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Due to the small size, high resolution, and complex background, small object detection has become a difcult point in computer
vision. Making full use of high-resolution features and reducing information loss in the process of information propagation is of
great signifcance to improve small object detection. In this article, to achieve the above two points, this work proposes a small
object detection network based on multiple feature enhancement and feature fusion based on RetinaNet (MFEFNet). First, this
work designs a densely connected dilated convolutions to adequately extract high-resolution features from C2. Ten, this work
utilizes subpixel convolution to avoid the loss of channel information caused by channel dimension reduction in the lateral
connection. Finally, this article introduces a bidirectional fusion feature pyramid structure to shorten the propagation path of
high-resolution features and reduce the loss of high-resolution features. Experiments show that our proposed MFEFNet achieves
stable performance gains in object detection task. Specifcally, the improved method improves RetinaNet from 34.4AP to 36.2AP
on the challenging MS COCO dataset, and especially achieves excellent results in small object detection with an improvement of
2.9%.

1. Introduction

As a fundamental problem in the feld of computer vision,
object detection is the basis for many tasks such as image
segmentation, object tracking, and image description. With
the development of the convolutional neural network [1],
many one-stage detectors [2–5] and two-stage detectors
[6–9] with remarkable performance have been developed in
recent years. Two-stage object detection algorithms are
developing rapidly, such as R-CNN [2], Faster R-CNN [4],
and Mask R-CNN [5]; the detection accuracy is constantly
improving, but the problem of their own architecture limits
the detection speed. Te one-stage target detection algo-
rithm was proposed later than the two-stage target detection
algorithm, due to its relatively simple structure and superior
detection speed, it has also attracted the attention of many
researchers. Te representative algorithms include YOLO
and its variants [6–9], SSD and its variants [10–12], Reti-
naNet [13], and EfcientDet [14].

Although the one-stage object detector is signifcantly
faster than the two-stage object detector, its accuracy has
not been comparable to the two-stage object detector.
Some one-stage object detection algorithms have im-
proved the detection efect by introducing two-stage
object detection algorithms such as Feature Pyramid
Network (FPN) [15] and changing the backbone network.
FSSD [12] reconstructs the pyramid feature map to fuse
features of diferent scales, which is benefcial to small
object detection. EfcientDet [14] uses weighted bi-
directional feature pyramid network for feature fusion
and scales the model through composite feature pyramid
network. Lin et al. believed that the real reason for the low
accuracy of the integrated convolutional neural network
was the mismatch between the target and background
levels in the image, and then proposed RetinaNet [13].
RetinaNet solves the sample imbalance problem by in-
troducing focal loss, which greatly improves the object
detection efect. However, the detection efect of small
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objects (objects below 32 pixels × 32 pixels [16]) is not
competitive with the two-stage target detection algorithm.

We analyzed the RetinaNet [13] and found that the
following three points are not conducive to small object
detection. Firstly, it does not fully utilize the shallow feature
layer C2. Due to the low resolution and little visual in-
formation of small targets, the information of small targets
may be lost in the process of network up-sampling, making it
difcult for deep feature layers to extract discriminative
features. However, the shallow feature layer C2 has a smaller
receptive feld, higher spatial resolution, and contains more
accurate position information, which are very benefcial for
small object detection. Meanwhile, in the FPN-based
methods, the network generally uses a simple convolution
method to extract the shallow feature C2, such as [5, 17]. Due
to the limitation of the size of the receptive feld and the
depth of the network, it is difcult to extract shallow features
more fully.

Secondly, to reduce the computation, FPN-based
methods adopt 1× 1 convolutional layers to reduce chan-
nel dimensions of the output feature maps Ci from the
backbone. Ci generally extract thousands of channels in
high-level feature maps. Especially, the high-level features C4
and C5 have large channel dimensions, which contain rich
semantic information that is benefcial to object detection.
Te drastic channel dimension reduction (e.g., 2048 to 256)
results in the loss of a large amount of channel information,
which has a negative impact on small target detection. Te
existing methods [14, 18] to extract the channel information
mainly extract channel-reduced maps by adding additional
modules, and act on fewer channel features through more
complex network connections to achieve better accuracy.
Although [19] makes full use of Ci, it does not fully mine
contextual information of the transformed features.

Finally, RetinaNet [13] introduces the top-down feature
pyramid structure and performs multiscale feature fusion to
improve the detection efect of targets of diferent scales. It is
worth noting that the low-level features are critical for the
detection of small objects, which are helpful for more ac-
curate localization. However, due to the limitation of the
FPN structure, the path between high-level features and low-
level features is long (tens or even hundreds of network
layers such as ResNet50 and ResNet101), resulting in less
low-level features at the top of the pyramid, which makes the
small object detection efect not as good as expected.

