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Speed skating serves as a significant application domain for multiobject tracking (MOT), presenting unique challenges such as
frequent occlusion, highly similar appearances, and motion blur. To address these challenges, this paper constructs an MOT
dataset called SKT-MOT for speed skating and analyzes the shortcomings of existing datasets and methods. Accordingly, we
propose a dynamic MOT method called DyTracker. The method builds upon the DeepSORT baseline and enhances three key
modules. At the global level, we design the track dynamic management (TDM) algorithm. In the motion branch, a novel metric is
proposed to evaluate occlusion and Kalman filter dynamic update (KFDU) is implemented. In the appearance branch, we account
for the difference in human posture and propose the feature dynamic selection and updating (FDSU) strategy. This makes our
DyTracker flexible and efficient to achieve a multiobject tracking accuracy (MOTA) of 93.70% and identification F1 (IDF1) score of
92.39% on SKT-MOT, which is a significant advantage over existing SOTA methods. To validate the generalization of our
proposed module, two dynamic update modules are inserted into other methods and validated on the public dataset MOT17,
and the accuracy is generally improved by 0.2%–0.6%.

1. Introduction

Speed skating is of significant importance as a prominent
winter Olympics event, with substantial influence worldwide.
The application of multiobject tracking (MOT) technology
to provide supplementary data analysis for speed skaters
holds practical significance. Tracking speed skaters presents
a distinctive case within MOT, entailing numerous unique
challenges. This paper aims to enable MOT to be efficiently
completed in speed skating scenarios.

MOT is a classic problem in computer vision that aims to
identify and track all objects of a specific category in a video.
Early methods [1, 2] relied mainly on handcrafted features to
compute the similarity between frames and achieve object
association. With the development of deep learning, methods
based on deep neural networks have gradually become main-
stream. SORT [3] was the first method to apply object detec-
tion networks to MOT, completing the association task
through the Kalman filter (KF) [4] and the Hungary

matching algorithm [5]. This was also the first tracking-by-
detection (TBD) paradigm framework. DeepSORT [6] intro-
duced a reidentification module on this basis, which jointly
completes tracking using appearance features and motion
clues. It is the most widely used method in the industry.
With the development of MOT, some methods [7–11, 21,
22] integrated these modules into a unified network to
reduce the inference time and attempted to achieve the
end-to-end. These methods are called joint detection and
tracking (JDT) paradigms. Both paradigms have made sig-
nificant progress in recent years.

As MOT technology matures, its applications become
increasingly widespread. In certain competitive sports fields
[12–14, 20], MOT technology is widely used to guide the
training and competition of athletes. However, in the speed
skating scene, the development of MOT is relatively slow,
mainly due to a lack of data and unique challenges in speed
skating. To this end, we first construct SKT-MOT, an MOT
dataset for short-track speed skating, consisting of 56 video

Hindawi
Scientific Programming
Volume 2023, Article ID 3895703, 15 pages
https://doi.org/10.1155/2023/3895703

https://orcid.org/0000-0003-4785-791X
mailto:lizongmin@upc.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3895703


clips with three scenes and a total of 53,178 images. Based on
this, we also developed object detection and re-ID datasets
for speed skaters. Additionally, we analyze the unique chal-
lenges and advantages of speed skating scenarios. These chal-
lenges include:

(1) Frequent occlusions between athletes.
(2) Athletes dress similarly or even identically.
(3) Speed skating is fast and prone to motion blur.

These difficulties hinder the efficient completion of MOT
tasks. But the speed skating scene has advantages, with its
advantages lying in a relatively small and fixed number of
athletes and a relatively clean environment.

Aiming at these advantages and challenges, we propose
DyTracker, an MOT method that builds on the DeepSORT
baseline and improves three modules: (1) track dynamic
management (TDM), which employs a dynamic tracks man-
agement algorithm to overcome the influence of false detec-
tions and maintain tracks number stability; (2) Kalman filter
dynamic update (KFDU), which evaluates the degree of
occlusion per athlete and implements KF dynamic update,
which improves the robustness of KF against occlusion; and
(3) feature dynamic selection and updating (FDSU), which
analyzes the deficiencies of traditional association methods
for highly similar appearance and detection noises issues and
proposes a dynamic matching and updating strategy based
on the difference in posture and detection quality.

In summary, the main contributions of this paper are as
follows:

(1) We constructed an MOT dataset SKT-MOT for
speed skating to compensate for the lack of data.

(2) We analyzed the unique advantages and challenges
of the speed skating scene and proposed a dynamic
MOT method—DyTracker.

(3) We carried out adequate experiments on SKT-MOT
and MOT17 dataset [16] to verify the effectiveness
and generalization of the proposed method and
modules.

The paper is organized as follows: Section 1: introduc-
tion, Section 2: related work, Section 3: SKT-MOT dataset,
Section 4: DyTracker, and Section 5: experiment and discus-
sion, followed by conclusions. In the appendix, we list the
specific meanings of the abbreviations in the article.

