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Breast cancer is a highly prevalent cancer. Triple-negative breast cancer (TNBC) is more likely to recur and metastasize than other
subtypes of breast cancer. Research on the treatment of TNBC is of great importance, and accurate segmentation of the breast
lesion area is an important step in the treatment of TNBC. Currently, the gold standard for tumor segmentation is still sketched
manually by doctors, which requires expertise in the field of medical imaging and consumes a great deal of doctors’ time and
energy. Automatic segmentation of breast cancer not only reduces the burden of doctors but also improves work efficiency.
Therefore, it is of great significance to study the automatic segmentation technique for breast cancer lesion regions. In this paper, a
deep-learning-based automatic segmentation algorithm for TNBC images is proposed. The experimental data were dynamic
contrast-enhanced magnetic resonance imaging TNBC dataset provided by the Cancer Hospital of Zhengzhou University. The
experiments were analyzed by comparing several models with UNet, Attention-UNet, ResUNet, and SegNet and using evaluation
indexes such as Dice score and Iou. Compared to UNet, Attention-UNet, ResUNet, and SegNet, the proposed method improved
the Dice score by 2.1%, 1.54%, 0.88%, and 9.65%, respectively. The experimental results show that the proposed deep-learning-
based TNBC image segmentation model can effectively improve the segmentation performance of TNBC tumors.

1. Introduction

In recent years, breast cancer has been one of the diseases that
seriously affect women’s lives. Data published in GLOBOCAN
2020 [1], prepared by the National Cancer Institute, shows that
breast cancer is already one of the most frequently diagnosed
types of cancer.

The incidence of breast cancer is also rising [2], and it can
be classified into four molecular subtypes: Luminal A, Luminal
B, triple-negative, and HER-2 overexpression.

For the treatment of breast cancer, early and accurate
determination of a patient’s molecular subtype is crucial for
selecting the most appropriate treatment. To achieve this goal,
many studies have applied convolutional neural network
algorithms [3] for the prediction and classification of breast
cancer molecular subtypes using imaging data such as dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI)
data [4], breast MRI data [3], and mammography images
[5, 6]. These methods have significant potential contributions

to disease prognosis and treatment outcomes. Additionally,
introducing a deep-learning model for channel dimensional
feature reconstruction can further improve the ability to pre-
dict breast cancer molecular subtypes [7].

Among these four molecular typologies, triple-negative
breast cancer (TNBC) is the most malignant, accounting for
approximately 10%—20% of all breast cancers [8]. TNBC is
defined as a cancerous tissue that is negative for three char-
acteristic receptors on immunohistochemistry, i.e., negative
for estrogen receptor, progesterone receptor, and proto-
oncogene HER-2. It is highly malignant, and patients have
faster tumor proliferation, higher chances of metastasis, and
poorer patient prognosis [9]. TNBC has higher chances of
metastasis, faster tumor proliferation in patients, high recur-
rence, postoperative recurrence, and poor tumor prognosis
compared to several other molecular subtypes of breast can-
cer [9]. Therefore, compared with several other molecular
typing, the treatment of TNBC requires more active and
precise intervention, and when treatment is carried out, the
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earlier the treatment, the better the effect will be, and the
detection and diagnosis of early TNBC lesion area is very
important [10]. There are many researchers conducting
research on breast cancer diagnosis, such as Igbal et al.
[11], to conduct a review of data, methods, and other aspects.

For the treatment of TNBC, it is an effective measure to
predict the condition and formulate the treatment plan based
on the shape, size, and other characteristics of the lesion area
through timely examination and discovery of the mass in the
lesion area. However, the current gold standard for tumor
segmentation outlining is still manual outlining by doctors.
When sketching, the sketcher should have professional
knowledge in the field of medical images, and it will consume
a lot of time and energy of the doctor, and the situation of
sketching will change subjectively with the doctor’s situation
[12]. Due to the small area of the lesion region and the
complex background, it is easy to cause missed segmenta-
tion, mis-segmentation, and other conditions that affect the
segmentation accuracy. Therefore, the study of automatic
segmentation technology for TNBC is of great significance.

