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Te data quality and real-time analysis of automatic identifcation system (AIS) are of great signifcance for water transportation
safety and intelligent maritime construction. To improve the AIS data quality and analyze AIS data in real time, a real-time AIS
data cleaning and indicator analysis algorithm is proposed. Tis algorithm performs distributed real-time data cleaning and
analysis for massive AIS data based on stream computing technology. It includes data fusion, deduplication, decoding, abnormal
data identifcation, sequencing, prediction, and statistics steps. Abnormal AIS data are repaired by linear regression, multiple
trajectory tracking, caching, and other technologies. Te AIS status is determined in real-time via multidimensional AIS packet
loss analyses, multifactor AIS data statistics, and spatial-temporal data visualization, efectively improving the intelligence level of
maritime supervision applications. Te proposed algorithm has been running on a production environment, and it monitors AIS
data in a certain section of the Yangtze River Basin 24 hours every day without interruption. Te operation results show that the
proposed algorithm can improve the quality of AIS data, addresses ship trajectory jump issues, and provides timely position
updates. Te real-time indicator analysis results can provide the data support for ship navigation and maritime supervision.

1. Introduction

Automatic identifcation system (AIS) is a digital navigation
aid system that exchanges navigation information between
ships and shore-based stations [1]. AIS, radar, and sur-
veillance video are the most important perceptual data
source of water transportation. Tey all constitute an im-
portant cornerstone of smart shipping [2, 3]. With the
improvement of AIS availability, AIS applications have
extended from early navigation to various felds, such as
navigation behavior analysis, navigation safety, trade anal-
ysis, environmental assessment, and maritime supervision.
Adland et al. predicted the global oil trade according to the
sea transportation volume, which is calculated from the AIS
data [4]. In reference [5], a dynamic method was combined
with the emission model STEAM2 to calculate the ship
pollutant emissions. Ship trajectory prediction based on
spatial attributes is one of the most important research areas
concerning AIS data. Liu et al. proposed a BLSTM-based

deep learning network. By being embedded with the dy-
namic AIS data and social force concept, it guarantees high-
accuracy ship trajectory prediction [6]. Murry and Perera
proposed a novel dual linear autoencoder approach to ex-
tract navigation trajectories and predict navigation routes
from the AIS data [7].

AIS applications such as water transportation safety and
maritime supervision have the very high data quality re-
quirements. Low-quality AIS data will not only afect water
trafc management but also bring wrong results to data
analysis. For example, it is hard to discern the normal
trajectory when multiple ships share one maritime mobile
service identity (MMSI). Due to the accuracy of ship nav-
igation sensing equipment, the reliability of shipborne AIS
equipment, the layout and capacity of AIS shore-based
stations, the terrain environment, artifcial electromag-
netic radiation, and other factors, high-quality AIS data are
often unavailable, especially in inland river environments
[8, 9]. Scholars have conducted many studies on the quality
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of AIS data. In reference [10], integrity and completeness of
AIS data were discussed. It concluded that reliable AIS data
are the key in the process of ship collision avoidance. By
empirically investigating the Dover Straits, Baily found that
a considerable amount of AIS data is inaccurate, and many
incorrect MMSI lead to ship positioning failures [11]. Banyś
et al. analyzed AIS data from the Baltic Sea coast in Germany
and found that more than 30% of the ship heading and
rotation AIS data were unknown, resulting in many prob-
lems when AIS data are used for ship collision avoidance
[12]. For specifc interests, many individuals and organi-
zations falsify AIS data, which disrupts navigation order
[13]. To analyze the reliability of AIS data, Liu et al. defned
ship AIS service indicators for ships, regions, and shore-
based stations. Te AIS performance was analyzed and vi-
sualized in a section of the Yangtze River [14]. In order to
improve the quality of AIS data, scholars have made im-
provements from hardware equipment, signal measurement,
network communication, multisource data fusion, big data
technology, etc. Zhang et al. proposed a pseudorange
measurement algorithm based on AIS signals, which can
greatly improve the estimation accuracy under the low
signal-to-noise ratio (SNR) condition [15]. In reference [16],
the impact of space-based AIS antenna orientation on AIS
detection performance is conducted. Te orientation of AIS
monopole antenna can increase the detection of AIS signals.
Jaskólski et al. used simultaneous localization and mapping
(SLAM) process model based on the fusion of radar and AIS
data to track the ship trajectory [17]. Low-quality AIS data
can be improved by data preprocessing technology. Zhao
et al. preprocessed AIS data in terms of physical integrity,
spatial logic integrity, and time accuracy to ensure the ac-
curacy of AIS data analysis [18]. Siegert et al. proposed an
EKFmethod to monitor AIS data integrity and track the ship
trajectory [19]. Chen et al. proposed a novel approach to
detect anomaly AIS data based on the ships’ maneuver-
ability. Te cubic spline interpolation method was used to
repair the trajectory after eliminating the abnormal points
[20]. Sang et al. constructed a smooth AIS fltering algorithm
that deletes dynamic AIS data with abnormal positions
according to a preset threshold [21]. In reference [22], an
AIS data preprocessing method, which combines TPNet and
LSTM, is proposed. It can improve the accuracy of the ship
trajectory prediction.

