
Research Article
Path Planning Algorithm for the Multiple Depot Vehicle Routing
Problem Based on Parallel Clustering

Xue Han

Xuzhou Open University, Xuzhou 221000, China

Correspondence should be addressed to Xue Han; snow@xzit.edu.cn

Received 25 October 2022; Revised 16 March 2023; Accepted 31 March 2023; Published 25 April 2023

Academic Editor: Debo Cheng

Copyright © 2023 Xue Han. Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is necessary to study the problem of vehicle routing inmultidistribution centers to improve the speed, time, and cost thereof. It is
preferable to use as few vehicles as possible to complete the delivery of goods and minimize the total mileage. With the de-
velopment of artifcial intelligence technology, machine learning is usually used to solve the problem of k shortest paths inmultiple
distribution centers. User needs are constantly changing; the iterative convergence speed of traditional machine learning methods
is low and cannot meet the requirements of path planning in a big-data environment. Aiming at difcult problems in multipath
planning, the parallel characteristics of traditional machine learning algorithms are fully exploited; k-means clustering and
simulated annealing algorithms are improved through the distributed computing; and the multiple depot vehicle routing problem
clustering analysis and path planning under the framework of Spark distributed computing are proposed. Trough 30 simulation
experiments on the TSPLIB dataset, the optimal solution is obtained with a 100% accuracy rate in problem solving. Experimental
comparison and analysis show that the algorithm proposed in this article can solve the problem at least twice as fast as other
parallel algorithms. Tis fnding verifes that this method can efectively solve the multipath planning problem, thus greatly
improving the quality and efciency of path planning in large-scale logistics.

1. Introduction

Te transportation problem of multiple distribution centers
is to fnd the optimal transportation path for all vehicles of
a logistics company to meet the needs of a large number of
customers. Tis is essential in an urban logistics system,
where each vehicle starts from a warehouse. Te vehicle
routing problem (VRP) is the core problem of distribution
route optimization, serving customers along the optimal
path and returning to the warehouse. With the continuous
expansion of logistics companies, logistics distribution is no
longer limited to a single-distribution center. Research on
the multiple depot vehicle routing problem (MDVRP)
model has practical signifcance, and research on the mul-
tidistribution center vehicle routing problem is insufcient.
Because of the large scale of the problem, it is difcult to
design an algorithm that produces a better solution in
less time.

Te combination optimization problem for MDVRP has
been accurately solved. Laporte and Nobert [1] proposed
a branch and bound algorithm, and Laporte and Nobert [2]
proposed a branch and bound algorithm for the asymmetric
MDVRP. With the rise of artifcial intelligence, heuristic
algorithms have begun to solve the MDVRP problem. Wren
and Holliday [3] proposed a heuristic-improved MDVRP
algorithm based on a scanning idea; Bruce and Edward [4]
used a heuristic algorithm of classifcation before solution to
complete the construction, expanding the scale to 360
customer points; and Renaud et al. [5] designed a tabu search
MDVRP algorithmwith capacity and driving distance limits.
Te application of machine learning and deep learning in
path planning has been deepened. de Oliveira et al. [6] used
clustering to decompose the MDVRP into multiple single-
distribution center problems; Bezerra et al. [7] used clus-
tering to generate an initial solution and improved it by
a variable neighborhood search; Bello et al. [8] used a deep
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reinforcement learning to directly solve combinatorial op-
timization problems; Wang and Chen [9] proposed a solu-
tion model based on multiagent deep reinforcement
learning; and Orozco-Rosas et al. [10] proposed a machine
learning path planning algorithm and a path planning so-
lution model based on membrane evolution in known or
unknown environments [11] and designed a hybrid path
planning algorithm [12].

Tere are two defciencies in the vehicle routing problem
of multiple distribution centers as follows:

(1) Intelligent algorithms can ensure solution quality in
path planning, but the time complexity and con-
sumption are high

(2) Te scale of path planning is relatively small, and the
largest number of customer points is about 300,
which does not conform to the reality of large lo-
gistics centers

Temain contributions for solving theMDVRP problem
and improving the solution quality and convergence speed
are as follows:

(1) An optimized cuckoo search k-means (OCS-k-
means) clustering algorithm is proposed to optimize
k-means and improve the convergence speed of the
clustering algorithm. For the practical requirements
of large logistics centers that serve a large number of
customers, the OCS-k-means algorithm is paral-
lelized using the Spark’s RDD model to further
improve the convergence speed of clustering.