The difficulties and challenges of breast cancer segmen-
tation. In this paper, an image segmentation model for
TNBC that incorporates multiscale and parallel attention
mechanisms (PAMs) is proposed in this paper.

This paper makes three main contributions:

(1) For the characteristics of breast tumor region bound-
ary mode, the lesion size is not fixed, and there are
voids; this paper is designed to use multiscale convo-
lution to obtain more comprehensive feature infor-
mation according to different sizes of convolution
and to increase the extraction of small target lesion
region features by using void convolution.

(2) There are complex high-density glandular tissues in
the lesion region, and there is no clear boundary
between the glandular tissues and the lesion region,
thus causing interference to the segmentation. In this
paper, we use the PAM to improve the segmentation
of the lesion region by enhancing the degree of atten-
tion to the feature information of the lesion region.

(3) To address the loss of image information caused by
the sampling pooling layer under the UNet network
structure, this paper uses 3 X 3 convolution with step
size 2 instead of a pooling operation.

2. Literature Review

With the development of computers, the application of com-
puter technology has been of great help in the field of medical
segmentation, and the application of computer technology in
the detection and segmentation of TNBC is becoming increas-
ingly widespread. Traditional image segmentation algorithms
are based on machine-learning algorithms, which are mainly
divided into threshold-based segmentation, region-based seg-
mentation, and edge-based segmentation. Kirthika et al. [13]
achieved extractive segmentation of tumors by selecting a tar-
get value, searching for the optimal threshold value by using
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the cuckoo-search (CS) algorithm until this target threshold is
found, and using active-contour at the boundary based on
convergent pixel enhancement. Arjmand et al. [14] achieved
the differentiation of background, healthy tissue, and lesion
areas by using a clustering method to segment breast tumors,
using k-means clustering based on the characteristics of the
lesion areas that differ from the surrounding background
areas, and optimizing the initialized center of mass by the
CS algorithm. Militello et al. [15] proposed a semiautomated
interactive method based on the spatial fuzzy C-mean (FCM)
algorithm for segmenting masses on DCE-MRI of the breast.
Zebari et al. [16] proposed based on median, mean, and entropy.
The segmentation task is performed by computing adaptive
thresholds for binarization of breast images. Shen et al. [17]
proposed to first extract the initial edges of breast tumors
based on the grayscale distribution of ultrasound images using
the grayscale threshold segmentation localization method and
then correct the edges based on the gradient information of
the image grayscale using the dynamic planning method, to
accurately extract the edges of breast tumors from ultrasound
images. Chakraborty et al. [18] proposed a multilevel thresh-
old method controlled by gradient and intensity for the detec-
tion of mass focal regions, using gradient and intensity
information to detect potential mass loci for the segment of
breast tumors. Feng et al. [19] achieved segmentation of breast
tumors by constructing the regional terms of the posterior
probability-based activity contour model in the wavelet
domain, while using the fuzzy velocity function to construct
the activity contour. Jha et al. [20] used a hybrid segmentation
FCMs and convolutional neural network (CNN) model for
breast cancer risk prediction. Liu et al. [21] proposed an ultra-
sound image feature extraction algorithm combining edge
features and morphological feature information, which has
a significant effect on the extraction of edge features.

With the development of computers, classification detec-
tion methods can effectively identify different regions or struc-
tures in images and provide important prior information for
segmentation algorithms. For example, Haq et al. [22] con-
ducted classification research on breast tissue through a
deep-learning model. Haq et al. [23] used supervised and semi-
supervised feature selection techniques to detect breast cancer.
Agbley et al. [24] classified breast tumors by magnifying histo-
pathological images combined with fusion.

