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Task scheduling in Cloud Computing paradigm poses new challenges for cloud provider as heterogeneous, diversifed tasks
arrived on to cloud console. To schedule these type of tasks efciently on to virtual resources in cloud paradigm, an efective
scheduler is needed, which precisely maps tasks to virtual machines by considering priorities of both tasks and VMs. Existing
scheduling algorithms failed to map tasks precisely to virtual resources due to high dynamic nature in cloud environment which
leads to increase of makespan and SLA violations will be increased. In this paper, authors proposed a task-scheduling mechanism,
which considers task priorities and VMs. To model this scheduling paradigm we have chosen whale optimization through which
our scheduler will take decisions for scheduling tasks precisely onto virtual resources in cloud environment. Entire simulation was
carried out on CloudSim. Initially we have chosen random generated workload to run simulation and after that, we have
considered a real-time workload named as BigDataBench and ran our simulation. Finally, we compared our proposed work with
classical baseline mechanisms. From simulations we observed that proposed whale scheduler improved makespan for PSO, ACO,
GA, andW-schedulers by 20.07%, 17.55%, 19.9%, and 6.35%, respectively, and 17.3%, 17.86%, 17.64%, and 5.93%, respectively, for
BigDataBench workloads. SLA violations improved over PSO, ACO, GA, and W-Scheduler by 56.76%, 42.17%, 35.29%, and
24.53%, respectively, and 63.42%, 23.33%, 55.51%, and 40.1%, respectively, for BigDataBench workloads. From extensive
simulation results, our proposed scheduler using whale optimization approach minimizes makespan and SLA violations to a great
extent.

1. Introduction

Cloud Computing model gave a new hope to entire IT in-
dustry, as well as to other industries such as education,
healthcare, and government sectors to accommodate their
computing and storage infrastructure with diferent cloud
services. Existing on premises infrastructure cannot ac-
commodate huge computations and storage requirements of
various industries as data are evolving in a huge manner
from various resources, and therefore, to handle various
storage and computing requirements of various users
concurrently with existing infrastructure is a vain.Terefore,

to handle these many users and their requests concurrently
many of the companies migrating towards cloud environ-
ment, which gives on demand access to a network, which
consists of a shared pool of confgurable resources on paid
bases, based on user requests [1]. To handle these large
numbers of users around globe cloud paradigm uses dif-
ferent types of deployment models, i.e., public cloud le-
verages all diferent services to all users around the world
publicly on paid basis. Private cloud-leverages services to all
cloud services belong to a specifc organization. Hybrid
cloud-leverages services, which are restricted to some of the
users in organization, and some of the services extended to
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all users around the world [2]. All facilities in cloud para-
digm provides access to users by providing virtual resources
through various service models [3] for providing computing
infrastructure, storage, and network as services to users
based on user requirement. To provision and deprovision
virtual resources based on requirement of users Cloud
Computing environment need an efective scheduler, which
should map incoming heterogeneous and diversifed tasks
onto appropriate virtual resources by minimizing makespan
and SLA violations which are integral part of any cloud
paradigm. Many of existing task-scheduling algorithms
proposed by authors addressed various parameters, make-
span, energy consumption, and execution cost. Existing
authors apply various nature-inspired algorithms, i.e., PSO
[4] and ACO [5] but both of these approaches have their own
limitations as PSO faces a problem and it cannot explore
solution space and trapped into a local optimum, whereas
ACO cannot handle dynamic population in solution space
but cloud computing is a paradigm which consists of dy-
namic, diversifed and heterogeneous requests from various
users. Terefore, an efcient task scheduler need to be
formulated which maps tasks efectively by considering type
of requests, thereby calculating their priorities and fnally
need to map these requests to suitable VMs while mini-
mizing makespan and SLA violations. In this manuscript, we
used whale optimization to model our scheduler, which
addresses parameters, makespan and SLA violation. Te
main motivation to conduct this research is to minimize
number of SLA violations in Cloud Computing paradigm
while provisioning or scheduling tasks to appropriate virtual
resources and if SLA made between Cloud provider and
Cloud user is violated in terms of services then there will be
loss on both the ends. Terefore, we considered this as
primary motivation to conduct this research.

Highlights and main contributions of our manuscript
are presented as follows:

(i) Efective task-scheduling mechanism proposed us-
ing consideration of priorities of tasks and VMs

(ii) Whale optimization is used to model task-
scheduling mechanism

(iii) Extensive simulations conducted on CloudSim [6],
workloads considered in algorithm are randomly
generated workload and real time BigDataBench
workloads

(iv) Makespan and SLA violation are addressed as
parameters

Below section discusses briefy about various related
works conducted by researchers using metaheuristic and
nature-inspired algorithms.

