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A synthetic aperture radar (SAR) automatic target recognition (ATR) method is developed based on the two-dimensional
variational mode decomposition (2D-VMD). 2D-VMD decomposes original SAR images into multiscale components, which
depict the time-frequency properties of the targets. Te original image and its 2D-VMD components are highly correlated, so the
multitask sparse representation is chosen to jointly represent them. According to the resulted reconstruction errors of diferent
classes, the target label of test sample can be classifed. Te moving and stationary target acquisition and recognition (MSTAR)
dataset is used to set up the standard operating condition (SOC) and several extended operating conditions (EOCs) including
confguration variants, depression angle variances, noise corruption, and partial occlusion to test and validate the proposed
method. Te results confrm the efectiveness and robustness of the proposed method compared with several state-of-the-art SAR
ATR references.

1. Introduction

With the publication of the famous moving and stationary
target acquisition and recognition (MSTAR) dataset, auto-
matic target recognition (ATR) of synthetic aperture radar
(SAR) images has drawn intensive attention from re-
searchers all over the world [1]. As a supervised classifcation
problem, the way of building the references plays an im-
portant role in the recognition methods. Accordingly, the
existing SARATRmethods can be divided as template-based
and model-based ones. Te former way stored SAR images
of interested targets from diferent conditions, e.g., view
angles, backgrounds, and resolutions, to establish the
template set. For the test sample, it is compared with the
templates from diferent classes to determine the target label.
Te semi-automated image intelligence processing (SAIP)
program [2–4] provided an embryo for template-based SAR
ATR methods, which used the correlation flters to evaluate
the similarities between the test and template samples. Te
model-based way describes the interested targets using CAD
models, global scattering center models, etc. Te MSTAR
program [5–7] started the research of model-based SAR

ATR, in which the CAD models were processed by high-
frequency electromagnetic calculation tools to predict target
signatures at diferent views, backgrounds, etc. Later, the
parametric global scattering center models were built in
inverse and forward ways to potentially replace the complex
CAD models [8–12], and some recent works based on the
global scattering center model confrmed the validity
[13–15].

Similar to traditional pattern recognition issues, e.g., face
recognition and fngerprint recognition, a concrete SAR
ATR algorithm (either in template-based or model-based
ways) can be generally described as a two-phase procedure,
which performs feature extraction and classifcation se-
quentially. In the phase of feature extraction, various kinds
of features are used to describe the target characteristics
including the geometrical shape, intensity distribution, and
electromagnetic scattering. Target region, contour, and
shadow are typical geometrical features. In [16–20], the
Zernike (including modifed ones), Chebyshv, and
Krawtchoukmoments were used to depict the target regions.
Park et al. designed several discrimination features based on
the binary regions [21]. Ding et al. proposed a region
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matching method for SAR target recognition [22], which
was further improved by Cui et al. by introducing the Eu-
clidean distance transform [23]. Te dominant scattering
area was generated, which recorded the locations of strong
scattering centers, and processed bymorphological flters for
SAR target recognition [24]. Anagnostopoulos used the
elliptical Fourier series (EFS) to describe the distribution of
target outlines [25]. Zhu et al. used the Gauss mixture model
(GMM) to model the outline points [26]. A partial outline
matching algorithm was developed in [27] to properly
handle the occlusion problems in SAR ATR. Papson and
Narayanan applied target shadow to SAR ATR and dem-
onstrated its validity [28]. Chang and You constructed the
information-decoupled components based on target region
and shadow [29]. Te intensity distributions of SAR images
were usually described by transformation features by
mathematical projection or signal processing techniques.
Mishra used (kernel) principal component analysis ((K)
PCA) and linear discriminant analysis (LDA) for SAR image
feature extraction and target recognition [30, 31]. Te
nonnegative matrix factorization (NMF) was adopted by Cui
et al. for SAR ATR [32]. Manifold learning algorithms using
local embeddings were also validated in SAR target recog-
nition with good performance [33–35]. Te signal pro-
cessing algorithms including wavelet analysis [36, 37],
monogenic signal [38, 39], and bidimensional empirical
mode decomposition (BEMD) [40] were validated useful for
SAR feature extraction. Dong et al. decomposed SAR images
based on the monogenic signal and classifed the multiscale
features for SAR ATR [38, 39]. Chang et al. developed a SAR
ATR method based on BEMD [40]. Diferent from optical
images, SAR images contain the electromagnetic charac-
teristics of the targets such as scattering center [41–48] and
polarizations [40, 50]. In [42–45], the attributed scattering
centers were used for SAR target recognition based on
diferent matching algorithms. In addition, they were vali-
dated robust to noises either in the high-resolution range
profles (HRRP) [47] or SAR images [48]. When going to the
phase of classifcation, the decision rules are developed for
the extracted features. In general, most of present SAR ATR
methods directly made use of achievements in the feld of
pattern recognition, including the nearest neighbor (NN)
[30], support vector machine (SVM) [51, 52], adaptive
boosting (AdaBoost) [53], and sparse representation-based
classifcation (SRC) [54–56]. In [51], SVM was frst used for
SAR ATR by Zhao and Principe, which became the most
prevalent classifer in this feld afterwards. Sun developed the
AdaBoost for SAR ATR based on the traditional boosting
technique [53]. With successful applications in face recog-
nition [54], Tiagaraianmet al. introduced SRC to SAR
target recognition [55]. To process more than one sparse
representation problems, the multitask sparse representa-
tion was used to classify the multiple views, features, res-
olutions, etc. [57–64]. Zhang et al. developed the multiview
SAR ATR method based on the joint sparse representation,
which was further enhanced in [57]. Liu and Yang classifed
the features extracted by PCA, KPCA, and NMF using the
multitask compressive sensing [60]. Te multiresolution
representations were generated and classifed by joint sparse