Although these methods provide an important aid to phy-
sicians in manual segmentation, traditional machine-learning
algorithms also require high quality for medical image data.
As the data size increases, these methods are not well adapted
to medical image data with larger data sizes. When processing
is performed, it still consumes a lot of labor and is costly, and
the model generalization of this algorithm is insufficient.
With the development of deep learning, deep-learning neural
networks are gradually used for breast tumor segmentation.
The segmentation of breast tumors by deep-learning network
models reduces errors due to the subjectivity of medical per-
sonnel, reduces the workload of physicians, and does not rely
on physicians’ recognition of features [25, 26], while improv-
ing the speed and accuracy of physicians’ diagnoses. There has
been a great progress in semantic segmentation starting from
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fully CNNs [27]. The UNet network model proposed by Ron-
neberger et al. [28] effectively mitigates the problem of deep
feature loss in the upsampling phase by fuzing deep and shal-
low features using cascade operations. Isensee et al. [29] pro-
posed a deep learn-based segmentation method that can
automatically configure itself. Gong et al. [30] designed an
image edge reply assist task to design a DF-UNet model to
enhance the characterization of lesion edges with a single
CNN for image information acquisition, which is not com-
prehensive enough. Many researchers have focused on using
multiscale neural networks instead of single CNNs, and Qin
etal. [31] proposed integrating multiscale information fusion
in the encoding path and constructing attention residual
modules in the decoding path for problems such as low con-
trast at the boundary of the breast lesion region.

Early attention mechanisms were used in processing
[32], and researchers introduced them to semantic segmen-
tation tasks with good results. The attention mechanism
enhances the extraction of features by the neural network
by focusing the network attention on the key feature infor-
mation through the attention module. Vaswani et al. [33]
proposed a network architecture, transformer, which is entirely
based on the attention mechanism and completely eliminates
recursion and convolution. Oktay et al. [34] proposed the
Attention-UNet model, the first time an attention mechanism
was used in medical segmentation, which proposes attention
gates added to jump connections to improve segmentation
by suppressing irrelevant regions in the input image while
highlighting salient features of specific local regions. Fan
et al. [35] proposed a parallel reverse attention network for
polyp segmentation. Luo et al. [36] used multiscale residual
units to replace two adjacent convolutional blocks of UNet
during downsampling to enhance the focus on morphological
size differences, followed using cross-layer attention-guided
networks to focus on focal regions during the upsampling
phase and the introduction of void space pyramidal pooling
as a bridging module for segmentation networks to enhance
the characterization of lesions. Fu et al. [37], in CVPR2019,
proposed a dual attention model by introducing spatial and
channel latitude to weight all location features and selectively
aggregating the features at each location. It makes capturing
feature information more effective. Jha et al. [38] proposed a
transformer-based residual network for segmentation. Liu et al.
[39] used multiscale convolution as the basic module to extract
features more comprehensively, using two-domain attention
serials, thus setting weights on the features to improve the
edge recognition and boundary-keeping ability of the network,
thus improving the segmentation performance. Segmentation of
TNBC is difficult due to the blurred boundaries between the
tumor area and the surrounding normal tissue, and differences
in the shape and size of the tumor [40]. Moreover, it is challeng-
ing to detect segmented masses, and low contrast, blurred bor-
ders, and varying sizes make segmentation difficult [41].

3. Materials and Methods

3.1. UNet Module. In 2015, the UNet network model was
proposed in the paper, which was originally designed for

medical segmentation [42]. Initially, this aspect was solved
in the cellular-level segmentation task, and it is widely used
in the semantic segmentation direction with its superior seg-
mentation effect. UNet consists of two parts: the encoding
structure on the left and the symmetric decoding structure
on the right. The encoding part of UNet is the extraction
of features, which is achieved by alternating convolutional
and downsampling pooling layers to gradually reduce the
dimensionality of the feature map. The decoding part recovers
the small feature map to the original graphic resolution large
by convolutional layer and upsampling layer. And the shallow
features and deep features are fuzed by cascading to obtain
better target details. However, when UNet performs feature
extraction, a single convolution cannot extract feature informa-
tion at more scales, and there is an impact on fine segmentation.