Most studies of AIS data cleaning and analysis focus on
of-line methods which are based on the traditional cloud
computingmodel. In this model, the data processing is based
on batch processing, where a large amount of historical data
are processed at one time. For maritime supervision, ship
collision avoidance, water trafc management, and other
applications, it is necessary to obtain the cleaned AIS data
and statistical indicators in real time. Te traditional of-line
methods cannot adapt to these application scenarios. To
clean AIS data and obtain performance statistics in real-
time, a real-time AIS data cleaning and indicator analysis
algorithm based on stream computing is proposed. In this
framework, a piece of AIS data is processed immediately
when it is received. Compared with the traditional

computing methods represented by Map/Reduce frame-
work, stream computing provides a better solution for real-
time AIS data processing and can better meet the real-time
requirements. Te cloud receives an AIS packet and per-
forms real-time deduplication, decoding, inaccuracy iden-
tifcation, repairing, and analysis. When inaccuracy data are
identifed, the historical data are used to repair them. Te
reasons underlying AIS data losses are analyzed with linear
predictions and data statistics according to the AIS capacity,
environment, and ship factors. Te statistics of the AIS
packet, ship number, AIS abnormalities, and AIS losses are
determined at three levels: ship level, grid level, and system
level. Real-time data cleaning and indicator analysis can
efectively improve the quality of AIS data, address the ship
position jump issues, and provide timely ship navigation
status. Te improved AIS data efectively enhance the ap-
plication of AIS data in ship tracking, intelligent search and
rescue, and water trafc organization. Tree approaches to
increase the performance of real-time AIS data process are
introduced to the proposed algorithm.

(i) A whole AIS stream computing architecture, which
implements real-time process in the whole pro-
cessing from data fusion, deduplication, decoding,
abnormal data identifcation, sequencing, pre-
diction to statistics, is constructed

(ii) By repairing abnormal AIS data with linear re-
gression, multiple trajectory tracking, caching, it
can efectively improve the quality of AIS data

(iii) By multidimensional AIS packet loss analyses,
multifactor AIS data statistics, and spatial-temporal
data visualization, it can efectively improve the
intelligence level of shipping

2. Cause Analysis of AIS Data Abnormality

Low-quality AIS data seriously afect water transportation
management. AIS abnormalities are classifed as data
inaccuracy and data loss in this paper.

2.1. Data Inaccuracy. Data inaccuracy indicates an in-
consistency between the received AIS data and the actual
shipping status.

2.1.1. Inaccuracy of Ship Basic Information. Since the basic
ship information is input manually by crews, incorrect data
or data that are not compliant with the specifcations may be
input. In practical applications, large inaccuracies in des-
tination, length, and type of ships occur.

2.1.2. Inaccuracy of Ship Navigation Status. For the posi-
tioning errors caused by GPS (global position system) or
BDS (BeiDou navigation satellite system) and navigation
data errors caused by INS (inertial navigation system), the
ship navigation information of the AIS data may be in-
consistent with the actual ship navigation status.
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2.1.3. MMSI Jumping. MMSI is a nine-digit code that
uniquely identifes AIS equipment. Due to human errors,
equipment failures, pseudo shore-based stations, and other
reasons, the sameMMSI may be used by diferent ships.Tis
can cause jumping phenomena in AIS trajectories and se-
riously afect water transportation safety.

2.2. Data Loss. Te AIS data transmission interval is de-
termined according to the AIS equipment type and speed
and steering rate of the ship. Te data losses occur when AIS
shore-based stations do not receive the corresponding AIS
data within the specifed time.

2.2.1. Signal Transmission Attenuation. AIS is an automatic
reporting system based on very high frequency (VHF).
Transmission distance, terrain on both sides of channels,
adjacent buildings, weather conditions, etc., all afect signal
transmission. Transmission attenuation of the radio waves
may weaken the AIS signals. Noise may be amplifed when
AIS shore-based stations modulate and amplify the received
signal. Tis amplifcation can cause the data errors. Data
with errors are discarded for the lack of a fault-tolerant
mechanism in AIS [23].

2.2.2. Capacity of Shore-Based Station. Te capacity of an
AIS shore-based station indicates the maximum amount of
shipborne AIS equipment with which the shore-based sta-
tion can communicate. Since the AIS reporting rate depends
on the AIS equipment type, shipping speed, and steering
angle, the system capacity is dynamic [24]. When the re-
quired amount of data transmitted is greater than the ca-
pacity, timeslot multiplexing occurs. Timeslot multiplexing
may result in identifcation communication or blind com-
munication issues when the shore-based station receives the
AIS data. Multiple shipborne AIS equipment may send
messages at the same timeslot. Tis causes the shore-based
station to receive only one message correctly, or all messages
cannot be received correctly [25].

2.2.3. Own Factors of Shipborne AIS Equipment. Te
transmit power, power supply stability, manual shutdown,
and other factors may cause AIS data loss. Te AIS transmit
power is generally 12.5W.When the power becomes weaker
and the ship is far from the AIS shore-based station, the
station may not receive the AIS data. If there is no built-in
stabilized power supply in the shipborne AIS equipment,
there may be insufcient current, resulting in transmission
failure of the AIS signal [26].