representation by Zhang [62]. Te deep learning theory
stirred a surge in the pattern recognition feld [65–67]. In
[68], Zhu et al. conducted a survey of the deep learning
methods in remote-sensing applications including SAR
ATR. Among all these deep learning-based SAR ATR
methods, the convolutional neural network (CNN) was the
mostly used method. A simple but efective CNN was de-
veloped in [71] with good performance. Te all-
convolutional network (A-ConvNet) was developed by
Chen et al., which greatly enhanced the training efciency
and classifcation accuracy as reported in [72]. Te famous
Res-Net was modifed for SAR ATR in [73]. With fast
progress in deep learning, more networks were applied into
SAR ATR including the enhanced squeeze and excitation
network (ESENet) [74], gradually distilled CNN [75], cas-
cade coupled CNN [76], multistream CNN [77], and gen-
erative adversarial network (GAN) [78]. In addition, some
networks were specifcally developed to handle nuisance
conditions such as noise corruption and rotation. [79, 80].
As a data-driven classifer, the performance of CNN is highly
related to the amount and coverage of the available training
samples. In this sense, some works used the transfer learning
and data augmentation algorithms to enhance the classif-
cation capability of the trained networks [81–85]. Consid-
ering the various extended operating conditions (EOC) [7]
in SAR ATR, the adaptivity of deep learning methods may
sometimes be limited. As a remedy, they were combined
with other classifers to enhance the fnal performance.
Wagner combined CNN with SVM, in which SVM per-
formed as the output classifer [86]. Kechagias-Stamatis et al.
fused CNN with the sparse coding to combine their merits
[87]. Cui et al. updated CNN by SVM to enhance the
performance under limited training samples [88]. A hier-
archical decision fusion strategy was developed in [89] to
fuse the decisions from CNN and attributed scattering
center matching.