3.2. Network Model Design. To address the problems in breast
DCE-MRI tumor region segmentation, this paper proposes a
network model for TNBC segmentation incorporating mul-
tiple scales of parallel attention mechanisms (MSPAMU-
Net) by improving the UNet network. The model uses an
encoder—decoder backbone structure, and the model con-
sists of three parts, the encoding layer, the attention mod-
ule, and the decoding layer. The multiscale convolution
module is introduced in the coding stage to realize the
extraction of feature information at different scales by con-
volution of different sizes and to realize the effective extrac-
tion and fusion of semantic information in low-level feature
maps and high-level feature maps so that the network can
extract richer feature information. A parallel attention mod-
ule is added between encoding and decoding to suppress
irrelevant interference information, and attention opera-
tions are performed after the encoding stage to enhance
the capture of location information and increase the extrac-
tion of feature information of tumor edge contours. The
pooling operation in the UNet network structure causes a
loss of image information, which has an impact on the
segmentation. In this method, convolution is used in the
pooling operation to compensate for this deficiency. So, in
this paper, convolution is taken instead of the pooling oper-
ation, and the feature map is reduced to the segmented map
in the final decoding stage. Because the convolution opera-
tion uses the features of the local neighborhood, it preserves
more image information. The structure of the designed model
is shown in Figure 1.

3.3. Multiscale Modules. The purpose of the encoding phase
is to generate feature mappings by extracting the features and
classifying the feature information. According to the char-
acteristics of TNBC lesions, the lesion size is not fixed; there
are cavities, sometimes there are large differences, the mor-
phology is also diverse, and the intensity of the lesion area is
also different [21]. A larger receptive field will lead to a
decrease in localization accuracy, while a smaller receptive
field will lead to a decrease in classification accuracy and a
loss in feature information extraction. Therefore, in this
paper, the feature information is extracted by using different
scales of convolutional blocks to extract different levels of
features through different sizes of perceptual fields and fuze
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them according to several different sizes of convolutional
fusion operations to speed up the recognition speed while
ensuring that the recognition accuracy and the number of
parameters of the network are similar [43]. The feature of
null convolution is used to increase the perceptual field with-
out losing feature information. Eventually, more useful pixel
information is extracted from the image. In this paper, we
borrow the idea of GoogleNet to design the multibranch
structure and borrow the idea of ASPP [44] to add the
hole convolution in the convolutional branch and use multi-
ple small convolutional kernels instead of large convolutional
kernels. By replacing large convolutional kernels with multi-
ple small convolutional kernels, the same receptive field can
be obtained while the number of parameters can be greatly
reduced. The same effect is obtained as in this paper by two
3% 3 convolutional kernels instead of one 5x5 convolu-
tional kernel with reduced parameters. The multiscale mod-
ule in this paper consists of four branches, where the 1x 1
convolution kernel is designed to adaptively change the
number of channels. The first branch consists of a 1x1
convolution, 3 X3 convolution; the second branch consists
of a 1 x 1 convolution, a 3 X 3 convolution, and a 3 X 3 with a
void rate of 3 and a 3 X 3 with a void rate of 5 in series, And

after each branch, a normalization (batch normalization,
BN) operation after each branch, borrowing the idea of
inceptionv2 [45], by adding BN layer can increase the per-
ceptual field while speeding up the convergence speed, and
finally fuze the three branches feature information.

The fourth branch is a channel directly connected to the
output, which prevents the problem of gradient disappear-
ance and gradient explosion as the network level deepens
through this residual structure. Finally, the four branches
are fuzed and activated by the rectified linear unit (ReLu)
operation to obtain more comprehensive feature informa-
tion. The structural model is shown in Figure 2.

3.4. Parallel Attention Module. In the encoding stage, the
feature information obtained after fuzing multiscale convo-
lutional operations will be more comprehensive. However,
different channels represent distinct feature information,
and various categories of feature information have varying
importance. Therefore, in order to highlight the lesion area
and enhance attention towards it, we need to assign weights
to the rich feature information. In this paper, by introducing
the PAM module, the feature information weights are redis-
tributed to make the network focus more on the region of the
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breast tumor. The model structure is shown in Figure 3. This
parallel attention module consists of two branches where
input features X are Cx HX W with H representing height,
W representing width, and C being the number of channels.
The input features X in the branch of the location attention
module are obtained after convolution by three 1 1 convo-
lutions and latitude transformations to obtain Q € RE*H*W,
Ke REXHXW vy e REXHXW 4nd normalized by the SoftMax
layer to obtain the location attention feature map, as shown in
Equation (1).

exp(Q; - K))

Sji =
Lexp(Qi - K)

gt

’ (1)

where S;; denotes the ith element, Q; denotes the ith element
of the matrix Q, and Kj, similarly, N is the number of ele-
ments in the channel, while V is the matrix multiplied with
the obtained feature map S and subjected to the latitude
transformation operation. Finally, the result is multiplied



by the scale factor g, where g is initialized to 0 and is a
learnable parameter that is constantly updated during train-
ing and learning. The input feature X is summed, such as in
Equation (2), to get the final output X,

N
%= g3 (5V) + %, @)

where X; denotes the jth element of the jth input X and V; is
the same.