2. Related Work

2.1. MOT Datasets. In various scenarios, numerous datasets
for MOT have emerged, as shown in Table 1. Alongside the
dataset we have proposed, several existing datasets also con-
centrate on human tracking. For example, PETS2009 [18]
and TUD [19] are early pedestrian tracking datasets, albeit
with relatively small scales. To form larger-scale datasets,
MOT15 [15] integrates these early pedestrian datasets.
MOT17 [16] further enriches pedestrian tracking by expand-
ing to new scenes and dynamic perspective. MOT20 [17]

increases the difficulty of tracking by increasing pedestrian
density. In recent years, human tracking datasets have
emerged in complex scenarios, such as DanceTrack [35] in
dance scenes and SoccerNet-Tracking [12] in soccer scenes,
which significantly contribute to the advancement of MOT
in human tracking.

In addition to human tracking, other datasets have been
proposed for various object types. In the field of autonomous
driving, there exists a dataset called KITTI [36] that specifi-
cally focuses on vehicle tracking, representing the earliest
large-scale MOT dataset in this domain. Additionally,
BDD100K [37] and KITTI360 [38] further expand vehicle
tracking data. CTMC [39] is dedicated to tracking biological
cells, while TAO [40] focuses on multicategory tracking,
annotating 833 target categories, significantly enriching the
content of MOT.

2.2. MOT Methods. Most MOT methods can be categorized
into TBD and JDT, as shown in Table 2. TBD [3, 6, 23, 24,
41] involves three independent components:

(1) An existing object detector to generate detection
boxes for each frame.

(2) A re-ID embedding model used to extract the
appearance features of objects.

(3) A tracker to associate objects based on their motion
cues or appearance features.

TBD is a flexible framework, with each component able
to be replaced, giving it high generalization and suitability for
complex scenes. However, it has the drawback of being time-
consuming during inference.

Instead, JDT [7–11, 21, 22] incorporates several compo-
nents into a unified network, reducing the inference time.
Typically, JDT builds on detectors, fusing a tracker for them
or adding a feature extraction branch. Over the past period,
this paradigm has become mainstream. However, due to
contradictions between modules, achieving global optimality
for the JDT paradigm is problematic.

In recent years, significant advancements have been
made in both paradigms. DeepSORT [6] represents the clas-
sic method within the TBD paradigm, leveraging motion and
appearance as the two primary target features to accomplish
the tracking task through Hungarian matching. StrongSORT
[41] enhances DeepSORT by incorporating more powerful
components. ByteTrack [23], in pursuit of faster speed, uti-
lizes only motion cues for data association. In addition, it
incorporates low-scoring detection frames into the associa-
tion process, significantly reducing missed detections. On this
basis, OC-SORT [25] corrects the accumulation of errors in
Kalman filtering and introduces the directional consistency
metric, which effectively improves robustness to occlusion;
BoT-SORT [24] introduces camera motion compensation
while adjusting the state parameters of the KF.

In the JDT method, JDE [9]/FairMOT [10] integrates a
feature extraction branch into the original detector, unifying
the detector and feature extraction models. On the other
hand, CTracker [44] proposes a chain tracking framework
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TABLE 1: Overview of MOT dataset.

Type Dataset
Frame
rate

Scene graph

Human
tracking

MOT17
MOT20

DanceTrack
SoccerNet-
Tracking

30
25
20
25

MOT17-03

397

1174 238

650

MOT17-08

MOT17-07 MOT17-14

Vehicle
tracking

KITTI
KITTI360
BDD100

10
10
30

Others
CMTC
TAO

7.5
1
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based on two frame input, transforming the data association
problem into a pairwise bounding boxes regression problem.
SCT [45] chains them together using IoU, KF, and binary
matching and introduces attention to better extract features.
Centertrack [21] follows this two-frame input framework
and borrows the idea of using points in CenterNet [42] to
represent objects. It directly predicts the offset of the target
between frames to achieve the association of data. TraDeS [8]
constructs a global similarity matrix to predict this offset
while simultaneously correcting the detection and segmen-
tation results of the current target. The transformer-based
MOTR [11] approach introduces a novel concept called track
query. Each track query models the complete track of a tar-
get, enabling its transfer and update from frame-to-frame,
thereby achieving end-to-end tracking. Recently, Unicorn
[43] and OmniTracker [46] present a unified framework
that uses a single network to simultaneously address four
tracking tasks: single object tracking (SOT), MOT, video
object segmentation (VOS), and multiobject tracking and
segmentation (MOTS).

2.3. Motivation. Section 2.1 presents several human tracking
datasets; however, most of them [15–19] predominantly
focus on urban street scenes and indoor environments, while
sports scenes are relatively scarce. Moreover, these datasets
have certain limitations:

(1) They exhibit simple motion patterns, primarily slow
and linear motion.

(2) The objects in these datasets have significant appear-
ance differences, making them easily distinguishable.