Combined with the above analysis and inspired by
BFE-Net [20], we believe that improving the utilization of
high-resolution features in the network and reduce the
loss of features in the process of network propagation is of
great signifcance to improve the efect of small object
detection. For one thing, to improve the utilization of
high-resolution features, we reuse the shallow features C2.
Inspired by Densenet [21], we designed the multiscale
context extraction module to fully extract shallow fea-
tures. To pursue the balance between accuracy and
computational load, this work uses the dense connection
mechanism combined with dilated convolution to efec-
tively expand the receptive feld and increase the depth of
the feature extraction network to some extent, which can

extract richer semantic features and location features
while efectively realizing feature reuse.

For another thing, to reduce the information loss, this
work utilizes subpixel convolution and bidirectional feature
pyramid structure. First, inspired by [19, 22], this work
designs a subpixel convolution enhancement module to
reduce the information loss caused by channel reduction.
Specifcally, this work uses subpixel convolution to convert
low-resolution feature maps into high-resolution feature
maps in the horizontal connection of top-down propagation,
making full use of channel information and reducing the loss
of information during lateral connection. At the same time,
the spatial attention mechanism is used for the transformed
features to obtain richer contextual information. Second, to
reduce the loss of shallow information in the propagation
path and inspired by PANet [17], this work introduces
a bidirectional fusion feature pyramid structure. We
designed a bidirectionally connected feature pyramid
structure, which can greatly shorten the propagation path of
shallow features to reduce feature loss and better retain
shallow feature information. At the same time, the bi-
directional feature pyramid network further strengthens the
multiscale feature fusion, which greatly enriches the shallow
multiscale context information.

Based on the above analysis and strategies, the detection
method proposed in this article compared to standard
RetinaNet has the following advantages:

(1) To improve the utilization of shallow features, this
article designs a multiscale context extraction
module (MCEM) consisting of densely connected
dilated convolutions, which use convolutional layers
with diferent dilation rates to obtain more efective
receptive felds.

(2) Tomake full use of channel information in the lateral
connection and reduce the channel information loss,
this article designs a subpixel convolution en-
hancement module (SCEM), which uses subpixel
convolution to convert low-resolution features into
high-resolution features to avoid information loss
caused by channel dimension reduction in the lateral
connection.

(3) To reduce the low-level features loss in propagation
process, this article designs a bidirectional fusion
feature pyramid structure (BidiFPN), which uses
bidirectional feature pyramid structure to shorten
the propagation path of shallow features, reducing
the shallow feature loss in the propagation process.

2. Related Work

2.1. Object Detectors. At present, there are two types of
mainstream deep learning target detection algorithms, two-
stage target detection based on region proposal and one-
stage target detection based on regression analysis.

2.1.1. Two-stage Detectors. Te two-stage target detection
algorithm generally uses selective search or region proposal
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network to extract candidate frames from the image, and
then performs secondary correction on the candidate frame
target to obtain the detection result. R-CNN [2] introduces
convolutional neural network combined with candidate
region proposal to achieve target detection. SPP-Net takes
the entire image as input, and realizes feature extraction of
any scale area, reducing the amount of computation. Faster
R-CNN [4] proposes a region proposal network to extract
candidate regions, which improves detection efciency.
Mask R-CNN [5] uses the RoI Align layer to reduce the
deviation of the feature map from the original map. Cascade
R-CNN [23] introduced multilevel refnement in Faster
R-CNN to achieve more accurate target location prediction.
Te two-stage target detection algorithm is developing
rapidly, and the detection accuracy is constantly improving,
but the problem of its own architecture limits the detection
speed. It cannot meet some downstream tasks with strong
real-time performance.

2.1.2. One-stage Detectors. Compared with two-stage de-
tectors, one-stage object detection algorithms do not require
classifcation on candidate regions, and the training process
is relatively simple. YOLOv1 [6] is the frst one-stage de-
tector in the feld of deep learning proposed by Redmon
et al., whose biggest advantage is the fast speed. Some
scholars have improved on the basis of YOLOv1 [16] and
proposed YOLO9000 [7], YOLOv3 [8], and YOLOv4 [9].
SSD [10] proposed in 2015 combines the advantages of
YOLO’s fast detection speed and Faster R-CNN’s accurate
positioning. DSSD [11] backbone adopts Resnet-101 and
adds deconvolution module to improve the efect of small
object detection. FSSD [12] reconstructs the pyramid feature
map to fuse features of diferent scales to enhance the de-
tection efect of small objects. Although the one-stage object
detector is signifcantly faster than the two-stage object
detector based on candidate region recommendation, its
accuracy has not been comparable to the two-stage object
detector. RetinaNet [13] solves the problem of instance
sample imbalance by introducing focal loss and realizes
a detection framework whose accuracy is comparable to that
of two-stage target detectors. However, RetinaNet [13] de-
tection efect on small objects still has room for improve-
ment compared to two-stage target detection algorithms. In
addition, EfcientDet [14] uses a weighted bidirectional
feature pyramid network for feature fusion. YOLOF [24]
designs a dilated encoder and a balanced matching strategy
to improve the detection performance.