The channel attention module branches, which differs
from position attention in that for the input feature X, the
input feature map is H X W C. Then the channel attention
feature map is computed directly, the reconstruction opera-
tion is performed, and then the matrix multiplication opera-
tion is performed afterward. Finally, the channel attention
feature map is obtained by SoftMax and then weighted with
the original channel features to obtain the final output
feature information. Finally, the dual-attention features are
tuzed in parallel to obtain more complementary features and
to solve the problem of insufficient feature representation in
a single feature vector [46]. The channel attention feature

map X € R“*, as shown in Equation (3).
C. — exp [X; - (X))"]
ji C r : (3)
Sexplx; - ()7
i=
Cj; indicates the impact of the ith channel on the jth

channel, X; indicates the ith element of matrix X, (Xj)T indi-
cates the jth element of the transpose matrix, the formula
and then matrix multiplication with the input feature X;, in
multiplying with the scale factor g, and summation operation
with the input feature X;, and finally obtain the output fea-
ture Xo, as shown in Equation (4), where g is also initialized
to 0 and is a learnable parameter that is constantly updated
during training and learning.

C
X=93 (GX) + X @

4. Results

4.1. Dataset. The data used in this experiment were the DCE-
MRI TNBC image dataset provided by the Cancer Hospital
of Zhengzhou University. The study was approved by the
institutional ethics committee, and the need for written
informed consent was waived by the institutional ethics com-
mittee due to the retrospective nature of the study.

We recruited a total of 31 women with a clinical diagno-
sis of breast cancer. These patients must be clinically diag-
nosed to make sure they have breast cancer. In the patients
recruited, we selected the appropriate data for the experi-
ment. Subsequently, we checked the quality of MRI scan
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images and selected qualified images to ensure the accuracy
and reliability of the analysis.

The dataset used shows the morphology of the lesion and
the surrounding tissue. The patients are all female patients,
and the data set also contains information about the images
as well as patient information. Therefore, the patient breast
cancer data were first desensitized before being used in the
experimental study. The format of the dataset slices is Dicom
format, with a size of 512 X 512 pixels, and each slice corre-
sponds to a label bit depth of 8b. The experimental datasets
were divided into training, validation, and test datasets of
1,621, 91, and 120, respectively, and the final datasets were
approximately divided into training (90%), validation (5%),
and test (5%), respectively. Figure 4 shows some triple-negative
breast tumor samples, and the red marked parts are the loca-
tion of the lesion area, and it can be seen from the figure that
the triple-negative breast lesion area exists in shape and size.

4.2. Data Preprocessing. When training a model, it is not only
the design of the model itself that is important but also the
preprocessing of the data. The good or bad data preproces-
sing often affects the segmentation effect of the model. In
this experiment, the following preprocessing operations were
performed for TNBC DEC-MRI images.

(1) In patient MRI breast tumor data, there are many
frames that do not contain the target lesion region,
so it is necessary to select appropriate frames from
the MRI sequence to prevent these irrelevant frame
sequences from interfering with the feature learning
of the lesion region during training. In this method,
the frame sequence suitable for training is selected by
threshold filtering. Through cleaning, the final avail-
able data set is 458 pieces, which can reduce the
training time during segmentation and reduce the
interference of irrelevant feature information.