2. Related Works

Te authors formulated task-scheduling mechanism in [7]
aims at parameters, i.e., makespan, throughput, and resource
utilization. Adaptive PSO used as methodology for sched-
uling problem, which dynamically balance incoming
workloads, based on inertia weights. Extensive experiments

were conducted by using CloudSim. Workload was taken
from [8], a benchmark dataset to evaluate efcacy of ap-
proach. It evaluated against diferent variants of PSO, and
from results, it proved that it outperforms all compared
approaches for improvement in makespan, throughput, and
utilization of resources by 10%, 12%, and 60%, respectively.
In [9] authors formulated a task-scheduling mechanism for
balancing load in cloud. MCFCMA and PSO algorithms are
used to model scheduling algorithm. Initially tasks are se-
lected based on their load and cluster those tasks with
MCFCMA approach and scheduling of tasks to VMs based
on PSO approach. Entire simulation is implemented on
CloudSim. It is compared aganist metaheuristic algorithms.
From results, it proved that load balance of tasks and
scheduling improved over existing variations of PSO. In
[10], a deadline aware task-scheduling approach using
multiobjective function were developed for heterogeneous
workloads. Adaptive PSO-RADL algorithm was used as
methodology based on dynamic inertia weights assignment
in algorithm. It was implemented on CloudSim, and gen-
eration of workload was carried out with synthetic and real-
time benchmark datasets. It was evaluated against diferent
metaheuristic approaches. From results, PSO-RDAL showed
huge impact over existing approaches for makespan, re-
sponse time, resource utilization, penalty cost, and total
execution cost. In [11], multiobjective scheduling mecha-
nism developed which aims at parameters, i.e., makespan,
execution time, execution cost, and energy consumption. A
hybrid approach, i.e., CR-PSO was used as methodology for
scheduling. Simulation was carried out on CloudSim. It was
evaluated over diferent metaheuristic approaches. From
results, it proved that a signifcant reduction was observed
for specifed parameters. In [5], a multiobjective scheduling
mechanism was developed using combination of GA and
ACO approaches. GA and ACO algorithms hybridized to
model task-scheduling approach. Simulations were carried
out on CloudSim. It was compared over GA and ACO al-
gorithms, and from results, it observed that throughput, task
completion time, and response time signifcantly minimized
with GA-ACO approach. In [12], a hybrid task-scheduling
algorithm was developed to address parameters, makespan,
utilization of resources, and total computation cost. It was
modeled by using a hybrid approach PSO-ACO. PSO was
used for generating decisions at a global level, and ACO was
used for generating decisions at a local level. Experiments
were conducted on CloudSim. It was evaluated against
variants of PSO and ACO algorithms. Experimental data
revealed that hybrid approach showed impact over variants.
In [13], hybrid task scheduling was formulated to address
parameters, makespan and overall cost. A hybrid approach
with nature-inspired algorithms was used for modeling task
scheduler. Cuckoo and crow search algorithms were used to
model scheduling algorithm. It was simulated on CloudSim
tool. It was compared over MO-ACO, Min-Min, and ACO
algorithms, and the results showed that CCSA outperforms
existing algorithms. In [14], scheduling approach designed
by updating pheromone leads to increase in acceleration of
ant exploration in solution space. MOTS-ACO was used as
methodology for designing scheduling problem. It was
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implemented on CloudSim. It was compared over existing
scheduling algorithms modeled various metaheuristic ap-
proaches, and fnally, simulation results revealed that
MOTS-ACO outperforms existing approaches for make-
span, turnaround time, and consumption of power. In [15],
a hybrid task scheduling was developed to focus on task
completion time and load balance of tasks. EDA-GA was
used for scheduling mechanism. It was simulated on
CloudSim and was compared against existing EDA and GA
approaches. From results, hybrid approach proved that it
outperforms existing EDA and GA algorithms for specifed
parameters. In [16], an energy efcient scheduling mecha-
nism was formulated to minimize energy consumption. Aim
of this scheduling approach is for identifying appropriate
virtualized execution environment for a task while mini-
mizing energy consumption. It was implemented on a cus-
tomized simulation environment. It was compared against
existing RC-GA, AMTS, and E-PAGA approaches, and from
results, EPETS outperforms existing mechanisms for
a specifed parameter. In [17], a scheduling mechanism was
devised to determine efective task transfer time. Tis task
transfer time calculated based on task capacity, size of task,
number of tasks, number of VMs, and throughput.
MVO-GA was used as methodology for scheduling in this
scenario. Simulations were carried out on MATLAB, and
efectiveness of task transfer time with respect to all the
aforementioned parameters were identifed, and MVO-GA
showed its efectiveness for task transfer time. In [18],
a scheduling algorithm was formulated for customer satis-
faction where quality of service and makespan were
addressed as parameters in multi-cloud environment. GA-
based customer satisfaction framework was developed,
where in frst phase resource allocation and task scheduling
were based on shortest jobs to generate scheduling decisions.
All the simulations were carried out on MATLAB, and from
results, GACCRATS proved that makespan and customer
satisfaction can improve in multi-cloud environment. In
[19], authors formulated a multi-objective scheduling al-
gorithm addresses parameters, makespan, response time,
and QoS. Genetic algorithm modifed and added greedy
search for methodology of this approach. CloudSim was
used for simulation and evaluation over greedy search, GA.
Te results revealed that MGGS show impact over baseline
approaches. In [20], a hybridized approach was formulated
using OBL and CS algorithms to address parameters,
makespan and cost. OBL was used as global search and CS
was used as local search for this approach. It was evaluated
over PSO, IDEA, and GA approaches. OCSA outperforms
existing mechanisms for specifed parameters.