(2) A simulated annealing algorithm of large neigh-
borhood search (SALNS) is proposed to improve the
convergence speed of path planning within the
cluster. At the same time, to adapt to the perfor-
mance of path planning in a big-data environment
and ensure the quality of the global optimal solution,
a distributed parallel algorithm is used to accelerate
the optimization of SALNS.

2. Methodology

For the MDVRP problem of large logistics centers, we must
quickly realize data segmentation under multiple constraint
environments, divide the entire road trafc network into k
subsets [13], and form clusters of the distribution points.
Clustering analysis can greatly reduce the scale of problem
solving, and intelligent algorithms can easily fnd the optimal
path on small-scale datasets. Te clustering analysis of large
datasets is not efective. To improve performance and ac-
curacy, a distributed cluster environment is required for
quick data segmentation. It is necessary to analyze the
common k-means clustering algorithm, integrate a genetic
algorithm to optimize all centroids, improve the quality of
the algorithm, and implement parallelization through Spark
distributed computing.

2.1. MDVRP Mathematical Model. MDVRP is an optimi-
zation problem with constraints. Assume a set of m dis-
tribution centers, D� {d1, d2, . . ., dm}; corresponding
vehicle setV� {V1, V2,V3, . . ., Vm}; and customer set C� {c1,
c2, c3, . . ., cn}.

Te formula for minimizing the total transportation path
length is as follows:

min 
i∈D∪C


j∈D∪C


k∈V

di stij∙xijk, (1)

where di stij � |xi − xj| + |yi − yj| is the Manhattan distance
from point i (xi, yi) to j (xj, yj) and the decision variable is xijk,
which is expressed as follows:

xijk �
1, Vehicle k  travels  from  i  to  j,

0, others.
 (2)

Te distribution center constraint is that all vehicles
depart from the distribution center and return after com-
pleting the task. Te constraint function is given as follows:


i∈D


j∈C


k∈V

xijk � 
j∈D


i∈C


k∈V

xjik � |D|.
(3)

Te customer point service constraint is that all cus-
tomer nodes have and only have a unique vehicle service,
with constraint function,


j∈D∪C


k∈V

xijk � 1,∀i ∈ V.
(4)

Te number of vehicles in and out of all customer nodes
should be equal, i.e.,


i,j∈C

xijk � 
i,j∈C

xjik,∀k ∈ V.
(5)

2.2. K-Means Clustering. Te idea of k-means clustering is
to randomly assign k initial centroids as the cluster center,
randomly divide all objects in the dataset into k clusters,
calculate the distance between each data object and the
cluster centroid, and assign these data objects to the cluster
with the nearest centroid. We take the mean of all points in
the cluster as the new cluster center and update this until
the current and previous cluster centers are within a given
threshold, to obtain the fnal cluster center [14]. Te
MDVRP solution process is defned according to the
original k-means clustering algorithm, as shown in
Figure 1.

Te main problem of the original k-means is that the
center of the cluster may shift the distribution center in the
process of continuous iteration, which may lead to there
being no distribution center in the cluster. At the same time,
the original k-means has a poor global search ability and
easily falls into local optimal solutions.
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2.3. Optimization of K-Means Algorithm. To solve the
problem of centroid shift, it is necessary to ensure that the
distribution point belongs to one and only one cluster when
updating, i.e., for distribution center di and cluster Ci, di ∈Ci
is always guaranteed.

To solve the problem that k-means easily falls into local
optima, it has often been proposed to combine it with
a bionic algorithm, such as simulated annealing [15], the
leapfrog algorithm [16], tabu search [17], particle swarm
optimization [18], the ant colony algorithm [19], and cuckoo
search [20]. We use an improved cuckoo search [21] to
optimize k-means clustering. To introduce the cuckoo al-
gorithm into the k-means algorithm, it is necessary to
improve the cuckoo search algorithm by introducing an
adaptive step size related to the optimal nest location dis-
tance, as follows:

Ai � stepmin + stepmax − stepmin(  × di, (6)

where stepmax represents the maximum value of step size,
stepmin represents the minimum value of step size, and di
represents the distance adjustment factor, which can be
calculated as follows:

(|nest (i) − nest (best)|)
d (max )

, (7)

where nesti represents the position of the ith nest, nestbest
represents the current optimal nest position, and dmax
represents the maximum distance between the optimal nest
and all other nests.