2.2. FeatureAugmentation. As the number of network layers
increases, the semantic information and location in-
formation of the target are lost layer by layer. Multiscale
feature fusion and contextual feature enhancement are ef-
fective methods to compensate for information loss.

2.2.1. Multiscale Feature Fusion. To make full use of the
features extracted by diferent feature layers, many re-
searchers optimize the detector architecture to achieve

multiscale feature fusion. Most detectors utilize the FPN [15]
to detect objects of diferent sizes, which extracts the features
from the bottom to the top, and then performs a top-down
feature fusion structure, and fnally sends them to the
prediction module to output the results. PANet [17] con-
nects the features of the lowest layer of the model with the
features of the highest layer, shortens the information path
between the top layer and the bottom layer, and further
strengthens the connection between the feature maps of each
layer. EfcientDet [14] proposes a weighted bidirectional
feature pyramid network BiFPN to achieve more efcient
multiscale feature fusion. AugFPN [25] utilizes consistency
supervision to close the semantic gap before feature fusion
and employs residual features to reduce information loss
during convolution pooling to better utilize multiscale
features. NAS-FPN [26] makes full use of neural network
search technology to achieve cross-scale feature fusion
through top-down and bottom-up connections. Inspired by
[22], Luo et al. used the original channel information for
cross-scale output and proposed CE-FPN [19].

2.2.2. Context Feature Enhancement. Te detected target has
an inseparable relationship with other surrounding objects
and the environment. In order to improve detection accu-
racy by exploring contextual information, CoupleNet [27]
improves the detection accuracy by introducing the global
and semantic information of the proposal and combining
local information and global information. Te DetectoRS
[28] proposes Recursive Feature Pyramid (RFP) and in-
corporates additional feedback connections from the feature
pyramid network to the bottom-up backbone layers. Lim
et al., [29] improved the detection accuracy of small objects
by fusing multiscale features and using additional features at
diferent levels as contextual information. Nonlocal [30]
proposed a strategy to obtain the dependencies between two
locations, solving the problem of limited receptive feld
obtained by convolution operation at each layer.

3. Methods

Tis section introduces the small object detection network
based on multiple feature enhancement to reduce the loss of
high-resolution information and make up for the loss of
information during the propagation process and lateral
connection. As shown in Figure 1, three components are
proposed inMFEFNet: multiscale context extractionmodule
(MCEM), subpixel convolution enhancement module
(SCEM), and bidirectional fusion feature pyramid structure
(BidiFPN). We have described them in detail as follows.

3.1. Multiscale Context Extraction Module. Small objects
have fewer pixels available than normal-sized objects, and
features are difcult to extract. With the deepening of the
number of network layers, through continuous down-
sampling and feature extraction, the feature information
and location information of small objects are also lost layer
by layer. Te shallow target of convolutional neural network
contains much small object information due to its small
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receptive feld, high resolution, and rich location in-
formation. Terefore, making full use of the shallow feature
layer can improve the small object detection efect to
a certain extent. RetinaNet [13] does not use the high-
resolution pyramid level P2. We designed the multiscale
context extraction module (as shown in Figure 2) to fully
extract the features of the high-resolution feature layer C2
through densely connected dilated convolutions.

Although the shallow feature layer of the convolutional
neural network contains rich small object information, its
ability to express feature semantic information is weak.
Inspired by [21], we perform feature extraction through the
dilated convolutional layer with diferent dilation rates,
which enriches semantic information while ensuring rich
spatial information, and enhances the high-level semantic
information of shallow features.

First, we divide the feature map C2 into three branches
for dilated convolution. Since each dilated convolutional
layer has a diferent dilation rate, three feature maps with
diferent receptive feld sizes will be obtained.