From Table 1, we can clearly observe that many of task-
scheduling algorithms formulated using various meta-
heuristic approaches and they sufer to provide accurate
solutions by assigning appropriate virtual resources to
incoming requests by various users. Many of existing au-
thors addressed parameters, i.e., makespan, execution cost,
execution time, and energy consumption, but many au-
thors ignored SLA violations as a parameter, even some
authors addressed SLA violation as a metric they failed to
achieve mapping tasks to suitable VMs for consideration

priorities of tasks and VMs.Terefore, we considered whale
optimization algorithm as methodology for scheduling in
cloud paradigm while minimizing SLA violations and
makespan.

3. Problem Definition and System Architecture

Tis section discusses problem defnition and proposed
system architecture used for scheduling. Consider that we
assumed set of k tasks indicated as
tk � t1, t2, t3, . . . . . . .tk .set of n VMs indicated as
vmn � vm1, vm2, . . . . . . .., vmn , set of i hosts indicated as
Hi � H1, H2, H3, . . . .., Hi , and set of j datacenters as
Dj � D1, D2, . . . . . . , Dj . Terefore, problem is defned in
a way that k tasks are mapped on to nvms which are resided
in Hi hosts in turn resided back with Dj datacenters by
considering priorities of tasks and VMs, while minimization
of makespan, and SLA violations. Table 2 shows notations
used in proposed system architecture.

Figure 1 indicates proposed system architecture.
Initially, concurrent user requests put forward to cloud
administrative console and broker on behalf of cloud
users submits them to task manager. Task manager verify
validity of user requests coming onto cloud interface by
concerning with SLA. If they are valid requests, it will pass
those requests to waiting queue before passing it to task
scheduler. In this architecture, after validating requests
from task manager it calculates priorities of all diversifed
and heterogeneous tasks based on size and run time ca-
pacity of tasks. After calculation of task priorities, VM
priorities are calculated based on unit cost electricity
price. Based on the calculation of priorities from tasks and
VMs, they will be fed to the waiting queue and it will map
the highest prioritized task to a highest prioritized VM.
While mapping these requests according to these prior-
ities scheduler minimize makespan and SLA violations.

Initially to evaluate priorities of tasks, we calculated
workload on all VMs.Workload on all VMs was indicated by
using the following equation:

lovmn
�  lo

n
. (1)

lon represents workload on n VMs.
Tese VMs resided in set of Hi hosts. Terefore, entire

workload on hosts is calculated by using the following
equation:

loHi
�

lovmn

 Hi

, (2)

where loHi
represents workload on Hi hosts.

We need to verify whether user requests or tasks can
processed on to a certain VM. For this purpose, processing
capacity of a VM has to be defned and it is indicated by
using the following equation:

procavm
� prono ∗ proMIPS, (3)

where prono represents processing elements and proMIPS
represents processing capacity based on number of in-
structions processed per second.
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For mapping of tasks to precise, VMs scheduler need to
know the size of the task and it is calculated using the
following rquation:

t
len
k � t

MIPS ∗ t
pr
k . (4)

Now priorities of all tasks are calculated using the fol-
lowing equation:

tprk
�

t
len
k

procavm

. (5)

VM priorities using unit electricity cost are calculated
using the following equation:

vmprn
�
elecosthigh

elecostdi

. (6)

Our main objectives in this research are to map tasks
suitably to virtual resources while minimizingmakespan and
SLA violations. Terefore, makespan is evaluated using the
following equation:

msk
� avan

+ e
k
. (7)

After calculation of makespan, our next objective is to
calculate SLA violations. Primarily SLA violation depends
upon active time of a host and performance degradation.
Terefore, active time of a host and performance degra-
dation calculated using the follwoing equations, respectively.