(2) Medical image tumor segmentation is a typical clas-
sification of unbalanced segmentation. While in
breast cancer MRI images, the percentage of irrele-
vant tissue in the total area of MRI slices of each
patient is large, as shown in Figure 5, the focal area
of normal patient MRI images has a small percentage
of the whole image, and the background area has a
large percentage, which seriously affects the segmen-
tation of breast cancer focal area. To reduce the inter-
ference of background regions to the training, the
network is able to learn feature information more
fully. Its original image size is 512 X 512 pixels of
DCE-MRI image, which is cropped from the original
512 % 512 pixels to a 128 X 128 pixel image contain-
ing the lesion area, and then the cropped image is
normalized. Figure 5(a) shows the original data,
Figure 5(b) shows the cropped processed graph,
and Figure 5(c) shows the segmentation labels.

(3) The amount of data also has a deep impact on how
well deep learning is trained. Therefore, in this paper,
the breast cancer image data were augmented, and
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FiGure 4: Partial MRI images of triple-negative breast cancer: (a) example Figure 1; (b) example Figure 2; (c) example Figure 3.

the original data were quadrupled by the affine trans-
formation with 90°, 180° and left-right transforma-
tions, and the dataset was extended to 1,832 sheets,
thus preventing overfitting due to too little data.

4.3. Experimental Setting and Evaluation Indexes. The exper-
imental model uses the Pytorch framework with an AMD
Ryzen 7 5,800H CPU and an NVIDIA GeForce RTX 3,050
GPU. In the experiment, the input image specification of the
network model is 128 X 128 X 1, the batch size is set to 16, and
the number of training epochs is set to 100. The learning rate
adopts a dynamic adjustment strategy, and its initial value is set
t0 0.01, and the learning rate is decayed according to the number
of iterations during the training process, and the learning rate is
set to be reduced to half of the original one each time, to the
learning rate is reduced to half of the original rate each time to
enhance the stability of the model, and the optimizer uses Adam
to change the learning rate. In this paper, we adopt the evaluation
offender method commonly used in medical segmentation and
take the evaluation indexes of similarity coefficient (Dice),
intersection ratio (Iou), accuracy (Acc), sensitivity (Sens), and
specificity (Spec) to analyze the experimental results.

. 2TP
Dice = —————, (5)
FP + 2TP + FN
Vs NV,
Jou=—%__& (6)
Vieg U Vg

7
TP + TN
Acc = , 7
“TTPFFP+ TN+ EN 7)
qone TP )
S IpP AN
TN
Spec—— - 9
P IN T+ FP ®)

where TP indicates the overlap between the number of pixels
in the region where the true target appears, and the number
of pixels in the region where the predicted target appears, i.e.,
the number of pixels where the prediction is a positive case,
and the true case is a positive case. FN denotes the number of
pixels predicted to be negative but real positive cases, FP
denotes the number of pixels predicted to be positive but
real negative cases, TN denotes the number of pixels pre-
dicted to be positive and real negative cases, and Vg and Vg
denote the result of model segmentation and the original
label, respectively.

4.4. Loss Function. The choice of loss function also performs
segmentation, and the target loss function plays a crucial role
in determining whether the model can converge quickly. For
medical image data, the segmentation task is only to tumor
region and nontumor regions, and the number of pixels
occupied by the tumor region is much smaller than the
number of nontumor regions and the commonly used loss
function is cross-entropy loss function. The cross-entropy
loss function is usually used for classification, but when
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segmenting breast tumors, it essentially also does a binary
classification of background and foreground pixels [47], but
due to the characteristics of medical images, this loss func-
tion has the obvious disadvantage that it makes the model
biased toward the background, resulting in poor results.
Therefore, the experiments in this paper use the weighted
cross-entropy loss function, which is used to make the judg-
ment of segmentation results by calculating entropy pixel-
by-pixel and category-by-category. In this paper, we weight
the positive samples by adding a weight parameter to each
category based on the cross-loss to get better results for the
data in the case of imbalance. The weighted cross-entropy
formula is shown as Equation (10).

CRO
Leg=-2 2 2WuijInlj,.

c=li=1j=1

(10)

where [;;. denotes the probability that the pixel in row i
column j belongs to class ¢, where ¢=1{0, 1} denotes the
two categories of background and tumor, and W, denotes
the weighting coefficient of each category; in this paper, the

(©)

FIGURE 5: Raw MRI image preprocessing: (a) original image; (b) cropped image; (c) label.

weights focus on the foreground tumor parameter, and the
weighting coefficient set for the tumor region is 0.7 and for
the background region is 0.3. C denotes the category and R
denotes the number of image rows. O denotes the number of
image columns. y; ;. € {0, 1} is whether the pixel in row i and
column j belongs to category ¢, and is 1 if it is, and 0
otherwise.