Te improved cuckoo search optimizes the k-means
clustering algorithm as follows:

Step 1: initialize the distribution center set D, customer
set C, discovery probability Pa, ftness boundaries Fmax
and Fmin, discovery probability boundaries Pamax and
Pamin, step size boundaries stepmax and stepmin, and
maximum iterations T.
Step 2: set D as cluster centroids, i.e., the initial posi-
tions of the bird nest X�D, and initialize the objective
function f(x0), where x0 � x0

1, x0
2, . . . , x0

m 
T.

Step 3: classify the clusters according to K-means to
obtain a new cluster. Calculate the ftness value F(i),
and record the current optimal functional value f(xt

i)

and optimal nest position xt
i of the population, where t

is the current number of iterations and b is the number
of classifcations, i.e., b� {1, 2, 3, . . ., m}.
Step 4: update new nest positions xt

i � xt
1, xt

2, . . . , xt
m}T

according to equation (8), with adaptive step
ai � stepmin + (stepmax − stepmin) × di, di � (Fmax − F

(i))/(Fmax − Fmin), L(λ) ∼ μ � t− λ [22]:

x
t
i � x

t−1
i + ai⊕L(λ). (8)

Step 5: calculate the updated objective function f(xi) of
new nest positions, compare xt

i and xt−1
i , and save the

best nest location xi � xi
1, xi

2, . . . , xi
m 

T.
Step 6: compare the adaptive discovery probability Pa
with a random number r ∈ [0, 1]. If r≤ Pa, nest posi-
tions remain unchanged; otherwise, update nest po-
sitions, where [23]

Pa � (T − t) × Pamax − Pamin( ( 

T + Pamin
. (9)

Step 7: judge whether the maximum number of iter-
ations T is reached, or if the distance between the
current and previous optimal nest positions is within
the specifed threshold. If the end condition is met, the
algorithm ends, and the global optimal nest positions
and optimal solution are output. Otherwise, return to
step 3.

2.4. Optimized K-Means Algorithm Parallelization. Te k-
means clustering algorithm in Figure 1 performs clustering
calculations and centroid updates according to the principle
of the shortest Manhattan distance and allocates all elements
of D∪C to k� |D| clusters [24]. All sample points xi (i� 1, 2,
3, . . ., m+ n) in dataset D∪C are independently calculated
based on the Manhattan distance to each centroid, and the
sampling points are assigned to the nearest centroid.Tere is
no dependency between them, which is suitable for parallel

Start

Less than threshold range or 
iterations

Create k cluster centroids with 
service distribution center set

Calculate the Manhattan distance 
from all points in customer set C to

all centroids

Get the fnal cluster

Stop

No

Yes

Allocate customers of set C to k 
clusters according to the principle of 

nearest distance

Recalculate centers of clustering to 
obtain new centroids 

Calculate the diference between the 
new and old centroids

Figure 1: Original k-means algorithm fow in the multiple depot
vehicle routing problem (MDVRP).
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processing. Similarly, the recalculated centroid positions of
each cluster can only depend on the sample points in the
same cluster, i.e., there is no dependency between clusters,
which is also suitable for parallelization. Terefore, k-means
clustering can be parallelized through the Spark RDDmodel.

Parallelization of clustering can efectively solve the
problem of slow convergence in path planning. To improve
the convergence speed, applications can be decomposed into
many small tasks and distributed to multiple computers for
processing, i.e., a superlarge dataset can be decomposed into
subsets according to a standard. Each computer performs
clustering analysis on a subset. Te parallelization of OCS-k-
means clustering based on the Spark framework is as follows:

Step 1: initialize the distribution center set D, customer
set C, discovery probability Pa, ftness boundaries Fmax
and Fmin, discovery probability boundaries Pamax and
Pamin, step size boundaries stepmax and stepmin, and
maximum iteration number T.
Step 2: store the dataset D∪C in the HDFS distributed
fle system, and establish the RDD model of the Spark
computing framework.
Step 3: take D as the cluster centroid, i.e., the initial
position of the bird nest X�D, and initialize the ob-
jective function f(x0), where x0 � x0