2.2.4. Noise Jamming. Many cities are located along wa-
terways, and artifcial electromagnetic radiation sources
interfere AIS signal transmission, afecting the reliability of
AIS data [27]. Mirror interference and skywave interference
are two kinds of interference that can reduce the signal
transmission accuracy.

3. Algorithm Architecture

As shown in Figure 1, the proposed algorithm includes
a data acquisition layer, data aggregation layer, data cleaning
layer, data analysis layer, data storage layer, and data
visualization layer.

Te data acquisition layer is implemented by some AIS
acquisition clients which acquire the AIS data from shore-
based stations through computer networks. Te acquired
AIS data are transmitted to the data aggregation layer. Based
on high throughput, low latency, high reliability, high
concurrency, and fault tolerance [28], Kafka is used to ag-
gregate the acquired AIS data and send them to the next
layer for computing. Te data cleaning layer realizes AIS
data deduplication, decoding, and inaccurate data identif-
cation. As an excellent stream computing framework, Flink
is used to realize real-time computing. Te computing re-
sults are transmitted to the data analysis layer and the data
storage layer. Te data storage layer includes the Redis
cluster, MySQL cluster, and Doris cluster. By the multilevel
storage structure, the layer can support distributed storage
and has high availability [29]. Te data analysis layer cal-
culates real-time statistics at diferent levels according to the
various indicators. Te visualization layer adopts the front-
end and back-end separation technology. Te back end uses
Spring Boot framework to realize business logic processing,
and the front end uses Vue, Echarts, and MapBox to
visualize data.

4. Rea-Time AIS Data Cleaning and
Indicator Analysis

4.1. Processing Flow. As shown in Figure 2, the proposed
algorithm is divided into two Flink cluster processing levels.
Te frst-level Flink cluster completes the data cleaning and
ship trajectory prediction. Te processing results are then
sent to the second-level Flink and the data storage layer via
the message queue. Te second-level Flink cluster computes
the capacity and analyzes the AIS packet loss and AIS service
performance according to ship, grid, and shore-based station
levels.

4.2. AIS Data Cleaning

4.2.1. Data Deduplication. For the reception areas overlap of
diferent shore-based stations, broadcast AIS packets are
received by multiple AIS shore-based stations [30].Tus, the
AIS data must be deduplicated to reduce the computational
burden for the next computing. An AIS packet does not
contain a complete timestamp and contains only UTC
seconds. Tus, two packets may be equal when the MMSI,
longitude, latitude, speed, etc., are all the same. In most
cases, it takes less than 1minute for an AIS packet to be sent
from a ship to the cloud. It is extremely unlikely to receive
two identical packets within one minute, and the generation
time diference between two packets is greater than one
minute.

Te time to live (TTL) feature of Redis is used to identify
duplicated AIS packets within 1minute, and duplicated data
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are fltered out by the flter operator of Flink. Te TTL
feature ensures that the stored data are valid only for
a certain period of time. When the life cycle ends, the stored
data become invalid [31]. Tus, if the new AIS packet into
the Flink cluster already exists in the Redis cache, the packet

is repeated, and it is fltered. If the packet does not exist in
the Redis cache, the packet is stored in the Redis cache while
the TTL is set to 1minute.

4.2.2. Data Decoding. To improve the transmission ef-
ciency, the AIS packet is transmitted by compression coding.
Te map operator of Flink is used to decode the original
packet in real time. Te map operator converts each AIS
packet to the plain text. As shown in Figure 3, a complete
original AIS packet consists of 7 felds separated by commas.

Data decoding converts the encapsulated message from
the original AIS packet into the plain text according to the
VDMprotocol.Te parsing process frst determines whether
the cyclic redundancy check (CRC) is consistent with the
packet. If the CRC is consistent, the corresponding start byte
is determined according to the corresponding message type,
the specifed bit width is maintained, and the data are
converted and merged to determine the required
information.

4.2.3. Inaccurate Data Identifcation and Repairing. Tis
step identifes and repairs inaccurate AIS data. Te main
inaccuracies include position abnormalities, speed and
heading abnormalities, multiple trajectory abnormalities,
and receiving sequence abnormalities. Te repaired data are
marked and stored in the data storage layer before being sent
to the next Flink cluster for next operations.

(1) Position Abnormality. If the values of the longitude and
latitude are not within the normal range, the AIS packet is
marked with abnormal position. Abnormal longitude and
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latitude are repaired according to the ship trajectory. If the
time diference between adjacent packets is less than
10minutes, the current packet is repaired according to the
ship trajectory. If the time diference exceeds 10minutes, the
packet is not repaired and is marked as invalid. If the speed
and heading diferences between adjacent AIS packets are
within the threshold, the average value is taken as the speed
and heading. Te Mercator algorithm which is a diference
calculation method based on Mercator chart projections
with equal angles and constant straight direction lines [32] is
used to calculate the ship trajectory.

Te longitude and latitude in the previous AIS packet are
denoted as longt− 1 and latt− 1, the speed of the current AIS
packet is denoted as speedt, the heading angle is denoted as
HDGt, tdif denotes the time diference between the two
adjacent packets, and St denotes the distance between the
adjacent packets. Te current longitude longt and latitude
latt are calculated as follows:

latt � latt−1 + St × cos HDGt( 􏼁, (1)

longt � longt−1 + DMP × tan HDGt( 􏼁, (2)

St � speed × tdiff , (3)

DMP � MP latt( 􏼁 − MP latt−1( 􏼁, (4)

where MP is the meridian arc length of the projection of the
unit latitude in the Mercator map vertical coordinate.

