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Te current research ofers an enhanced three-parameter lifetimemodel that combines the unit Burr XII distribution with a power
series distribution. Te novel class of distribution is named the unit Burr XII power series (UBXIIPS). Tis compounding
technique allows for the production of fexible distributions with strong physical meanings in domains such as biology and
engineering.TeUBXIIPS class includes the unit Burr XII Poisson (UBXIIP) distribution, the unit Burr XII binomial distribution,
the unit Burr XII geometric distribution, and the unit Burr XII negative binomial distribution.Te statistical properties of the class
include formulas for the density and cumulative distribution functions, and limiting behaviour, moments and incomplete
moments, entropy measures, and quantile function are provided. For estimating population parameters and fuzzy reliability for
the UBXIIP model, maximum likelihood and Bayesian approaches are studied by the Metropolis–Hastings algorithm. For
maximum likelihood estimators, the length of asymptotic confdence intervals is specifed, whereas, for Bayesian estimators, the
length of credible confdence intervals is assigned. A simulation investigation of the UBXIIP model was established to evaluate the
performance of suggested estimates. In addition, the UBXIIP distribution is explored using real-world data. Te UBXIIP
distribution appears to ofer some benefts in understanding lifetime data when compared to unit Weibull, beta, Kumaraswamy,
Kumaraswamy Kumaraswamy, Marshall-Olkin Kumaraswamy, and Topp–Leone Weibull Lomax distributions.

1. Introduction

In recent years, the development of unit distributions has
risen rapidly. Tese distributions focus on modelling a wide
variety of occurrences using data with values ranging from 0
to 1, such as proportions, probabilities, and percentages. Te
design of parametric, semiparametric, and regression
models for the analysis of such data is also in high demand in
applied disciplines.Temajority of today’s unit distributions
are created by appropriately modifying older distributions.
Our attention has been drawn to the recently presented unit
Burr XII (UBXII) created by Korkmaz and Chesneau [1].Te

cumulative distribution function (CDF) and probability
density function (PDF) of the UBXII distribution are
specifed by

G(t) � 1 +(− ln t)
β

 
− φ

, β,φ > 0, 0 < t< 1, (1)

and

g(t) � βφt
− 1

(− ln t)
β− 1 1 +(− ln t)

β
 

− φ− 1
, β,φ> 0, 0< t< 1, (2)

where β> 0 and φ> 0 are shape parameters. Tey investi-
gated some of the UBXII distribution’s characteristics and
developed a regression model for it.
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Due to theoretical considerations, practical applications,
or both, academics have recently grown more interested in
the design of novel univariate distributions, which are widely
utilised in statistics and related disciplines. Compounding is
a useful strategy for creating new distributions by combining
certain useful lifetime with truncated discrete distributions.
Te basic idea behind creating these compounding distri-
butions is that the lifetime of a system with K components
and a positive continuous random variable, Ti, that denotes
the lifetime of the ith component, can be represented by a
nonnegative random variable, T�min (T1,. . ., TK) if the
components are in a series, or T�max (T1,. . ., TK) if the
components are in parallel. Te continuous random vari-
ables Ti are considered to be independent of K in both
contexts.

Various compound classes have been provided by mixing
continuous distributions with power series (PS) distribution,
for example, Weibull-PS and extended Weibull-PS (Morais
and Barreto-Souza [2] and Silva et al. [3]), generalized ex-
ponential PS (Mahmoudi and Jafari [4]), complementary
exponential PS (Flores et al. [5]), the Burr XII-PS (Silva and
Corderio [6]), Gompertz PS (Jafari and Tahmasebi [7]),
generalized modifed Weibull-PS (Bagheri et al. [8]), expo-
nential Pareto PS (Elbatal et al. [9]), exponentiated power
Lindley-PS (Alizadeh et al. [10]), generalized inverse Lindley-
PS (Alkarni, [11]), Burr–Weibull PS (Oluyede et al. [12]), odd
log-logistic PS (Goldoust et al. [13]), new generalized Lindley-
Weibull class (Makubate et al. [14]), inverse gamma PS
(Rivera et al. [15]), and inverted exponentiated Lomax PS
(Hassan et al. [16]) among others.

Te unit Burr XII power series (UXIIPS) class is
suggested in the current study by mixing the UBXII and
PS distributions in a device made up of parallel compo-
nents. As special examples, this class also includes a
number of compound lifetime models. Additionally, it
ofers us the fexibility to simulate many diferent
behavioural forms of lifetime data using any compound
lifetime. Tere are several hazard rate shapes present in
this class of distributions. In addition to the quantile
function, some moment measurements, the mean residual
life, and uncertainty measures are other distributional
features that we ofer. Te parameters and fuzzy reliability
of the UBXII Poisson (UBXIIP) distribution, a specifc
example from the proposed class, are estimated using
Bayesian and non-Bayesian techniques. A numerical
simulation experiment is run to assess the accuracy of the
estimated values. A real data set is used to explain the
utility of the UBXIIP distribution.

Te followings are the main physical justifcations and
signifcance of the distribution’s UBXII class:

(i) To approximate the time to the last failure of a
system made up of components linked in parallel.

(ii) To construct and generate distributions with
symmetric, left-skewed, right-skewed, and U
shapes.

(iii) To defne special models that have a variety of
hazard rate functions, including monotonic and
nonmonotonic shapes.

(iv) To consistently provide better fts than other
generated distributions having the same or greater
number of parameters.

(v) To discuss the Bayesian and non-Bayesian esti-
mators of parameters and fuzzy reliability for one
special model from the provided class.

(vi) To assess the accuracy of the produced estimators,
a numerical simulation investigation is
undertaken.

(vii) To build heavy-tailed distributions for modelling
diverse real data sets used in numerous domains,
such as business, environmental research, medic-
inal studies, demographics, and industrial
reliability.

(viii) A data study demonstrated the UBXIIP distribu-
tion’s superiority over a few other well-known
models.

Tis article is structured as follows: Section 2 provides
the PDF of the UBXIIPS class as well as gives associated
models. In Section 3, we deduce certain structural features of
the UBXIIPS class. Te Bayesian and non-Bayesian esti-
mators of the UBXIIP distribution parameters and fuzzy
reliability are explained in Section 4. Numerical examination
and real data analysis are discussed, respectively, in Sections
5 and 6. Section 7 concludes the article.

2. Construction of the New Class

Te new class of UBXIIPS is defned as follows. Given K,
supposed that T1,. . ., TK be identically independent dis-
tributed random variables having the UBXII distribution (1)
with shape parameters β> 0 and φ> 0, where K is a discrete
random variable having a PS (truncated at zero) distribution.
Te probability mass function of K is specifed by

P(K � k) �
akη

k

D(η)
, k � 1, 2, 3 · · · , (3)

where ak depends only on k, η> 0 is the scale parameter, and
D(η) � 

∞
k�1akηkD′(η), and D″(η) denote the frst and

second derivatives of D(η), respectively. We provide certain
PS distributions (truncated at zero) defned by (3) in Table 1,
including the Poisson, logarithmic, geometric, and binomial
distributions.