ATHi
�
1
p



p

s�1

vio timeHi

ATHi

, (8)

pedg �
1
n



n

a�1

pe
p

dg

top
vm

. (9)

Using above equations (8) and (9) we calculate SLA
violations as follows:

SLAvio � ATHi
∗ Pedg. (10)

In this research, as discussed in abstract and in-
troduction section, existing authors used various meta-
heuristic and nature-inspired approaches for scheduling in
cloud paradigm. In this manuscript, we used whale opti-
mization algorithm which can cover entire problem solution
space either exploit or by shrinking mechanisms. To achieve
this, we calculate the optimization function as follows:

f(x) � min msk
 (x), SLAvio(x). (11)

Table 1: Summary of task-scheduling algorithms using various metaheuristic approaches.

References Methodology

Objectives of resource
scheduling algorithms modeled
by diferent nature-inspired

algorithms
[7] Adaptive PSO Makespan, throughput, resource utilization
[9] MCFCM-PSO Load balancing, makespan
[10] PSO-RDAL Makespan, response time, penalty cost, total execution cost
[11] CR-PSO Makespan, execution time, execution cost, energy consumption
[5] GA-ACO Response time, task completion time, throughput
[12] PSO-ACO Makespan, resource utilization, total computation cost
[13] CCSA Makespan, overall cost
[14] MOTS-ACO Makespan, turnaround time, power consumption
[15] EDA-GA Task completion time, load balance of tasks
[16] EPETS Energy consumption
[17] MVO-GA Task transfer time
[18] GACCRATS Makespan, customer satisfaction
[19] MGGS Makespan, response time, QoS
[20] OCSA Makespan, cost
[24] CGA Task completion time, total execution cost
[25] IWC Task scheduling time, scheduling cost
[26] SLNO Energy, power consumption, resource utilization
[27] GCWOAS2 Task completion time, load balance of virtual resources
[28] GAGELS Makespan, resource utilization
[29] DILS Makespan, learning rate

Table 2: Notations used in system architecture.

Notation Meaning
tk Set of tasks
vmn Set of virtual resources
Hi Set of hosts
Dj Set of datacenters
lovmn

Workload on virtual resources
loHi

Workload on physical host
procavm Processing capacity of a virtual resource
tprk

Priorities of k tasks

vmprn

Priorities of n virtual resources
based on unit cost electricity

msk Makespan for set of k tasks
SLAvio SLA violation
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After carefully formulated mathematical modeling, in
the next section we discussed about methodology used in
our scheduling mechanism.

4. Methodology and Proposed Task-Scheduling
Mechanism Using Whale Optimization

Whale optimization [21] used as methodology for sched-
uling in Cloud Computing in this research. It is a nature-
inspired approach, which is based on whale’s behavior in the
nature. Tis algorithm initially starts with whale population,
i.e., agents and looks for prey until its best solution is
identifed. It continuously searches for prey with these
agents by using two phases, exploitation or shrinking phase.
In this algorithm, a humpback whale population generated
randomly and it is represented as Qa(b � 1, 2, . . . .K) and
best search agent is represented as Q∗. Initially position of
prey is identifed randomly and assumed that current prey
indicated as best solution identifed by search agent. Current
best solution identifed can be represented as

S
→

� M
�→

.Q
→∗

(x) − Q
→

(x)


, (12)

where x represents present iteration, Q
→

(x) represents po-
sition vector, Q

→∗
(x) represents best solution for identifed

position vector, and M
�→

represents coefcient vector.
Updated next position of search agent is calculated as

follows:

Q
→

(x + 1) � Q
→∗

(x) − E
→

. S
→

, (13)

where E
→

represents coefcient vector. E
→
, M

�→
are calculated

using the following equations:

E
→

� 2 u
→

.w
→

− u
→

, (14)

M
�→

� 2.w
→

. (15)

Next best search agent is identifed based on modi-
fcation of values of coefcient vectors. Initially, value of
u
→ ranges from 2 to 0. Value of w

→ indicates random
number between 0 and 1. Tese are modifed and when
looking for next best search agent a phase named as
exploitation begins where it consists of encircling and
spiral updation mentioned in [22]. Values of coefcient
vectors updated to new values as [−1, 1] and then for this
spiral updation position of agent is calculated using the
following equation:

Q
→

(x + 1) � s
f

→
. b

ce
. cos(2πr) + Q

→∗(x), (16)

where c is a constant and e is a value that lies in between

interval −1 and 1. s
f

→
is represented as follows:

s
f

→
� Q

→∗(x) − Q
→

(x)


