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Taking maize seedlings as the object, the implementation of crops 3D reconstruction based on RGB-D binocular vision and the
selection of some key parameters are investigated in this research. First, multiple images are taken from different angles around the
target. By mapping the maize seedling region coordinate values after the Otsu algorithm and global threshold segmentation to
the corresponding depth image, the depth data of the maize seedling region can be obtained accurately. An improved mean filter is
proposed to adaptively fill the holes in the depth image. Then, the different point clouds with the fixed step angle of the maize
seedling are registered and fuzed. Finally, after the fusion point cloud is simplified, the 3D model of crops can be reconstructed.
Experimental results show that the simplification effect of the octree algorithm is better than that of the voxel grid filter. Among all
the step angles, the reconstruction error of the step angle with 60° is the smallest. Under this condition, the height error between the
model and the maize seedling is 2.22%, and the error in stem diameter is 11.67%.

1. Introduction

As technology continues to evolve, the development of smart
agriculture has brought many new technologies and solu-
tions to modern agriculture, and 3D reconstruction technol-
ogy [1, 2] is one of them. 3D reconstruction of crops can be
used not only to measure the phenotypic parameters of the
target but also to visualize the object in virtual 3D space [3].
Crop 3D reconstruction technology [4, 5] has gradually
become a research hotspot in this field. At present, crop
3D reconstruction has several methods, mainly rule-based
[6], 3D scanner [7, 8], digitizer [9, 10], and vision-based
image reconstruction [11, 12]. Compared with the 3D recon-
struction methods based on scanners and digitizers, vision-
based 3D reconstruction has the advantages of low cost and a
certain accuracy guarantee, which has been extensively stud-
ied and applied in recent years [13].

There have emergedmany innovative companies and teams
in the field of smart agriculture, both domestically and interna-
tionally, exploring and innovating in the area of intelligent agri-
culture. Gibbs et al. [14] proposed an active vision cell, which
consists of a camera-mounted robot arm, a combined software
interface, and a novel surface reconstruction algorithm. Due to

the active visual framework of the application and the automatic
selection of key parameters for surface reconstruction, this pipe-
line can be applied to any plant species ormorphology. Han and
Burks [15] took images of the orange canopy from multiple
angles with a camera and finally reconstructed the canopy sur-
face by using the Plücker coordinate system. Shirazi et al. [16]
used an active stereo vision-based 3D perception system to
acquire 3D models of human body parts and surgical tools.
To evaluate the proposed system, the article performed a 3D
scan of a cardboard box as an object. The results showed errors
in height and width measurements to be 9.4 and 23μm, respec-
tively, compared to the 3D scan results. Peng et al. [17] devel-
oped an SFM method based on binocular vision to acquire the
physical parameters of plants and constitute the 3D model of
the plant. Experimental results show that the mean errors of
the measured sizes are all less than 2%. Dong et al. [18] discuss a
sea wave measurement method with binocular vision. Using a
binocular camera, an accurate 3D model of the ocean waves
captured by the camera can be established without contacting
the waves themselves. The metric 3D coordinates of the waves
can also be measured in both the world coordinate system and
the actual camera. The experimental results show that this
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method can achieve the expected results. Wu et al. [19] com-
bined deep learning and classical image processing algorithms
to calculate the number of banana bunches in two periods and
designed a software for estimating the weight of banana fruits
during the harvest period. The results show that during the bud
removal period, the target segmentation MIoU is 0.878, the
average pixel accuracy is 0.936, and the final bunch detection
accuracy reaches 86%. During the harvest period, bunch detec-
tion is very challenging, with an accuracy of 76%, and the final
overall bunch counting accuracy is 93.2%. Tang et al. [20] aim to
explore the techniques for improving fruit detection methods in
complex environments. For the common types of complex
backgrounds in outdoor orchards, the improvement measures
are divided into two categories: optimization before and after
image sampling. By comparing the results of these methods, the
future development trend of fruit detection optimization tech-
niques in complex backgrounds is described.

This paper focuses on the implementation of crop 3D
model reconstruction [21] based on RGB-D binocular vision
and the selection of some key parameters in the process. Two
sets of depth images and RGB images were taken from a fixed
step angle around the target by the camera. The 3D point
clouds were obtained through preprocessed depth images
and RGB images. Furthermore, the point clouds of different
angles of maize seedlings were coarsely and finely registered
and simplified. The best set of model reconstruction parame-
ters was obtained by comparing the errors of each step angle.