MP(φ) � 7915.70447 × lg tan
π
4

+
φ
2

􏼒 􏼓 ×
1 − e × sin(φ)

1 + e × sin(φ)

e

2⎛⎝ ⎞⎠.

(5)

If the speed and heading diferences between the two
adjacent AIS packets exceed the threshold, the current
longitude and latitude of the ship are iteratively derived by
evenly inserting n− 2 points. Te frst node is the position of
the previous AIS packet, and the n-th node is the position of
the current AIS packet. Assuming that the changes of ac-
celeration and steering angle of the ship are uniform, the
speed and heading angel of the ship at the i-th node can be
calculated as follows:

speedi � speedt−1 +
speedt − speedt−1( 􏼁∗ i

n − 1
, (6)

HDGi � HDGt−1 +
HDGt − HDGt−1( 􏼁∗ i

n − 1
. (7)

Te longitude and latitude of each point are successively
derived according to equations (1)–(5).

(2) Speed and Heading Abnormality. If the speed and
heading of the ship are not within the normal range, the AIS
packet is marked with abnormal speed and heading.Te ship
positions of the adjacent AIS packets are used to repair the
current ship speed and heading.

HDGt � arctan
longt − longt−1

DMP
􏼠 􏼡, (8)

speedt �
latt − latt−1( 􏼁 × sec HDGt( 􏼁

tdiff
, (9)

when the latitudes from the two adjacent AIS packets are the
same, the ship is moving along a parallel. If longt is greater
than longt− 1, then HDGt � 90; otherwise, HDGt � 270.

(3) Multiple Trajectory Abnormality. Te MMSI is manually
input into a shipborne AIS equipment. Tus, input errors
may cause two or more ships to use the same MMSI. As
a result, the trajectory jumps between these ships. It results
ship identifcation and tracking errors. Multiple trajectory
abnormalities identifcation and repairing process are shown
in Figure 4.

Whether a ship is newly into the Flink cluster is de-
termined by the MMSI information stored in the Redis
cluster. For a new MMSI, the ship information is stored in
the Redis cluster, and a new trajectory is added for the novel
MMSI. For ships whose MMSI exists in the Redis cluster, the
position of the current AIS packet is matched to the existing
trajectories. Te distance between the position of the new
AIS packet and the last position of each trajectory is cal-
culated. If the distance is greater than the maximum possible
navigation distance, the new position does not match the
given trajectory. If there is no matching trajectory, a new
trajectory is added for the MMSI. If there is a matching
trajectory, the matching trajectory is updated.

(4) Receiving Sequence Abnormalities. Since AIS packets are
acquired from diferent shore-based stations, the packet
receiving order is uncertain. Te packet that is sent frst may
be received last. If the sequence is not appropriately ordered,
the ship trajectory may jump back and forth. To sort the AIS
packets, AIS packets are not stored directly to the data
storage layer and sent to the next step for statistical analyses.
Instead, the AIS packets are cached, and all AIS packets
acquired in the time window are sorted.

Te time window is set to 1minute, and the AIS data in this
window are sorted. Te AIS data in the window are denoted as
x1, x2, . . ., xn− 1, and the newly received AIS data are denoted as
xn. xn is comparedwith xi (i� n− 1, n− 2, . . .1) and inserted into
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, 1 , 1 9 , A Data 0* 5E! AIVDM , , , ,
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Figure 3: Te original AIS packet format.
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the appropriate position.Tedirection angle between xn and xi is
calculated. If the angle is consistency with the heading, xn is
inserted after xi, and the sorting is fnished. If the angle is in-
consistency with the heading, then xn is compared with xi− 1
until all data in the cache have been compared.

4.3. AIS Data Prediction. Te transmission time of AIS
packets depends on the ship navigation status and water
trafc environment. To analyze the reliability of AIS data, it
is necessary to predict the received time and ship status of
the next AIS packet. Tis step not only realizes trajectory
flling when the AIS packet is lost but also provides data for
AIS reliability statistics.

4.3.1. Receiving Time Prediction for the Future AIS Packet.
Te AIS transmission frequency depends on the message
type, shipborne AIS equipment type, and navigation status.
AIS static data are transmitted every 6minutes, and dynamic
data depend on the ship speed and deviation angle. For
dynamic data, the transmission intervals of class A equip-
ment are 2 seconds, 3.33 seconds, 6 seconds, 10 seconds, and
180 seconds.Te transmission intervals of class B equipment
are 5 seconds, 15 seconds, 30 seconds, and 180 seconds. Te
received time of the next AIS packet is calculated as follows:

Tpredict � T + ∆T, (10)

where Tpredict is the predicted received time of the next
packet, T is the received time of the current packet, and ΔT is

the predicted interval time. Te invalid time of the cache
storage is set to twice the predicted AIS transmission in-
terval, i.e., 2ΔT.