In this study, the two-dimensional variational mode
decomposition (2D-VMD) is used to extract features for
SAR images with application to SAR ATR. Dragomiretskiy
and Zosso frst developed the variational mode de-
composition (VMD) [90] in 2014. As an adaptive and
nonrecursive signal decomposition algorithm, VMD was
validated to achieve better efectiveness and robustness than
similar algorithms such as wavelet analysis and EMD.
[91–93]. Specifcally, the related works demonstrated that
the VMD algorithm is less sensitive to noise corruption than
the EMD-based decomposition ones because Wiener fl-
tering is used to update the decomposed components di-
rectly in the Fourier domain. Further, the two authors
extended VMD to two dimensions, thus resulting in the
2D-VMD [94], which could directly decompose 2Dmatrices
such as images [95–97]. After the decomposition, the
original images are represented by multiscale modes
refecting separate spectral bands, which have specifc di-
rectional and oscillatory characteristics. In this sense, the
decomposed components from 2D-VMD could efectively
describe the rich time-frequency properties of the objects in
original images and thus help the interpretation. Tis paper
developed the SAR ATR method based on the features
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extracted by 2D-VMD. Te original SAR image and the
decomposed components by 2D-VMD are jointly repre-
sented based onmultitask sparse representation [98, 99].Te
decompositions and original image are actually correlated,
so the multitask sparse representation could efectively
improve the overall reconstruction precision. Finally, based
on the reconstruction errors, the target label can be de-
termined. Te MSTAR dataset is used to set up diferent
experimental conditions including the standard operating
condition (SOC) and EOCs to investigate the performance
of the proposed method. Te results confrmed its efec-
tiveness and robustness.

Te remaining parts of this paper are organized as
follows. Section 2 introduces the basics of 2D-VMD and its
reasonability for SAR image feature extraction. Section 3
describes the principle and procedure of the proposed
method. Experiments are conducted in Section 4 to evaluate
the proposed method while comparing them with several
state-of-the-art SAR ATR methods. Conclusions are drawn
in Section 5 based on the quantitative results and analysis.

2. Two-Dimensional Variational Mode
Decomposition (2D-VMD)

A natural signal can always be decomposed as component
from diferent frequencies. Similarly, 2D signals such as
images can also be decomposed into multiple frequential
components, which could refect diferent shapes or ori-
entations. In the previous works, several image de-
composition algorithms were developed including wavelet
analysis, monogenic signal, and BEMD. VMD was proposed
by Dragomiretskiy and Zosso, which is capable of decom-
posing a multicomponent signal into several narrow-band
components with specifc sparsity properties [90]. As re-
ported, VMD could achieve better efectiveness and ro-
bustness than wavelet, EMD, etc. [91–93]. 2D-VMD is
a general extension of VMD [94], which was developed for
processing images [95–97]. With K components to be
decomposed, the 2D-VMD is formulated as a constrained
variational problem as follows:

min
uk,ωk
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where uAS,k(x) denotes the 2D analytic signal of the kth
mode with a single-sidedness spectrum property ans
ωkrepresents a reference direction vector in the frequency
domain, which separates the spectrum plane into two half-
planes. Terein, one half-plane was set to zero. f(x) is the
input image. Te objective function aims to minimize the
summation of the modes’ bandwidths as the squared
L2-norm of the gradient related to its directional 2D analytic
signal in only half-space frequencies.

To render the problem unconstrained, a quadratic
penalty and a Lagrangian multiplier are used to enforce the
constraint fdelity. Te augmented Lagrangian is reformu-
lated as follows:
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So, the unconstrained problem is

min
uk,ωk

max
λ

L uk , ωk , λ( , (3)

where λ and αk are the Lagrangian multiplier and bal-
ancing parameter of the data-fdelity constraint, re-
spectively, uk  is the set of intrinsic modes, and ωk 

includes the center frequencies related to the corre-
sponding modes. Te alternate direction method of
multipliers (ADMM) can be adopted to solve the problem
in equation (2). In the frequency domain, the mode es-
timated from the optimization problem represents
a Wiener flter updated as follows:

u
n+1
k (ω) �

f(ω) − i≠kui(ω) + λ(ω)/2 

1 + 2αk ω − ωk




, (4)

where f(ω), u(ω), and λ(ω) correspond to the Fourier
transforms of f(x), u(x), and λ(x), respectively, and n is the
iteration time. Te center frequencies ωk are updated by
a similar way with that of VMD, but the path of integration is
the half-plane Ωk:

ωn+1
k �

Ωk
ω u

n+1
k (ω)



2
dω

Ωk

u
n+1
k (ω)



2
dω

, (5)

where ωn+1
k actually represents the frst moment of the

mode’s power spectrum |uk(ω)|2 on the half-plane Ωk. Te
Lagrangian multiplier λ is updated using a standard gradient
ascent with a fxed time step τ as follows:

λn+1
(x) � λn+1

(x) + τ f(x) − 
k

u
n+1
k (x)⎛⎝ ⎞⎠. (6)

Based on the above steps, the input image can be
decomposed into multiple components from diferent fre-
quencies. More details of the 2D-VMD algorithm and
implementations are in [94].