. (17)

Entire search agent process is carried out between two
phases, i.e., either shrinking or exploitation based on
chosen probability of a search agent. If probability is less
than 0.5 it uses shrinking approach , which is calculated by
using equation (13). Otherwise, if probability is greater
than or equals to 0.5 it uses spiral updation. After ex-
ploitation phase, exploration starts using an agent by
choosing it randomly. It is represented by using the
following equations:

User requests Task Manager

Scheduler

Priorities of tasks

Priorities of VMs

Resource Manager

Datacenter with VMs and Physical hosts

Figure 1: Proposed system architecture.
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S
→

� M
�→

.Q
→rand − Q

→

, (18)

Q
→

(x + 1) � Q
→rand(x) − E

→
. S
→

. (19)

Termination begins after exploration after search agent
moves out of region and this process continues till best
solution is arrived is shown in Algorithm 1.

5. Simulation Setup and Results

Tis section discusses clear confguration settings for sim-
ulation and simulation results.

5.1. Simulation Confguration Settings. In our research,
simulation was carried out using CloudSim [6] toolkit. Tis
simulator helps us to simulate exact simulated environment
for cloud paradigm. It was installed upon a machine which
consists of confguration of 16GB RAM, 5TB hard disk, i7
processor. Table 3 represents exact standard confguration
settings used in our simulation.

5.2. Calculation of Makespan. Initially, we calculated
makespan using random generated workload and after that
we used real time workload, i.e., BigDataBench workload
[23]. We compared our proposed whale approach against
existing PSO, ACO, GA, and W-Scheduler algorithms.

Table 4 represents the calculation of makespan for PSO,
ACO, and proposed whale scheduler for 100, 500, and 1000
tasks. Makespan generated with random generated workload
for PSO is 1289.5, 1678.76, and 1989.56, respectively.
Makespan generated with random generated workload for

ACO is 1156.9, 1563.8, and 2146.8, respectively. Makespan
generated with random generated workload for GA is
1543.8, 1475.3, and 1934.57, respectively. Makespan gen-
erated with random generated workload for W-scheduler is
1058.35, 1342.78, and 1864.9, respectively. Makespan gen-
erated with random generated workload for proposed whale
scheduler is 968.9, 1257.9, and 1784.8, respectively.

Input: set of tasks tk � t1, t2, t3, . . . . . . .tk , set of VMs vmn � vm1, vm2, . . . . . . .., vmn , set of hosts Hi � H1, H2, H3, . . . .., Hi , Set
of datacenters Dj � D1, D2, . . . . . . , Dj 

Output: Scheduling of tasks mapped to VMs while minimizing makespan, SLA Violation.
Start
Populate whale population randomly
Calculation of priorities of tk using equation (5).
Calculation of priorities of vmn using equation (6).
Calculation of ftness function using equation (11).
if (probability< 0.5)
if (|E|< 1)
calculate search agent position using equation (13).
else if (|E|< 1)
calculate search agent position using equation (19).
End if
End if
If (probability≥ 0.5)
Calculate position of search agent using equation (16).
End if
Calculate makespan, SLA violation using equations (7) and (10).
If (agent moves outside region)
Calculate Q

→∗

Update iterations
End if
End

ALGORITHM 1: Proposed task-scheduling algorithm using whale optimization.

Table 3: Simulation confguration settings.

Entity name Quantity
No. of tasks 100–1000
Length of tasks 780,000
Memory of host 16GB
Storage capacity of host 5 TB
Bandwidth of network 1000Mbps
No. of virtual machines 20
Memory of virtual machine 1024MB
Virtual machine bandwidth 5Mbps
Virtual machine monitor Xen
Operating system Linux
Number of datacenters 5

Table 4: Calculation of makespan using a random generated
workload.

Tasks PSO ACO GA W-scheduler Proposed whale
scheduler

100 1289.5 1156.9 1543.8 1058.35 968.9
500 1678.76 1563.8 1475.3 1342.78 1257.9
1000 1989.56 2146.8 1934.57 1864.9 1784.8
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Table 5 represents calculation of the makespan for PSO,
ACO, and proposed whale scheduler for 100, 500, and 1000
tasks. Makespan generated with BigDataBench workload for
PSO is 1367.8, 1747.9, and 2045.7, respectively. Makespan
generated with BigDataBench workload for ACO is 1243.9,
1643.9, and 2387.8, respectively. Makespan generated with
BigDataBench workload for GA is 1437.7, 1532.9, and
2243.6, respectively. Makespan generated with BigData-
Bench workload for W-scheduler is 1138.3, 1476.4, and
1956.56, respectively. Makespan generated with BigData-
Bench workload for proposed whale scheduler is 1036.9,
1387.8, and 1899.5, respectively.

