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To solve the problem that the similarity calculation between neighbors was easily disturbed by noise in the traditional nonlocal
mean (NLM) denoising algorithm, a dual-core NLM denoising algorithm based on neighborhood multifeatures and variable-size
search window was proposed. The algorithm first proposed to use the eigenvalues of the structure tensor to classify the region
where the target pixel points were located and used different sizes of the search window to search for similar neighborhoods for
target pixel points in different categories of the region, thus effectively avoiding the problem of oversmoothing or inadequate
denoising of the image caused by the use of the global size. Then, the gradient features between image blocks were defined and
combined with grayscale features and spatial features to measure the similarity of neighborhood blocks, which solved the problem
of noise interfering with the search of similar blocks. Then, an adaptive algorithm with Gaussian–Sinusoidal dual kernel function
and quantitative estimation of the optimal values of the filtering parameters was designed to calculate the neighborhood similarity
weights to improve the accuracy of image denoising. Finally, the similarity weights were used to weight and average the search
neighborhood of the target pixel points to achieve the denoising of the target pixel points. To test the effectiveness of the algorithm,
denoising tests were performed using multiple standard grayscale images with different levels of Gaussian white noise added and
compared with several advanced denoising algorithms. The experimental results showed that the algorithm was effective. The
algorithm improved the image peak signal-to-noise ratio by more than 56.54% on average when Gaussian white noise was
removed, and the structural similarity reached more than 0.701 on average. Compared with the traditional NLM algorithm
and other improved algorithms, the algorithm proposed in this paper had strong denoising ability, better protection of edges
and texture details, and the quality of the image was greatly improved, which had a good application prospect.

1. Introduction

As a kind of information carrier, the digital image was an
essential auxiliary technology in daily life, teaching, and
research. Due to the influence of objective factors such as
equipment and working environment, the digital image inev-
itably mixed with noise, which was not conducive to the
application of the digital image. The noise in most images
comes mainly fromGaussian noise and impulse noise. Gauss-
ian noise was caused by sensor noise and electronic circuit
noise under low illumination or high-temperature conditions.
Gaussian noise was mainly characterized by a relatively high
density and a wide range of intensity fluctuations. Impulse
noise generated by the signal noise intensity was a collective

term for discrete types of noise that appeared in communica-
tion, also called pretzel noise.When the real signal of the image
itself was mixed with the noise signal, it would cause a degra-
dation of the image quality, which would seriously affect the
subsequent processing of the image and the application of the
image. Therefore, removing noise from digital images was an
important way to improve image quality.

Commonly available image denoising algorithms included
spatial domain denoising algorithms, such as mean filtering
algorithm [1], median filtering algorithm [2], Gaussian filtering
algorithm [3], bilateral filtering algorithm [4], etc.; and trans-
form domain algorithms, such as K–L transform algorithm [5],
partial differential equation algorithm [6], wavelet transform
algorithm [7], independent component analysis-based
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algorithm [8], various joint denoising methods and improved
algorithms [9], etc. The abovementioned algorithms targeted
individual pixels in an image as the research target, which was a
denoisingmethod in localmode and suffered from the problem
of local feature leakage, such as image structure texture, which
was difficult to meet the current digital image processing
requirements.