Let T�max Ti 
K

i�1, the conditional CDF of T|K is given
by

FT|K�k(t) � [G(t)]
k

� 1 +(− ln t)
β

 
− φk

. (4)

Hence, T|K is the UBXII distribution with parameters β
and kφ, so we obtain

P(T≤ t; K � k) �
akη

k

D(η)
1 +(− ln t)

β
 

− φk
, 0< t< 1, k≥ 1.

(5)

So, the marginal CDF of (5) is given by

2 Scientifc Programming



F(t;Θ) � 
∞

k�1

ak

D(η)
η 1 +(− ln t)

β
 

− φ
 

k
�

1
D(η)

D η 1 +(− ln t)
β

 
− φ

 , 0 < t< 1.

(6)

A random variable with CDF (6) has UBXIIPS class with
parameters Θ ≡ (β,φ, η) shall be denoted by T∼UBXIIPS
(Θ). Te PDF of the UBXIIPS class corresponding to (6) is

f(t;Θ) �
βφη t

− 1
(− ln t)

β− 1 1 +(− ln t)
β

 
− φ− 1

D
′ η 1 +(− ln t)

β
 

− φ
 

D(η)
, 0 < t< 1. (7)

Te survival function and hazard rate function of the
UBXIIPS class are represented by

F(t;Θ) � 1 −
1

D(η)
D η 1 +(− ln t)

β
 

− φ
 , 0 < t< 1,

h(t;Θ) �
βφη t

− 1
(− ln t)

β− 1 1 +(− ln t)
β

 
− φ− 1

D
′ η 1 +(− ln t)

β
 

− φ
 

D(η) − D η 1 +(− ln t)
β

 
− φ

 
.

(8)

Some special submodels are listed as follows, based on
PDF (7) and Table 1:

(i) For D(η) � eη − 1, we obtain the PDF of the
UBXIIP distribution as follows:

f1(t;Θ) �
βφη t

− 1
(− ln t)

β− 1 1 + (− ln t)
β

 
− φ− 1

e
η 1+(− ln t)β( )

− φ

e
η

− 1( 
, 0< t< 1, β,φ, η> 0. (9)

(ii) For D(η) � − ln (1 − η), we obtain the PDF of the
UBXII logarithmic distribution as follows:

f2(t;Θ) �
βφη t

− 1
(− ln t)

β− 1 1 + (− ln t)
β

 
− φ− 1

− ln (1 − η) 1 − η 1 + (− ln t)
β

 
− φ

 
, 0< t, η< 1, β,φ> 0.

(10)

(iii) For D(η) � η(1 − η)− 1, we obtain the PDF of the
UBXII geometric distribution as follows:

f3(t;Θ) �
βφ(1 − η)(− ln t)

β− 1 1 + (− ln t)
β

 
− φ− 1

t 1 − η 1 + (− ln t)
β

 
− φ

 
2 , 0< t, η< 1,  β,φ> 0.

(11)

(iv) For D(η) � (1 − η)m − 1, we get UBXII binomial
distribution as follows:

f4(t;Θ) �
βφη t

− 1
m(− ln t)

β− 1 1 + (− ln t)
β

 
− φ− 1

1 + η 1 + (− ln t)
β

 
− φ

 
m− 1

(1 + η)
m

− 1
, 0< t< 1, β,φ, η> 0. (12)

Table 1: Basic quantities of some PS distributions.

Distributions Poisson Logarithm Geometric Binomial

ak (k!)− 1 (k)− 1 1 m

k
 

D(η) eη − 1 − ln (1 − η) η (1 − η)− 1 (1 + η)m − 1
D ′(.) eη (1 − η)− 1 (1 − η)− 2 m(1 + η)m− 1

D″(.) eη (1 − η)− 2 2 (1 − η)− 3 m(m − 1)/(η + 1)2− m

(D(η))− 1 ln (η + 1) 1 − e− η η (1 + η)− 1 (η − 1)1/m − 1
η η ∈ (0,∞) η ∈ (0, 1) η ∈ (0, 1) η ∈ (0,∞)
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Figure 1 illustrates graphs of the UBXIIP density for
various parameter values. Tese graphs demonstrate the new
distribution’s reliability and modality. Te UBXIIP density is
unimodal or bell-shaped, as seen in Figure 1. For a given set of
parameters, it is left-skewed and reversed J-shaped.Te hazard
rate function can be decreasing, increasing, bath-tub, and
J-shaped.

Proposition 1. Te UBXIIPS density function (7) can be
explained as an infnite mixture of UBXII densities with
parameters (β,φk).

Proof. UsingD′(η) � 
∞
k�1kakηk− 1 in PDF (7), then it can be

reformed as follows:

f(t;Θ) � 
∞

k�1

kakβϕη
k

t
− 1

(− ln t)
β− 1 1 +(− ln t)

β
 

− ϕk− 1

D(η)
� 
∞

k�1
P(K � k)g(t; ϕk, β), (13)

where g(t; ϕk, β) is the UBXII density function with pa-
rameters (β, ϕk) and P(K � k) defned in (3). □

Proposition  . Te UBXII distribution is the limiting dis-
tribution of the UBXIIPS class of distributions when η⟶ 0+.

Proof. Te limiting distribution of (6), for η⟶ 0+, is
determined, using L’Hospital’s rule, as follows:

lim
η⟶ 0+

F(t;Θ) � lim
η⟶ 0+


∞
k�1ak η 1 +(− ln t)

β
 

− ϕ
 

k


∞
k�1akη

k
� lim

η⟶ 0+

1 +(− ln t)
β

 
− ϕ

1 + a
− 1
1 
∞
k�2kak η 1 +(− ln t)

β
 

− ϕ
 

k− 1
 

1 + a
− 1
1 
∞
k�2kakη

k− 1

� 1 +(− ln t)
β

 
− ϕ

,

(14)

which is CDF of UBXII distribution. □
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Figure 1: UBXIIP density and hazard functions for diferent values.
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3. General Properties

Tis section covers some statistical characteristics of the
UBXIIPS class. Furthermore, these measures are focused on
a one model, specifcally the UBXIIP distribution.