In this study, the 2D-VMD is used for feature extraction
of SAR images. Figure 1 shows the decomposition results of
a MSTAR SAR image with the fgures of the original image
and frst three modes. Compared with the original image, the
decomposed components share some similarities with it. In
addition, they can intuitively refect the multidirectional
properties of the target, which provide complementary
descriptions for the target including the global and local
ones. Hence, by collaboratively using the original SAR image
and its components decomposed by 2D-VMD, more dis-
criminative information is available for correct target
recognition.
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3. Proposed Method

3.1. Multitask Sparse Representation. Te multitask sparse
representation considers several related sparse representation
problems together, which could produce more precise solu-
tions than solving these tasks separately [57–64]. Te previous
works widely used this tool to handle the multiple views,
features, etc., from SAR images for target recognition. In this
article, themultitask sparse representation is used to classify the
components decomposed by 2D-VMD. Generally, for the M
components from the test sample y, denoted as
[y(1), · · · , y(M)], they can be unifedly considered as follows:

min
A

g(A) � 
M

l�1
y

(l)
− D

(l) ∗ a
(l)
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where D(l) denotes the dictionary corresponding to the lth
component and A � [a(1), · · · , a(M)] stores the sparse co-
efcient vector in a matrix.

Te formulation in equation (7) makes little use of the
relationship between diferent components, so they can
hardly obtain the optimal solutions. According to previous
research studies, the inner correlations of diferent com-
ponents can be efectively exploited by imposing the l0/l1
norm on the coefcient matrix A. Accordingly, the opti-
mization problem is reformulated as follows:

min
A

g(A) + η‖A‖0,1, (8)

where η is the regularization parameter larger than zero.
With the constraint of the l0/l1 norm, the sparse co-

efcient vectors of diferent components are forced to share
similar distributions, indicating the locations of the nonzero
coefcients. In this sense, the inner correlations are used
during the solutions, which help to improve the overall
precision. For the above optimization problem, the simul-
taneous orthogonal matching pursuit (SOMP) [98] and
multitask compressive sensing [99] can be used. With the
optimal estimation of the coefcient matrix
A � [a(1), · · · , a(M)], the reconstruction error of each
training class is calculated separately and the target label is
classifed as the one with the minimum error:

identity(y) � min
i�1,···,C
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where Dl
i extracts the dictionary of the lth component related

with the ith class and a
(l)
i represents the corresponding

coefcient vector.

3.2. Target Recognition. Based on the above analysis, the
procedure of the proposed method is summarized and in-
tuitively illustrated as Figure 2. Based on the observations in
Figure 2, we choose the frst three components from
2D-VMD in the classifcation stage, which are together used
with the original image. For the training samples, they are
decomposed based on 2D-VMD to build the separate dic-
tionaries.Te test sample is frst decomposed by 2D-VMD in
the same way with the training samples. Afterwards, the
decomposed components and original image are jointly
represented by multitask sparse representations. Finally, the
reconstruction error of each training class is calculated. All
the reconstruction errors are compared to form a fnal
decision on the target label.

Te original image is used in the classifcation phase for
the following two points. First, as shown in Figure 1, the
decomposed components could complement the de-
scriptions of the original image, but they still lack some
information in the original image. Second, as illustrated in
Figure 2, only three components from 2D-VMD are used, so
they could hardly reconstruct all the properties in the
original image. Terefore, by considering the original image
and its decomposed components by 2D-VMD, the dis-
criminative information in the original image can be better
exploited to enhance the classifcation performance.

