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Te performance of photovoltaic modules (PVMs) degrades due to the occurrence of various faults such as discoloration, snail
trail, burn marks, delamination, and glass breakage. Tis degradation in power output has created a concern to improve PVM
performance. Automatic inspection and condition monitoring of PVM components can handle performance-related issues,
especially for installed capacity where no trained personnel are available at the location.Tis paper describes a deep learning-based
technique involving convolutional neural networks (CNNs) to extract features from aerial images obtained from unmanned aerial
vehicles (UAVs) and classify various types of fault occurrences using cloud computing and Internet of things (IoT).Te algorithm
used demonstrates a binary classifcation with high accuracy by comparing individual faults with good condition. Efcient and
efective fault detection can be observed from the results obtained.

1. Introduction

Demand for clean energy was created across the globe due to
the advancements in technology, energy demand for over-
growing population, and elevated pollution levels due to
fossil fuel usage. Consequently, among various renewable
energy sources available, solar energy is considered as the
prime option to handle the challenges the world encounters.
In recent times, power generation using photovoltaics (PVs)
has grabbed huge attention due to the versatile application
and socioeconomic benefts. Te process of converting solar
energy into electricity is carried out with the aid of pho-
tovoltaic modules (PVMs).Te International Energy Agency
in their annual reports states that the annual global PV
installations have seen a marginal growth of 45% from 36%
with a total capacity of 770GW by the end of 2022. Te
growing PV market demands uninterrupted power supply,
thereby necessitating efcient PVM operation. In general,
PVMs are operated outdoors and in harsh climatic condi-
tions that infuence the occurrence of faults in PVM. PVM

faults can deteriorate the operational life span and reliability
of the modules. Furthermore, to preserve the operational life
span and reliability of PVM, timely and adequate moni-
toring of PVM is necessary [1]. PVM faults occur as
a consequence of thermal stresses, physical damage, mois-
ture interference, short circuits, soiling, corrosion, and
partial shading. Te presence of such fault results in the rise
of a scenario termed as potential induced degradation (PID)
that hinders the performance and lifespan of PVM [2].
Furthermore, to preserve the performance of PVM and
ensure prolonged operation, early detection and continuous
monitoring are essential. Conventionally, fault diagnosis was
performed through visual inspections by skilled pro-
fessionals. Recently, numerous PVM fault diagnosis tech-
niques were adopted, namely, outdoor thermography,
photoluminescence, electrical measurements, fuorescence
imaging, and electroluminescence imaging [3]. However,
such inspections demand higher time consumption, fatigue
prone, more capital cost, large manpower, and non-
applicability over large farms. Te setbacks mentioned

Hindawi
Scientific Programming
Volume 2023, Article ID 8805817, 10 pages
https://doi.org/10.1155/2023/8805817

https://orcid.org/0000-0002-4034-8859
https://orcid.org/0000-0001-5008-3252
https://orcid.org/0000-0002-5323-6418
https://orcid.org/0000-0002-9814-5333
mailto:vetriselvi.m@meu.edu.et
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8805817


previously paved a way for adopting novel fault diagnosis
techniques that are less time consuming, feasible, efcient,
and accurate.

Scientifc community and investors have shifted their
focus towards the application of unmanned aerial vehicles
(UAVs) for diagnosing faults in PVM.Te prime reasons for
the selection are due to the several factors such as minimized
human interference, low time consumption, and non-
destructive nature [4]. Te usage of UAVs in diagnosing
PVM faults has been showcased in several literature studies.
Digital cameras along with various onboard sensors afxed
to a UAV can be utilized to acquire PVM images. Te ac-
quired image data are stored in the local computer and
transferred to web server using Internet. For further pro-
cessing and classifcation, the images stored in the web server
are fed as input to the CNN architecture located in the cloud
[5]. Postcompletion of processing the obtained results can be
retrieved from users around the globe. Figure 1 represents
the process of the online fault detection system using cloud
computing technology.

