100 × 1;800 Experimental function
Output layer 100 Fully connection 10 10 × 100 Softmax
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to be more optimized, and the training data need to be more.
But none of this makes difference to the main proof of the
experiment. So it will be gradually explored in later according
to the needs and has not been studied much as a focus in this
paper.

5. Conclusion

Based on the deficiency of the existing activation functions, a
new activation function is proposed. First, through the anal-
ysis of classical activation functions, the characteristics of
excellent activation functions are summarized. After that,
with a design goal of integrating the advantages of the classi-
cal activation functions, a new activation function, TSin is
obtained through rotating the Sin function and relevant the-
oretical derivation step by step. The essence of TSin is to
rotate anticlockwise the Sin function with certain amplitude
and phase by 45°. The TSin has many excellent properties,
such as global differentiability, unsaturation, zero-center, mono-
tonic, and quasi-identity transformation. Finally, according to
the experience obtained in the actual experiments, the TSin
derivative used for training is modified in amplitude to ensure
the stability of the training.

After theoretical derivation, the performance tests are
carried out through two typical experiments. In the experi-
ment of fully connected DNN, each function quickly reaches
the training saturation state. The TSin shows an extremely
fast convergence rate and excellent convergence precision,
which is far better than that of ReLU, LReLU, and Sin.

In the CNN experiments, because the dataset are more
complex, the performance of TSin is not extremely different
from the others, but it still maintains the advantage. The
three experiment results fully verify the validity of the theory
and effectively show that the TSin has better performance

than other activation functions in some aspects. Some details
in the experiments, such as the appearance of supersatura-
tion, all accord with the normal theory of neural network
training, which also reflects the authenticity of the experi-
ments to a certain extent

Combined with the theoretical derivation and experi-
mental verification in this paper, the good performance of
TSin as the activation function in ANN has been verified,
which not only provides a new choice for the use of the
activation function in ANN but also provides a new idea
for the innovation of activation function in the future.
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