4.3.2. Processing of the Invalid Data in the Redis Cache.
Before the predicted AIS data expire in the Redis cache, the
data and validation time are updated according to the newly
received AIS data. Invalid AIS data indicate that there is an
AIS data loss. To ensure continuous ship trajectories,
missing trajectories must be flled.

Most ships move at constant speeds. Tus, a linear
system can be assumed. Te Redis cache stores the navi-
gation data received within ten minutes, and the ship speed
and heading stored in the Redis cache are denoted as speedt1,
speedt2, . . ., speedtn and headingt1, headingt2, . . ., headingtn.
Te acceleration and steering angle between adjacent AIS
packets can be calculated. Te current acceleration and
steering angle accepd and turnpd are predicted by linear
regression. Te ship speed and heading are calculated
according to the current acceleration and steering angle and
previous speed and heading, as follows:

speedpd � speedtn + accepd, (11)

HDGpd � HDGtn + turnpd. (12)

Te longitude and latitude of the ship are calculated
according to equations (1)–(5). Te predicted ship position,
speed, and heading are sent to the Kafka message queue for
the next calculation. Te predicated data are continuously
stored in the Redis cache, and the number of consecutive
packet losses is determined.

4.4.AISData Statistics. In the data statistics step, a 5-minute
time window is used to perform relevant statistics
operations.

4.4.1. AIS and Ship Quantity Statistics. Data statistics for the
grids, shore-based stations, and the system are executed,
respectively. For grids, the number of AIS packets and ship
density are calculated. For shore-based stations, the number
of covered ships and actual capacity are calculated. For the
system, the number of AIS packets and the AIS transmission
time interval are calculated.

(1) Data Statistics for Grids. To calculate the grid density,
a certain time point must be selected. Te middle time point
of the window is used as the basis of the calculations. Te
position at the middle time is calculated according to the
positions at the adjacent times. If there are packets before
and after the middle time, the two AIS packets closest to the
middle time are used to calculate the ship position.

posmiddle � posbefore ×
tmiddle − tbefore

tafter − tbefore
+ posafter

×
tafter − tmiddle

tafter − tbefore
,

(13)
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Figure 4: Multiple trajectory identifcation fow.
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where posmiddle is the ship position at the middle time, tmiddle
is the middle time, tafter and tbefore are the adjacent receiving
times after and before the middle time, respectively, and
posbefore and posafter are the corresponding positions.

If there are packets only before or only after the middle
time, the ship position at the middle time can be deduced
according to position of the closest AIS packet according to
equations (1)–(5). Te number of ships in the grid is de-
termined according to the grid where the ships are located.

(2) Data Statistics for Shore-Based Stations. Te number of
ships covered by the shore-based station is calculated.
Similar to the data statistics for grids, the middle time in the
window is used as the basis for the calculations. Te distance
between the ship and the shore-based station is calculated as
follows:

d � R × arcos cos latb( 􏼁 × cos lats( 􏼁 × cos longb − longs( 􏼁(

+ sin latb( 􏼁 × sin lats( 􏼁􏼁,

(14)

where d is the distance between the ship and the shore-based
station, R is the radius of the earth, lats and longs are the latitude
and longitude of the ship, and latb and longb are the latitude and
longitude of the shore-based station.

If the distance is less than the radius covered by the shore-
based station, the ship is covered by the shore-based station, and
the number of covered ships is accumulated. Te AIS divides
one minute into 2250 time slots and transmits a complete
position report message in each time slot, which indicates the
upper bound that the system can sustain, that is, the system
capacity. Te actual capacity is the time slot number that the
system actually needs. Since the number of time slots required by
each ship per minute difers, the time slots occupied by diferent
ships are accumulated to determine the actual capacity of the
shore-based station. Te number of ships in a certain trans-
mission time interval is denoted as Mi (i� 1, 2, . . ., 8), and the
transmission time interval is denoted as Ti (i� 1, 2, . . ., 8)
seconds. Te actual capacity of the shore-based station is cal-
culated as follows:

N � 􏽘
8

i�1

60
Ti

× Mi. (15)

Te ratio between the actual capacity and the max-
imum capacity of the shore-based station is calculated. If
the ratio is greater than 1, the shore-base station is
overloaded. Te number of time slot multiplexes in-
creases as the actual capacity of the shore-based station
increases. When the ratio reaches 500%, the time slot
multiplexes are close to 100%, and almost every time slot
is reused. Te reuse of a time slot leads to blind com-
munication and identifcation communication issues,
eventually resulting in AIS data loss.

(3) Data Statistics for the System. Te total number of AIS
packets that the system receives is calculated. Te actual
number of ships in diferent transmission time intervals is
also calculated.

4.4.2. Inaccurate AIS Data Statistics. Since inaccurate data
are mainly caused by the ship itself, the inaccurate AIS data
of each ship in each time window are calculated, including
inaccurate ship positions, inaccurate navigation status, and
MMSI reuse.

(1) Inaccurate Position. Te number of AIS packets with
inaccurate position is obtained by accumulating the AIS
packets with inaccurate positions. Te inaccurate position
rate is calculated as follows:

Rpe �
Npe

N
, (16)

where Npe is the number of AIS packets with inaccurate
positions, and N is the total number of AIS packets.