4. Experiments

4.1. Dataset and Reference Methods. Typical experimental
conditions are setup based on theMSTAR dataset to test and
validate the proposed method. Te dataset comprised SAR
images measured by using X-band radar under the spot
mode, which have the resolution of 0.3m over both the
range and cross-range directions. Tere are ten targets in-
cluded in the dataset as shown in Figure 3 with thousands of
SAR images. Specifcally, some targets, e.g., BMP2 and T72,
contain several diferent confgurations, which have struc-
tural modifcations. For each target (confguration), its SAR
images cover the azimuth of 0°–360° and every two con-
secutive samples have an azimuth diference of 1°–2°. Te

original image

(a)

1st component

(b)

2nd component

(c)

3rd component

(d)

Figure 1: Illustration of 2D-VMD for a MSTAR SAR image: (a) original image; (b) 1st component; (c) 2nd component; (d) 3rd component.
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depression angles of 15° and 17° are available for all the ten
targets, among which some have others such as 30° and 45°.
Terefore, the rich set of MSTAR images provide good
candidates for the validation of SAR ATR methods, which
can be comprehensively evaluated under both SOC
and EOCs.

Te proposed method is compared with some reference
methods from published works simultaneously during all
the experiments. Table 1 briefy reviews the basic properties
of the reference methods including the features and clas-
sifers. NMF, Mono, and BEMD are feature-based methods,
which applied diferent types of feature extraction algo-
rithms in order to enhance the classifcation performance.
A-CovnNet and Res-Net are featured as classifer-based
methods, which mainly difered in the architectures of the
networks. In addition, they are chosen as the representatives
of deep learning methods, which have been the main stream
in SAR ATR. Te following tests are conducted under SOC
and EOCs sequentially from simplicity to complexity. Te
classifcation results are displayed and discussed to form
reliable conclusions.

4.2. 10-Class Problem under SOC. A typical SOC experi-
mental setting is displayed as Table 2 including all the ten
targets. Te training samples are SAR images from 17°
depression angles while those from 15° are used for classi-
fcation. Terein, only single confgurations of BMP2 and
T72 (as specifed by the serial numbers (SN)) are used in this
experiment. Hence, the test samples are assumed to share
high similarities with the training ones with only a 2° de-
pression angle variance. Te 10-class test samples are
classifed by the proposed method to obtain the confusion
matrix as Figure 4, in which the X and Y labels correspond to
the actual and predicted classes, respectively. So, the

diagonal elements in Figure 4 record the classifcation ac-
curacies of diferent targets, which are all higher than 99%.
We defne the average recognition rate as Pcr, which equals
the proportion of correctly classifed ones in all the test
samples. Accordingly, Pcr of the proposed method is cal-
culated to be 99.57%. Table 2 compares the proposedmethod
with reference methods under SOC. Compared with NMF,
Mono, and BEMD, the proposed method achieves a higher
Pcr, which confrms the superior validity of BVMD com-
ponents. Te A-ConvNet and Res-Net obtain the
approaching performance with the proposed method be-
cause of the high classifcation capability of deep learning
models. By multitask sparse representation of the BVMD
components, the proposed method achieves the highest Pcr
among all the methods, validating its efectiveness
under SOC.

4.3. Confguration Variants. Diferent confgurations of the
same target have structural modifcations, which will be
refected in SAR images. In this sense, the EOC of confg-
uration variants is caused by the variations of target itself.
Table 3 sets the training and test samples under confgu-
ration variants involving four targets but only two of them
are classifed.Te test samples of BMP2 and T72 are diferent
from their training ones. Te BDM2 and BTR70 are inserted
in the training set to enhance the classifcation difculty.Te
detailed recognition results of the proposed method are
shown in Table 4. Te test samples from diferent confg-
urations have some misclassifcations to BDRM2 or BTR70.
Each confguration from BMP2 and T72 can be classifed
with an accuracy of over 98% and Pcr (%) of the proposed
method is calculated to be 98.76%. Pcr of diferent methods
are displayed in Table 5 for comparison. With the highest
Pcr, the proposed method is demonstrated with superior