From Figures 2 and 3 we can clearly observe that our
proposed whale scheduler improves makespan over state-
of-the art algorithms. Te reason for the improvement of
makespan over existing algorithms is because our proposed
whale scheduler calculates priorities of tasks and VMs for all
sets of tasks coming onto cloud console and whale approach
carefully schedule tasks based on these priorities which
minimizes makespan as mentioned in Figures 2 and 3.

5.3. Calculation of SLA Violation. Table 6 represents cal-
culation of SLA violation for PSO, ACO, and proposed
whale scheduler for 100, 500, and 1000 tasks. SLA violation
generated with random generated workload for PSO is 17,
25, and 28, respectively. SLA violation generated with
random generated workload for ACO is 12, 18, and 22,
respectively. SLA violation generated with random gener-
ated workload for GA is 15, 12, and 21, respectively. SLA
violation generated with random generated workload forW-
Scheduler scheduler is 12, 10, and 9, respectively. SLA vi-
olation generated with random generated workload for
proposed whale scheduler is 5, 9, and 18, respectively.

Table 7 represents calculation of SLA violation for PSO,
ACO, and proposed whale scheduler for 100, 500, and 1000
tasks. SLA violation generated with random generated
workload for PSO is 19, 30, and 35, respectively. SLA vio-
lation generated with random generated workload for ACO
is 10, 12, and 18, respectively. SLA violation generated with
random generated workload for GA is 18, 21, and 29, re-
spectively. SLA violation generated with random generated

Table 5: Calculation of makespan using BigDataBench workloads.

Tasks PSO ACO GA W-scheduler Proposed whale
scheduler

100 1367.8 1243.9 1437.7 1138.3 1036.9
500 1747.9 1643.9 1532.9 1476.4 1387.9
1000 2045.7 2387.8 2243.6 1956.56 1899.5
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Figure 2: Calculation of makespan using a random workload.
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workload for W-scheduler is 17, 19, and 10, respectively.
SLA violation generated with random generated workload
for proposed whale scheduler is 8, 10, and 12, respectively.

From Figures 4 and 5 we can clearly observe that our
proposed whale scheduler minimizes SLA violations over
state-of-the-art algorithms. Te reason for the minimization
of SLA violation over existing algorithms is that our pro-
posed whale scheduler calculates priorities of tasks and VMs
for all sets of tasks coming onto cloud console and whale
approach carefully schedule tasks based on these priorities
whichminimizes makespan as mentioned in Figures 4 and 5.

5.4. Analysis of Results. Tis subsection gives detailed
analysis on results obtained through our proposed whale
scheduler. Initially for our scheduling algorithm, we have
given randomized workload and evaluated over existing
algorithms. After the initial evaluation we have given the
workload from BigDataBench workloads [23]. For both the
workloads we ran simulation with 100, 500, and 1000 tasks
with 50 iterations. Tables 8 and 9 represents improvement
percentage of makespan and SLA violations over existing
baseline approaches while evaluating with proposed whale
scheduler.

2400

2200
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1800

1600m
ak

es
pa

n 
(m

s)

Calculation of makespan using randomized workload

1200

1000

200 400 600
No. of Tasks

800 1000

1400

W-Scheduler
Proposed Whale Scheduler

PSO
ACO
GA

Figure 3: Calculation of makespan using the BigDataBench workloads.

Table 6: Calculation of SLA violation using random generated workload.

Tasks PSO ACO GA W-scheduler Proposed whale
scheduler

100 17 12 15 12 5
500 25 18 12 10 9
1000 28 22 21 19 18

Table 7: Calculation of SLA violation using a BigDataBench workload.

Tasks PSO ACO GA W-scheduler Proposed whale
scheduler

100 19 10 18 17 8
500 30 12 21 19 10
1000 35 18 29 15 12
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Figure 4: Calculation of SLA violation using the random workload.
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Figure 5: Calculation of SLA violation using the BigDataBench workload.
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From Tables 8 and 9, it is evident that our proposed
whale scheduler improvised makespan and SLA violations
carefully over existing state-of-the-art algorithms.