(2) Inaccurate Navigation Status. Te number of AIS packets
with inaccurate navigation status is obtained by accumu-
lating the AIS packets with inaccurate speed and heading.
Te inaccurate ship navigation status rate is calculated as
follows:

Rnv �
Nnv

N
, (17)

where Nnv is the number of AIS packets with inaccurate
navigation status.

(3) Reusing MMSI. Te statistics of reusing MMSI are cal-
culated according to the number of ships with multiple
trajectories.

4.4.3. AIS Loss Analysis. AIS packet losses can be divided
into three categories: shore-based station factor, environ-
mental factor, and ship factor.

(1) Shore-Based Station Factor. Te cause of packet loss is an-
alyzed according to the actual capacity of the shore-based station
that is nearest to the ship. When the ratio between the actual
capacity and themaximum capacity of the shore-based station is
less than 0.8, essentially no time slot reuse occurs, and the shore-
based station factor is excluded. If the ratio is greater than 0.8, the
reason for AIS packet loss is determined according to the
distance between the ship and the shore-based station as shown
in Table 1.

(2) Environmental Factor. If the shore-based station factor can be
excluded, the number of AIS packets in the grid with data loss is
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analyzed. If the packet loss ratio in the grid exceeds 10%, the data
loss is attributed to the environmental factor.

(3) Ship Factor. A ship all has lost AIS packet in the current
grid and other grids. Tis packet loss is attributed to the ship
itself.

4.4.4. AIS Loss Statistics

(1) Statistics of Packet Loss Rate for Shore-Based Stations
Factor. Te packet loss rate of shore-based stations at the
time window is calculated as follows:

Rbase �
Nebase
Nbase

, (18)

where Nbase is the number of packets which should be re-
ceived by the shore-based station, and Nebase is the number
of lost packets due to shore-based station factor.

(2) Statistics of Packet Loss Rate for Grid Factor. Te packet
loss rate of a grid at the time window is calculated as follows:

Rgrid �
Negrid

Ngrid
, (19)

where Ngrid is the number of packets which should be re-
ceived in the grid, and Negrid is the number of lost packets
due to the grid environmental factor.

(3) Statistics of Packet Loss Rate for Ship Factor. Te packet
loss rate of the ships is calculated as follows:

Rship �
Neship

Nship
, (20)

where Nship is the number of AIS packets for the ship, and
Neship is the number of lost packets due to the ship-based
factor.

5. System Operation Analysis

Te proposed algorithm has been deployed in a maritime
supervision system. It acquires, cleans, counts, and visualizes
AIS data from 13 AIS shore-based stations, which locates in
a section of the Yangtze River Basin, in real time. It processes
about 12000 dynamic AIS packets every minute and runs
24hours every day without interruption. In reference [14], AIS
data performance indicators of fve days from fve shore-based
stations are of-line counted, and the calculation time is not
given. It is impossible to determine whether it can meet the

requirements of real-time AIS data processing. In reference
[18], 110623842 dynamic AIS data are systematically pre-
processed, which improves the data quality. Te experiments
are based on of-line batch processing, and it is impossible to
determine whether it can implement real-time computation.
Compared with the algorithms in reference [14, 18], the
proposed algorithm implements a real-time calculation in an
actual production environment, which not only realizes data
cleaning in real time but also realizes indicator analysis in real
time. It can meet the requirements of maritime real-time
supervision. Te cleaned data can also provide computing
basis for ship collision avoidance and trajectory tracking.

5.1. AIS Real-Time Statistics Overview. Te real-time AIS
statistical analysis results are displayed by the data visuali-
zation layer. Figure 5 shows the real-time AIS statistical map
of a section of the Yangtze River. Te number of ships, the
average number of AIS packets received per second, the
number of lost packets per second, and the number of
packets with inaccurate AIS data per second can be seen.Te
relevant statistics results can be viewed by clicking AIS
statistics, ship statistics, and abnormal AIS statistics. Te
base map is a satellite map that is implemented by the
MapBox tool. Te back end obtains the ship position data in
real time from the data storage layer and transmits the data
to the front end in GeoJson format. Te front end visualizes
the dynamic ship position with a green dot.

Te AIS statistics at the minute and hour levels are
shown in Figures 6 and 7, respectively. Figure 6 shows the
number of AIS packets received per minute in 1 hour. Be-
tween 10 : 32 and 11 : 31 on a certain day, the average number
of AIS packets received per minute is approximately 12000.
Te lowest number of packets received is 11469, and the
highest is 130009. Te number of packets received per
minute does not change considerably throughout the hour.

Figure 7 shows the number of AIS packets received per
hour over approximately 24 hours on a certain day. Fewer
AIS packets are received at night than during the day, which
is consistent with actual ship navigation conditions.

5.2. Single Ship IndicatorAnalysis. Taking a day in 2022 as an
example, the packet loss rate of the single ship is counted,
and the fve ships with the highest and lowest packet loss
rates are identifed. Tables 2 and 3 show AIS analyses for the
ships with the highest and lowest packet loss rates,
respectively.

Various ships have considerably diferent packet loss
rates, ranging from 0.181% to 46.39%. From a data per-
spective, the AIS data of ships with higher packet loss rates

Table 1: Analysis of packet losses caused by stations.