1, x0
2, . . . , x0

m 
T. At

each node of the cluster, use map-related operators to
format the dataset.
Step 4: use the parallel computing of the Spark RDD
operator framework, use Map and Reduce to cluster the
operators and partition the sample data according to
the principle of the k-means minimum distance, obtain
a new cluster, calculate the ftness value F(i), and record
the current optimal function value f(xt

i ) and the
optimal bird nest position xt

i of the population.
Step 5: update nest positions according to
xt

i � xt−1
i + ai⊕L(λ), to obtain new nest positions

xt
i � xt

1, xt
2, . . . , xt

m 
T.

Step 6: calculate the objective function f(xi) of the
updated nest location, compare xt

i and xt−1
i , and save

the best nest locations xi � xi
1, xi

2, . . . , xi
m 

T.
Step 7: compare the adaptive discovery probability Pa
with random number r ∈ [0, 1]. If r≤Pa, the nest po-
sitions remain unchanged; otherwise, update the nest
positions.
Step 8: use relevant RDD operators such as Map and
Reduce to cluster the newly generated bird nest
according to the principle of minimum distance from
the cluster centroid, calculate the new nest location
objective function, compare it with the current optimal
bird nest, retain the optimal solution, and obtain the
optimal nest location for this iteration.
Step 9: judge the iteration termination conditions. If the
conditions are met, use the reduce aggregation operator
of RDD to perform aggregation operations, output the
globally optimal bird’s nest position and optimal so-
lution, and terminate the algorithm. If the conditions
are not met, return to step 4.

2.5. Solving the TSP Problem. Te parallel OCS-k-means
clustering algorithm forms |D| clusters from customer set
D∪C, each cluster contains one and only one service center,
and each service center provides services for the customers
in the cluster. In this way, the scale of the problem can be
quickly reduced to 1/|D|. All customer service logistics
services in a cluster must be completed. Ten, the problem
becomes the traveling salesman problem (TSP), which is to
fnd the shortest path under the constraints in Section 2.1
and solve formula (1) in each cluster, i.e., the minimum value
to traverse all vertices of the optimal solution f(xi), once and
only once in each cluster. Te TSP is a widely studied NP
problem in path planning, but the complexity of completing
the optimal path by the exact solution is still very high. At
present, the heuristic algorithm is a popular TSP algorithm
[3–5]. Common heuristic algorithms include the genetic
algorithm, ant colony algorithm, particle swarm optimiza-
tion, and simulated annealing.

Te SA algorithm, an improved random mountain
climbing algorithm, is adopted in this article. SA can accept
new points that are not as good as or are even worse than the
current point with a certain route change, and it can jump
out of a local optimum to realize the global optimal solution.
Zhang and Qi [25] used a partial random generation of an
initial path and a partial nearest insertion method to im-
prove the genetic algorithm and reverse the evolution of the
operator, but the population was set too large. He et al. [26]
proposed a Metropolis criterion, which improved the ftness
function and cross-mutation operator, to efectively avoid
the local optima. Yu et al. [27] introduced a partial nearest
neighbor method to generate the initial population for the
“premature” convergence problem of a genetic algorithm,
which greatly accelerated convergence and improved the
search quality. Li and Su [28] used the simulated annealing
intelligent optimization algorithm to solve the TSP problem
and found that the selection of initial temperature is the key
to the efect of the simulated annealing intelligent algorithm.
Xiao-Ping and Qiu-Qiu [29] introduced an improved
method of reverse operation to jump out of local optima and
enter the next search space. Te previous references provide
a technical basis for this article.

2.6. Optimization of SA Algorithm. Te simulated annealing
(SA) algorithm is relatively mature as a solution for small-
and medium-sized TSP problems. As the scale of problem
solving increases, the difculty of solving the problem in-
creases exponentially, and the convergence speed is in-
sufcient. We introduce the large-scale neighborhood search
(LNS) algorithm [30], as shown in Figure 2, to optimize the
simulated annealing algorithm, improve the convergence
speed, and prevent local optimal solutions.