6. Conclusion and Future Work

Task scheduling in Cloud Computing poses challenges to
cloud provider as workload coming to cloud console is
diversifed and heterogeneous. It is challenging for cloud
users as well if a proper scheduler is not employed in cloud
paradigm. It leads to increase in makespan and SLA vio-
lations, which afects the quality of service. Terefore, in this
manuscript, we proposed an efective task-scheduling al-
gorithm, which takes priorities of tasks and VMs to ap-
propriately map incoming tasks to virtual resources. To
model this scheduling approach we used a whale optimi-
zation algorithm. Entire simulation and experiments are
implemented on CloudSim. It is compared against existing
algorithms PSO, ACO, GA, and W-scheduler. Initially in
simulation random, generated workload was used and later
a real time dataset was used, i.e., BigDataBench. From re-
sults, it evident that our proposed whale scheduler out-
performs existing approaches by minimizing makespan and
SLA violations. From simulations we observed that proposed
whale scheduler improved makespan for PSO, ACO, GA,
and W-schedulers by 20.07%, 17.55%, 19.9%, and 6.35%,
respectively, and 17.3%, 17.86%, 17.64%, and 5.93%, re-
spectively, for BigDataBench orkloads. SLA violations im-
proved over PSO, ACO, GA, and W-Scheduler by 56.76%,
42.17%, 35.29%, and 24.53%, respectively, and 63.42%,
23.33%, 55.51%, and 40.1%, respectively for BigDataBench
workloads. In the future, we need to employ a machine
learning approach for better handling of scheduling algo-
rithm in Cloud Computing paradigm.

Data Availability

No data used for supporting this study were disclosed by the
authors.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] D. Sabella, “Principles of edge computing, fog and cloud
computing,” Multi-access Edge Computing: Software Devel-
opment at the Network Edge, pp. 3–18, Springer, Heidelberg,
Germany, 2021.

[2] M. U. Bokhari, Q. Makki, and Y. Kord Tamandani, “A survey
on cloud computing,” Big Data Analytics, pp. 149–164,
Springer, Singapore, 2018.

[3] I. Ahmed, “A brief review: security issues in cloud computing
and their solutions,” TELKOMNIKA (Telecommunication
Computing Electronics and Control), vol. 17, no. 6,
pp. 2812–2817, 2019.

[4] M. S. Sudheer and M. Vamsi Krishna, “Dynamic PSO for task
scheduling optimization in cloud computing,” International
Journal of Recent Technology and Engineering, vol. 74, 2019.

[5] A. M. Senthil Kumar and M. Venkatesan, “Multi-objective
task scheduling using hybrid genetic-ant colony optimization
algorithm in cloud environment,” Wireless Personal Com-
munications, vol. 107, pp. 1835–1848, 2019.

[6] S. Badr, E. M. Ahmed, G. Attiya, and A. A. Nasr, “Task
consolidation based power consumption minimization in
cloud computing environment,” Multimedia Tools and Ap-
plications, vol. 353, pp. 1–29, 2022.

[7] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “AdPSO:
adaptive PSO-based task scheduling approach for cloud
computing,” Sensors, vol. 22, p. 920, 2022.

[8] M. Ibrahim, S. Nabi, A. Baz et al., “An in-depth empirical
investigation of state-of-the-art scheduling approaches for
cloud computing,” IEEE Access, vol. 8, pp. 128282–128294,
2020.

[9] M. Nanjappan and P. Albert, “Hybrid-based novel approach
for resource scheduling using MCFCM and PSO in cloud
computing environment,” Concurrency and Computation:
Practice and Experience, vol. 34, p. 5517, 2022.

[10] S. Nabi and M. Ahmed, “PSO-RDAL: particle swarm
optimization-based resource-and deadline-aware dynamic
load balancer for deadline constrained cloud tasks,” Te
Journal of Supercomputing, vol. 78, no. 4, pp. 4624–4654, 2022.

[11] K. Dubey and S. C. Sharma, “A novel multi-objective CR-PSO
task scheduling algorithm with deadline constraint in cloud
computing,” Sustainable Computing: Informatics and Systems,
vol. 32, Article ID 100605, 2021.

[12] K. Dubey and S. C. Sharma, “A hybrid multi-faceted task
scheduling algorithm for cloud computing environment,”

Table 8: Improvement of makespan over existing algorithms with various workloads.

Improvement of makespan over existing algorithms
Type of workload/algorithm PSO (%) ACO (%) GA (%) W-scheduler (%)
Randomized 20.07 17.55 19.9 6.35
BigDataBench 17.3 17.86 17.64 5.93

Table 9: Improvement of SLA violations over existing algorithms with various workloads.

Improvement of SLA violations over existing algorithms
Type of workload/algorithm PSO (%) ACO (%) GA (%) W-scheduler (%)
Randomized 56.76 42.17 35.29 24.53
BigDataBench 63.42 23.33 55.51 40.1

10 Scientifc Programming



International Journal of System Assurance Engineering and
Management, vol. 207, pp. 1–15, 2021.