Distance Region Analysis
of packet loss

0–0.3R Protection zone Shore-based station factor are excluded

0.3–0.5R Identifcation zone If the number within 0.5R exceeds the maximum capacity, identifcation
communication issues occur. Packet loss is attributed to shore-based station factor

0.5-R Cut-over zone Blind communication occurs due to time slot reuse, and the packet loss is attributed
to shore-based station factor
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are more inaccurate, and this relationship should be studied
further.

For lost AIS packets, the traditional means is to utilize
the position of the last AIS packet or to exclude the ship.
Water trafc difers from land trafc, and the ship navigation
is more stable. Tus, the trajectory within a certain period of

time can be repaired by the shipping status. AIS repair is
helpful in maritime applications for tracking complete
trajectories and can update ship positions in real time.
Figure 8 shows the comparison between unrepaired and
repaired trajectories from the ship with a MMSI of
413∗∗∗388.

Figure 8(a) shows the ship trajectories based on the
original AIS data. For the loss of AIS packets, the ship
trajectories are not smooth enough, and some trajectories
even pass over the land. Te packet loss also makes the
maritime administrators unable to track the ship position in
real time. Figure 8(b) shows the repaired trajectories. It can
be seen that the repaired trajectories are smoother. By
trajectory repairing, it can also meet the requirements of
real-time scdslfhip tracking.

Incorrect settings and stolen MMSI may result in
muladstiple ships using the sameMMSI. Ships with the same
MMSI often appear in diferent areas. Te MMSI reuse
seriously afects the navigation safety of ships and the de-
velopment of the shipping industry. If multiple trajectories
with the same MMSI are not identifed, the ship trajectory
jumps between diferent areas, and maritime administrators
cannot accurately track the ship trajectories. Figure 9 shows
a multitrajectory map of two ships with the same MMSI. It
can be seen that the same MMSI appears in two diferent
areas in a short time, and the two areas are hundreds of
kilometers apart. Tere must be a case of MMSI being
reused.

Te two trajectories with the same MMSI are recognized
by the multiple trajectory abnormality identifcation step.
Te separated trajectories are shown in Figure 10. Te
separated trajectories are smoother and more consistent

Figure 5: AIS real-time statistics overview.

Figure 6: AIS statistics in the last hour.

Figure 7: AIS statistics in the last 24 hours.

Table 2: Five ships with the highest packet loss rate.

MMSI Loss rate (%) Inaccuracy rate (%)
413∗∗∗388 46.39 2.31
413∗∗∗327 42.85 1.46
413∗∗∗068 41.66 1.58
413∗∗∗285 41.26 4.35
413∗∗∗256 41.26 1.45

Table 3: Five ships with the lowest packet loss rate.

MMSI Loss rate (%) Inaccuracy rate (%)
413∗∗∗880 0.128 0.45
413∗∗∗656 0.151 0.36
413∗∗∗528 0.159 0.15
413∗∗∗358 0.166 0.65
412∗∗∗550 0.181 0.11
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with the actual navigation situation. Multiple trajectory
abnormalities are a considerable risk that may transmitted to
maritime data centers. Te data center can integrate CCTV
to intelligently identify ships with stolen MMSI.

5.3. Grid Indicator Analysis. Te grid indicators, which
include the statistics of the ship number and the statistics of
the AIS lost number in grids, are shown by heatmap.
Heatmap is a representation method of data distribution by
diferent colors. It can help maritime administrator to grasp
the ship distribution, the AIS quality, and the water trafc
fow in real time.

Te statistics of the ship number are to count the ship
number in each grid. Te latest grid statistical results are
stored in the Redis cache, and the historical statistical results

are stored in the Doris cluster. Each grid statistic result
includes the statistical time, longitude and latitude of the
grid center, and ship number. Figure 11 shows the ship
density heatmap at a certain time.Te darker the color is, the
higher the density is. Red has the highest density, followed by
blue, and green has the lowest density. Te red area is
concentrated the downstream, demonstrating that the
downstream ships are more densely distributed. Te sta-
tistics of the proposed algorithm are based on the ship
number, without considering the size of ships. In the future
research, the density will be calculated according to the total
ship number and the total ship size in each grid. It will better
refect the characteristics of water trafc.

Te statistics of the AIS lost number are to count the AIS
packet lost number in each grid. Te storage means is same
as the statistics of the ship number. Each grid statistic result

(a) (b)

Figure 8: Comparison between the unrepaired and repaired trajectories: (a) the trajectory before AIS repairing and (b) the trajectory after
AIS repairing.

Figure 9: Te ship trajectories jump.

(a) (b)

Figure 10: Multitrajectories identifcation and separation: (a) the frst trajectory and (b) the second trajectory.
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includes the statistical time, longitude and latitude of grid
center, and AIS packet lost number. Figure 12 shows an AIS
packet lost density heatmap. Serious packet loss occurs in
some grids which are represented by red. Tis may be due to
the infuence of the shore-based station layout and regional
geographical environment. Te analysis results can help the
maritime administrator grasp the AIS quality in real time. It
also can be used as a reference for improving AIS shore-
based station layouts.