Hotspot localization in a PVMwas identifed with the aid
of thermal imaging cameras accompanied with digital
cameras [6]. Te major drawback confned with thermal
imaging cameras is their constraint towards hotspot de-
tection. Alternatively, various eforts were made to apply
UAV in diagnosing visual faults that occur in a PVM. An
image mosaicing strategy was adopted by the authors in [7]
to diagnose multiple PVM faults from UAV images ac-
quired. In another study, algorithms based on pattern
recognition were adopted to distinguish between two visual
PVM faults such as snail trail and dust shading [8]. Image
quality and resolution can infuence the signifcance of the
image features extracted. Overall, to enhance multiple fault
diagnosis efciency and cut-of capital loss, an accurate and
advanced technique to diagnose PVM faults is vital [9]. Te
convolutional neural networks (CNNs) are currently an
emerging area of interest among researchers due to the
versatile application areas, namely, speech recognition,
picture classifcation, and text classifcation. Te wide range
of CNN application is feasible due to their self-learning
capability and robust compatibility [10]. Selvaraj et al.
adopted fne-tuned CNN pretrained models to classify faults
in PVM using thermal images. AlexNet, GoogleNet, and
SqueezeNet were used in the study, among which Squee-
zeNet performed well over other networks [11]. In another
study, a chaotic extension neural network was used to di-
agnose faults in PVM using various operating parameters
such as maximum power point tracking, current, voltage,
and temperature [12]. Furthermore, the performance of
diferent solar cells was investigated by Gaur and Tiwari to
determine the best performing PVM [13]. Te supervised
learning methodology based on CNN could therefore be
chosen to discriminate among diferent faults from the
acquired UAV images. A novel method in fault detection
and classifcation using the deep learning technique from the
acquired aerial images of PVM is presented in the paper.
Additionally, equipping cloud computing with the proposed
method helps in enhancing the performance of the system.
Cloud computing has been widely adopted in present world

scenarios due to the following reasons: (i) efciency in cost,
(ii) higher speeds, (iii) ease of access, (iv) excellent data
backup and restoration, (v) elimination of robust in-
frastructure, (vi) automated resource management, (vii)
strategic edge, (viii) reliability, mobility and lack of hard-
ware, and (ix) unlimited storage. Tus, cloud computing can
be a good alternative for startups and investors. Te fol-
lowing technical contributions are made in this work:

(1) A CNN-based technique was utilized to classify the
fault conditions present in a PVM using images
acquired from UAV

(2) A binary classifcation of images by comparing in-
dividual faults with good condition is demonstrated

(3) Te cloud computing strategy was adopted to further
increase the performance and reduce computational
complexity involved in the proposed technique

Te classifcation accuracy shows that the CNN-based
technique is accurate and efcient in classifying between
fault and good conditions. Te paper is constructed with the
following sections: Section 2 defnes the UAV-based moni-
toring platform and its specifcations; Section 3 describes the
basic working of CNN; Section 4 consists of the CNN ar-
chitecture used in fault detection; Section 5 presents the results
of binary classifcation of various faults with no fault images;
and fnally, the conclusion of the work is discussed in Section 6.

2. UAV-Based Monitoring Platform
and Specification

UAVs are widely in use in recent times due to their pro-
longed operations and enhanced accessibility in remote
areas. A number of felds apply UAVs including logistics,
surveillance, inspections, and photography. Te non-
destructive nature and limited time consumption during
operations have promoted the usage of UAVs in solar farms’
inspection [14]. Te general process of a UAV-based
monitoring system combined with the PVM fault de-
tection technique is demonstrated in Figure 2. Te aerial
images of the PVM are acquired using a digital camera
coupled with UAV and is transmitted to the ground unit via
wireless communication network. Tese transmitted images
are stored in a data storage system which is further used as
the input for the condition monitoring technique using
CNN. Te available CNN technique extracts the features of
the defects in PVM and classifes the defects accordingly. In
this work, a light weight UAV (DJI Mavic 2 Zoom) is applied
for inspecting PVM. Table 1 provides the complete speci-
fcation and adopted factors of UAV. Te complete pro-
cessing of aerial images is carried out in the cloud platform
of Google Collaboratory equipped with python 3.7 notebook
enabled with TensorFlow. Additionally, the aerial images
were stored into the cloud server of google drive for further
processing. Te results obtained can be verifed by any user
with the grant access across the globe.