Training
samples

Dictionary of
original image

Dictionary of
component 1

Dictionary of
component 2

Dictionary of
component 3

Test sample

Original image

Component 1

Component 2

Component 3

Multi-task sparse
representation

Reconstruction
errors

Target label

2D-VMD

Figure 2: Illustration of multitask sparse representation of BVMD components for SAR target recognition.
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robustness to confguration variants.Te better performance
over NMF, Mono, and BEMD shows the validity of BVMD
for SAR image feature extraction. Because of the larger
diferences between the test and training samples than SOC,
the performance of CNN-based methods including
A-ConvNet and Res-Net degrades more signifcantly.

4.4. Depression Angle Variances. When the test and training
samples are from diferent depression angles, they have
diferences in the image domain because of the sensitivity to
view angles. When the depression angle variances are rela-
tively large, the recognition problem becomes tough. Table 6
presents the experimental setup under depression angle
variances. Terein, the training samples comes from 17°
depression angle, while the test samples include two subsets
from 30° to 45°, respectively. Te proposed method is eval-
uated under both depression angles and Pcrs are obtained as
98.12% and 74.24%, correspondingly. Figure 5 stems Pcrs of
diferent methods under 30° and 45° depression angles. In
general, the performance at the 30° depression angle is much
better than that at 45° because of the smaller variance. Al-
though degraded at the 45° depression angle, the relative
predominance of the proposed method becomes more

remarkable compared with the situation at the 30° depression
angle. With the highest Pcrs at both the depression angles, the
proposed method achieves better robustness to depression
angle variances than the reference methods.Te results refect
the efectiveness of BVMD features for handling the EOC of
depression angle variances, which are superior over those
extracted by NMF, monogenic signal, and BEMD.

4.5. Noise Corruption. When the test and training samples
are with diferent noise levels, they also have many difer-
ences. Usually, the training samples are preprocessed to
relieve the noises, so they are assumed to have high signal-to-
noise ratios (SNR). However, the test samples may contain
high levels of noises. To test the proposed method under
noise corruption, the noisy test sets are simulated by adding
diferent levels of noises into the test samples in Table 7. In
detail, the noises are generated according to the energy of the
original SAR image and desired SNR. Ten, these noises are
added into the original SAR image to get the noisy one with
a special SNR. Afterwards, all the methods were evaluated at
diferent levels, and the results are plotted as Figure 6. In
comparison with former experiments, the performance of A-
ConvNet and Res-Net experiences much signifcant decrease
than the remaining methods. Pcr of the proposed method
peaks at each SNR, showing its best robustness under noise
corruption. As stated earlier, 2D-VMD has better robustness
to noises in comparison with traditional image de-
composition algorithms. Compared with NMF, Mono, and
BEMD, the better performance of the proposed method

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 3: Optical images of ten classes of targets in the MSTAR dataset: (a) BMP2, (b) BTR70, (c) T72, (d) T62, (e) BRDM2, (f ) BTR60,
(g) ZSU23/4, (h) D7, (i) ZIL131, and (j) 2S1.

Table 1: Descriptions of reference methods drawn from the current literature.

Abbreviations Feature extraction Classifers References
NMF NMF SRC [32]
Mono Monogenic signal Multitask sparse representation [39]
BEMD BEMD Multitask sparse representation [40]
A-ConvNet — A-ConvNet [72]
Res-Net — Res-Net [73]

Table 2: Recognition performance of diferent methods under
SOC.

Methods Proposed NMF Mono BEMD A-ConvNet Res-Net
Pcr (%) 99.57 98.34 98.72 99.02 99.08 99.16
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mainly comes from the high efectiveness of the BVMD
features.

4.6. Partial Occlusion. When the targets are occluded in the
test samples, the recognition problem becomes much more
complex. To handle this EOC, some previous works were

developed using partial matching algorithm or occlusion-
robust features. To test the proposed method under partial
occlusion, the occluded test sets are frst simulated based on
the test samples in Table 7 according to the empirical models
in [44, 84]. In detail, a certain proportion of the target region
in SAR images are removed and replaced by the randomly
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Figure 4: Confusion matrix of the proposed method under SOC.