2. Materials and Methods

Vision-based 3D model reconstruction used visual sensors to
obtain images, and then the images were processed to obtain
a 3D model by a computer [22]. Intel RealSenseD435 RGB-D
binocular camera [23] was utilized in the experiment, which
has RGB images and depth modules [24]. Two cameras that
have the same intrinsic parameters are arranged in parallel
with identical focal lengths. The parallax depth image was
obtained directly by using the depth module. As shown in
Figure 1, the experimental platforms include a PC, binocular
camera, experimental crop, and some other auxiliary devices.
The software platforms and kits are VS2019, Matlab2019,
pcl1.11.0, OpenCV4.5.0, and Cloudcompare2.12.1.

The 3D reconstruction process based on binocular vision
was illustrated with the modeling of a maize seedling, includ-
ing image acquisition, image preprocessing, point cloud con-
struction, and crop modeling. The implementation process is
shown in Figure 2.

2.1. Image Acquisition. The depth images and RGB images of
the maize seedling were obtained. An origin alignment oper-
ation was required because the spatial coordinate system of
RGB image and depth image is different. To make a full-view
reconstruction of the maize seedling, multiple images from
different view angles had to be taken over the maize seedling.
The experiment took the method of rotating the target
around a fixed camera. Comparative experiments were car-
ried out from four methods of 90°, 60°, 45°, and 30° step
angles by using the aligned camera.

2.2. Image Preprocessing. Image preprocessing is mainly
prepared for the acquisition of point clouds. By mapping the
maize seedling region coordinate value after theOtsu algorithm
[25] and global threshold segmentation to the corresponding
depth image, the depth data of the maize seedling region could
be obtained accurately. The impact of the environment might
cause some data to be missed in the depth image. In order to
reduce it, an improved zero-point culling mean filter was pro-
posed to adaptively fill the holes in the depth image.

2.3. Point Cloud Construction. After image preprocessing, the
3D point cloud in each angle could be recovered by convert-
ing all pixels in the crop region and their corresponding
depth values.

2.4. Crop Modeling. The binocular camera could not get
complete information about the maize seedling at an angle
due to the inevitable shielding of blades. Therefore, the exper-
iment needed to register and fuze the point clouds of different
angles [26, 27]. It was necessary to simplify and smooth the
fuzed point clouds due to the large number of points. Finally,
the final point clouds could be reconstructed through the
greedy projection triangulation algorithm [28, 29].

3. Implementation and Results of 3D
Model Reconstruction

3.1. Image Acquisition. Both RGB images and depth images
are obtained by an RGB-D camera. In order to reduce the
influence of external factors, the images of maize seedlings
are taken in front of a white wall. The camera is about half a
meter away from the maize seedling. The maize seedling is
placed on a plate with an eighth-equal circle drawing. Then,
a set of RGB images and depth images are captured from
eight angles by rotating maize seedling with a fixed camera,
and the image size is 640× 480.

The 45° step angle is taken as an example, and the RGB
images captured at 0°, 45°, 90°, 135°, 180°, 225°, 270°, and
315° angles are shown in Figures 3(a), 3(b), 3(c), 3(d), 3(e),
3(f ), 3(g), and 3(h), respectively.

(i) (ii) (iii) (iv)

FIGURE 1: Hardware experimental platform for crop 3D reconstruc-
tion: (i) camera tripod; (ii) USB cable; (iii) RGB camera; (iv) maize
seedling.
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3.2. Image Preprocessing

3.2.1. Target Crop Region Extraction. Otsu algorithm selects
the global optimal threshold by maximizing the between-
class variance. The pixels of image are divided into two clas-
ses C0 with gray levels [0, 1, 2, …, t] and C1 with gray levels
[t + 1, …, M− 1] by the threshold t. The gray-level probabil-
ity distributions for the two classes are as follows:

ω0 ¼ ∑
t

i¼0
Pi; ð1Þ

ω1 ¼ ∑
M−1

i¼tþ1
Pi; ð2Þ

ω0 þ ω1 ¼ 1: ð3Þ

RGB-D images and depth images acquisition 

Target crop region extraction 

Acquisition of depth data for crop region 

Adaptive filling of missing depth data  

3D information recovery

Point clouds registration and fusion 

Point cloud simplification

Point cloud construction 

Crop modeling

Image preprocessing 

Crop reconstruction

Image acquisition 

FIGURE 2: Vision-based 3D reconstruction process of the crop.