Due to the prolonged outdoor operations under con-
tinuously changing environmental conditions, photovoltaic
modules are susceptible to diferent faults that can degrade the
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operational life and output performance [15]. Te most
common type of visual faults in a PVM includes discoloration,
snail trail, glass breakage, delamination, and burnmarks.Tey
are illustrated in Figure 3. Te loss of adhesion between the
layers of PVM can cause delamination [16]. Te accelerated
rate of delamination will pave a way for moisture penetration

resulting in formation of oxides. Continuous accumulation of
oxides leads to burn marks which will destruct the internal
parts of PVM [17]. Yellowing or browning of cells in PVM
represents discoloration that can hinder the supply of output
power [18]. Te physical damages induced during trans-
portation and installation can lead to glass breakage.
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Figure 1: Online fault detection of PVM using cloud computing.
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Figure 2: General layout of the UAV-based monitoring system.
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Additionally, due to varying climatic conditions, hail storms
and enhanced outdoor operations can induce thermal stresses
on modules resulting in glass breakage. Tis can lead to the
formation of hotspots which afects the efciency of PVM
[19]. Microcracks in photovoltaic cells represent snail trail
that is found in panels operating for more than a year [20, 21].
All the listed faults have a direct impact on the performance
and reliability of a PVM. In order to ensure a long-term
operation and consistent performance of a PVM, an accurate
and timely detection of faults is necessary [22].

3. Outline of Convolutional Neural
Networks (CNNs)

CNN is a controlled learning technique based on deep
learning algorithms. CNN is capable of capturing an input
image, assigning signifcance (weights and biases) to diferent
features in an image, and being able to distinguish one from
another. Tree-layer groups constitute to form CNN which
are as follows: fully connected, pooling, and convolution
layers. A simple CNN structure is suggested in Figure 4.

Any CNN structure that involved the aforementioned
layer groups that work on the principle is described as follows:

(1) Te input image is the frst layer of CNN that holds
the pixel values of the image.

(2) Te convolution layer will compute the output of
neurons connected to the input layer by calculating
the scalar product of the weights and volume of the
input region. Te rectifed linear unit (ReLU) at-
tempts to add an activation function such as sigmoid
to the activation output provided by the
preceding layer.

(3) Te spatial dimensionality of the image input
postconvolution is downsized by the pooling layer,
further decreasing the volume of parameters under
the activation function.

(4) Te fully connected layers will generate scores for
various classes from the activations to be used for
multiple classifcations. ReLU can be applied to boost
performance between the layers.

Te class scores for classifcation and correlation co-
efcient for regression are formulated through CNN by
transforming the data provided as input across several layers

of convolution and pooling. Hence, one cannot determine
the overall architecture of CNN through randomness. Every
CNN model requires careful amount of time to train and
assign proper hyperparameters to deliver enhanced per-
formance. A brief description of various layers that con-
stitute CNN is provided as follows.

3.1. Convolution Layer. Te convolution layer exhibits a key
role in the way CNN works. Te parameters of the layers
focus on the usage of learnable kernels. Such kernels ac-
cumulate less number of dimensions over space, never-
theless, spread among the input range. When the data reach
a convolution layer, each flter is translated over the input’s
spatial dimensionality to create a 2D activation map. When
one foats through the data, the scalar product for every
value is calculated in that kernel. From this, the network will
learn kernels that trigger when they see a particular feature at
a given spatial input location (Figure 5). Tey are usually
referred to as activations. Te center element of the kernel is
positioned over the input vector, fromwhich a weighted sum
of itself and any neighboring pixels are then computed and
replaced.

Convolution layers may also reduce the model com-
plexity considerably by optimizing its performance. Tree
hyper parameters, namely, zero-padding (adding zeros
around the border of input image), stride (movement of
flter in one direction), and depth (no. of flters) will opti-
mize the performance of convolution layers.

3.2. Pooling Layer. Pooling layers help in reducing the di-
mensional representation of any input data, thereby
shrinking the computational complexity and volume of
parameters involved. Te pooling layer works over each
activated input map and uses the “MAX” function to scale
the dimensions of the convolved image. Since pooling
layers are naturally destructive, only two commonly known
forms of max pooling are available. Both the stride and
flters in the max pooling layer are fxed as 2× 2 allowing
the layer to expand the input’s spatial dimensionality
throughout.

3.3. Fully Connected Layer. Fully connected layers form the
ultimate layer of the CNN network. Te input to the fully
connected layer will be the output provided from the pre-
ceding convolution or pooling layer. Te activations from
the utmost convolution or pooling layer must be fattened
prior being fed into the fully connected layer. Te fnal layer
uses an activation function like sigmoid or softmax function
to classify the probability of identifying a particular class for
a given input image [23].