F0 � Fd C2, 3( ,

F1 � Fd C2⨁F0, 5( ,

F2 � Fd C2⨁F0⨁F1, 9( ,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where Fd(·) represents the dilated convolution operation
function with a convolution kernel of 3× 3 and expansion
rates of 3, 5, and 9, respectively. Te symbol ⊕ denotes
feature fusion by addition. Ten, the three output feature
maps containingmultiscale context information and C2 after
1× 1 convolution are fused in the concatenate method and
then D2 is obtained through 1× 1 convolution layer for
channel dimension reduction.

D2 � Conv1×1 Fconcat F0, F1, F2,Conv1×1 C2( ( ( , (2)

where Fconcat(·) represents the operation of feature con-
nection in the way of concatenate.

3.2. Subpixel Convolution Enhancement Module. As the
number of convolutional layers increases, the network can
obtain more efective features. In the RetinaNet [13], with
the deepening of the backbone network, feature layers with
rich dimensions will be generated in the bottom-up prop-
agation path, especially the high-level features C4 and C5,
and the feature dimensions are 1024 and 2048, respectively.
Tese high-level features are rich in semantic information.
However, in order to reduce the complexity of the network
and improve the calculation speed, a 1× 1 convolutional
layer will be used for dimension reduction in the lateral
connection. For example, the dimension of C5 is reduced
from 2048 to 256. Te dramatic reduction in dimension will
lead to a lot of semantics loss of information.

Te loss of semantic information in the top-down
propagation process will further afect the detection re-
sults, especially the loss of small object features becomes
more and more serious. To reduce the loss of semantic
information in the lateral connection and make full use of
the rich channel information of high-level feature maps, we
are inspired by [19] to use subpixel convolution to achieve
channel dimension reduction and fully fuse the information
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of adjacent feature layers and designed the subpixel con-
volution enhancement module (as shown in Figure 3(a)).
Subpixel convolution [22] implements the reconstruction
process from up-sampling reconstruction from low-
resolution images to high-resolution images. Tis opera-
tion is to rearrange the pixels on diferent channels of the
feature map into the same channel space, so as to achieve the
purpose of more pixels in the same channel space, mainly by
transforming the channel size to increase the width and
height. Considering that C4 and C5 have 1024 and 2048
channels, respectively, subpixel convolution is performed
directly without expanding the channel size.Te pixel shufe
operator rearranges the feature of shape H × W × C · r2 to
rH × rW × C, which can be formulated as follows:

PS(F)x,y,c � F[x/r],[y/r],C·r·mod(y,r)+C·mod(x,r)+c, (3)

where r denotes the up-scaling factor, in this work, r� 2. F is
the input feature, and F is Ci+1 in this article as shown in
Figure 3(a), and PS(F)x,y,c denotes the output feature pixel
on coordinates x, y, and c. Te index x, y, and c start from 0,
which represents the coordinates in the high-resolution
feature map. Mi is the output obtained by element-wise
addition of the low-resolution feature map Ci+1 and the
high-resolution feature map Ci after subpixel convolution.

Mi � PS Ci+1( x,y,c⨁Conv1×1 Ci( , i � 3, 4,

Di � GE Mi( , i � 3, 4,
(4)

where the symbol ⊕ denotes feature fusion by addition.
Conv1× 1(·) represents a 1× 1 convolution layer for channel
dimension reduction. GE(·) represents the processing
process of GE block.

Te standard RetinaNet [13] introduces the feature
pyramid network to detect objects of diferent scales through
multiscale representation, enriching the semantic in-
formation of shallow features to make it more efective for
small objects detection. However, the convolutional neural
network can only obtain the local receptive feld. Although
the receptive feld can be expanded through deeper network
layers, the global information cannot be obtained. Context
information means that in an image, a single pixel or a single
target does not exist alone, but has some relationship with

the surrounding pixels and targets. Mining and utilizing the
contextual information between objects will be benefcial to
object detection, especially for small objects that rely heavily
on context. Inspired by [30, 31], we design GE Block to
model the global context through the self-attention mech-
anism to efectively capture long-distance feature de-
pendencies. Trough the information interaction of the
global context, the feature map contains richer semantic
information, thereby enhancing the feature response of
small objects.

3.2.1. GE Block. To enhance the information fusion between
high-resolution feature layer and low-resolution feature
layer, we designed a global feature enhancement block (as
shown in Figure 3(b)) in SCEM, which utilizes a self-
attention mechanism to enhance the representation of
features by learning the global dependencies of features.
Encode broader contextual information into local features,
thereby enhancing its representational power. Te pro-
cessing steps of GE(·) are as follows.