ðaÞ ðbÞ ðcÞ ðdÞ

ðeÞ ðfÞ ðgÞ ðhÞ
FIGURE 3: RGB images of maize seedlings in 45° step angle: (a) the RGB image captured at a 0° angle; (b) the RGB image captured at a 45°
angle; (c) the RGB image captured at a 90° angle; (d) the RGB image captured at a 135° angle; (e) the RGB image captured at a 180° angle; (f )
the RGB image captured at a 225° angle; (g) the RGB image captured at a 270° angle; (h) the RGB image captured at a 315° angle.
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The means of class C0 and C1 are

μ0 ¼ ∑
t

i¼0
i × Pr i ω0jð Þ ¼ 1

ω0
∑
t

i¼0
i × Pi; ð4Þ

μ1 ¼ ∑
M−1

i¼tþ1
i × Pr i ω1jð Þ ¼ 1

ω1
∑

M−1

i¼tþ1
i × Pi: ð5Þ

The total mean of gray levels is denoted by μ

μ ¼ ω0 × μ0 þ ω1 × μ1: ð6Þ

The between-class variance is as follows:

σ2 ¼ ω0 × μ0 − μð Þ2 þ ω1 × μ1 − μð Þ2: ð7Þ

The optimal threshold t is chosen by maximizing the
between-class variance.

t ¼ argt2 0;255½ Þmax σ2 tð Þð Þ: ð8Þ

The RGB image before segmentation is represented as
Figure 4(a). After obtaining the best threshold t, it is easy to
extract the maize seedling region with the global threshold.
The pixels lower than the threshold value are set to zero, and
the remaining pixels are set to 255, as shown in Figure 4(b).

g x; yð Þ ¼ 0; f x; yð Þ< ¼ t

255; f x; yð Þ>t:

(
ð9Þ

3.2.2. Acquisition of Depth Data for Crop Region. The original
depth image is represented as Figure 5(a). The maize seedling
segmentation coordinates completed in the binary image are
mapped to the corresponding step angle depth image, and
the depth data for the maize seedling region can be obtained.
At the same time, the depth values of the background are set
to zero, and only the depth values in the crop region are
retained, as shown in Figure 5(b). Due to the accuracy errors
of the camera, the depth values of some pixels of the crop are
incorrect in the depth image. Thus, the wrong depth values are
set to zero by finding a cutoff value, as shown in Figure 5(c).

3.2.3. Adaptive Filling of Missing Depth Data. Because the
depth value of the pixels on the template may be zero, using
the mean filter in the experiment directly will cause bigger
errors in the process of hole-filling. Furthermore, the depth
of other nonhole pixels will also be changed. In this paper, an
improved mean filter is proposed to fill such holes.

In the traditional mean filtering, the gray value g xi;ð yjÞ
of the current point is as follows:

g xi; yj
À Á ¼ 1

2nþ 1ð Þ2 ∑ξ;η f xiþξ; yjþη

À Á
¼ 1

9
f xi þ yj
À Áþ f xiþ1 þ yjþ1

À Áþ f xi þ yjþ1

À ÁÂ
þ f xiþ1 þ yj

À Áþ f xi þ yj−1
À Áþ f xi−1 þ yj

À Á
þ f xiþ1 þ yj−1

À Áþ f xi−1 þ yj−1
À Áþ f xi−1 þ yjþ1

À ÁÃ
:

ð10Þ
In the improved mean filtering, the number of zero

points in the template is denoted by t, the gray value
g xi;ð yjÞ of the zero point is as follows:

ðaÞ ðbÞ
FIGURE 4: Target region extraction of RGB image: (a) RGB image; (b) image after global threshold segmentation.

ðaÞ ðbÞ ðcÞ
FIGURE 5: Acquisition of depth data for crop region: (a) the raw depth data; (b) the depth data in the target region; (c) the depth data after
removing error points.
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if :g xi; yið Þ ¼ 0

g xi; yj
À Á ¼ 1

2nþ 1ð Þ2 − t
∑
ξ;η
f xiþξ; yjþη

À Á
8<
: : ð11Þ

The depth image of the region where the target is identi-
fied is traversed. As shown in Figure 6, first, hole pixels with
zero depth are detected and removed from the template of
the hole pixel, and a new value is assigned to the hole pixel by
using the average of the remaining pixels, which considerably
reduces the errors.