4. Architecture of CNN-Based Solution for
Fault Detection

Tis section describes a simple CNN structure to diagnose
PVM faults. In this method, CNN extracts aerial image
features and performs binary classifcation between fault and

Table 1: UAV specifcation and adopted factors.

Adopted factors Values
Speed (cruise) 10–20m/s
Range of operation 5 km
Mission height 20–30m
Endurance of fight 0.28–0.70 hour
Length 322mm
Propulsion Electric power
Image sensor size 6.17mm× 4.55mm
Weight 1.6 kg
Maximum resolution 4000× 3000
Wing span 0.354m
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no-fault conditions in a PVM. CNN being a feed forward
network helps in preserving the image spatial correlation
and thereby capturing the characteristics of an image. Ini-
tially, in CNN, an interchanging convolution and sub-
sampling operations are performed followed by adopting
a multilayer network. Te output of the CNN is fattened for
the fully connected layer, and sigmoid is used for binary
classifcation of the PVM. Te key reason for using the
sigmoid function is that it occurs between 0 and 1. It is
therefore specifcally used for binary classifcation models
where the probability must be predicted as output. Since
there is only the possibility of something among the 0 and 1
scales, sigmoid is the right option [10]. Figure 6 represents
the CNN architecture proposed in this work that contains 2
learned layers (one convolution and one fully connected
layer).

In the proposed architecture, each aerial image is
reshaped to a size of (240, 240, 3) and fed as input to the CNN
structure. Te reshaped image is passed into a (2, 2) zero
padding layer which surrounds the image borders with zeros.
Tis image is sent to the convolution layer for feature ex-
traction with 32 flters of stride 1 and size (7, 7) [1].Te output
of this convolution layer is connected to a batch normali-
zation layer and an activation layer; namely, rectifed linear
units (ReLU) are used [24]. Two max pooling layers are
provided along the architecture to minimize network com-
plexity. A three-dimensional matrix will be derived and is
converted into a one-dimensional vector with the help of the
fatten layer. Finally, a dense fully connected layer with one
neuron is drawn as the output that has a sigmoid activation,
commonly used for binary classifcation. Te adopted pa-
rameters of the CNN architecture are tabulated in Table 2.

(a) (b) (c) (d)

(e)

Figure 3: Various types of visual faults in PVM (a) discoloration (b) snail trail (c) glass breakage (d) delamination (e) burn marks.
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Figure 4: Simple CNN outline.
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5. Experimental Results and Analysis

In the following section, the experimental assessment of the
proposed CNN-based method for the binary classifcation of
PVM faults is carried out. Te experiments were performed
with the obtained aerial images of PVM. Te image dataset
contains a total of 600 image samples of six diferent con-
ditions (100 sample images for each condition) involving fve
diferent types of defects (discoloration, snail trail, glass
breakage, delamination, and burn marks). Each and every
defect is individually compared with good conditions, and
the results of the binary classifcation of each defect con-
dition are obtained.

5.1. Experimental Setup. Tewhole dataset of sample images
are split into three subsets, namely, training dataset (70% of
dataset), validation dataset (15% of dataset), and testing
dataset (15% of dataset). Te training and validation datasets
are utilized for feature extraction to be learned by the
machine, while the test dataset is used to measure the
performance of the trained model. In the experiments, each
fault condition is provided with an individual fault ID which

is compared with the good condition. All the conditions of
PVM are listed in the following Table 3. An attempt to
exhibit the precise performance of the proposed CNNmodel
with a minimum input dataset is exhibited in the present
work. Te overall experimentation was performed in a cloud
platform of Google Collaboratory environment with Ten-
sorFlow background.

Te abovementioned dataset is made uniform such that the
results obtained would be unbiased. In case of a randomized
size of the dataset, there is a probability that the end results
would be biased towards the class that contains more amounts
of data. Usage of a large amount of data will help improve the
learning rate of the model. Acquiring images of PVM that have
same make and power output will enhance accuracy of the
model. Te abovementioned consideration must be followed
such that errors in feature extraction will be eliminated.