3.1. Moments Measures. Te moments of a probability
distribution are essential tools in any statistical analysis. Te
rth moment of T has the UBXIIPS class is presented from
(13) as follows:

μr
′ � 
∞

k�1
P(K � k)kβϕ

1

0
t
r− 1

(− ln t)
β− 1 1 + (− ln t)

β
 

− ϕk− 1
dt. (15)

Using binomial expansion in (15) and let z � − ln t, then
μr
′ of UBXIIPS class has the form

μr
′ � 
∞

u�0


∞

k�1
(− 1)

u
P(K � k)

φk + u

u

⎛⎝ ⎞⎠kβφ
1

0
t
r− 1

(− ln t)
β(u+1)− 1dt

� 
∞

u�0


∞

k�1
(− 1)

u
P(K � k)

φk + u

u

⎛⎝ ⎞⎠kβφ
∞

0
e

− zr
z
β(u+1)− 1dz �

Δu,kΓ(β(u + 1))

(r)
β(u+1)

,

(16)

where Δu,k � 
∞
u�0
∞
k�1(− 1)uP(K � k)

ϕk + u

u
 kβϕ, and

Γ(.) is the gamma function (GF). Te rth central moment (μr)
of the UBXIIPS class is given by

μr � E T − μ1′( 
r

� 
r

j�0
(− 1)

j r

j
  μ1′( 

jμr− j
′ . (17)

Based on (17) and by using well-known relationships, we
can determine some measures such as variance (σ2),
skewness (α3), and kurtosis (α4). In particular, numerical
measurements such as μ1′, μ2′, μ3′, μ4′, σ2, α3, and α4 of the
UBXIIP distribution are displayed in Table 2, for various
parameter values, including (a) (ϕ � 1.3, η � 0.5, β � 1.5),

(b) (ϕ � 1.3, η � 1, β � 1.5), (c) (ϕ � 1.3, η � 2, β � 1.5), (d)

≡ (ϕ � 1.3, η � 0.5, β � 0.5), (e) (ϕ � 1.3, η � 1, β � 0.5),

and (f ) (ϕ � 1.3, η � 2, β � 0.5).

As seen from Table 2, as the value of η increases, values of
μ1′, μ2′, μ3′, μ4′, α4 increase while the value of α3 decreases
expect for set (d). Te UBXIIP distribution is negatively
skewed and platykurtic.

Furthermore, the rth incomplete moment of the
UBXIIPS class is derived as follows:

Ir(x) � 
∞

k�1
P(K � k)kβϕ

x

0
t
r− 1

(− ln t)
β− 1 1 + (− ln t)

β
 

− ϕk− 1
dt. (18)

Using binomial expansion and let z � − ln t, then Ir(x)

of UBXIIPS class is

Ir(x) � ∆u,k 
∞

ln (1/x)
e

− zr
z
β(u+1)− 1dz �

∆u,kΓ(β(u + 1), r ln (1/x))

(r)
β(u+1)

, (19)

where Γ(., ., v), is the upper incomplete GF. Additionally,
the Lorenz (LZ) and Bonferroni (BI) curves of UBXIIP
distribution are derived using the following expressions:
LZ(x) � I1(x)/μ1′ and BI(x) � I1(x)/μ1′F(x;Θ).

Moreover, the rth moment and incomplete moment of
the UBXIIP distribution are computed from (16) and (19),

respectively, by putting P(K � k) � e− ηηk/k!(1 − e− η), k �

1, 2, · · ·.
Another important function is the mean residual life

(MRL) function. Te MRL function is defned as an item’s
expected life after t years. It is a conditional notion that tells
you how long you may expect the object to last.
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Consequently, we obtain the nth moment of the residual life
of T via the general following formula:

Φn(y) � E((T − y) | T>y) �
1

F(y;Θ)


∞

k�1
P(K � k)kβφ

1

y
(t − y)

n
t
− 1

(− ln t)
β− 1 1 +(− ln t)

β
 

− φk− 1
dt. (20)

Using binomial series more than one time, then (20) is
represented as follows:

Φn(z) �
1

F(y;Θ)


n

j�0

n

j

⎛⎝ ⎞⎠(− y)
n− jΔk,u 

1

y
t
n− 1

(− ln t)
β(u+1)− 1dt

�
1

F(y;Θ)


n

j�0

n

j

⎛⎝ ⎞⎠
(− y)

n− j∆k,uc(β(u + 1); n ln (1/y))

n
β(u+1)

,

(21)

where c(., ., v), is the lower incomplete GF. Put n= 1 in (21),
we can calculate the MRL of UBXIIP distribution.

3.2. Quantile Function. Te quantile function (QF) is de-
fned as Q(u) � F− 1(u) for any CDF. Consequently, the QF
of the UBXIIPS class, based on (6), is calculated as follows:

tu � Q(u) � exp −
1
η

D
− 1

(uD(η)) 

− 1/ϕ

− 1
⎧⎨

⎩

⎫⎬

⎭

1/β

, 0< u< 1.

(22)

For u� 0.25, u� 0.5, and u� 0.75 in (22), we can de-
termine the frst, median, and third quantiles of the UBXIIPS
class. More precisely, the QF of the UBXIIP distribution is
derived from (22) by letting D(η) � eη − 1, and D− 1 (η) �

ln (1 + η) as follows:

tu � Q(u) � exp −
1
η

ln u e
η

− 1(  + 1 (  

− 1/ϕ

− 1⎡⎣ ⎤⎦

1/β

, 0< u< 1. (23)

Equation (23) can be used to generate UBXIIP random
variates.

3.3. Uncertainty Measures. We look at certain information
measures including Rényi (Ré) entropy and τ− entropy. Te
entropy quantifes the data’s uncertainty; the higher the
entropy number, the greater the data’s uncertainty. Te Ré
entropy of T has UBXIIPS class is defned by

Ξ(τ) � (1 − τ)
− 1log 

1

0
(f(t))

τdt . (24)

Expressions for diferent entropy measures of the
UBXIIPS class are obtained. From (7), we deduce (f(t;Θ))τ

as follows:

(f(t;Θ))
τ

� βφη t
− 1

 
τ
(− ln t)

τ(β− 1) 1 + (− ln t)
β

 
− τ(φ+1)



∞

k�1

kak

D(η)
η 1 + (− ln t)

β
 

− φ
 

k− 1⎧⎨

⎩

⎫⎬

⎭

τ

. (25)

Table 2: Moment values for the UBXIIP distribution.

μr
′ (a) (b) (c) (d) (e) (f )

μ1′ 0.488 0.527 0.598 0.578 0.632 0.729
μ2′ 0.313 0.350 0.422 0.494 0.549 0.653
μ3′ 0.223 0.255 0.319 0.444 0.500 0.605
μ4′ 0.169 0.196 0.252 0.410 0.465 0.570
σ2 0.075 0.073 0.064 0.160 0.150 0.122
α3 − 0.142 − 0.301 − 0.601 − 0.398 − 0.637 − 1.144
α4 1.939 2.057 2.499 1.466 1.743 2.757
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But



∞

k�1
kak η 1 + (− ln t)

β
 

− ϕ
 

k− 1⎧⎨

⎩

⎫⎬

⎭

τ

� a
τ
1 

∞

m�0
ωm η 1 + (− ln t)

β
 

− ϕ
 

m
⎛⎝ ⎞⎠

τ

,

ωm �
am+1

a1
(m + 1), m � 1, 2, · · · .