4.5. Ablation Experiments. In order to prove that several
improvements in this paper can effectively improve the seg-
mentation performance of the network model, we do abla-
tion experiments to show that the multiscale module and
PAM can improve the segmentation performance in differ-
ent degrees. The fine-tuned UNet network (replacing the
downsampling pooling operation with convolution) is used
as the segmentation base reference baseline, and then the
multiscale module and the PAM module are added sepa-
rately for analysis and comparison, while ensuring that other
influencing factors are the same.

Table 1 shows that the model segmentation performance
is improved after adding the multiscale module adopted in
this paper, which indicates that the extraction of feature
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TAaBLE 1: Segmentation model on the data set ablation analysis results.
Model Dice Tou Acc Spec Sens
BaseL 0.8338 0.7150 0.9913 0.9921 0.9615
BaseL + MS 0.8439 0.7300 0.9912 0.9922 0.9654
BaseL + PAM 0.8345 0.7160 0.9893 0.9825 0.9798
MSPAMUNet 0.8544 0.7457 0.9960 0.9927 0.9607
Note: Bolded font is the optimal value for each line.
TasLE 2: Results of the comparative analysis of the different models on the dataset.

Model Dice Tou Acc Spec Sens
UNet 0.8334 0.7144 0.9888 0.9897 0.9780
Att-UNet 0.8390 0.7227 0.9898 0.9902 0.9848
ResUNet 0.8423 0.7276 0.9912 0.9926 0.9531
SegNet 0.7579 0.6102 0.9852 0.9854 0.9842
MSPAMUNet 0.8544 0.7457 0.9960 0.9927 0.9607

Note: Bolded font is the optimal value for each line.

information is stronger, and the representation of features is
more accurate after adding this module. The analysis of the
results showed that the evaluation of the model was also
improved by adding the PAM alone, and the improvement
was not too high by adding this module alone. Through the
analysis, some of the labels in the labeled data had similar
marginal breast tissue and lesion areas, and since some of the
labels are of poor quality, it leads to some segmentation errors
when adding the position attention module to the model,
resulting in some of the evaluation coefficients being very
low and leading to a decrease in the final average evaluation
coefficient, but the evaluation indexes were still improved,
proving the advantage of adding this module. Then, the two
modules are fuzed and fine-tuned in the downsampling stage,
and the obtained feature information of the lesion region is
richer and more biased to the lesion region, which can finally
improve the model performance overall. The Dice coeffi-
cients, Iou, and Acc of the method in this paper are improved,
which verifies the superiority of the method in this paper.

4.6. Comparison Experiments. To verify the segmentation
effect of the model in this paper, it is compared with the
following classical network models: the UNet, Attention-
UNet, ResUNet [48], and SegNet [49], respectively. Among
them, the network structures of UNet, Attention-UNet
(abbreviated here as Att-UNet), and ResUNet are related
to the method proposed in this paper and are based on the
UNet image segmentation method for segmentation. Among
them, SegNet and this paper are concerned with feature
extraction and processing by the method.

From Table 2, it can be seen that, by comparison, the
metrics of this paper perform well and are higher than the
segmentation effect of other networks in Dice coefficient and
Acc metrics, and compared with UNet, Dice coefficient, lou,
Acc, and Spec are improved by 2, 3.13, 0.72, and 0.3 percent-
age points, respectively. Compared with the other three mod-
els, the Dice coefficient, Iou value, and Acc also improved,

where the Spec value ResUNet was the best. Through com-
parison experiments, it is verified that the performance of
segmentation is largely enhanced by the method in this
paper. Figure 6 shows the segmentation effect of several
models.