5.2. Training and Validation of the Model. Te proposed
CNN-based architecture is trained for a minimum of 20
cycles which acquires about 5minutes exposing minimum
computation time. Both the training and validation accuracy
reaches a saturation value after 15 epochs, and the number of
cycles is limited to 20. Te validation dataset is used to do an
initial assessment on every CNN model before its imple-
mentation in detecting fault conditions in PVM. Te pro-
posed model training is depicted in Figure 7, based on
overall accuracy with respect to the number of epochs during
training. Te graph shows that the proposed CNN method
produces a minimum amount of error that displays the
excellent computing capability of the proposed network
architecture. From Figure 7, it is evident that with the in-
crease in the number of epochs, the overall accuracy of the
fault detection model also improves. Overall fault detection
accuracy can reach up to 98.7% after the completion of the
training process.
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Figure 6: Te architecture of CNN-based solution for fault detection.

Table 2: CNN architecture.

Layer Output shape Learnable parameters
Input layer 240, 240, 3 0
Zero padding 244, 244, 3 0
Convolution 238, 238, 32 4736
Batch normalization 238, 238, 32 128
Activation layer 238, 238, 32 0
Max pooling 1 59, 59, 32 0
Max pooling 2 14, 14, 32 0
Flatten layer 6272 0
Fully connected 1 6273
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Figure 5: Visualization of the convolution layer.
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Temodel also exhibits lower computational complexity
and higher accuracy when working with minimal dataset
size. Te proposed CNNmethod is assessed for various fault
occurrences in a PVM, and test results are obtained by using
the confusion matrix. A binary classifcation is carried out
involving fve diferent fault images compared with good
condition images. Te confusion matrix describes the
classifcation accuracy and errors due to misclassifcation as
shown in Figure 8.

Hence, it can be found that the features extracted in these
two faults (delamination and snail trails) are not sufcient
and require much more features for improved working
performance. Following the training method, the perfor-
mance of the developed CNN model is evaluated further by
utilizing 90 image samples (i.e., 15 image samples in every
PVM condition). Table 4 exhibits the performance of the
model for the detection of PVM conditions.

Te results in Table 4 display high accuracy (above 95%) for
detecting each fault condition with respect to good condition.
Te overall mean accuracy of the proposed model is calculated
to be 98.66%. Lower computational time and simple structure
are the major advantages of the proposed model.

5.3.Analysis ofModel Performance. Te overall performance
of the developed CNN model is analyzed based on diverse
facets, e.g., comparing the model performance with diferent

dataset sizes and evaluating the developed model perfor-
mance with other existing pretrained models through a cycle
of experiments.

Case 1. Comparison of performance with diferent
dataset sizes

In this case, the performance of the proposed model is
compared for diferent sizes of the dataset varying between
120 sample images and 600 sample images.Te performance
results are tabulated in Table 5. Based on the derived results,
it can be seen that there is a variation in the trend of accuracy
for change in the size of the dataset. Te overall performance
of the model improved with an increase in the size of the
dataset. Precisely, once the size of the dataset reaches 480
sample images (i.e., 80 sample images per PVM condition),
a signifcant rise in the accuracy of the proposed model is
observed. Also, the accuracy of the model can be improved
by expanding the amount of collected aerial images.

Machine learning-based techniques require a large
amount of dataset to train the machine. Te amount of data
directly afects the performance of the particular technique.
In this experiment, an attempt is made to producemaximum
accuracy with a minimum number of image samples. Table 5
displays model accuracy with diferent sizes of the dataset.
From the results, one can say that the performance of the
model increases with increase in the size of the dataset. As

Table 3: Dataset distribution for PVM conditions.

Fault ID PVM test condition No.
of training samples

No.
of validation samples No. of test samples

1 Snail trail 70 15 15
2 Glass breakage 70 15 15
3 Discoloration 70 15 15
4 Delamination 70 15 15
5 Burn marks 70 15 15
6 No fault 70 15 15
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Figure 7: Overall model accuracy.
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the size of the dataset improves, the learning rate of the
model multiplies, establishing better accuracies. Likewise,
the accuracy of the model increases gradually from 88.67%
and reaches 98.66% with the increase in size of the dataset
from 120 images to 600 images. Te overall model accuracy
reaches above 95% with image sample above 480 sample
images.

Case 2. Comparison of performance with existing pre-
trained models

Transfer learning is a well-established method in ma-
chine learning which focuses on knowledge transfer. In
precise, the knowledge gained while solving one problem is
stored and then applied to solve a diferent problem under
the same domain. In this experiment, the transfer learning
approach is used to compare the performance of the pro-
posed CNN model with available pretrained models. Te
present study utilizes well-established deep learning models

such as VGG-16 and ResNet-50 for comparison purpose
[25, 26]. Te abovementioned models have delivered ex-
ceptional results in the image classifcation problems. Table 6
presents the results compared for identifying various PVM
faults based on the image dataset acquired. It is depicted that
the VGG-16 model exhibits better performance in detecting
faults such as discoloration, delamination, and glass
breakage with above 80% accuracy.