These limitations have somewhat hindered the develop-
ment of MOT. To address this gap, we proposed SKT-MOT,
which provides new data for sports scenes, breaks through
existing limitations, and poses new challenges to MOT.

In Section 2.2, we discuss different method types and
mainstream approaches. Considering the challenges associ-
ated with optimizing the JDT paradigm and the lack of speed
skating data, we followed the TBD paradigm. This paradigm
allows us to independently train the detector and utilize
additional detection data, making it easier to achieve higher
accuracy.

The current mainstream framework of TBD is to com-
plete the association using two major cues: motion and

appearance. Some methods use only motion cues for track-
ing to pursue speed, but the smaller number of individuals in
the speed skating scene meant less inference time, so we
chose DeepSORT [6], which utilizes both cues, as the base-
line. DeepSORT is, in fact, not a novel approach. However, it
can still perform well when equipped with a powerful detec-
tor and an appropriate correlation strategy, as verified by this
paper and StrongSORT [41].

However, the accuracy is generally not high when apply-
ing mainstream methods [6, 7, 9, 10, 23] such as DeepSORT
to speed skating scenes. This could be attributed to the fact
that existing methods are constrained by the dataset limita-
tions and struggle to handle frequent occlusions, motion
blurring, and clothing proximity between skaters. In addi-
tion, we investigated existing MOT methods for speed skat-
ing scenes but only found one work, LocalSort [47], which
designs a local matching measurement method for occlusion
problems, but it doesn’t take into account similarities in
appearance and motion blurring. To this end, we have per-
formed a comprehensive analysis of the impact of these chal-
lenges and designed an efficient dynamic tracker to enhance
tracking performance in speed skating scenes.

3. SKT-MOT

3.1. Dataset Construction. SKT-MOT dataset collected 56
short-track speed skater daily training videos with a frame
rate of 30 fps and a resolution of 1,920 × 1,080. Thirty-six
videos were selected as the training set, 10 as the validation,
and 10 as the test. The videos were taken from two speed
skating scenes at Beijing Capital Indoor Stadium and Ice and
Snow Sports Base of Beijing Sport University, 44,402 and
8,776 images were labeled, respectively, by LabelMe [26] in
the two scenes. Labeling information included the athlete’s
identification and the bounding box. For fully occluded
objects, keep the ID consistent before and after occlusion.
The basic information of the SKT-MOT is shown in Table 3.

3.2. Dataset Analysis. We quantitatively analyzed the cloth-
ing similarity between athletes, as shown in Figure 2. The
results indicate a high degree of similarity between athletes’
appearance color. In terms of the motion pattern, we analyze
the trajectory and speed changes, as shown in Figure 3. The
speed skating trajectory showed a unique insole shape, which
differs significantly from the general pedestrian trajectory.

TABLE 2: Overview of MOT method.

Paradigm types Mainstream methods Characteristic

TBD
SORT, DeepSORT, StrongSORT,
ByteTrack, OC-SORT, BoT-SORT

Each of its components is independent of
each other and can be replaced, which

gives it great flexibility and
generalizability, but also leads to time-

consuming.

JDT
SST, JDE, FairMOT, CTracker, SCT,

CenterTrack, TraDeS, MOTR

It allows several components to be
integrated into a unified network, which

leads to faster speeds, but makes it
difficult to achieve global optimality due

to conflicts between components.
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The speed changes exhibit ups and downs, and the average
speed is high at 10m/s, making it prone to motion blur.
Moreover, due to the intense competition in short-track
speed skating, athletes frequently exchange positions, result-
ing in frequent occlusion occurring in a single view. These
unique issues pose new challenges for MOT.

4. DyTracker

DyTracker (Dynamic Tracker) is an efficient MOT method
for speed skating scenes, and Figure 4 illustrates our
DyTracker built upon the TBD paradigm. It improved Deep-
SORT [6] with TDM, KFDU, and FDSU modules.

4.1. Preview DeepSORT. The DeepSORT algorithm is a two-
branch framework consisting of a motion branch and a

feature branch, where the detection results are fed into
both branches frame-by-frame to complete the matching
and updating process.

4.1.1. Matching. In the motion branch, the KF [4] predicts
the state of the trajectory (box position and scale, etc.) in the
current frame. The correlation between the predicted state of
trajectory and the newly input detection information is com-
puted using the Mahalanobis distance [28].

d 1ð Þ i; jð Þ ¼ mj − pi
À Á

TS−1 mj − pi
À Á

; ð1Þ

where mj is the newly input jth detection information, pi is
the predicted state of the ith trajectory, and S is a covariance
matrix.

TABLE 3: Comparison of SKT-MOT with other multihuman tracking datasets.