5. Discussion

Through comparison, it can be seen that the model can both
achieve the requirement of segmenting the background and
the focal area, but due to the dense breast tissue and focal
boundary-blurring, the UNet boundary segmentation is not
as detailed as the model in this paper, and ResUnet and
SegNet are mainly processed by upsampling the features,
but they are not strong in capturing the smaller focal areas,
which can easily cause missed segmentation or mis-segmen-
tation. The Att-UNet model does not extract enough feature
information for the focal area, resulting in missed segmenta-
tion, while in this paper, the fusion of spatial and positional
attention is used in some edge parts to effectively suppress
the interference information and achieve a greater degree of
detail segmentation. It can be seen that each model is unable
to segment the lesion region perfectly, because one of the
reasons is that there are errors in the labels themselves, lead-
ing to mislearning during model training and learning, and
the other is that the network model does not have enough
learning ability for detail information and appears to have
poor edge detail processing.

The box plots of the dice coefficients of several models
are shown in Figure 7, and it also shows that the evaluation
metrics of the method in this paper are more concentrated in
dice coefficients compared to several other models.

It is proved that the model in this paper is more stable
compared with other models, and the minimum dice coeffi-
cient value is higher than the minimum value of other mod-
els. Due to the quality of the test data, there are some image
labels with poor quality, thus generating outliers, but after
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FIGURE 6: Five model segmentation results: (a) cropped image; (b) GT; (c) UNet; (d) Att-UNet; (e) ResUNet; (f) SegNet; (g) MSPAMUNet.
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FiGure 7: Dice box diagram of different models.

comparing the results of this method for poor quality data
segmentation is also better than other models, and the overall
dice values of the outliers are also on the upper side.

To further analyze the segmentation effect of the model
on different data sets, in our experiments, we also use two
databases to evaluate the performance of the proposed
method. The public datasets INbreast [50] and CBIS-
DDSM [51] datasets were combined into one dataset for split
testing to obtain the corresponding evaluation metrics. The
method in this paper still has good segmentation results on
the public dataset. As shown in Figure 8, this paper adopts
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FiGure 8: Random confusion matrix.

the method of random image extraction for image confusion
matrix analysis, and the results show that the model per-
forms well in the classification of positive and negative sam-
ples. Specifically, in Table 3, we can see that the average score
of the model is better than other models in dice metrics, Iou,
Acc, and Spec.

6. Conclusion and Future Works

In this paper, we propose a segmentation algorithm based on
the fusion of multiscale PAMs for the MRI lesion segmenta-
tion problem of TNBC. Regarding multiscale information
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TasLe 3: Results of comparative analysis of different models on
public datasets.

Model Dice Tou Acc Spec Sens

UNet 0.6535 0.485 0.8701  0.9255  0.8505
Att-UNet 0.6464 04775 0.8846  0.9278  0.8703
ResUNet 0.6408 04714 0.8631 09132  0.8677
SegNet 0.6395 04700 0.8883  0.9281 0.8618
MSPAMUNet  0.6852  0.5211 0.8914 0.9409  0.8249

Note: Bolded font is the optimal value for each line.

acquisition, this paper utilizes a combination of convolutions
with different sizes, convolutions with varying null rates, and
residuals to ensure the acquisition of receptive fields in dif-
ferent sizes and prevent the disappearance of network gra-
dients. Additionally, we introduce the mechanism (fusion of
position attention and channel attention) to enhance feature
expression. Experimental validation was performed on the
DCE-MRI breast cancer dataset provided by Henan Cancer
Hospital, in which the Dice coefficient, Iou, and Acc reached
85.44%, 74.57%, and 99.60%, respectively, and better seg-
mentation results were obtained.

In this paper, for the TNBC MRI lesion segmentation
problem, we designed a fusion segmentation model different
from others according to the advantages of the two modules
and carried out experimental verification on the dataset. The
experimental results demonstrate the effectiveness of the
method proposed in this paper. The model in this paper
also has some limitations, which may increase the complex-
ity of the model after adding the attention module and is
prone to overfitting when the dataset is small. Therefore, in
the future work, we will continue to study and learn better
network models and segmentation models with data gener-
alization capabilities, so that they can be applied to more
scenarios. By improving the applicability of the model and
applying it to higher dimensional data, the segmentation
performance of the model will be improved, and the model
will be robust.
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