As shown in Figure 7(a), after the mean filtering, the
depth image becomes blurred, and some pixels in the non-
target region are filled with values. So, hole-filling by mean
filter does not work well. Compared with the method of
mean filter, the improved adaptive mean filter effectively fills
the holes without affecting the depth of other pixels and
protects the image details very well, as shown in Figure 7(b).

3.3. Point Cloud Construction. All the target 3D point coor-
dinates construct their point cloud. They can be calculated
directly from the depth and RGB images. This process is the
conversion from a 2D depth image to a 3D point cloud. And
the transformation relationship of Formula (1) can be shown
as follows:

p ⋅ z ¼ double dð Þ=factor
p ⋅ x ¼ col − cxð Þ × p ⋅ z=fx
p ⋅ y ¼ row − cyð Þ × p ⋅ z=fx:

8><
>: ð12Þ

fx;ð fyÞ: The focal length of the camera in the directions;
factor: The scale factor of the camera, take 1.0;
cx;ð cyÞ: The center of the camera’s aperture;

col;ð rowÞ: The coordinate of pixel in the depth image;
double dð Þ: The depth value of the col;ð rowÞ pixel in the

depth image;
Figure 8 shows the point cloud of a processed depth

image.

3.4. Crop Modeling

3.4.1. Point Clouds Registration and Fusion. The point cloud
from one angle provides only partial information about the
maize seedling. The images taken from the adjacent locations
have an overlapping region. In order to obtain the complete
information of the maize seedling, these point clouds from
the same step angle should be registered to a unified coordi-
nate system. There is a fixed angle difference between the
point clouds of different angles of the same step in the exper-
iment. However, the distance and position of the two-point
clouds in fine registration should be short enough. The registra-
tion of point clouds includes two steps: coarse registration and
fine registration. The two-point clouds are spatially close to each
other after coarse registration. Then the coarsely registered point
clouds can be fine-registered by using iterative closest point
(ICP) algorithm with lower errors.

190 231 176 170

1/7

1/7×

1/7 1/7 1/7

1/7 =

1/7

0

0 100 0 267309

33 98 189 710

49 80 169 183

182

85

0 231 160 15839

FIGURE 6: Adaptive filling of the improved mean filter.

ðaÞ ðbÞ
FIGURE 7: Comparison of hole-filling effect in-depth image: (a) depth image by mean filter; (b) depth image by improved mean filter.

FIGURE 8: A set of point cloud data of maize seedling.
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The process of registration and fusion is shown in
Figure 9. The source clouds are from the depth images of n
divide the circumference angle equally (n= 4, 6, 8, 12) that
have been preprocessed. Taking the 45° step angle as an
example, the eight-point clouds from 0° to 315° are respec-
tively referred to as angle 1, angle 2, …, and angle 8. Point
cloud with angle 1 and point cloud with angle 2 are regis-
tered and fuzed into a new point cloud which calls fusion
point cloud 1, and then fusion point cloud 1 and point
cloud with angle 3 are processed by coarse registration,
fine registration, and fusion. As shown in Figure 10, at least
fusion point cloud 7 is obtained by sequentially merging the
eight-point clouds.

In the process of point cloud registration [26, 27], the key
point is to solve the transformation matrix parameters
between the two point clouds, and the important prerequisite
for solving the transformation matrix parameters is to obtain
the corresponding point pair sets. Coarse registration manu-
ally selects at least three pairs of corresponding feature points
as registration primitives and calculates the registration
transformation matrix. ICP registration iterates from an ini-
tial value until the parameter sequence converges to meet the

minimum requirement of the objective function. ICP algo-
rithm is a nonlinear least squares problem. Selecting the
appropriate threshold, numbers of iterations, and point
cloud overlap to obtain the transformation matrix.

As shown in Figure 11(a), the final point cloud usually
has some obvious errors due to camera depth errors and
point cloud registration errors. It is necessary to manually
clip and delete the data with depth errors in the registered
point clouds to reduce the measurement errors. The pro-
cessed point cloud is shown in Figure 11(b).