We destroy the initial solution space to remove several
random nodes, e.g., c5, cx, . . ., c6, remove the selected points
from the initial solution space, and order the remaining
points according to the order of the initial solution to form
a destructive solution space. We use the removed nodes to
repair the failure solution space in turn by reinserting them
into any position in the failure solution space and calculating
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the appropriate value for inserting these diferent positions.
We select the appropriate value efect as the insertion result
until all removed nodes are inserted in the damaged solution
space, and the fnal solution space is obtained after the
repair. Te SA algorithm using the LNS method (SALNS) is
executed as follows:

Step 1: initialize iteration number N, exchange prob-
ability P, temperature T0, cooling coefcient a, iteration
number It, foating interval gapIter, clustering Man-
hattan distance matrix dist, and other parameters.
Step 2:use a greedy algorithm to generate the initial
solution Scurrent and calculate the ftness as follows:

f it Scurrent(  � 
n�1

i�1
di sti,i+1 + di st1,n. (10)

Step 3: record the optimal path Sbest � Scurrent and
optimal distance ft (Sbest)� ft (Scurrent).
Step 4: according to the roulette strategy, randomly
select two cities from the current path with probability
Pa to exchange, insert a new city, or use the LNS
method to generate a new path.
Step 5: calculate the ftness ft (Snew) of the new path. If
ft (Snew)< ft (Scurrent), then Scurrent � Snew; otherwise,
update according to the Metropolis criterion, i.e.,
calculate as follows:

p � e
− T f it Snes( )− fir Scurrent( )/fit Scurrent( )( ). (11)

Moreover, generate a random number r ∈ [0, 1]. If r< p,
then update Scurrent � Snew.
Step 6: if ft (Scurrent)≤ ft (Sbest), then Sbest � Scurrent, ft
(Sbest)� ft (Scurrent).
Step 7: update the temperature according to initial
temperature T0 �T0∗ a and
T � T0 ∗ (1 + cos(t∗ pi/gapIter)), where t is the
number of iterations.

Step 8: randomly select two elements, ci and cj. If disti,
j+ disti+1, j+ i< disti,i+1 + distj,j+1, remove paths (ci,
ci+ 1), (cj, cj+1), and add (ci, cj), (ci+1, cj+1).
Step 9: judge whether the end condition is reached. If
not, return to step 4 to continue execution, then output
result Sbest.

2.7. SALNS Parallelization. Te distributed parallel algo-
rithm can be used to accelerate optimization. From Figure 1,
it can be seen that the initial (current) solution can be broken
into multiple sets of broken solutions and removed nodes.
Each set can be assigned to a computing node to complete an
iteration and form multiple fnal solutions. Te optimal
solution among these can be selected as the current solution
of the next iteration. However, the destruction process must
be executed serially, with low acceleration performance and
possible path-crossing problems. Each time an optimal
solution is directly transferred to all distributed computing
nodes, all nodes use their current solution to cross the
optimal solution [31]. As shown in Figure 3, a segment of the
current optimal solution and the path of the current solution
are cross reorganized (i.e.., ensuring that the position and
order of the segment remain unchanged, while adding other
nodes to the optimal solution according to the order of the
current solution) to generate a new solution. Each com-
puting node performs an LNS operation on the new solution
to obtain a new current solution. Te simple parallel SALNS
(SPSALNS) process is shown in Figure 4.

3. Results and Discussion

To verify the efciency and correctness of the algorithm
proposed in this article, all the algorithms used were ex-
perimentally analyzed. Te correctness and convergence
speed of the OCS-k-means parallel algorithm were verifed
using the classical UCI machine learning dataset, and the
SPSALNS simulation experiment on the TSPLIB dataset
proved that the method proposed in this article can solve the
MDVRP problem. To verify the correctness of the algorithm,
the entire processes of the parallel OCS-k-means and
SPSALNS algorithms were simulated.

3.1.Analysis of ImprovedCuckooSearchClusteringAlgorithm.
We conducted 30 simulation experiments on four validation
datasets: Iris, Wine, 4k2_far, and Balance-scale from the
classic UCI machine learning dataset [32]. Table 1 shows the
comparison results of six algorithms, namely, the traditional
k-means clustering algorithm, frefy algorithm k-means
(FA-k-means), particle swarm optimization k-means
(PSO-k-means), simulated annealing clustering algorithm
k-means (SACA-k-means), algorithm of bee colony k-means
(ABC-k-means), and optimized cuckoo search k-means
(OCS-k-means). Te accuracies of the algorithms are
shown in Table 1, and the number of iterations required for
algorithm convergence is shown in Table 2 [33].

c2 c5 c1 c7 c10 c6 . . . c8

destroy

c2 c1 c7 c10 c8 c5 c6cx

broken solution space removed Nodes

c2 c1 c7 c10 c8

repair

c5 c2 c1 c7 c6 c8 c10

fnal solution

fnd the best

initial solution

. . . . . .