(26)

Use the relation (
∞
m�0hmwm)τ � 

∞
m�0dτ,mwm

(Gradshteyn and Ryzhik [17]) in (26) yields



∞

m�0
ωm η 1 +(− ln t)

β
 

− ϕ
 

m
⎛⎝ ⎞⎠

τ

� 
∞

m�0
dτ,m η 1 +(− ln t)

β
 

− ϕ
 

m

. (27)

Terefore, (26) will look like this:



∞

k�1
kak η 1 + (− ln t)

β
 

− ϕ
 

k− 1⎧⎨

⎩

⎫⎬

⎭

τ

� a
τ
1 

∞

m�0
dτ,m η 1 + (− ln t)

β
 

− ϕ
 

m

, (28)

where, for l≥ 1, dτ,l � l− 1
l
m�1[m(τ + 1) − l]ωmdτ,l− m

and dτ,0 � 1. Terefore, (25) can be written as

(f(t;Θ))
τ

� 

∞

m,p�0

dτ,mη
m

(− 1)
p
a
τ
1

D(η)
τ

( 

τ(φ + 1) + φm + p

p

⎛⎝ ⎞⎠ βφη t
− 1

 
τ
(− ln t)

τ(β− 1)+βp
. (29)

Put (29) in (24), we acquire Ré entropy of the UBXIIPS
class as follows:

Ξ(τ) � (1 − τ)
− 1log 

∞

m,p�0

dτ,mη
m

(− 1)
p
(βφη)τa

τ
1

(D(η))
τ

τ(φ + 1) + φm + p

p

⎛⎝ ⎞⎠
Γ(τ(β − 1) + βp + 1)

(1 − τ)
τ(β− 1)+βp+1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (30)

Te τ− entropy of T has UBXIIPS class is defned by

Λ(τ) �
1

(τ − 1)
1 − 

1

0
(f(t))

τdt , τ ≠ 1, τ > 0. (31)

Hence, τ− entropy of UBXIIPS class is obtained as
follows:

Λ(τ) �
1

(τ − 1)
1 − 

∞

m,p�0

dτ,mη
m

(− 1)
p
(βφη)τa

τ
1

(D(η))
τ

τ(φ + 1) + φm + p

p

⎛⎝ ⎞⎠
Γ(τ(β − 1) + βp + 1)

(1 − τ)
τ(β− 1)+βp+1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠. (32)
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Putting D(η) � eη− 1 in (30) and (32), we get the Ré entropy
and τ− entropy of the UBXIIP distribution.

4. Parameter Estimation of the UBXIIP Model

Te parameter and reliability estimators of the UBXIIP
distribution based on ML, and Bayesian estimation methods
are discussed in this section.

4.1. ML Method. Let T1,. . .,Tn be the observed values from
the UBXIIP distribution with parameters β,ϕ, and η. Te
likelihood function, say L(t|Θ) of the UBXIIP distribution is
expressed as:

L(t|Θ) �
ηnφnβn

e
η

− 1( 
n 

n

i�1

1
ti

− ln ti(  
β− 1 ζ i( 

− φ− 1
e
η ζ i( )

− φ

, (33)

where ζ i � 1 + [− ln(ti)]
β. Ten, the log-likelihood function,

say l, of the UBXIIP distribution is given as follows:

l � n[ln(β) + ln(ϕ) + ln(η)] − n ln e
η

− 1(  − 
n

i�1
ln ti(  − (ϕ + 1) 

n

i�1
ln ζ i(  + (β − 1) 

n

i�1
ln − ln ti(   + η

n

i�1
ζ i( 

− ϕ
. (34)

Terefore, the ML equations are given by

zl

zβ
�

n

β
− (ϕ + 1) 

n

i�1

− ln ti(  
β ln − ln ti(   ζ i( 

− 1

ζ i

+ 
n

i�1
ln − ln ti(   − ϕη

n

i�1
ζ i( 

− ϕ− 1
− ln ti(  

β ln − ln ti(  ,

zl

zϕ
�

n

ϕ
− 

n

i�1
ln ζ i(  − η

n

i�1
ζ i( 

− ϕ ln ζ i( ,

zl

zη
�

n

η
+ 

n

i�1
ζ i( 

− ϕ
.

(35)

Solving the nonlinear equations zl/zβ � 0, zl/zϕ � 0,

and zl/zη � 0, numerically using optimization algorism as
conjugate-gradient optimization, we get the ML estimators
of β, ϕ, and η.

To construct confdence intervals (CIs) for β,ϕ, and ηwe
need to compute the asymptotic variance-covariance matrix
which obtained by inverting the Fisher information matrix
I(β, ϕ, η), in which elements are negatives of expected values
of the second partial derivatives of l. Te elements of the
sample information matrix for the ML method will be

I(β, ϕ, η) �

z
2
l

zβ2

z
2
l

zϕzβ
z
2
l

zϕ2

z
2
l

zηzβ
z
2
l

zηzϕ
z
2
l

zη2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Under some regularity conditions, (β
∧
, ϕ
∧
, η
∧
) is approxi-

mately normal with mean (β, ϕ, η) and covariance matrix
I− 1(β, ϕ, η). Practically, we estimate I− 1(β, ϕ, η) by
I− 1(β
∧
, ϕ
∧
, η
∧
), then

I
− 1

(β,ϕ, η) �

var(β
∧
)

cov(ϕ
∧
, β
∧
) var(ϕ

∧
)

cov(η
∧
, β
∧
) cov(η

∧
, ϕ
∧
) var(η

∧
)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Now, the approximate CIs (ACIs) for β,ϕ, and η can be
obtained as follows:

β
∧
± z1− q/2.

������

var(β
∧
)



, ϕ
∧
± z1− q/2.

������

var(ϕ
∧
),



η
∧ ± z1− q/2.

������

var(η
∧
)



,

(38)

where zq is the 100 q–th percentile of a standard normal
distribution.

4.2.BayesianMethod. Here, we get the Bayesian estimator of
the UBXIIP parameters. Te Bayesian estimator is regarded
as symmetric (squared error loss function (SELF)), which is
defned as follows:

L(β, β) � E(β − β)
2
, L(ϕ, ϕ) � E(ϕ − ϕ)

2
, L(η, η) � E(η − η)

2
.