3.4.2. Point Cloud Simplification. In the experiment, the final
point cloud has more than 50,000 points after registration
and fusion. The point cloud includes many redundant points
that are not needed for measurement. Two typical voxel
methods, VoxelGrid, and octree, are selected to simplify
the point cloud for comparison.

Because the point cloud is unordered, we find the maxi-
mum and minimum values of the point cloud in the X, Y,
and Z axes to construct the minimum space-bounding vol-
ume cube to partition the point cloud. The octree divides the
minimum space bounding volume cube into eight nodes

Point cloud with angle 1

Point cloud with angle 2 Fusion point cloud 1

Point cloud with angle 3

Fusion point cloud 2

Point cloud with angle 4

Fusion point cloud n–1…

FIGURE 9: The process of point clouds registration and fusion.

0°

45°

90°

Point cloud 1

315°

Point cloud 6 Point cloud 7

……

FIGURE 10: Point clouds registration process.

ðaÞ ðbÞ
FIGURE 11: The clipped point cloud: (a) before the clipped; (b) after the clipped.
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averagely, and each node is divided based on this rule until
the specified division level is reached. The points within each
voxel are represented by the voxel centers. With the octree
method, the simplified point cloud consists of voxel centers,
as shown in Table 1.

The VoxelGrid simplification method can divide the
point cloud into small cloud blocks. At the same time, all
points in the cloud blocks are replaced with the barycenter,
as shown in Table 2.

As shown in Figures 12(a) and 12(b), the point cloud is
more regular after the octree method. Therefore, the method
of octree voxel center approximation is used to simplify the
scattered point cloud.

3.4.3. Crop Construction. Finally, the greedy projection-based
triangulation algorithm [28] is used to reconstruct the final
crop model. The greedy projection triangulation algorithm is
an algorithm that quickly establishes the topological relation-
ship of point cloud through the triangular grid structure.
Greedy projection triangulation is an algorithm to quickly
triangulate the original point cloud. The overall optimal
result is obtained by local optimal processing when the prob-
lem is solved using a greedy algorithm [29] based on growth.

In 3D space of the point cloud, the topology cannot be
directly established, so the point cloud needs to be projected
to a 2D plane, and then a topological relationship is estab-
lished on it. The point cloud in 3D space and K neighbors of

the point cloud are projected into a plane; that is, it maps the
point cloud from 3D to 2D, and it uses the 2D Delaunay
triangulation growth algorithm to connect the triangular
grids for the 2D point cloud mapped to the plane.

Assuming the normal vector of the point N0 x0;ð y0; z0Þ is
m ¼ A;ð B;CÞ, the tangent plane at point N x;ð y; xÞ crossing
N0 is cos α.

A x − x0ð Þ þ B y − y0ð Þ þ C z − z0ð Þ ¼ 0: ð13Þ

In order to project points in space into the 2D tangent
plane Π, the projection matrix method is generally used. The
projection of the 3D points on the tangent plane is obtained
by a series of operations such as translation and rotation.

The projection matrix TMΠ
is as follows:

TMΠ
¼ Tc ⋅ Rx ⋅ Ry: ð14Þ

The translation transformation matrix Tc is as follows:

Tc ¼

1 0 0 0

0 1 0 0

0 0 1 0

X0 Y0 Z0 1

2
66664

3
77775: ð15Þ

TABLE 1: Octree-based point cloud simplification algorithm.

Algorithm 1 Octree-based point cloud simplification algorithm

Input: Original point cloud (P)
Output: Point cloud of Octree simplification (O)
1. Set the octree resolution (voxel size)
2. Divide O into voxel cubes (C) by voxel segmentation until the
specified voxel size is reached

3. Calculate the voxel center of C
4. Traverse all the voxel centers
5. For: i= 0, 1….voxel_centers.size() - 1
6. Construct a new point cloud by voxel centers

TABLE 2: VoxelGrid-based point cloud simplification algorithm.

Algorithm 2 VoxelGrid-based point cloud simplification
algorithm

Input: Original point cloud (P)
Output: Point cloud of VoxelGrid simplification (V)
1. Set the VoxelGrid resolution (voxel size)
2. Create the filtering object: sor
3. Start filtering: sor.filter

Divide P into point cloud blocks (B) by VoxelGrid filter
Calculate the barycenter of B

ðaÞ ðbÞ
FIGURE 12: Comparison of two methods for point cloud simplification: (a) VoxelGrid simplification result and local detail; (b) Octree
simplification result and local detail.