. . .

. . .

Figure 2: Working principle of LNS.
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Figure 4: SPSALNS algorithm.

Table 1: Accuracy statistics of clustering algorithms.

Algorithm Iris (%) Wine (%) 4k2_far (%) Balance-scale (%)
k-means 70.00 56.67 46.67 63.33
FA-k-means 76.67 76.67 53.33 76.67
PSO-k-means 73.33 66.67 60.00 80.00
SACA-k-means 83.33 70.00 56.67 83.33
ABC-k-means 83.33 73.33 53.33 76.67
OCS-k-means 86.67 83.33 56.67 90.00
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Trough comparison, it is found that OCS-k-means is
superior to the traditional k-means algorithm and other
commonly used improved k-means algorithms in terms of
accuracy and iteration time.

Te number of iterations is easily afected by the number
of features, as well as by the hyperparameter k (the number
of clusters). With the increase in k, the number of iterations
will continue to be smaller, but this does not imply that the
model efect will continue to improve.

For this reason, a nonparametric statistical analysis is
carried out using silhouette coefcients. Tis method is
suitable for the cluster analysis of data without real labels,
and the method is used to evaluate the impact of diferent
algorithms or diferent operation modes of algorithms on
clustering results based on the original data. Te silhouette
coefcient of a single sample is calculated as follows:

s(i) �
a(i) − b(i)

max(a(i), b(i))
,

s �


k
i�1s(i)

k
,

(12)

where a(i) is the similarity within the measurement group
and b(i) is the similarity between the measurement groups.
s(i) ranges from −1 to 1. Te larger the value, the higher the
intragroup coincidence and the farther the intergroup dis-
tance; that is, the larger the silhouette coefcient value, the
better the clustering efect.

According to the silhouette coefcient equation, the
statistics of various clustering algorithms are obtained, and
the resulting silhouette coefcients are shown in Table 3. It
can be seen that OCS-k-means is the best in Iris, Wine, and
Balance-scale, and that 4k2_far is the second best.

3.2. Efciency Analysis of Parallel OCS-K-Means. To verify
the clustering efciency of the parallel OCS-k-means clus-
tering algorithm, Dataset 1–Dataset 4 were designed, with
respective sample sizes of 105, 106, 107, and 108, and data
dimensions of 3, 5, 7, and 20. Te original and parallel k-
means clustering algorithms and the parallel OCS-k-means
clustering algorithm were each simulated 30 times, and the
running time (in seconds) was compared and analyzed.

Te average convergence times of the original k-means,
parallel k-means, and parallel OCS-k-means on Dataset 1
were 13.57 s, 33.71 s, and 39.11 s, and the average conver-
gence times on Dataset 2 were 21.06 s, 57.95 s, and 60.11 s,
respectively. Because the number of data samples in Dataset
1 and Dataset 2 test sets was small and because of the long

execution time of Map and Reduce, the convergence per-
formance of the parallel k-means and parallel OCS-k-means
was worse than that of the original k-means. When the
amount of sample data were large, the execution time ofMap
and Reduce in the parallel algorithm accounted for a small
proportion of the total running time. At this time, the av-
erage convergence time of the parallel clustering algorithm
was better than the serial algorithm. To verify the efciency
improvement of the parallel OCS-k-means algorithm with
large-scale data, a statistical test was carried out on the 30
experimental results of the three algorithms in Dataset 3 and
Dataset 4 with a confdence level of 95.0%. Te original k-
means and parallel k-means algorithms were tested using an
F-test to obtain the two-sample analysis of variance. Te F-
test showed that P value ≥0.05, so the sample has an equal
variance. Te two-sample ANOVA t-test can be used for the
diference test. Te original k-means and parallel k-means
test results are shown in Table 4.