Data type MOT17 [16] MOT20 [17] SKT-MOT

Videos 14 8 56
Average tracks 96 432 6
Total tracks 1,342 3,456 336
FPS 30 25 30
Total images 11,235 13,410 53,178

FIGURE 1: Overview of SKT-MOT scenes.
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FIGURE 2: Quantitative analysis of the similarity of athletes’ clothing. We cut out athletes with similar clothing and compared them with the
help of color histograms. Histograms of athletes 1, 2, and 4 show similarities, with athletes 2 and 4 basically the same.
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In the feature branch, a reidentification module is used to
extract the appearance feature of the newly input detection.
Furthermore, it uses a feature gallery to store the latest 100
frame features for each trajectory and integrates them as the
trajectory feature in frame k. Then, the feature similarity is
measured by the minimum cosine distance.

d 2ð Þ i; jð Þ ¼min 1 − f Tj f
kð Þ

i ∣ f kð Þ
i 2 Gi

n o
; ð2Þ

where fj is the feature of the newly entered jth detection, f kð Þ
i

is the ith trajectory feature in frame k, and Gi is the feature
gallery of the ith trajectory.

The two distances mentioned above are used together to
construct a similarity matrix ci; j. On the basis of Hungarian
matching [5], a cascade matching strategy is proposed for a
two-round matching process. The first round depends on the
similarity matrix, and the second round uses a simple IoU.

ci;j ¼ λd 1ð Þ i; jð Þ þ 1 − λð Þd 2ð Þ i; jð Þ: ð3Þ

4.1.2. Updating. After the matching is completed, in the
motion branch, the KF performs a state update, fuses the

detection and prediction values to generate the final correc-
tion result, and updates the relevant parameters; in the fea-
ture branch, newly matched object features are inserted into
the feature gallery to complete the feature update.

4.2. TDM. TDM focusses on the characteristics of speed
skating. Once speed skating begins, athletes rarely disappear
from the video and join halfway through, resulting in a rela-
tively fixed number of tracks in a video. However, false detec-
tions can easily disrupt the stability of the number of tracks,
as shown in Figure 5. Based on this, we designed a dynamic
management module for the number of tracks, as shown in
Algorithm 1, to maintain the stability of the number of tracks
and improve the robustness to false detection.

4.3. KFDU. In the motion branch, the KF [4] operation
requires inputting detections’ position and scale information.
However, frequent occlusion will cause this information to
be inaccurate, which also affects the accuracy of the KF.
KFDU aims at the problem, proposes a metric to evaluate
the degree of occlusion, and performs the dynamic update of
the KF according to the metric, improving the robustness to
occlusion.@
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FIGURE 3: Analysis of motion pattern. With the help of perspective transformation [27], we mapped the GT results, converting from a
boundary line view to a plan view. (a) Shows the final mapping result, which can help to observe the shape of the trajectory. At the same time,
we calculated the athlete’s speed. (b) Shows the athlete’s speed change, where the average speed is indicated by a dotted line.
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4.3.1. Evaluate Occlusion. The evaluation of an athlete’s
occlusion is often based on the detection confidence, but
this criterion is not specific enough. Confidence is jointly
determined by object classification and location accuracy.
Since the KF relies on location information as input and
motion blur interference, location information should be
considered more. Figure 6 shows how motion blur affects
detection confidence, making occlusion assessment less

reliable. For these issues, we proposed an adjustment factor
σ that calculates the IoU and the distance between the central
point (similar to the DioU) between the current detection
box and other boxes. The maximum σ to adjust the detection
confidence to obtain the final occlusion metric ok, weakens
the effect of motion blur and enriches location information.

σ ¼max IoU i; jð Þ − d i; jð Þ2
l i; jð Þ2

� �
; ð4Þ

ok ¼ ck − 0:5σ; ð5Þ

where IoU is the degree of overlap between two boxes, i
represents the current detection box, j represents other
boxes, d represents the distance between the central points
of two boxes, l represents the diagonal distance of the smal-
lest external rectangle, and ck is the detection confidence.

In this paper, no further distinction is made between the
occluder and the occluded, both of whom should receive less
trust compared to athletes without occlusion. In addition,
detection confidence can distinguish them to some extent.

4.3.2. Kalman Filter Dynamic Update. The KFDU retained
the KF state prediction step and improved the state update
step. The KF process is shown in Figure 7. In the update step,
the observation noise covariance R∗ reflects the observation
uncertainty, a smaller observation noise means that this
observation is more trustworthy. However, in the KF

Detector

Re-ID
module

Color
gallery

Posture
gallery

Feature
cost

KF
prediction

Motion
gate

Matching

KF
dynamic
update

Dynamic
EMA

update

Input
sequence

FIGURE 4: Overview of our proposed DyTracker pipeline.

ID confusion

False detection

FIGURE 5: False detection during speed skating. In this scene, only
skaters need to be tracked, while coaches, bystanders, and other
unrelated people can easily produce false detection (marked by a
red box). When misdetection occurs, the number of tracks increases
incorrectly, confusing the identification of the athlete (marked by an
orange box).
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algorithm, R∗ is a constant matrix, which gives the same trust
to observations of different qualities but it should be dynamic.
In other words, when the object is heavily occluded, we should
weaken the observation and give more trust to the prediction.
In comparison, for high-quality observations, we should give
more trust. KFDU is shown in Algorithm 2. Specifically,
occlusion metric ok is used to measure the observation quality
and achieve dynamic adjustment of the measurement noise
covariance Rk. This gives the KF a dynamic trust for different
observations.