Scientific Programming 7



Rx represents a α degree rotation around x-axis.

Rx ¼

1 0 0 0

0 cos α sin α 0

0 −sin α cos α 0

0 0 0 1

2
66664

3
77775: ð16Þ

Ry represents a θ degree rotation around y-axis.

Ry ¼

cos θ 0 −sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 1

2
66664

3
77775: ð17Þ

The projection of the point q xi;ð yi; ziÞ on the tangent
plane Π is as follows:

x0i; y
0
i; z

0
i ; 1½ � ¼ TMΠ

⋅ xi; yi; zi; 1½ �T : ð18Þ

The method selects a sample triangular piece as the initial
surface, then continuously expands the boundary of the sur-
face, and finally constructs a complete triangular mesh sur-
face so that the point cloud in 2D space has a topological
relationship. Then the topological relationship of the 2D
point cloud is mapped to the original 3D point cloud, and
the topological relationship of the original point cloud 3D
space is constructed. Until a complete mesh topological rela-
tionship is constructed, the 3D reconstruction of the object
surface is realized, as shown in Figures 13(a) and 13(b).

4. Discussion

Repeating the above steps, Figure 14(a)–14(d) corresponds
to the final point clouds with the step of 90°, 60°, 45°, and
30°. The point cloud data are incomplete, the phenotypic
information of maize seedling is missing, and the error is
relatively large in the scheme of 90° step angle. The pheno-
typic information of maize seedling at 60°, 45°, and 30° step
angles are relatively complete.

Phenotypic measurements of 60°, 45°, and 30° step
angles are compared. The plant height and stem diameter
of maize seedling are measured. Then the experimental
results are compared with the manual measurements, as
shown in Table 3.

5. Conclusions

(1) In this paper, the implementation of crops 3D recon-
struction based on RGB-D binocular vision and the
selection of some key parameters are investigated.
The 3D point clouds are obtained through prepro-
cessed depth images and RGB images. Furthermore,
the point clouds are coarsely and finely registered
and simplified. Finally, the greedy projection-based
triangulation algorithm is used to reconstruct the
final crop model. The best set of model reconstruc-
tion parameters was obtained by comparing the
errors of each step angle.

(2) An improved adaptive mean filter is proposed by
removing the zero point of the template in the
dynamic mean filter; the holes of the depth image
in the maize seedling region are filled adaptively.
Compared with the method of traditional mean filter,

ðaÞ ðbÞ
FIGURE 13: 3D reconstruction result and detail: (a) 3D rendering effect of the reconstructed seedling corn; (b) local enlargement of the mesh.

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 14: Final point cloud of four step angles: (a) the final point clouds of the step of 90°; (b) the final point clouds of the step of 60°, (c) the
final point clouds of the step of 45°; (d) the final point clouds of the step of and 30°.
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the improved adaptive mean filter effectively fills the
hole without affecting the depth of other pixels.

(3) By comparing four step angles schemes, the pheno-
typic information of the 90° step angle scheme is
seriously missing, and the stem diameter error of
the 30° step angle is serious. Compared with the
45° step angle, the error of the 60° step angle is
relatively small; therefore, the 60° step angle of the
four 3D reconstruction schemes in the experiment
has the highest accuracy. Under this condition, the
height error between the model and the maize seed-
ling is 2.22%, and the error of stem diameter is
11.67%. The research needs of 3D reconstruction of
maize seedling can be satisfied.

(4) The 3D reconstructionmethod discussed in this article
is effective for modeling single plants under simple
experimental conditions. However, when it comes to
complex population crops in field conditions, its effec-
tiveness is limited due to the presence of textures or
colors in the background that is similar to those of the
crops, as well as depth errors caused by lighting and
occlusion. Going forward, research will focus on
exploring 3D reconstruction techniques for popula-
tion crops in complex growth environments to gain
insights into crop growth.

While the 3D reconstruction method described in this paper
can reconstruct a model for a specific moment in a crop’s
growth cycle, it has not yet achieved full modeling of the
entire growth process of the target crop or established a
corresponding relationship with the crop growth model.
Subsequent research will be required to achieve full 3D
reconstruction throughout the plant’s lifecycle. This entails
further development of a crop’s 3D model based on time-
series data combined with plant growth rules, which will aid
agricultural managers in monitoring and managing crops
more efficiently.
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