(39)

Assuming that the prior distribution of β,ϕ, and η,

denoted by π(β), π(ϕ), π(η), has an independent gamma
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distribution. Te joint gamma prior density of β, ϕ, and η
can be written as follows:

π(β, ϕ, η)∝ βa1− 1
e

− b1βϕa2− 1
e

− b2ϕηa3− 1
e

− b3η; ai, bi > 0, i � 1, 2, 3. (40)

In Bayesian estimation, the value of the hyperparameter
is crucial. If the appropriate prior information for β,ϕ, and η
is provided, ai, bi; i � 1, 2, 3, then the joint prior distribution
(40) is proportional to the likelihood function (33). As a
result, if one does not have previous knowledge of the

unknown parameters, it is preferable to employ ML esti-
mation rather than Bayesian estimation because the latter is
computationally expensive. We used ML information (es-
timators and variance) as well as prior information (mean
and variance) and solve these functions using the moments
method or any iterative approach to obtain the hyper-
parameter values β,ϕ, and η, which are referred to as prior
values. From (33) and (40), the joint posterior of the UBXIIP
distribution with parameters β, ϕ, and η is

π β,ϕ, η t

 ∝
ηn+a3− 1ϕn+a2− 1βn+a1− 1

e
η

− 1( 
n e

− b1β− b2ϕ 

n

i�1
− ln ti(  

β− 1 1 + − ln ti(  
β

 
− ϕ− 1

e
− η b3− 1+ − ln ti( )[ ]

β( 
− ϕ

 
. (41)

Bayesian estimators may be produced using the Markov
chain Monte Carlo (MCMC) technique. Te Gibbs sam-
pling, as well as the more generic Metropolis within Gibbs
samplers, is important MCMC techniques. Te

Metropolis–Hastings (MH) algorithm and the Gibbs sam-
pling are two well-known applications of the MCMC ap-
proach. Te conditional posterior densities of β, ϕ, and η are
produced as follows:

π β|ϕ, η, t ∝ βn+a1− 1
e

− b1β 

n

i�1
− ln ti(  

β− 1 1 + − ln ti(  
β

 
− ϕ− 1

e
1+ − ln ti( )[ ]

β( 
− ϕ

,

π ϕ|β, η, t ∝ ϕn+a2− 1
e

− b2ϕ 

n

i�1
1 + − ln ti(  

β
 

− ϕ− 1
e

1+ − ln ti( )[ ]
β( 

− ϕ

,

π η|β, ϕ, t ∝
ηn+a3− 1

e
η

− 1( 
ne

− η b3− 

n

i�1
1 + − ln ti(  

β
 

− ϕ⎧⎨

⎩

⎫⎬

⎭
.

(42)

TeBayesian estimators are obtained based on SELF. It is
clear that samples of β,ϕ, and η can be easily generated by
using their conditional posterior distributions which are
obtained above based onMH algorithm. Furthermore, using
the samples generated from the suggested MH method, one
may create the highest posterior density (HPD) credible
intervals for β, ϕ, and η of the UBXIIP distribution following
the MH proposed by Chen and Shao [18].

With two endpoints from the MCMC sample outputs,
the lower is 2.5%, and the upper is 97.5% percentiles, re-
spectively, and a 95% HPD interval can be generated. Te
credible intervals of β,ϕ, and η are calculated as follows:

(1) Arrange as β[1] < β[2] < · · · < β[H], ϕ[1] <ϕ[2]

< · · · <ϕ[H] and η[1] < η[2] < · · · < η[H], where H is
the length of MCMC generated

(2) Te 95% symmetric credible intervals of β,ϕ, and η
become (β[H25/1000], β[H975/1000]), (ϕ[H25/1000],

ϕ[H975/1000]), and (η[H25/1000], η[H975/1000])

4.3.FuzzyReliability. LetX be a continuous random variable
that represents a system’s failure time. Te fuzzy reliability

can be calculated using the fuzzy probability formula pro-
posed by Chen and Pham [19]

R(α) � P(T> x) � 
∞

x
μ(t)f(t)dt, 0≤x≤ t≤∞, (43)

where μ(t) is a membership function that describes the
degree to which each element of a given universe belongs to a
fuzzy set. Now, assume that μ(t) is

μ(t) �

0, t≤x1,

t − x1

x2 − x1
, 0≤x1 ≤ t≤x2,

1, t≥x2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

where 0≤x1 ≤ x2

(44)

For μ(t) by the computational method of the function of
fuzzy numbers, the lifetime x(α) can be obtained corre-
spond to a certain value of α − cut where 0≤ α≤ 1 proposed
by Chen and Pham [19]
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μ(t) � α⟶
t − x1

x2 − x1
� α, then

μ(t)≤x,

μ(t) � x1 + α x2 − x1( ,

μ(t)≥x2,

α � 0,

0< α< 1,

α � 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(45)

Tus, for all α − cut values, fuzzy reliability values can be
calculated as follows:

RF(α) �


x1

x1

f(t)dt � 0, α � 0,


x(α)�x1+α x2− x1( )

t1

f(t)dt � 0, 0< α< 1,


x2

x1

f(t)dt α � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Te reliability estimator via ML method based on
nonfuzzy and fuzzy is as follows:

R x1(  � 1 −
1

e
η

− 1
e
η 1+ − lnx1( )

β 
−ϕ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R x2(  � 1 −
1

e
η

− 1
e
η 1+ − lnx2( )

β 
−ϕ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R(x) � 1 −
1

e
η

− 1
e
η 1+(− lnx)

β 
−ϕ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

RF(α) � R x1(  − R x1 + α x2 − x1( ( .

(47)

Te reliability estimator via the Bayesian method based
on the nonfuzzy and fuzzy parts of the UBXIIP distribution
is as follows:

R xi(  � 
∞

0

∞

0

∞

0
1 −

1
e
η

− 1
e
η 1+ − lnxi( )

β( 
− ϕ

− 1  π β, ϕ, η t


 dϕ dβ dη, i � 1, 2,

R(x) � 
∞

0

∞

0

∞

0
F(x;Θ)π β, ϕ, η t


 dϕ dβ dη,

RF(α) � R x1(  − R x1 + α x2 − x1( ( .

(48)

5. Simulation Study

Te following algorithm is used to obtain the likelihood and
Bayesian estimation of parameters for the UBXIIP model
and reliability with tradition and fuzzy with diferent α cuts,
and their properties are studied using the mean squared
errors (MSE), average absolute bias (AAB), and length of
CIs. Our simulation algorithm begins with the creation of all

simulation controls. At this stage, we must proceed in the
following order:

Step 1: Assume various values for the UBXIIP distri-
bution’s parameters vector, where η � 0.5, 1, 2, β �

0.5, 1.5, and ϕ � 1.3.