4.4. FDSU. The appearance branch mainly includes feature
similarity matching and feature updating. In the matching
step, we considered that the athletes in the speed skating
scene are dressed similarly, but they have differences in their
postures. Therefore, we proposed a similarity-matching
method that dynamically selects these two features (FDS).
In the update step, occlusion and motion blurring produce
low-quality detections and pollute the feature gallery,

for which we proposed a dynamic feature update strat-
egy (FDU).

4.4.1. Feature Dynamic Selection (FDS). The existing human
tracking datasets [16–19] have large differences in clothing
but similar postures, which results in traditional matching
methods ignoring posture information and relying solely on
differences in appearance color, using historical features for
the association. However, in the speed skating scene, it’s just
the opposite. This means that traditional matching methods
do not apply. To address this, we considered differences and
instantaneous invariance of posture and argued that match-
ing using only adjacent frame features can also be efficient
for the tracking. Figure 8 illustrates this point.

Specifically, we reduced the weighting of historical fea-
tures and took more consideration of proximity features to
increase the weighting of posture features. Additionally, based
on the existing gallery (color gallery), FDS added a posture
gallery that only stores adjacent frames’ features. For athletes
with clear postures, we select a posture gallery for similarity
matching. Otherwise, we use the color gallery. It judges
whether the athlete’s posture is clear based on the occlusion
metric o∗, as shown in Section 4.3.1. If o∗ exceeds the thresh-
old of 0.9, it is considered clear; otherwise, it is considered
blurry. With this strategy, athletes can dynamically select the
appropriate feature gallery for matching similarity.

4.4.2. Feature Dynamic Update (FDU). In the feature update,
DeepSORT [6] builts a gallery of features for each trajectory
and inserted new features into it to achieve the update, which
results in a significant waste of spatial and temporal
resources. JDE/FairMOT [9, 10] improved this approach
by using an exponential moving average (EMA) feature
update strategy in which only one feature state is maintained
per trajectory, which is a resource saver and the current
dominant feature update solution. However, this approach
has flaws. Problems such as occlusion and motion blur cause
an increase in detection noise, resulting in differences in the
quality of detection. The EMA strategy treats detections of
different qualities equally. However, this process should be
dynamic. High-quality features should be retained with

Input: Video length N ;

Number of tracks T ;

T:value← Initial frame tracks number;

T:state← instability;

1 for frame k← 2 to N do

2 if T:state is instability then
3 if presence of n detections not matched to any track
and their confidence are enough high then

4 Generate n new tracks;

5 T:value← T:valueþ n;

6 end

7 else if presence of n tracks not matched to any detec-
tion for fifteen consecutive frames then

8 Delete these n tracks;

9 T:value← T:value− n;

10 else if T:value no change for fifteen consecutive
frames then

11 T:state← stability;

12 end

13 else if T:state is stability then
14 if presence of n detections not matched to any track for

fifteen consecutive frames then

15 Generate n new tracks;

16 T:value← T:valueþ n;

17 end

18 else if presence of n tracks not matched to any detec-
tion for fifteen consecutive frames then

19 Delete these n tracks;

20 T:value← T:value− n;

21 else

22 T remain unchanged;

23 end

ALGORITHM 1: TDM.

Occlusion

Motion blur

FIGURE 6: Effect of occlusion and motion blur on detection confi-
dence. The red box marks motion blur, and the orange box marks
occlusion. Motion blur produces lower confidence, but its position
information is accurate.
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greater weight, while low-quality detection should be
ignored. Specifically, we introduce detection confidence to
reflect detection quality and dynamically adjust the momen-
tum term αk, which achieves dynamic updating of the EMA.

αk ¼ ckα; ð6Þ

etk ¼ αk f tk þ 1 − αkð Þet−1k ; ð7Þ

where ck is the detection confidence, etk represents the feature
state of the trajectory k in frame t, f tk is the appearance
embedding of the new detection, and α is the original static
momentum term.

T frame
prior results (predictions)

T frame
prior results

T frame
detections (observations)

T1 frame

KF prediction step

Matching

KF update step

FIGURE 7: The Kalman filtering process. The KF contains two parts: state prediction and state update. The prediction step uses a constant-
velocity model to predict the prior (prediction) state in frame T based on the posterior result in frame T1. The update step fuses new
observation with the matched prediction depending on the Kalman gain K calculated, resulting in the posterior state and covariance matrix at
frame T.