Similarly, an F-test and t-test were performed on the
parallel k-means and parallel OCS-k-means algorithms, and
the test results are shown in Table 5.

As shown in Tables 4 and 5, the t-test exhibits P< 0.01,
indicating that the efciency of the parallel k-means algo-
rithm was signifcantly higher than that of the original k-
means algorithm in large datasets, while the efciency of the
OCS-k-means algorithm was approximately twice than that
of the parallel k-means algorithm. Tus, the parallel OCS-k-
means clustering algorithm is more suitable for processing
large-scale datasets.

3.3. Convergence and Parallelism Analysis of Improved Sim-
ulated Annealing Algorithm. Figures 5 and 6 show the
comparison of convergence time between SALNS and PSO,
GA, and SA on the datasets Att48 and Kro A100, indicating
that SALNS convergence time was shorter.

Ten simulation experiments were carried out on the
TSPLIB datasets Oliver30, Att48, Eil51, Eil76, KroA100, and
Ch130. Table 6 compares the F(Pbest) mean values solved by

Table 2: Statistics of iterations of the diferent clustering algorithms.

Algorithm Iris Wine 4k2_far Balance-scale
k-means 19.8 41.2 34.7 39.7
FA-k-means 9.7 31.8 28.9 34.7
PSO-k-means 46.9 21.2 32.6 36.4
SACA-k-means 13.1 29.6 25.7 31.2
ABC-k-means 12.7 27.6 28.6 27.7
OCS-k-means 8.9 19.5 22.3 25.3

Table 3: Statistical analysis results of silhouette coefcients of
diferent clustering algorithms.

Algorithm Iris Wine 4k2_far Balance-scale
k-means 0.55 0.48 0.42 0.51
FA-k-means 0.58 0.59 0.46 0.59
PSO-k-means 0.57 0.53 0.49 0.61
SACA-k-means 0.62 0.55 0.48 0.62
ABC-k-means 0.62 0.57 0.46 0.59
OCS-k-means 0.64 0.62 0.48 0.66
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SPSALNS, SQACS [34], and SSA [35], from which it can be
seen that SPSALNS can fnd the real optimal solution for all
situations in the dataset.

In SPSALNS, each computing node only accepts the
current optimal solution broadcast by the system and in-
tersects with the current solution of the node to form a new
solution. At this time, each computing node is fully parallel,
which greatly improve the parallelism. Te results of 30
experiments using SSA, SQACS, and SPSALNS on the
KroA100 dataset were statistically tested. Te P value of the
F-test was less than 0.05, and the two-sample hetero-
scedasticity hypothesis in the t-test was used. Te statistical
analysis results are shown in Table 7.

Trough statistical analysis, we found the P value from
the t-test to be less than 0.01; thus, the diference is statis-
tically signifcant, HO is rejected, and H1 is accepted. It can

be seen that the SPSALNS operation time (33.564± 4.110 s)
is less than the SQACS operation time (93.673± 10.832 s)
and SSA operation time (109.788± 15.523 s). Terefore, its
computation time is signifcantly better than those of the two
algorithms SQACS [34] and SSA [35]. Te average running
time of these three algorithms in the TSPLIB dataset, i.e.,

Table 4: Test results of original k-means and parallel k-means.

Parameters
Dataset 3 Dataset 4

Original k-means Parallel k-means Original k-means Parallel k-means
Average 419.516 246.452 8487.354 4103.102
Variance 25.579 18.610 8846.707 6702.702
F 1.37446754 1.319872
P (F≤ f) one-tailed 0.19841217 0.229742
t-Stat 142.596496 192.5747
P (T≤ t) one-tailed 7.6409E− 76 2.14E− 83
t one-tailed critical 1.67155276 1.671553

Table 5: Test results of parallel k-means and parallel OCS-k-means.

Parameters
Dataset 3 Dataset 4

Parallel k-means Parallel OCS-k-means Parallel k-means Parallel OCS-k-means
Average 246.452 173.093 4103.102 2861.74
Variance 18.610 13.134 6702.702 5110.535
F 1.416947 1.311546
P (F≤ f) one-tailed 0.176702 0.234876
t-Stat 71.31483 62.5568
P (T≤ t) one-tailed 1.71E− 58 3.09E− 55
t one-tailed critical 1.671553 1.671553
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Figure 5: Comparison of Att48 data convergence curves.
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Figure 6: Comparison of Kro A100 data convergence curves.