In certain cases, the model accuracy declines gradually as
it is evident for faults such as snail trail and burn marks
which produced below 60% accuracy. For the ResNet-50
model, the analysis and detection of burn marks and snail
trails are higher compared to VGG-16. However, the per-
formance is not accurate and reliable for the complete PVM
faults to meet inspection standards. Te results displayed in
Table 6 confrm that the proposed solution outperforms in
all evaluated cases for fault diagnosis scenarios with high
accuracy (98.66%). Te adopted pretrained models resulted
in poor classifcation accuracy representing the enhanced
complexity and overftting problem for the specifc dataset.
Models with such high complexity require top-end systems
with utmost specifcations to reduce complexity in com-
putation. On the whole, the proposed CNN model delivers
quick solutions with minimal computational time repre-
senting reduced complexity. A simple fault detection model
that can be run in low-end systems with high accuracy is
demonstrated.

Case 3. Comparison with state-of-the-art techniques
Two class binary classifcation is carried out in the

present work over multiclass classifcation. Te reasons for
opting the binary class are listed as follows: (i) binary class
problems produce faster classifcation with instantaneous
results, (ii) minimal confusion among image patterns, (iii)
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Figure 8: Confusionmatrix of fault identifcation of the CNNmodel with test sample images. (a) Burnmarks [0] vs. no fault [1], (b) delamination
[0] vs. no fault [1], (c) discoloration [0] vs no fault [1], (d) glass breakage [0] vs. no fault [1], and (e) snail trail [0] vs. no fault [1].

Table 4: Results of performance comparison of diferent faults in
a PVM with no defect condition.

ID 1 ID 2 ID 3 ID 4 ID 5

Burn marks Delamination Discoloration Glass
breakage Snail trail

100% 96.66% 100% 100% 96.66%

Table 5: Results of model accuracy with diferent sizes of the
dataset.

No. of
sample images 120 240 360 480 600

Accuracy (%) 88.67 91.47 93.33 97.97 98.66
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optimal for real time application, and (iv) inherits low
computational power with minimal hardware requirements.
Te performance of the proposed technique is evaluated
with various state-of-the-art techniques used in the litera-
ture. Te proposed technique proved to exhibit more ac-
curate classifcation results than other techniques. Table 7
presents the comparison among the techniques adopted in
the literature and the proposed technique.

From Table 7, the observation states that the proposed
model displays more accurate results than other state-of-
the-art techniques. Additionally, the overall computational
time for training the model was found to be 140 seconds in
a minimal hardware system that lacks graphical card with
8GB RAM. Also, using such simple convolutional models
can aid in real-time application.

6. Conclusion

Tis paper presented a simple fault detection CNN-based
model for identifying the operating condition of PVM with
the help of aerial images obtained from UAV using cloud
computing technology and Internet of things. Te proposed
solution is assessed extensively for its performance in fault
detection, and the results are analyzed based on the com-
parative study against existing solutions. Typical fault
conditions including discoloration, snail trail, glass break-
age, delamination, and burn marks are compared with good
conditions. A binary classifcation is performed against each
of the fault conditions, and the numerical results clearly
confrm that all the faults are identifed with high accuracy.
Te abovementioned fault detection techniques can be
performed on a real-time basis with a perfectly trained
model. Furthermore, integration of the proposed method in
UAV platforms can help in inspection of large PV farms.
Automated inspection with UAVs can minimize human
interference, eliminate manual errors, and reduce time
consumption. Apart from the pros, certain challenges exist
in the present work that are provided as follows: (i)

acquisition of data is challenging, (ii) the method provides
insight on the occurrence of faults but not the type, and (iii)
narrow application. With respect to future work, several
future directions are suggested. Instantaneous results can be
acquired by implementing the proposed model onto the
onboard diagnostic system in UAV. Further assessment of
the model through broad feld evaluation can deliver en-
hanced results. Apart from binary classifcation, a multiclass
classifcation of the abovementioned faults can become
a reliable solution in detecting multiple faults at a time. Te
performance of the model can be improved with the aid of
hybrid validation techniques.
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