To further improve the image denoising effect, Buades
et al. [10] proposed the nonlocal mean denoising algorithm
(nonlocal means, NLM); however, the algorithm was highly
complex, computationally intensive, and prone to noise
interference, so the denoising effect was not very satisfactory.
In response to these problems, various improvement algo-
rithms have been proposed; for example, Vignesh et al. [11]
used Gaussian and sinusoidal functions instead of the expo-
nential kernel function in the traditional NLM function. Due
to the limitations of the algorithm principle, details such as
the edge texture of the image were damaged. Yuzheng et al.
[12] used multiangle gradient features to solve the problem
of noise interference in similar block searches; however, the
appropriate parameters need to be tested several times. Haiqing
andHongwei [13] used an improved hybrid robust weight func-
tion to calculate the image block similarity weights and com-
bined it with a two-stage denoising framework to achieve the
denoising purpose. The predicted image parameters were diffi-
cult to find accurately, making the denoising results need to be
improved. Han et al. [14] combined neural networks with non-
local data of images as the input of the network and used the
trained network to achieve noise removal. Due to the conver-
gence speed and accuracy of the network, its effectiveness could
be further improved. Zhuhua et al. [15] proposed the detail-
preserving iterative NLMmethod, which achieved better results;
however, due to the variability of regions, the above method
could be improved for removing noise at retail locations such
as edges/textures. Shervan et al. [16] proposed an approach for
noise reduction in texture images, which was based on real word
spelling correction theory in natural language processing. The
proposed approach first generated the most similar pixels to
noisy desired pixels in terms of textural features using local
binary patterns. Then, the best one of the candidates was selected
based on two-gram algorithm. Asem [17] proposed an image
noise removal method based on collaborative filtering and sin-
gular value decomposition. It used the singular value shrinkage
to guarantee the elimination of highly noisy pixels and used the
random matrix to practically choose the level of the singular
value threshold. Khmag [18] used a generative adversarial net-
work model and a semisoft thresholding method to achieve
image noise removal [18], but it was susceptible to interference
from external factors when carrying out noise removal due to the
inability to produce diverse results when considering indepen-
dent samples alone. Khmag [19] used a patch-based estimation
technique to estimate noise level and applied it to the proposed
blind image denoising algorithm. Since the principal component
analysis was used to estimate the noise level of the selected patch,
the method may underestimate the noise level, which can affect
the denoising effect. In summary, the NLM algorithm still had
certain limitations, particularly in the complex structure of digi-
tal image processing; there was a large room for improvement.

This paper improved the traditional NLM algorithm idea
to increase the denoising ability of the algorithm and the
ability of image texture and detail preservation. The main
contributions were as follows:

(1) A method for classifying image regions based on the
eigenvalues of the image structure tensor was pro-
posed to select different sizes of search windows and
adaptive smoothing filtering parameters for denois-
ing images in different categories of regions, thus
reducing the discrepancy between the denoising
results and the original image.

(2) Based on other literature studies, this paper enriched
and improved the definition of the gradient feature
and combined it with the grayscale feature and spa-
tial feature to measure the similarity of neighborhood
fast, which solved the problem that noise interferes
with the search of similar blocks.

(3) A Gaussian-sinusoidal dual kernel function was pro-
posed to calculate the similarity weights, and an
adaptive method was designed to quantitatively esti-
mate the optimal values of the filtering parameters,
which improved the accuracy of image denoising.

Simulation results showed that the method in this paper
was superior to the traditional NLM method and other
improved NLM methods in terms of enhancing image qual-
ity and improving denoising effect.

2. Overview of NLM Image
Denoising Algorithms

The pixel gray value change was a direct reflection of the
image color change and a quantitative display of the image
texture detail transformation, which was the most direct way
to measure the similarity [20], so the traditional NLM
method used the neighborhood grayscale feature to measure
the neighborhood similarity [21], whose formula was shown
as follows:

dgray x; yð Þ ¼ N xð Þ − N yð Þk k22: ð1Þ

Here N xð Þ;N yð Þ represent the pixel neighborhood block
centered at pixel point x, pixel point y, respectively, and dgray
represents the grayscale similarity value of two-pixel blocks.

The denoised estimate bI xð Þ of an image pixel point I xð Þ
affected by noise could be expressed as follows:

bI xð Þ ¼ ∑
y2Sx

W x; yð Þ ∗ I yð Þ: ð2Þ

Here I yð Þ represents the gray value of point y in the
noisy image, Sx represents the search neighborhood centered
on pixel x, and W x;ð yÞ represents the similarity weight
between the two neighborhoods centered on pixel x and pixel
y, respectively, which was expressed as follows:
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W x; yð Þ ¼ 1
∑y2SxW x; yð Þ exp

−
dgray

h2 : ð3Þ

In Equation (3), h represents the smoothing parameter
that determines the degree of filtering of the algorithm.