31 32 33 52 5351 Frame

1

2

3

4

FIGURE 8: Comparison of athlete posture changes. The horizontal axis is the time, the vertical axis is the athlete’s ID, and the four athletes are
taken from the same video. Observing the figure can be obtained: in the speed skating scene (1) due to differences in the position and habits of
athletes, there are apparent differences in posture among them at the same time; (2) the posture shows instantaneous invariance (i.e., high
similarity of the same athlete between adjacent frames) due to motion inertia; (3) due to the clothing worn by athletes being similar,
appearance color may not be as reliable.
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4.5. Complexity Analysis. TDM algorithm controls the varia-
tion of trajectory number to effectively address the issues of
false detection and missed detection, maintaining the purity
of trajectory library. In terms of time complexity, assuming a
video length of N frames, the algorithm performs one or two
judgments for each frame, which is a single loop problem, so
the time complexity is O Nð Þ. In terms of space complexity,
this algorithm only needs to store two one-dimensional vari-
ables, the total number of trajectories and its state, as well as
two timers, and dynamical updating without storing over-
written data, so its space complexity is O 1ð Þ.

The FDSU largely inherits the original KF, with only two-
step operation in the update step, so its time complexity is
consistent with the KF’s time complexity. Assuming a video
length of N frames and one iteration per frame, because
matrix operations are required, its time complexity is
O N∧2ð Þ. In terms of space complexity, the state vector and
error covariance matrix of each moment need to be stored,
and these vectors and matrices are squared with the number
of observation data T , so the space complexity also is O T∧2ð Þ.

DyTracker, like DeepSORT, is difficult to analyze specif-
ically due to the overall complexity affected by multiple mod-
ules. Therefore, we mainly compared DyTracker with
DeepSORT here. TDM and KFDU have been explained in
detail in the previous text. For the FDSU module, in terms of
time complexity, it mainly adds one judgment and two
numerical operations, so the added time can be ignored; in
terms of space, we additionally add a storage library for
posture information, but it only stores information from
adjacent frames, so the added space cost is not significant.
Overall, compared with DeepSORT, DyTracker does not add
too much time and space consumption, but the efficiency
gain is significant.

4.6. Datasets and Metrics

4.6.1. Datasets. We conduct experiments on the SKT-MOT
and MOT17 datasets [16]. SKT-MOT is a dataset of the
short-track speed skating proposed in this article, and spe-
cific details are given in Section 3. For the detection and re-
ID module, we transformed, respectively, the data format
imitating COCO [32] and MARS [33] datasets, dividing
the dataset according to the 7 : 2 : 1. MOT17 is a popular
dataset for MOT, which consists of seven sequences, 5,316
frames for training, and seven sequences, 5,919 frames for
testing. For ablation studies, we take the first half of each
sequence in the MOT17 training set for training and the last
half for validation following.

4.6.2. Metrics. The evaluation of tracking performance is
mainly based on multiobject tracking accuracy (MOTA),
identification F1 (IDF1) score, and multiobject tracking pre-
cision (MOTP).

MOTA¼ 1 −
FNþ F Pþ I D SW

GT
: ð8Þ

MOTA is an evaluation metric for MOT algorithms that
focus on tracking accuracy. It is calculated on the basis of
false positive (FP), false negative (FN), and identification
switch (IDSW), where FP represents false detection, FN
represents missing detection, and IDSW counts the number
of identity switches of an object. Despite its limitations and
criticisms, it is still the most widely accepted evaluation met-
ric for MOT.

I D F1¼ 2 ⋅ I D TP
2 ⋅ I DTPþ I D F Pþ I D FN

: ð9Þ

IDF1 is another important metric in MOT to evaluate the
precision of object identification. It responds more to the
accuracy of ID matching. Here, identification true positive
(IDTP) stands for the correctly identified object, identifica-
tion false positive (IDFP) stands for the incorrectly identified
object, and identification false negative (IDFN) stands for the
unidentified identity information. MOTP, which measures
the overlap between the resulting bounding box and ground
truth, describes the localization precision of the object.

5. Experiments and Discussion

5.1. Experimental Details. For detection, the detector is
YOLOv5-x [29] pretrained on the COCO dataset, introduces
Diou-NMS, changes the localization loss to CioU-LOSS, and
uses the original training schedule. For the embedding of the
re-ID feature, the re-ID module [34] of DeepSORT is used,
and the initial learning rate is 0.1, using Adam Optimizer
[30]. For DyTracker, a threshold of 0.65 is set for nonmax-
imum suppression (NMS) and a threshold of 0.7 for detec-
tion confidence. The minimum feature distance threshold is
0.2, and the momentum term α in the color gallery and the
posture gallery is 0.65 and 1, respectively. The weight factor
for the appearance cost λ is 0.98.