6. Conclusion

To improve the quality of AIS data and analyze AIS data in
real-time, a real-time AIS cleaning and indicator analysis
algorithm based on stream computing is proposed. It in-
cludes data acquisition, data aggregation, data cleaning, data
analysis, data storage, and data visualization steps. It is
verifed with AIS data from a certain area of the Yangtze
River. Real-time deduplication is used to efectively improve
the quality of the AIS data. Te trajectory and navigation
status are repaired, efectively improving the ship tracking.
By identifying multiple trajectories, the problem of MMSI
reuse is addressed, and the results provide a support for
maritime supervision applications. Moreover, the ship
packet loss rate and regional packet loss rate are analyzed.
Tus, the causes of the ship packet loss could be efectively
analyzed, providing a reference for maritime management
applications and AIS shore-based station layouts.

Te proposed algorithm cleans and analyzes AIS data in
real time, efectively improving the quality of AIS data and
providing a reference for maritime intelligent management

applications. However, several aspects need to be studied
further. (1)Te algorithm analyzes dynamic AIS data but not
static AIS data. Static AIS data are of great signifcance to
ship trafc organization applications. Since static AIS data
are entered manually, it is difcult to evaluate the reliability
of these data. (2) AIS data can be used to identify abnormal
ship behaviors based on real-time machine learning algo-
rithms. Machine learning algorithms are widely used in AIS
data processing and ship behavior analysis. Most traditional
machine learning algorithms are based on of-line pro-
cessing. Te prerequisite for real-time analysis of ship ab-
normal behavior based on machine learning is to be able to
complete real-time prediction of ship abnormal behavior
and real-time model update by integrating new AIS data. In
future studies, a real-time abnormality identifcation model
that considers ship spacing, ship entry and exit, ship tra-
jectory and other abnormalities should be developed. Tis
model should use stream computing and a space-time
clustering algorithm to meet the needs of real-time online
warning in maritime supervision applications.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was fnancially supported by the Natural Science
Foundation of the Jiangsu Higher Education Institutions of
China (21KJB580007), the China Postdoctoral Science
Foundation (2019M651844), the Jiangsu Postdoctoral Sci-
ence Foundation (2018K035C), the Young Academic
Leaders for QingLan Project of the Jiangsu Higher Educa-
tion Institutions of China, the Excellent Scientifc and
Technological Innovation Team of the Jiangsu Higher Ed-
ucation Institutions of China (Maritime Big Data Team), and
the Excellent Teaching Team for QingLan Project of the
Jiangsu Higher Education Institutions of China (Big Data
Technology Teaching Team with Shipping Characteristic).

References

[1] J. F. Zhang, X. J. Ren, H. H. Li, and Z. Yang, “Incorporation of
deep kernel convolution into density clustering for shipping
AIS data denoising and reconstruction,” Journal of Marine
Science and Engineering, vol. 10, no. 9, pp. 1319–1324, 2022.

[2] X. Q. Chen, J. Ling, S. Z. Wang, Y. Yang, L. Luo, and Y. Yan,
“Ship detection from coastal surveillance videos via an en-
semble Canny-Gaussian-morphology framework,” Journal of
Navigation, vol. 74, no. 6, pp. 1252–1266, 2021.

[3] R. W. Liu, Y. Guo, J. T. Nie et al., “Intelligent edge-enabled
efcient multi-source data fusion for autonomous surface
vehicles in maritime internet of things,” IEEE Transactions on
Green Communications and Networking, vol. 6, no. 3,
pp. 1574–1587, 2022.

Figure 11: Te heatmap of the ship density.

Figure 12: Te density heatmap of AIS packet lost.

Scientifc Programming 11



[4] R. Adland, H. Y. Jia, and S. P. Strandenes, “Are AIS-based
trade volume estimates reliable?Te case of crude oil exports,”
Maritime Policy and Management, vol. 44, no. 5, pp. 657–665,
2017.

[5] G. N. Xiao, T. Wang, X. Q. Chen, and L. Zhou, “Evaluation of
ship pollutant emissions in the ports of los angeles and long
beach,” Journal of Marine Science and Engineering, vol. 10,
no. 9, pp. 1206–1224, 2022.

[6] R. W. Liu, J. Nie, S. Garg, Z. Xiong, Y. Zhang, and
M. S. Hossain, “Data-driven trajectory quality improvement
for promoting intelligent vessel trafc services in 6g-enabled
maritime IOTsystems,” IEEE Internet ofTings Journal, vol. 8,
no. 7, pp. 5374–5385, 2021.

[7] B. Murray and L. P. Perera, “A dual linear autoencoder ap-
proach for vessel trajectory prediction using historical AIS
data,” Ocean Engineering, vol. 209, Article ID 107478, 2020.

[8] W. He, J. Y. Lei, X. M. Chu, S. Xie, C. Zhong, and Z. Li, “A
visual analysis approach to understand and explore quality
problems of AIS data,” Journal of Marine Science and Engi-
neering, vol. 9, no. 2, pp. 1–8, Article ID 198, 2021.

[9] D. Yang, L.Wu, S.Wang, H. Y. Jia, and K. X. Li, “How big data
enriches maritime research–a critical review of Automatic
Identifcation System (AIS) data applications,” Transport
Reviews, vol. 39, no. 6, pp. 755–773, 2019.

[10] A. Felski, K. Jaskólski, and P. Banyś, “Comprehensive as-
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