Mi is redefned as X, and X is used as the input of this
model, and Q, K, V{ } are obtained through three convolu-
tional layers, respectively. Ten, perform matrix transpose
operation on Q to get QT. We performed matrix multipli-
cation of the reshaped K and QT to obtain the spatial at-
tention map W. Next, we performed the matrix
multiplication operation on the reshaped V and W to weight
the spatial information and perform an element-wise ad-
dition with M to obtain the fnal output D as the output of
SCEM. In particular, we formulated this procedure as
follows.

qi, kj, vj � fq Xi( , fk Xj , fv Xj , qi ∈ Q, kj ∈ K, vj ∈ V,

Xi � Fmul Fnom Fsim qi, kj , vj   + Xi,

(5)

where qi is the ith query; kj and vj are the jth key/value pair.
fq(·), fk(·), and fy(·) denote the query, key, and value
transformer functions [31, 32], respectively. Tese functions
specifcally refer to matrix operations using the mapping
matrix of q, k, and v and the input features. Xi and Xj are the
ith and jth feature positions in X, respectively. Fsim(·) is the
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Figure 3: Illustration of subpixel convolution enhancement module (SCEM). (a) Te overall of SCEM. (b) Te details of GE block.
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similarity function dot product; Fnom(·) is the normalizing
function softmax; Fmul(·) is the weight aggregation function
matrix multiplication; andDi is the ith feature position in the
output feature map X. X as the output of GE(·) is redefned
as Di, and the subscript i is corresponding to the input
feature Mi of GE(·).

3.3. Bidirectional Fusion Feature Pyramid Structure.
Multiscale feature fusion integrates low-level features and
high-level features through top-down lateral connection and
constructs a feature representation with fne-grained fea-
tures and rich semantic information.Te fused features have
stronger expressive ability, which is conducive to the de-
tection of small objects. Te standard RetinaNet [13] uses
a top-down fusion feature pyramid structure, which uses
feature pyramid levels P3 to P7, where P3 to P5 are computed
from the output of the corresponding ResNet residual stage
(C3 through C5) using top-down and lateral connections just
as in [15].

Although the feature pyramid structure adopted by the
RetinaNet [13] (see Figure 4(a)) can fully integratemultiscale
features, the low-level features need to go through hundreds
of convolution layers of backbone, resulting in the loss of
a large amount of underlying information that is conducive
to small object detection during the propagation process.
Inspired by PANet [17] (see Figure 4(b)), we designed
a bidirectional fusion feature pyramid structure (see Fig-
ure 4(c)).Te structure adds a bottom-up path enhancement
module built with a smaller number of convolutional layers,
which ensures that the information of high-level features
and low-level features is more fully integrated, while
retaining as much low-level information as possible. As in
[17], all pyramid levels have C� 256 channels.

In the bottom-up backbone network we keep the C3
through C6 layers in the standard RetinaNet [13], while
making full use of the C2 which contains rich low-level
features.

3.3.1. Top-Down Path. Te top-down path includes the
features of N2 through N4. N4 is the output feature after
SCEM with C4 and C5 as input features.

N4 � D4. (6)

N3 is composed of the up-samplingN4 and the output
featureD3 after the SCEM (Section 3.2) with C4 and C5 as the
input features. Te two parts are fused by the addition
method (see Figure 5(b)), which is quite diferent from [17]
(see Figure 5(a)).

N3 � D3⨁Fup N4( , (7)

where ⊕ is the feature fusion operation, and Fup(·) is the up-
sampling operation to match the resolution of the feature
image to be fused in the lower layer. N2 is obtained by fusing
two parts of features, which are N3 after up-sampling op-
eration and the output feature D2 of the MCEM.

N2 � D2⨁Fup N3( . (8)

3.3.2. Bottom-Up Enhancement Path. Te bottom-up en-
hancement path includes the features of P2 through P6. P2
through P4 are generated in the same way just as in PANet
[17].

Pi �
Ni, i � 2,

Conv1×1 Ni−1( ⨁Fdown Pi−1( , i � 3, 4,
 (9)

where ⊕ is the feature fusion operation, Conv1×1(·) repre-
sents a 1× 1 conv, and Fdown(·) is the down-sampling op-
eration to match the resolution of the feature image to be
fused in the upper layer. P5 is obtained by fusing 1× 1 conv
on C5 and down-sampling on P4. P6 is obtained by fusing
1× 1 conv on C6 and down-sampling on P5.