[13] P. Krishnadoss, N. Pradeep, J. Ali, M. Nanjappan,
P. Krishnamoorthy, and V. Kedalu Poornachary, “CCSA:
hybrid cuckoo crow search algorithm for task scheduling in
cloud computing,” International Journal of Intelligent Engi-
neering and Systems, vol. 14, pp. 241–250, 2021.

[14] E. Elsedimy and F. Algarni, “MOTS-ACO: an improved ant
colony optimiser for multi-objective task scheduling opti-
misation problem in cloud data centres,” IET Networks,
vol. 11, no. 2, pp. 43–57, 2022.

[15] S. Pang, W. Li, H. He, Z. Shan, and X. Wang, “An EDA-GA
hybrid algorithm for multi-objective task scheduling in cloud
computing,” IEEE Access, vol. 7, pp. 146379–146389, 2019.

[16] M. Hussain, L. F. Wei, A. Lakhan, S. Wali, S. Ali, and
A. Hussain, “Energy and performance-efcient task sched-
uling in heterogeneous virtualized cloud computing,” Sus-
tainable Computing: Informatics and Systems, vol. 30, Article
ID 100517, 2021.

[17] L. Abualigah and M. Alkhrabsheh, “Amended hybrid multi-
verse optimizer with genetic algorithm for solving task
scheduling problem in cloud computing,” Te Journal of
Supercomputing, vol. 78, no. 1, pp. 740–765, 2022.

[18] T. Jena and J. R. Mohanty, “GA-based customer-conscious
resource allocation and task scheduling in multi-cloud
computing,” Arabian Journal for Science and Engineering,
vol. 43, pp. 4115–4130, 2018.

[19] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and
M. U. Chowdhury, “An improved genetic algorithm using
greedy strategy toward task scheduling optimization in cloud
environments,” Neural Computing & Applications, vol. 32,
no. 6, pp. 1531–1541, 2020.

[20] P. Krishnadoss and P. Jacob, “OCSA: task scheduling algo-
rithm in cloud computing environment,” International
Journal of Intelligent Engineering and Systems, vol. 11,
pp. 271–279, 2018.

[21] G. Natesan and A. Chokkalingam, “An improved grey wolf
optimization algorithm based task scheduling in cloud
computing environment,” Te International Arab Journal of
Information Technology, vol. 17, no. 1, pp. 73–81, 2020.

[22] P. S. Rawat, P. Dimri, P. Gupta, and G. P. Saroha, “Resource
provisioning in scalable cloud using bio-inspired artifcial
neural network model,” Applied Soft Computing, vol. 99,
pp. 1–31, 2021.

[23] L. Wang, J. Zhan, C. Luo et al., “Bigdatabench: a big data
benchmark suite from internet services,” in Proceedings of the
2014 IEEE 20th international symposium on high performance
computer architecture (HPCA), pp. 488–499, IEEE, Orlando,
FL, USA, February, 2014.

[24] Z. Yu, “Research on optimization strategy of task scheduling
software based on genetic algorithm in cloud computing
environment,” Wireless Communications and Mobile Com-
puting, vol. 2022, Article ID 3382273, 9 pages, 2022.

[25] L. W. Jia, K. Li, and X. Shi, “Cloud computing task scheduling
model based on improved whale optimization algorithm,”
Wireless Communications and Mobile Computing, vol. 2021,
Article ID 4888154, 13 pages, 2021.

[26] R. Masadeh, N. Alsharman, A. Sharieh, B. A. Mahafzah, and
A. Abdulrahman, “Task scheduling on cloud computing based
on sea lion optimization algorithm,” International Journal of
Web Information Systems, vol. 17, no. 2, pp. 99–116, 2021.

[27] L. Ni, X. Sun, X. Li, and J. Zhang, “GCWOAS2: multiobjective
task scheduling strategy based on Gaussian cloud-whale
optimization in cloud computing,” Computational

Intelligence and Neuroscience, vol. 2021, Article ID 5546758,
17 pages, 2021.

[28] S. P. Praveen, H. Ghasempoor, N. Shahabi, and F. Izanloo, “A
hybrid gravitational emulation local search-based algorithm
for task scheduling in cloud computing,” Mathematical
Problems in Engineering, vol. 2023, Article ID 6516482,
9 pages, 2023.

[29] L. Shi, J. Xu, L. Wang et al., “Multijob associated task
scheduling for cloud computing based on task duplication and
insertion,” Wireless Communications and Mobile Computing,
vol. 2021, Article ID 6631752, 13 pages, 2021.

Scientifc Programming 11