Table 3: Training and test samples under confguration variants.

Depression angles BMP2 BDRM2 BTR70 T72
Training 17° 228 (SN_9563) 293 228 227 (SN_132)

Test 15° and 17° 420 (SN_9566)
421 (SN_C21) 0 0

421 (SN_812)
568 (SN_A04)
568 (SN_A05)
568 (SN_A07)
568 (SN_A10)

Table 4: Recognition results of the proposed method under
confguration variants.

Test class SN
Predicted class

Pcr (%)
BMP2 BRDM2 BTR70 T72

BMP2 SN_9566 418 1 2 2 98.83
SN_C21 421 1 0 2 99.30

T72

SN_812 2 1 3 415 98.59
SN_A04 2 3 1 562 98.85
SN_A05 2 2 6 558 98.25
SN_A07 4 1 3 560 98.60
SN_A10 3 1 5 553 98.41

Overall 98.76

Table 5: Recognition performance of diferent methods under
confguration variants.

Methods Proposed NMF Mono BEMD A-ConvNet Res-Net
Pcr (%) 98.76 96.52 97.74 98.14 97.58 98.08

Table 6: Training and test samples under depression angle
variances.

Depression angles 2S1 BDRM2 ZSU23/4
Training 17° 294 293 294

Test 30° 283 282 283
45° 298 298 298

Scientifc Programming 7



picked background pixels. By varying the proportion of the
occluded region, the occluded samples at diferent levels
can be generated. Te recognition results of diferent
methods are plotted as shown in Figure 7. Similar to the
case of noise corruption, the proposed method out-
performs the reference methods at each occlusion level.Te

CNN-based methods achieve lower robustness than Mono,
BEMD, and proposed method because of the large di-
vergences between the training and test samples especially
at high occlusion levels. Te results show the better ro-
bustness of the proposed method to partial occlusion than
the reference methods.

Proposed NMF Mono BEMD A-ConvNet Res-Net

98.12 96.94 97.27 97.58 97.18 97.46

74.24
66.13

70.72 71.04 68.56 69.84

Method

Re
co

gn
iti

on
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Figure 5: Recognition performance of diferent methods at 30° and 45° depression angles.

Table 7: Training and test samples under SOC.

Depression
angles BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1

Training 17° 228
(SN_9563) 228 227

(SN_132) 294 293 251 294 294 294 294

Test 15° 190
(SN_9563) 191 191 (SN_132) 268 269 190 269 269 269 269

Proposed
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Figure 6: Recognition performance of diferent methods under noise corruption.
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5. Conclusion

Tis paper develops a SAR ATR method based on 2D-
VMD. Te discriminative components are decomposed
from original SAR images via 2D-VMD, which provides
multiscale, time-frequency descriptions of the targets. Te
multitask sparse representation is performed in the clas-
sifcation phase to jointly represent the original image and
its 2D-VMD components. Based on the reconstruction
errors, the target label of the test sample is decided. Ex-
periments are conducted on the MSTAR dataset under
SOC and typical EOCs including confguration variants,
depression angle variances, noise corruption, and partial
occlusion. Based on the experimental results, conclusions
can be drawn as follows: (1) Under SOC, the proposed
method achieves Pcr of 99.57% for ten classes of targets,
which is higher than those of the four reference methods.
(2) Under confguration, the proposed method obtains Pcr
of 98.76% for the six diferent confgurations from BMP2 to
T72. Compared with the reference methods, the proposed
one has better robustness. (3) Under depression angle
variances, the proposed method achieves Pcrs of 98.12%
and 74.24% at 30° and 45° depression angles, respectively,
which outperforms the reference methods. (4) Under noise
corruption and partial occlusion, Pcr of the proposed
method peaks at each noise or occlusion level, validating its
superior robustness over the reference methods. Overall,
the proposed method could efectively improve SAR ATR
performance under both SOC and EOC so has much
potential in the future uses.

Data Availability

Te dataset used to support the fndings of the study is
publicly available.
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