Pi � Conv1×1 Ci( ⨁Fdown Pi−1( , i � 5, 6. (10)

4. Experiments

4.1. Dataset and Evaluation Metrics. We perform all ex-
periments on the MS COCO detection dataset with 80
categories, in which objects with scale smaller than 32× 32
pixels are considered small objects. MS COCO has a large
number of small object objects, and the proportion of small
objects accounts for 41.43% [16]. We train models on
train2017 and report results of ablation study on val2017.
Te fnal results are reported on test-dev. Te COCO-style
average precision (AP) is chosen as the evaluation metric.
AP50 and AP75 represent the average precision when IoU is
set to 0.5 and 0.75, respectively, and APS, APM, and APL
represent the average precision of small objects, medium-
sized targets, and large-sized targets, respectively.

4.2. Implementation Details. To demonstrate the efective-
ness of the MFEFNet proposed in this article, we conducted
a series of experiments on the MS COCO dataset for ver-
ifcation. For all experiments in this section, we used SGD
optimizer to train our models on a machine, whose CPU is
Intel i7-9700k, 32 RAM, × NVIDIA GeForce GTX TITAN X
GPUs, the CUDA version is 10.1 and deep learning
framework is Pytorch 1.7.1. We initialize the learning rate as
0.01 and decrease it to 0.001 and 0.0001 at 8th-epoch and
11th-epoch. Te momentum is set as 0.9 and the weight
decay is 0.0001. Te classical net-works ResNet-50 and
ResNet-101 are adopted as backbones for comparative ex-
periments. Original settings of RetinaNet such as hyper-
parameters for anchors and Focal Loss are followed for fairly
comparison. For all studies we use an image scale of 500
pixels unless noted for training and testing.

4.3.MainResults. In this section, we evaluated theMFEFNet
on the COCO test-dev and compare it with other state-of-
the-art one-stage detectors and two-stage detectors.
Implementation details and evaluation metrics are set as
above. All the results are shown in Table 1.

By analyzing the experimental results in the table, it can be
found that when Resnet101 is used as the backbone network,
the standard RetinaNet [13] performs better in detecting large
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and medium targets, and achieves competitive results com-
pared with the two-stage detectors, respectively, reaching
38.5% and 49.1%. However, when detecting small objects, it is
only 14.7%, which is 0.9% and 3.5% lower than the two-stage
detectors Faster R-CNN +++ [4] and Faster R-CNN w FPN
[15], respectively. Faster R-CNN +++ refers to R-
FCN+Resnet-101. In addition, compared with the one-stage
detector YOLOv3 [8], it is 3.6% lower, and there is still much
room for improvement. It is worth noting that the MFEFNet
proposed in this article achieved excellent results in both large
and small objects, and the APS reached 17.6%, which was
improved by 2.9% and 1.0%, respectively, compared with
standard RetinaNet [13] and Faster R-CNN+++ [4]. Com-
bining the above analysis and experimental data, it can be
found that the model proposed in this article has greatly
improved the detection efect of targets of various sizes, es-
pecially for small objects.

Figure 6 shows the visual comparison of features through
convolution layer. Specifcally, in this work, we use Grad
CAM to calculate and visually display the output of the last
convolution layer of the model in combination with the
network structure and the weight after training. Column (a)
is the original image, and column (b) is the feature

visualization result of RetinaNet [13]. It can be found that
the heat map does not cover small objects well, which shows
that RetinaNet [13] is not sensitive to small objects. Te
improved network in this article improves the utilization of
features and reduces the loss of features. As shown in col-
umn (c), it can be found that the feature heatmap of
MFEFNet can better cover the boundary of the object, and
can pay more attention to more number of small goals. Tis
proves that the improved network can efectively enrich the
features of small-scale feature detection, making the network
pay more attention to the neglected small objects.

4.4. Ablation Study. In this section, we conducted extensive
ablation experiments to analyze the efects of individual
components in our proposed method. We also analyze the
efect of each proposed component of MFEFNet on COCO
val2017. Te purpose of this study is as follows.

To analyze the importance of each component in
MFEFNet, we gradually applied multiscale context extrac-
tion module, subpixel convolution enhancement module,
and bidirectional fusion feature pyramid structure to the
model to verify the efectiveness. Meanwhile, the
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N4

(a)

C4

C3

D3

N4

N3

(b)

Figure 5: Comparisons of feature layer fusion, the dotted line refers to upsampling and the solid line refers to simple reference/input to the
next step. (a) N3 in PANet; (b) N3 in MFEFNet (ours), the orange block: MCEM.