Input: Observation Zk

Observation noise covariance Rk

Measurement occlusion degree ok
Predicted state Xk∣k−1

Predicted state covariance Pk∣k−1
The observation model H

Output: Updated state Xk

Updated state covariance Pk
Step:

1 R̃k ¼ 1:3−ð okÞRk

//Updating dynamically observation noise
covariance

2 Kk ¼Pk∣k−1H
T HPk∣k−1H

T þ R̃k

À Á
−1

//Calculating corrected Kalman gain

3 Xk ¼Xk∣k−1 þKk Zk −ð HXk∣k−1Þ
//Based on K, fusing observation and pre-
dicted state

4 Pk ¼ 1−ð KHÞPk∣k−1
//Updating state covariance

ALGORITHM 2: KFDU (state update step at sate k).
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All experiments are conducted on a server machine with
two 12GB 2080Ti.

5.2. Comparative Experiment. We compared our DyTracker
with state-of-the-art methods on the SKT-MOT dataset, and
Table 4 lists the detailed performance results. The experi-
mental results show that our DyTracker is much superior
to other methods in MOTA, with a highest of 93.70% in all
methods. Compared with JDT methods [7, 9, 10], we also
have significant advantages. Compared to similar TBD
methods [6, 23], we use the same detector and have
achieved certain improvements. Second, the performance
of DyTracker is also best inMOTP and IDF1, which confirms
that our tracker can achieve more accurate object localiza-
tion, more efficient completion of association tasks, and bet-
ter tracking of speed skaters. On the other hand, our method
compares favorably with LocalSORT, which is also designed
for speed skating scenarios, demonstrating significant

advantages. Limited by the two-stage framework, the FPS
performance of our method is mediocre. Figure 9 shows
the visualization of the DyTracker tracking results on the
SKT-MOT.

Compared to our baseline DeepSORT, DyTracker improves
11.92% and 14.78% in MOTA and IDF1, respectively, and the
rest of metrics are also significantly improved. As can be seen
from the FPS, these performance increases result in only mini-
mal time consumption. Figure 10 compares the visualization
effects of DeepSORT and DyTracker. It is clear that when occlu-
sion occurs, the position of object boxes in DeepSORT will have
a significant deviation from skaters. Moreover, due to similar
appearance and other problems, ID matching errors and IDSW
also occur frequently. In contrast, the tracks in DyTracker are
more precise and stable, which further demonstrate that our
proposed method performs better in complex situations such
as occlusion and similar dress.

TABLE 4: Comparison with state-of-the-art MOT methods on the SKT-MOT dataset.

Method Ref. MOTA↑ IDF1↑ MOTP↑ FP↓ FN↓ IDSW↓ FPS↑

SST [7] TPAMI2019 76.02 56.48 85.87 3,448 3,991 1427 4.2
JDE [9] ECCV2020 79.87 72.91 78.31 2,983 4,943 812 13.2
LocalSORT [47] JSS2021 83.14 76.82 82.43 2,365 4,352 624 11.8
FairMOT [10] IJCV2021 86.53 76.51 85.71 1,359 4,308 557 16.4
ByteTrack [23] ECCV2022 84.56 73.72 87.32 3,565 3,219 397 17.8
DeepSORT [6] ICIP2017 81.78 77.61 81.24 2,955 4,363 735 9.3
DyTracker This study 93.70 92.39 87.79 939 3,670 154 8.9

TBD methods use the same detection results. The best results are in bold.

FIGURE 9: Visualization results of DyTracker on the SKT-MOT.
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5.3. Ablation Study

5.3.1. Ablation Study for DyTracker. Table 5 summarizes the
DeepSORT to DyTracker process:

(1) TDM: Overcoming the influence of false detection has
significantly reduced FP, thereby improving MOTA.
At the same time, the range of ID values is also con-
trolled, reducing the occurrence of ID switches, mak-
ing ID matching more accurate and improving IDF1.

(2) FDSU: Improved matching accuracy, reduced the
influence of detection noise, and significantly increased
IDF1, while also improving MOTA to a certain extent.

(3) KFDU: Improved object location accuracy, resulting
in a significant increase in MOTP and improved the
robustness of KF, leading to improvement in MOTA.

(4) Occlusion: Using the occlusion metric instead of the
confidence to evaluate the degree of occlusion has
reduced the impact of motion blur, leading to improve-
ments in all metrics.

5.3.2. Extended Experiments for KFDU and FDU. To solve
the occlusion problem, this article proposed two modules,
KFDU and FDU. We argue that occlusion occurs to some
extent in current datasets. These two modules should have
universal adaptation. Table 6 shows that we have inserted the
two update modules into the existing method, and the veri-
fication results on mot 17val, both MOTA and IDF1 have
been improved.

5.3.3. Ablation Study for Threshold. We conducted an abla-
tion experiment on the threshold to evaluate whether the
pose is clear. As shown in Figure 11, the trend of MOTA
and IDF1 is basically the same. We chose the 0.9 correspond-
ing to the peak as the final threshold. When the threshold is
small enough, that is, entirely relying on the posture gallery,
which only correlates adjacent frames, can also achieve good
results; when the threshold is large enough to rely entirely on
the color gallery, which takes more into account historical
features, no better than the former. This further suggests that
proximity features should be more considered in speed

ðaÞ

ðbÞ
FIGURE 10: Comparison of visualization between DeepSORT and DyTracker: (a) represents the DeepSORT tracking results and (b) is the
DyTracker.