Step 2: Select the appropriate strength sample size
n= 50, and 150.
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Step 3: Generate the sample random values of UBXIIP
distribution by using quantile function in (23).
Step 4: Solve diferential equations of ML method, to
obtain the estimators of the parameters for UBXIIP

distribution, we calculate β
∧
, ϕ
∧
, η
∧
. Also, we calculate

reliability based on nonfuzzy and fuzzy.
Step 5: Estimate hyperparameter values as

ai �
1
H



H

j�1

Θj⎡⎢⎢⎣ ⎤⎥⎥⎦

2
1

H − 1


H

j�1

Θj

i −
1
H



H

j�0

Θj

i
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− 1

& bi �
1
H



H

j�1

Θj

i
⎡⎢⎢⎣ ⎤⎥⎥⎦

1
H − 1



H

j�1

Θj

i −
1
H



H

j�0

Θj

i
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− 1

, i � 1, 2, 3, Θ ≡ (β, ϕ, η). (49)

Step 6: Generate posterior distribution by MCMC
techniques of the Bayesian method as H � 10000, to
obtain the estimates of the parameters for UBXIIP
distribution, we calculate β, ϕ, and η. Also, we calculate
reliability based on nonfuzzy and fuzzy.
Step 7: Compute AAB, MSE, and length of ACI (LACI)
for ML estimate and length of credible CI (LCCI) for
Bayesian estimates where the level of CIs is 95%. Te
measures AAB, MSE, and length of CI are defned by:
AAB=Mean |Θ

∧
− Θ|, MSE=Mean (Θ

∧
− Θ)2, and

length of CI = Upper CI - Lower CI.

Te following observations about the behavior of esti-
mates are listed below, as shown in Tables 3–4.

(i) Te suggested estimates of β,ϕ, and η, are pretty
satisfactory in terms of lowest AAB, MSE, and
LACI.

(ii) Te accuracy of the estimates improves with n.
(iii) In terms of AAB, MSE, and LACI, Bayesian

MCMC estimates utilizing gamma informative
priors outperform frequentist estimates since they
include prior knowledge.

(iv) Te credible CI surpasses the asymptotic CI in
terms of the smallest CI length due to the gamma
prior knowledge.

(v) As η decreases, the accuracy of the estimates
improves.

(vi) As β decreases, the accuracy of the estimates
improves.

(vii) MSE of fuzzy reliability values has smaller values
than MSE of nonfuzzy reliability values

(viii) As α − cut increases, then fuzzy reliability values
improve, as well as MSE increases

6. Data Application

Tis data set is constituted by the total milk production from
the frst birth of 107 cows of the SINDI race. Te data can be
found in Cordeiro and Birto [20] and analyzed by
Muhammad et al. [21]. Concretely, the data set is 0.4365,
0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990,
0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525,
0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707,

0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259,
0.2303, 0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804,
0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 0.7290, 0.0168,
0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167, 0.6750,
0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553,
0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627,
0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629,
0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635,
0.4111, 0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553,
0.5878, 0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 0.6860, 0.0609,
0.6488, 0.2747.

Te ML estimate evaluates all of the competing model’s
parameters. Te Bayesian method is also used to analyze the
parameters of the UBXIIP model. Te Akaike information
criterion (AIC), Bayesian IC (BIC), consistent AIC (CAIC), and
Hannan–Quinn IC (HQIC) are all used to compare ftted
models, and they all use the estimated log-likelihood as the
principal constituent. Te Kolmogorov-Smirnov (KSV),
Anderson-Darling value (ADV), and Cramér-von Mises value
(CvMV) goodness-of-ft statistics are also taken into account. As
is customary, the model with the lowest value of these measures
better represents the data than the other models. We compute
the ML and Bayesian parameter estimators of the UBXIIP
model using the standard error (SE). Kumaraswamy (K), beta,
Kumaraswamy Kumaraswamy (KK) distribution (El-Sherpieny
and Ahmed [22]), Marshall-Olkin Kumaraswamy (MOK)
distribution (George and Tobias [23]), unit Weibull (UW)
distribution (Mazucheli et al. [24]), and Topp-Leone Weibull-
Lomax (TLWL) distribution (Jamal et al. [25]) are used as
competing models. Table 5 shows the numerical values of the
statistical measures that were considered for each model. Te
fndings reveal that the UBXIIP model fts the data better than
the other models.

Table 6 shows diferent estimates using ML and Bayesian
estimation methods. Also, it contains reliability with tradition
and fuzzy with diferent α-cut. We conclude from this table
that Bayesian estimates perform better than ML estimates.

Figure 2 gives the plots of the histogram with the ftted
PDF, empirical CDF with the ftted CDF, and P-P plots of
UBXIIP model. From this fgure, we conclude that the
UBXIIP distribution is suitable for this data set.

Figure 3 shows convergence plots of MCMC for pa-
rameter estimates of the UBXIIP distribution. It illustrates
the iterations obtained using the MH algorithm and the
Gibbs sampling technique for each parameter. Also, it in-
cludes the posterior PDFs of each parameter based on the
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Table 3: ML and Bayesian estimations of parameters and reliability based on nonfuzzy and fuzzy: I.

β � 1.5,ϕ � 1.3 Parameter Nonfuzzy Fuzzy
η n β ϕ η R(t1) R(t) R(t2) α� 0.25 α� 0.55 α� 0.9

0.5

50

ML
AAB 0.0315 0.5563 1.0294 0.0121 0.0030 0.0007 0.0037 0.0023 0.0079
MSE 0.2332 0.5967 2.4594 0.0008 0.0046 0.0070 0.0004 0.0017 0.0058
LACI 1.8889 2.1017 4.6401 0.0922 0.2657 0.3274 0.0771 0.1632 0.2892

Bayesian
AAB 0.0589 0.0884 0.0658 0.0131 0.0242 0.0206 0.0082 0.0120 0.0094
MSE 0.0274 0.0623 0.0763 0.0006 0.0035 0.0039 0.0003 0.0010 0.0020
LCCI 0.5927 0.8852 0.9128 0.0823 0.2153 0.2354 0.0577 0.1155 0.1712

150

ML
AAB 0.0042 0.3571 0.6636 0.0170 0.0060 0.0017 0.0026 0.0032 0.0153
MSE 0.0661 0.2163 0.7759 0.0005 0.0017 0.0025 0.0001 0.0006 0.0021
LACI 1.0085 1.1686 2.2720 0.0550 0.1584 0.1945 0.0441 0.0963 0.1706

Bayesian
AAB 0.0480 0.0695 0.0120 0.0128 0.0127 0.0064 0.0051 0.0044 0.0034
MSE 0.0232 0.0289 0.0514 0.0004 0.0014 0.0018 0.0001 0.0004 0.0013
LCCI 0.5617 0.6001 0.7586 0.0557 0.1403 0.1673 0.0364 0.0794 0.1383