C7

C6

C5

C4

C3

RetinaNet

P7

P6

P5

P4

P3

(a)

C5

C4

C3

C2

P5

P4

P3

P2

N5

N4

N3

N2

PANet

(b)

P5

P4

P3

P2

N4

N3

N2

C6

C5

C4

C3

C2

P6

Ours

(c)

Figure 4: Comparisons of diferent backbone. (a) RetinaNet; (b) PANet; (c) Ours (MFEFNet), purple line: MCEM, red line: SCEM.
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improvements brought by the combination of diferent
components are also presented to demonstrate that these
components complement each other. Te baseline method
for all ablation studies is ResNet50. All results are shown in
Table 2.

By analyzing the experimental data in the table, it can be
found that compared with the standard RetinaNet [13], the
three structures proposed in this article have diferent de-
grees of improvement in the detection AP of targets of
diferent scales. After adding the BidiFPN to the standard

Table 1: MFEFNet vs. other two-stage and one-stage detectors on COCO test-dev.

Method Backbone AP AP50 AP75 APS APM APL
Two-stage methods
DeNet [33] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8
CoupleNet [28] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8
Faster R-CNN +++ [4] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [15] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [5] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
Cascade R-CNN [23] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
One-stage methods
YOLOv2 [7] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [10] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [13] ResNet-50 32.5 50.9 34.8 13.9 35.8 46.7
YOLOv3 [8] DarkNet-53 33.0 57.9 34.4 18.3 35.4 51.1
DSSD513 [11] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
EfcientDet-D0 [14] EfcientNet 34.6 53.0 37.1 — — —
RetinaNet [13] ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1
RefneDet512 [12] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
MFEFNet (ours) ResNet-50 34.8 52.8 37.4 16.8 37.3 47.9
MFEFNet (ours) ResNet-101 36.2 54.2 38.3 17.6 39.5 50.1

(a) (b) (c)

Figure 6: Comparisons of feature heat maps results. (a)Te original images; (b) RetinaNet output features results; and (c) MFEFNet output
features results.
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RetinaNet [13], the AP is increased by 1.2%, and the small
object average precision (APS) reaches 14.9%, an increase of
1.0%. In addition, after adding MCEM and SCEM, the
average precision of small objects (APS) is increased by 1.1%
and 0.8%, respectively, which also indicates that the shallow
features fully extracted by MCEM and channel information
at high-level are very helpful for small object detection. In
addition to the large improvement in the detection efect of
small objects, the detection average precision of large-sized
objects and medium-sized objects has also been improved to
varying degrees.Te improved model improves the AP from
32.5% to 34.8%. Especially, the small object average pre-
cision (APS) also achieves a very meaningful improvement,
from 13.9% to 16.8%, an increase of 2.9%.

To verify the efectiveness of densely connected dilated
convolutions with diferent dilation rates in MCEM, we
conducted the following ablation experiments. Feature ex-
traction is performed in the following three ways: Par-
dilated means that the three dilated convolutional layers
are only connected in parallel to perform feature extraction
on the shallow feature C2. Ser-dilated means that the three
dilated convolutional layers are only connected in series for
feature extraction, and the convolutional layers are con-
nected in increasing order according to the dilation rate.
Den-dilated represents the MCEM used in this article for
feature extraction. Te experimental results are shown in
Table 3. Te visual structure diagram of three connection
modes is shown in Figure 7.

By analyzing the data in the table, it can be found that the
shallow feature extraction in the Den-dilated is more con-
ducive to small object detection, and the average accuracy of
small objects reaches 16.8%, an increase of 1.4%. We ana-
lyzed when features are extracted by Den-dilated, it fully
expands the receptive feld and strengthens the information
fusion between diferent feature layers, which can extract
more sufcient location information and semantic in-
formation. Although the other two methods have diferent
degrees of improvement in the detection results, the efect is
weaker than that of Den-dilated. In particular, the detection

efect of Par-dilated is better than that of Ser-dilated, es-
pecially in small object detection. Par-dilated is 0.4% higher
than that of Ser-dilated in small object detection. We believe
that the parallel dilated convolution can greatly expand the
receptive feld, and can more fully extract high-resolution
features that are conducive to small object detection.

To verify the efectiveness of GE Block in SCEM, we
conducted the following ablation experiments. SCEM can be
divided into a channel dimension reduction part based on
subpixel convolution and the nonlocal feature extraction
part based on GE block. Te experimental results are shown
in Table 4.

We analyzed the experimental data in the table and
found that when only using subpixel convolution for
channel dimension reduction, the detection accuracy has
been greatly improved, and the average accuracy has in-
creased from 34.1% to 34.6%, an increase of 0.5%. In ad-
dition, the small object detection accuracy is improved by
0.6%. However, after adding the GE Block, the detection
accuracy of targets of various sizes has been further im-
proved, and the APs has reached 16.8%, an increase of 0.9%.
Tis is due to the fact that GE Block uses the spatial attention
mechanism to fully obtain spatial context information,
which is very helpful for small objects that rely heavily on
context information.