TABLE 5: Ablation study on the SKT-MOT dataset for different modules, that is, track dynamic management (TDM), dynamic selection and
update of features (FDSU), dynamic Kalman filter update (KFDU), and evaluation occlusion (Occ).

Method Conf. Occ. MOTA↑ IDF1↑ MOTP↑ FP↓ FN↓ IDSW↓

Baseline 81.78 77.61 82.12 2,955 4,363 735
+TDM 89.38 87.86 82.63 1,878 4,298 577
+TDM+ FDSU √ 92.33 91.97 85.51 1,079 3,820 160
+TDM+ FDSU √ 92.45 92.14 85.32 1,072 3,812 163
+TDM+ FDSU+KFDU √ 93.33 92.32 87.27 959 3,705 146
+TDM+ FDSU+KFDU √ 93.70 92.39 87.79 939 3,670 154

12 Scientific Programming



skating scenes and appropriately reduce the weighting of
historical features.

5.4. Limitations and Future Work

5.4.1. Limitations. The speed skating scene is different from
general scenes. Taking the appearance similarity problem as
an example, the appearance difference between targets is
relatively large and their poses are close in general scenes,
while the opposite is true in speed skating scenes (similar
appearance, large pose differences). This explains why exist-
ing algorithms are not suitable for speed skating and also
pose a challenge for the performance of our proposed mod-
ules in general scenes.

To better demonstrate the generalization of ourmodules, we
conducted extensive ablation studies, as shown in Section 5.3,
which show that the two proposed update modules are generally
applicable. However, TDMalgorithm is limited to scenarios with
a relatively fixed number of trajectories, while FDS is limited to
cases with large pose differences.

Additionally, due to the relatively small amount of speed
skating data and the difficulty in optimizing end-to-end
methods, we opted for a relatively basic two-stage frame-
work. Although good accuracy is achieved, it ran slowly.

5.4.2. Future Work. Although FDS in this paper has certain
limitations, we believe that the idea of dynamic selection has

great potential for further research. For example, when objects
are occluded, it is difficult to distinguish them by appearance
alone, so motion direction and displacement should be con-
sidered more. In cases where the appearance difference
between objects is large, appearance can be used as the
main factor for matching. For scenarios with large pose dif-
ferences, pose information can be taken into account. Based
on different situations, different cues can be determined as the
leading factors to achieve an adaptive matching process.

In addition, we believe that pose information can be
greatly valuable in certain MOT scenarios, such as Dance-
Track and skating. We will also continue to research in this
direction, such as using pose information to guide feature
extraction and achieving the unity of pose recognition and
tracking tasks (sharing a common network). On the other
hand, we will also collect more speed skating data for expan-
sion and try more end-to-end methods to seek faster speeds
and greater accuracy.

6. Conclusions

This study explores the potential development space of MOT
from the perspective of short-track speed skating. First, we
constructed a short-track speed skating MOT dataset and
analyzed its unique challenges, revealing the limitations of
existing datasets and the inadequacies of existing methods.
Accordingly, we proposed a dynamic tracker specifically
designed for speed skating scenarios, which improves three
modules based on DeepSORT: the TDM module mainly
addresses the issues of FP and missed detections, KFDU
enhances the robustness of KF against occlusions, and
FDSU considers the posture differences to address the cloth-
ing similarity problem and proposed a dynamic update strat-
egy to mitigate the impacts of occlusions and motion blur.
Compared to existing methods, our method achieved the
highest MOTA of 93.7 and IDF1 of 92.39 in the SKT-
MOT dataset. Furthermore, we conducted extensive ablation
experiments to analyze the generalization and potential
values of all modules. We believe that there are differences
and similarities between speed skating scenarios and general
scenarios, which provide new insights to solve existing MOT
problems and have great research value.

Appendix

In this article, we used many abbreviations. To facilitate
better understanding for readers, we provided specific expla-
nations for these abbreviations, as shown in Table 7.

TABLE 6: Results of applying KFDU and FDU to various MOT methods.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSW↓

DeepSORT+KFDU+ FDU 76.80 (+0.1) 77.9 (+0.6) 56.7 11.8 3,165 9,910 231
FairMOT+KFDU+ FDU 69.1 73.4 (+0.6) 41.3 15.6 2,011 14,480 283
ByteTrack+KFDU 76.6 (+0.1) 79.7 (+0.2) 59.6 11.8 3,431 9,680 243

The TBD methods use the YOLOX detector [31]. All experiments are performed on the MOT17 validation set.

Threshold
0.5

91.5

92.0

92.5(%
)

93.0

93.5

0.6 0.7 0.8 0.9 1.0 0.1

IDF1
MOTA

FIGURE 11: Threshold to evaluate whether the posture is clear.
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