1

50

ML
AAB 0.0470 0.7050 1.2235 0.0157 0.0084 0.0022 0.0055 0.0017 0.0133
MSE 0.2524 0.7991 3.0997 0.0007 0.0043 0.0069 0.0004 0.0016 0.0054
LACI 1.9617 2.1556 4.9653 0.0796 0.2549 0.3260 0.0737 0.1560 0.2821

Bayesian
AAB 0.0674 0.1034 0.0456 0.0109 0.0221 0.0189 0.0075 0.0115 0.0098
MSE 0.0310 0.0751 0.0872 0.0005 0.0034 0.0041 0.0003 0.0010 0.0022
LCCI 0.6211 0.9587 1.0448 0.0695 0.2097 0.2425 0.0543 0.1127 0.1821

150

ML
AAB 0.0448 0.5815 1.0702 0.0153 0.0064 0.0005 0.0027 0.0014 0.0128
MSE 0.0930 0.5231 1.7384 0.0004 0.0016 0.0026 0.0001 0.0005 0.0020
LACI 1.1688 1.6869 3.0202 0.0470 0.1525 0.1982 0.0409 0.0900 0.1692

Bayesian
AAB 0.0635 0.0782 0.0098 0.0103 0.0136 0.0083 0.0052 0.0061 0.0006
MSE 0.0296 0.0337 0.0659 0.0003 0.0015 0.0019 0.0001 0.0004 0.0012
LCCI 0.5937 0.6331 0.9222 0.0482 0.1403 0.1680 0.0365 0.0792 0.1342

2

50

ML
AAB 0.0465 0.8958 1.4360 0.0126 0.0072 0.0088 0.0063 0.0046 0.0137
MSE 0.3169 1.2278 3.6640 0.0003 0.0033 0.0070 0.0003 0.0011 0.0048
LACI 2.2003 2.5577 4.9638 0.0507 0.2219 0.3268 0.0595 0.1314 0.2674

Bayesian
AAB 0.0699 0.1272 0.0335 0.0066 0.0188 0.0179 0.0058 0.0106 0.0120
MSE 0.0310 0.0945 0.0944 0.0002 0.0025 0.0037 0.0002 0.0007 0.0020
LCCI 0.6255 1.0813 1.1544 0.0435 0.1778 0.2240 0.0420 0.0933 0.1676

150

ML
AAB 0.0335 0.8512 1.4411 0.0123 0.0071 0.0008 0.0048 0.0026 0.0086
MSE 0.1257 0.9823 3.0928 0.0002 0.0012 0.0024 0.0001 0.0004 0.0017
LACI 1.3841 1.9909 3.9532 0.0285 0.1305 0.1930 0.0336 0.0761 0.1586

Bayesian
AAB 0.0608 0.0954 0.0003 0.0062 0.0142 0.0106 0.0049 0.0079 0.0058
MSE 0.0305 0.0412 0.0657 0.0001 0.0012 0.0018 0.0001 0.0003 0.0011
LCCI 0.6253 0.6868 0.9670 0.0328 0.1191 0.1594 0.0284 0.0633 0.1238

Table 4: ML and Bayesian estimations of parameters and reliability based on nonfuzzy and fuzzy: II.

β � 0.5,ϕ � 1.3 Parameter Nonfuzzy Fuzzy
η n β ϕ η R(t1) R(t) R(t2) α� 0.25 α� 0.55 α� 0.9

0.5

50

ML
AAB 0.1580 0.7828 1.1471 0.0899 0.0394 0.0208 0.0140 0.0336 0.0605
MSE 0.0417 0.6823 1.5926 0.0094 0.0061 0.0061 0.0004 0.0020 0.0058
LACI 0.5074 1.0342 2.0632 0.1405 0.2634 0.2949 0.0600 0.1175 0.1824

Bayesian
AAB 0.2302 0.2097 0.0966 0.0861 0.0504 0.0349 0.0084 0.0224 0.0439
MSE 0.0693 0.1201 0.0884 0.0085 0.0060 0.0056 0.0002 0.0011 0.0035
LCCI 0.4788 1.0885 0.9865 0.1293 0.2310 0.2544 0.0477 0.0960 0.1522

150

ML
AAB 0.1255 0.7586 0.9303 0.0896 0.0354 0.0204 0.0135 0.0320 0.0574
MSE 0.0191 0.6320 1.2799 0.0084 0.0032 0.0025 0.0003 0.0013 0.0040
LACI 0.2262 0.6996 1.2413 0.0789 0.1528 0.1721 0.0351 0.0689 0.1065

Bayesian
AAB 0.2142 0.1840 0.0268 0.0833 0.0407 0.0234 0.0082 0.0218 0.0415
MSE 0.0668 0.0642 0.0573 0.0074 0.0031 0.0024 0.0002 0.0010 0.0034
LCCI 0.3499 0.6730 0.8217 0.0824 0.1518 0.1709 0.0328 0.0648 0.1041
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Table 4: Continued.

β � 0.5,ϕ � 1.3 Parameter Nonfuzzy Fuzzy

1

50

ML
AAB 0.1733 0.9256 1.2260 0.0845 0.0467 0.0293 0.0081 0.0231 0.0470
MSE 0.0635 0.9712 2.0088 0.0082 0.0065 0.0066 0.0003 0.0015 0.0048
LACI 0.7173 1.3270 2.7892 0.1282 0.2580 0.2976 0.0601 0.1214 0.1982

Bayesian
AAB 0.2291 0.2502 0.0699 0.0757 0.0506 0.0370 0.0042 0.0143 0.0322
MSE 0.0724 0.1463 0.0974 0.0066 0.0055 0.0053 0.0001 0.0008 0.0026
LCCI 0.5122 1.0624 1.1128 0.1178 0.2166 0.2480 0.0443 0.0912 0.1494

150

ML
AAB 0.1292 0.9068 1.0418 0.0840 0.0419 0.0234 0.0077 0.0215 0.0428
MSE 0.0238 0.9070 1.9314 0.0074 0.0038 0.0029 0.0001 0.0007 0.0026
LACI 0.3298 0.8845 2.1541 0.0697 0.1434 0.1647 0.0330 0.0663 0.1059

Bayesian
AAB 0.2144 0.2122 0.0411 0.0748 0.0441 0.0288 0.0036 0.0138 0.0319
MSE 0.0690 0.0782 0.0674 0.0060 0.0032 0.0025 0.0001 0.0006 0.0022
LCCI 0.3660 0.7166 0.9822 0.0751 0.1395 0.1624 0.0298 0.0618 0.1031

2

50

ML
AAB 0.3160 1.3071 1.4667 0.0761 0.0536 0.0330 0.0010 0.0085 0.0329
MSE 0.1959 1.9614 3.1583 0.0061 0.0053 0.0052 0.0001 0.0008 0.0035
LACI 1.2153 1.9728 3.9364 0.0693 0.1945 0.2522 0.0470 0.1033 0.1926