4.5. Visualization of Results. In order to more intuitively
demonstrate the efectiveness of the model proposed in this
article, we visualized the detection efect of the standard
RetinaNet [13] and the MFEFNet proposed in this article on
the MS COCO dataset, as shown in Figure 8. Te frst
column in the chart represents the original image, the
second column is the detection result of RetinaNet [13], and
the last column is the detection result of MFEFNet.

From the detection results, it can be found that com-
pared with the standard RetinaNet [13], MFEFNet can detect
more small objects. In the frst line of detection results, it can
be found that MFEFNet is able to detect people, which are

Table 2: Efect of each component on COCO val-2017.

RetinaNet BidiFPN MCEM SCEM AP AP50 AP75 APS APM APL
√ × × × 32.5 50.9 34.8 13.9 35.8 46.7
√ √ × × 33.3 51.6 35.8 14.9 36.3 47.1
√ √ √ × 34.1 52.3 36.8 16.0 36.9 47.4
√ √ × √ 34.0 52.1 36.6 15.7 36.5 47.5
√ √ √ √ 34.8 52.8 37.4 16.8 37.3 47.9
Note: BidiFPN: bidirectional fusion feature pyramid structure; MCEM: multiscale context extraction module; SCEM: subpixel convolution enhancement
module.

Table 3: Ablation studies of MCEM on COCO val-2017.

R+B+ S Par-dilated Ser-dilated Den-dilated AP AP50 AP75 APS APM APL
√ × × × 34.0 52.1 36.6 15.4 36.5 47.5
√ √ × × 34.4 52.6 37.1 16.4 37.2 47.7
√ × √ × 34.3 52.5 36.9 16.0 37.0 47.7
√ × × √ 34.8 52.8 37.4 16.8 37.3 47.9
R+B+ S: RetinaNet + BidiFPN+ SCEM.
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Figure 7: Comparisons of densely connected dilated convolutions. (a) Par-dilated; (b) ser-dilated; and (c) den-dilated (MCEM).

Table 4: Ablation studies of SCEM on COCO val-2017.

R+B+M SubD GE-B AP AP50 AP75 APS APM APL
√ × × 34.1 52.1 36.7 15.9 36.9 47.4
√ √ × 34.6 52.5 37.2 16.5 37.2 47.6
√ √ √ 34.8 52.8 37.4 16.8 37.3 47.9
Note: SubD: sub-pixel convolutional dimension reduction and GE-B: GE block. R+B+M: retinaNet + BidiFPN+MCEM.

(a) (b) (c) (d)

Figure 8: Comparisons of small object detection results. (a)Te original images; (b) RetinaNet test results; (c) MFEFNet test results; and (d)
the ground truth.
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targets not detected by RetinaNet [13]. In the second row,
RetinaNet [13] detected false objects and missed some ob-
jects. Te white tent was mistakenly identifed as sheep, the
grass was mistakenly identifed as cow, and the distant cow
was not detected, which were successfully avoided in
MFEFNet. From the experimental results in the third and
fourth rows, it can be found that MFEFNet can also accu-
rately identify a larger number of small objects such as cows.
Tese experimental results show that the improved model in
this article can further enhance the representation ability of
the model and can greatly improve the missed detection and
false detection of small objects.

5. Conclusions

Tis article deeply analyzes the key factors afecting small
object detection and points out the shortcomings of the
excellent single-stage object detector RetinaNet in small
object detection.Tis work proposes a small object detection
network based onmultiple feature enhancement (MFEFNet)
starting from improving high-resolution utilization and
reducing information loss during propagation. First, it uses
densely connected dilated convolutions to adequately extract
shallow layer C2, improving the utilization of high-
resolution features. Second, this work introduces a bi-
directional feature pyramid structure to shorten the shallow
feature propagation path. Finally, this work makes full use of
channel features containing rich semantic information
through subpixel convolution to avoid channel information
loss caused by channel dimension reduction in lateral
connections. Tis article conducts sufcient experiments
and stable detection improvements on the challenging MS
COCO dataset, and the experimental results show that the
detection efect of the improved method is greatly improved,
and the AP is improved by 2.3%. Te APS is increased by
2.9%, which efectively improves the detection efect of small
objects. Tis article demonstrates the efectiveness of the
model through sufcient experiments, and we believe this
work can help future object detection research. [34].
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