Table 6: Comparison of F(Pbest) mean values.

Dataset SPSALNS SQACS SSA Real solution
Oliver30 420 421 427 420
Att48 33522 33583 34103 33522
Eil51 426 427 451 426
Eil76 538 543 582 538
KroA100 21282 21540 22695 21282
Ch130 6100 6370 6568 6100
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Table 7: Statistical analysis results of SPSALNS, SSA, and SQACS.

Parameters
Comparison between SPSALNS and

SSA
Comparison between SPSALNS and

SQACS
SSA SPSALNS SQACS SPSALNS

Average 109.788 33.564 93.673 33.564
Variance 240.984 16.893 117.353 16.893
Standard deviation 15.523 4.110 10.832 4.110
F 14.26465 6.946536
P (F≤ f) one-tailed 1.15E− 10 6.48E− 07
t-Stat 25.99848 28.41517
P (T≤ t) one-tailed 7.39E− 24 4.94E− 27
t one-tailed critical 1.69236 1.687094
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Figure 7: Comparison of convergence rates.
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algorithm efciency, is shown in Figure 7, which indicates
that the efciency is improved by at least a factor of two.

3.4. Experimental Simulation Results. For the MDVRP
problem, we constructed the dataset shown in Figure 8,
including the service center set D (rectangles) and service
customer setC (dots).TeOCS-k-means algorithmwas used
to decompose |D| clusters according to the constraint for-
mula in Section 2.1 to form one cluster for each service
center, which greatly reduces the scale of problem solving, as
shown in Figure 9.

For each cluster, as shown in Figure 9, the SPSALNS
algorithm is used internally to solve for the optimal service
path, with calculation results as shown in Figure 10.

3.5. Analysis. Te distributed parallel OCS-k-means clus-
tering algorithm can quickly cluster and partition a large
number of service nodes in the MDVRP problem. Te more
data are processed, the more obvious the advantages. It can
quickly divide a large amount of data into smaller problem
sizes. In each cluster, the Spark computing framework based
on an improved simulated annealing algorithm is used for
parallel computing, which can increase the computing speed
and optimize the quality of the solution. For the same data,
the strategy adopted in this article was compared with the
original PSO solution, and the convergence speed of the
parallel PSO solution is shown in Figure 11. It can be found
that the solution quality is efectively improved, and con-
vergence is faster.
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Figure 9: Tree clusters formed by the OCS-k-means algorithm.

1000

800

600

400

200

0

0 200 400 600 800 1000
X

Y

Figure 10: Path planning using the SPSALNS algorithm.
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4. Conclusion

Large and superlarge logistics centers cannot avoid the NP-
hard problem of MDVRP. Traditional solution algorithms
are inefcient and perform poorly. Intelligent algorithms
such as heuristic and deep learning methods converge slowly
when large amounts of data are involved; hence, they cannot
adapt to vehicle path planning, and it is difcult to meet the
needs of the rapid development of logistics. To improve the
efciency of path planning, the frameworks of the k-means
and simulated annealing algorithms were analyzed, their
parallel and serial computing parts were sorted and opti-
mized, and the speed was improved through the Spark
distributed computing. It was found that the convergence
rate of the distributed parallel algorithm was at least twice
than that of the traditional intelligent algorithm when the
data volume was large; the greater the data volume, the better
the convergence performance.

Tis method is designed for the actual needs of large
logistics centers; however, the following limitations exist in
the actual scenario:

(1) For applications that serve a small number of cus-
tomers, parallel processing cannot efectively im-
prove the convergence speed, but the cost of parallel
processing decreases

(2) In the case of frequent changes in customer demand,
frequent clustering and optimal path solving are
required, which is inefcient

MDVRP has several possible directions for future work.
User requirements may change, so we might consider the
real-time dynamic path planning problem of vehicle-borne
multiagents in complex dynamic environment. In addition,
reinforcement learning, deep learning, and neural networks

can be used to solve complex path planning problems with
more constraints. Finally, the three-dimensional path
planning problem in the scenario of multiple types of ve-
hicles (e.g., UAVs, cars, and ships) can be applied such as to
disaster relief, exploration, and medical aid.
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