Bayesian
AAB 0.2566 0.3206 0.0656 0.0572 0.0480 0.0375 0.0018 0.0024 0.0145
MSE 0.0953 0.1974 0.0953 0.0037 0.0039 0.0039 0.0001 0.0003 0.0014
LCCI 0.6091 1.1230 1.1810 0.0738 0.1544 0.1901 0.0316 0.0704 0.1273

150

ML
AAB 0.2353 1.2388 1.3620 0.0757 0.0509 0.0329 0.0010 0.0064 0.0249
MSE 0.0707 1.9101 2.9109 0.0058 0.0043 0.0033 0.0001 0.0003 0.0014
LACI 0.4857 1.1502 2.0969 0.0417 0.1170 0.1473 0.0278 0.0609 0.1092

Bayesian
AAB 0.2480 0.2895 0.0627 0.0509 0.0472 0.0352 0.0011 0.0024 0.0138
MSE 0.0916 0.1275 0.0795 0.0035 0.0030 0.0025 0.0000 0.0002 0.0010
LCCI 0.5293 0.8067 1.0771 0.0512 0.1053 0.1310 0.0228 0.0523 0.0994

Table 5: Estimates, SE, goodness-of-ft test by using tests and diferent criteria measures.

Estimates SE KSV PVKS AIC BIC CAIC HQIC CvMV ADV

UBXIIP
β 2.7988 0.2304

0.0413 0.9932 − 51.5156 − 43.4972 − 51.2826 − 48.2650 0.0249 0.2088ϕ 0.9189 0.3633
η 2.0920 1.2821

UW α 0.9846 0.1015 0.1206 0.0890 − 29.8423 − 24.4966 − 29.7269 − 27.6752 0.3963 2.4244β 1.5619 0.1064

K α 2.1949 0.2224 0.0763 0.5622 − 46.7894 − 41.4437 − 46.6740 − 44.6223 0.1561 1.0090β 3.4366 0.5821

Beta α 2.4125 0.3145 0.0910 0.3384 − 43.5545 − 38.2088 − 43.4391 − 41.3874 0.2083 1.3263β 2.8297 0.3744

KK

α 0.3781 0.2337

0.0761 0.5654 − 45.9247 − 35.2334 − 45.5326 − 41.5906 0.1120 0.7195β 5.1808 3.9516
θ 3.8954 9.2215
λ 1.4834 2.8696

TLWL

α 9.6340 0.0248

0.0858 0.4099 − 43.8721 − 33.1808 − 43.4800 − 39.5380 0.1353 0.8556β 10.8776 0.0248
θ 0.2493 0.0260
λ 0.3225 0.0043

MOK
α 11.5237 14.9262

0.0455 0.9796 − 51.4916 − 42.8973 − 50.9853 − 48.1289 0.0294 0.2015β 1.0163 0.5328
θ 3.8608 0.5487
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Table 6: ML and Bayesian estimation of parameters and reliability with traditional and fuzzy.

ML SE Bayesian SE

Parameters
β 2.7988 0.2304 2.7796 0.2300
ϕ 0.9189 0.3633 0.9794 0.2860
η 2.0920 1.2821 2.0102 0.9747

Traditional
R(t1) 0.9821 0.9843
R(t2) 0.4581 0.4708
R(t) 0.0634 0.0671

R fuzzy
0.25 0.0481 0.0455
0.55 0.1661 0.1596
0.9 0.4300 0.4194
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Figure 2: Te cumulative function and empirical CDF, histogram, and P–P plots for UBXIIP distribution.
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iterations obtained, to demonstrate the performance of the
Bayesian estimates.

Te log-likelihood function ismaximized by the estimated
parameters (Figure 4). Te roots were found to always point
to the global maximum rather than the local maximum. We
were able to corroborate our fndings by presenting the log-
likelihood function. Te estimate is at its maximum location
along the curve, as indicated by the blue dot.

We sketched the log-likelihood by contour plot for each
parameter for the fraction of total milk production data in
Figure 5 by fxing two parameters and modifying the rest.
Te fraction of total milk production data set performs
admirably, as shown in Figure 5, because the three roots of
the parameters are global maximums.

7. Concluding Remarks

Te unit Burr XII power series class is a four-parameter
lifetime distribution that we introduced. Te UBXII and PS

distributions were combined to produce the proposed class.
Te hazard rate function of the UBXII distribution can take
on a number of forms, including the bathtub and J-shaped.
Moments and incomplete moments, mean residual life,
information measures, and quantile function are among the
statistical features of the UBXII distribution that we have
derived. Some new submodels of the class are presented.Te
classical and Bayesian methods are used to obtain the es-
timators of parameters as well as reliability estimators via
fuzzy and nonfuzzy. Furthermore, the length of ACI and the
length of Bayesian credible intervals are determined. For the
Bayesian method, we use the MCMC techniques to obtain
the proposed estimators. To assess the efectiveness of the
provided estimates, a simulation analysis of the UBXIIP
model was created. Due to gamma previous information, the
credible interval is less than the asymptotic CI in terms of CI
length. According to simulation research fndings, Bayesian
estimates are preferred over non-Bayesian estimates since
they have a higher degree of accuracy. Compared to
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nonfuzzy reliability estimates, the MSE of fuzzy reliability
estimates has smaller values. In comparison to the asymp-
totic CI, the credible interval also has a shorter length.
Application to one real data set showed that the UBXIIP
distribution performs well than some other distributions.
Additionally, results from real data and MCMC plots for
parameter estimates of the UBXIIP distribution support the
conclusions of the simulation research. Te study of stress-
strength reliability in light of the ranked set sampling (RSS)
technique has recently captured the interest of multiple
writers due to its application in a variety of felds. Terefore,
in our upcoming work, we want to address the problem of
stress-strength estimation for a certain distribution in the
class using the RSS method [26–28], and also, for applica-
tions of lifetime data [29–31].
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tion: statistical properties, acceptance sampling plan, statis-
tical inference and applications to lifetime data,” Axioms,
vol. 11, no. 8, p. 389, 2022.

[30] S. A. Alyami, I. Elbatal, N. Alotaibi, E. M. Almetwally, and
M. Elgarhy, “Modeling to factor productivity of the United
Kingdom food Chain: using a new lifetime-generated family
of distributions,” Sustainability, vol. 14, no. 14, p. 8942, 2022.

[31] S. K. Ocloo, L. Brew, S. Nasiru, and B. Odoi, “On the extension
of the Burr XII distribution: applications and regression,”
Computational Journal of Mathematical and Statistical Sci-
ences, vol. 2, no. 1, pp. 1–30, 2023.

Scientifc Programming 17