The traditional NLM algorithm used an exponential
function to calculate the weight value of a similar neighbor-
hood. The exponential function had higher weights in the
region of high similarity, but its weights decay too fast with
the increase of Euclidean distance, which reduced the accu-
racy of weight assignment and led to the blurring of denoised
images. To solve this problem, literature [11] used the Gauss-
ian function, sine function, and other kernel functions to
replace the exponential function in the traditional NLM
algorithm. The kernel function formula was as follows:

Wg x; yð Þ ¼ exp −
d2gray
h2

� �
; ð4Þ

Wd x; yð Þ ¼
sin

πdgray
h

� �
πdgrayh

dgray<h

0 others

8>><>>: : ð5Þ

Here h was the smoothing parameter; dgray represents the
grayscale Euclidean distance between pixel neighborhoods as
shown in Equation (1). Wg x;ð yÞ represents the similarity
weight between the two neighborhoods centered on pixel
point x and pixel point y computed using the Gaussian ker-
nel function, and Wd x;ð yÞ represents the similarity weight
between the two neighborhoods computed using the sinusoi-
dal kernel function.

The Gaussian kernel decreased rapidly with increasing
distance, and when the Euclidean distance of the neighbor-
hood was larger, the Euclidean distance had less influence on
the similarity weight, and the similarity was close to zero,
whereas the sinusoidal kernel had a slow decreasing trend
within a certain Euclidean distance, and when the Euclidean
distance was larger than a certain threshold its similarity
weight was zero, and the neighborhoods with lower similar-
ity were filtered out.

The improved NLM algorithm using several different
kernel functions proposed in literature [11] improved the
problems of the traditional NLM algorithm. However, the
experimental results showed that the algorithm obtained a
better filtering effect than the traditional NLM algorithm
when the noise intensity was weak. But when the image noise
was strong, the improved NLM algorithm with Gaussian
kernel function would reduce the denoising performance
due to insufficient weighting, while the improved NLM algo-
rithm with sinusoidal kernel function would easily cause
blurring of the image due to overweighting. Therefore, the
above algorithms need to be further improved.

3. Improved Nonlocal Mean
Denoising Algorithm

3.1. Selection of Variable Size Windows. It was found that
using a small search window in the smoothed region would
result in a larger difference between the pixel variance of the
denoised result and the original image. Based on the above
understanding, different search window sizes should be used
for different regions to reduce the difference between the
filtered results and the original image.

The structure tensor of an image can effectively reflect
the current distribution of details, and for each pixel point
x;ð yÞ of the region, the structure tensor matrix was defined
as follows:

Tσ x; yð Þ ¼ t11 t12

t12 t22

" #

¼
Gσ ∗ gx x; yð Þð Þ2 Gσ ∗gx x; yð Þ ∗ gy x; yð Þ

Gσ ∗gy x; yð Þ ∗gx x; yð Þ Gσ ∗ gy x; yð Þ
� �

2

24 35:
ð6Þ

In Equation (6), gx;gy represent the gradient in the X
and Y directions, respectively, and Gσ represents the Gauss-
ian kernel in terms of standard deviation, the eigenvalues of
the structure tensor can be expressed as follows:

λ1 x; yð Þ ¼ 1
2

t11 þ t22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t11 − t22ð Þ2 þ 4t212

q� �
; ð7Þ

λ2 x; yð Þ ¼ 1
2

t11 þ t22 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t11 − t22ð Þ2 þ 4t212

q� �
: ð8Þ

Pixels in smooth areas had small differences in eigenva-
lues; pixels in edge/texture areas had larger differences in
eigenvalues. Thus, image region classification can be achieved
by detecting differences in the eigenvalues of each pixel.
Define a region feature value λ and let λ x;ð yÞ¼ λ1 x;ðj yÞ −
λ2 x;ð yÞj, then the whole image region can be divided into n
categories (e.g., detail region, transition region, smooth
region, etc.), and the classification judgment expression was
as follows:

I x; yð Þ 2

A1; λ x; yð Þ ≤ λmin þ
λmax − λminð Þ

n

A2; λ x; yð Þ ≤ λmin þ
2 ∗ λmax − λminð Þ

n
⋮ ⋮

An; λ x; yð Þ ≤ λmin þ
n ∗ λmax − λminð Þ

n

8>>>>>>>><>>>>>>>>:
: ð9Þ

Here λmax; λmin represent the maximum and minimum
eigenvalues of the entire image structure tensor. Ak; k¼ 1; 2;
⋯; n represent the range of regions for different categories,
with smaller k indicating smoother regions and vice versa,
and n represents the number of categories. Based on the
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region classification results, different sizes of search windows
were selected in different regions. Theoretically, the number
of classified regions should be as large as possible so that the
image partition can be divided more carefully. In practice,
when n was larger than 4, the variation of the denoising effect
tended to be unchanged. Therefore, in this paper, the num-
ber of partitions n= 3 was chosen in the experiment.

3.2. Neighborhood Characteristics. Literature [12] defined
gradient features for 0° direction, 45° direction, 90° direc-
tion, and 135° direction, but the gradient features for other
directions were not included in the similarity measure; there-
fore, this paper added gradient features for 22.5°, 67.5°,
112.5°, and 157.5° to improve the accuracy of the similarity
measure, and its specific directions are shown in Figure 1.

Based on the way 0°, 45°, 90°, and 135° were defined, the
gradient equations for the other four directions (the dashed
arrow directions in Figure 1) were defined as follows:

dgrad22:5 x; yð Þ ¼ ∑
k

i¼0
∑
k

j¼0
I x þ i; y þ jð Þ − I x þ iþ 2; y þ jþ 1ð Þð Þ2;

ð10Þ

dgrad67:5 x; yð Þ ¼ ∑
k

i¼0
∑
k

j¼0
I x þ i; y þ jð Þ − I x þ iþ 1; y þ jþ 2ð Þð Þ2;

ð11Þ

dgrad112:5 x; yð Þ ¼ ∑
k

i¼0
∑
k

j¼0
I x þ i; y þ jð Þ − I x þ i − 1; y þ jþ 2ð Þð Þ2;

ð12Þ

dgrad135 x; yð Þ ¼ ∑
k

i¼0
∑
k

j¼0
I x þ i; y þ jð Þ − I x þ i − 2; y þ jþ 1ð Þð Þ2:

ð13Þ
Here x;ð yÞ represents the coordinates of any pixel point

in the noise-containing image. k was the size of the neigh-
borhood, and g x;ð yÞ represents the gray value of the pixel
point with x;ð yÞ as the coordinates.

Based on the above definition, then the new gradient fea-
ture formula for pixel point x;ð yÞ can be defined as follows:

TDgrad x;yð Þ¼ min dgrad0 x; yð Þ; dgrad22:5 x; yð Þ; dgrad45 x; yð Þ;È
dgrad67:5 x; yð Þ; dgrad90 x; yð Þ; dgrad112:5 x; yð Þ;
dgrad135 x; yð Þ; dgrad157:5 x; yð ÞÉ:

ð14Þ

Gradient features reflect changes in the brightness of
neighborhood pixel gray values, and spatial features were
used to measure changes in detail. Therefore, the neighbor-
hood multifeatures of a pixel point x;ð yÞ can be character-
ized by combining the pixel grayscale feature, the gradient
feature, and the spatial feature as follows:

T x; yð Þ ¼min TDgrad x; yð Þ dspace x; yð Þ dgray x; yð ÞÀ Á
:

ð15Þ

Here dspace x;ð yÞ represents spatial similarity features and
dgray x;ð yÞ represents grayscale similarity features, the for-
mula for multifeature similarity measure between the neigh-
borhoods of two-pixel points x1;ð y1Þ and x2;ð y2Þ can be
expressed as follows:

dmul ¼ T x1; y1ð Þ − T x2; y2ð Þk k: ð16Þ

3.3. Dual Kernel Function and Smoothing Parameter
Adaptive Computation. In high-intensity noise, the Gaussian
kernel function had poor denoising performance but main-
tained good detail, while the sinusoidal kernel function had
good denoising ability but tended to overweight the results,
resulting in blurred denoising. To combine the advantages of
both Gaussian kernel functions and sinusoidal kernel func-
tions, the improved kernel function can be expressed as fol-
lows:

W x;yð Þ ¼
exp

d2mul

2 h1ð Þ2
� �

∗ sin
πdmul

h1

� �
=πdmulh2

� �
0<dmul<h1

0 others

8<: :

ð17Þ

Here h1, h2 represent different values of the smoothing
parameter and dmul represents the multifeature similarity
between neighborhoods.

The dual kernel function can effectively avoid the inter-
ference of less similar neighborhoods and achieve a balance
between the Euclidean distance and similarity weights, thus
effectively enhancing the denoising effect and improving
image detail protection. In image smoothing regions, where
pixel redundancy was greater, a larger h1 value could improve
the degree of smoothing; in edge/texture regions, where pixel
redundancy was less, a smaller h1 value was good for main-
taining edges, so the smoothing parameters could be selected
adaptively according to the image region classification results.
Based on the approximate relationship between the filtering
parameter h1 and the noise variance under the Gaussian dis-
tribution characteristics, the optimal filtering parameters for

157.5°

135°

112.5°
90°

67.5°

45°

22.5°

0°

FIGURE 1: Schematic diagram of the different gradient orientations.
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the three different types of regions for images with a gray level
of 255 can be defined as follows:

h1 ¼

2
ffiffiffi
2

p þmax 0; σ1 − 70ð Þð Þ
10

� �
σ2; I x; yð Þ 2 S1

2:33
ffiffiffi
2

p þmax 0; σ1 − 70ð Þð Þ
10

� �
σ2; I x; yð Þ 2 S2

3
ffiffiffi
2

p þmax 0; σ1 − 70ð Þð Þ
10

� �
σ2; I x; yð Þ 2 S3

8>>>>>>>><>>>>>>>>:
:

ð18Þ

Here σ represents the noise variance and σ1 represents
the standard deviation of the noisy image, S1 represents the
edge/texture region, S2 represents the transition region, and
S3 represents the smoothed region.

3.4. Image Denoising. Determining the neighborhood search
window size and the smoothing filtering parameters, the
improved NLM formulation in this paper was as follows:

N xð Þ ¼ 1
∑
y2S

W x; yð Þ ∑y2SW x; yð ÞN yð Þ: ð19Þ

Here N xð Þ represents the filtered gray value of pixel
point x in the noise-containing image, N yð Þ represents the
gray value at point y of the noise-containing image, Sx
denoted the coordinate domain of the pixel point in the
search neighborhood centered at x, and W x;ð yÞ represent
the dual kernel function.

In summary, the block diagram of the algorithmic
scheme proposed in this paper is shown in Figure 2.

The steps can be summarized as follows:

Step 1: Inputting noise-containing images;
Step 2: Use Equation (9) to implement region division
and determine the search window size for different
regions; use Equation (18) to calculate different regional
filtering parameters;

Step 3: Use Equation (15) to calculate the multifeatures
between neighbors;
Step 4: Calculation of similarity neighborhood weights
using Equations (16) and (17);
Step 5: Normalizing the processing weight values and
traversing the neighborhood pixels for steps (3) and (4);
Step 6: Noise removal using Equation (19) for the target
pixels;
Step 7: Applying steps (3)–(6) to the entire image, down
to the last pixel;
Step 8: Output the resulting image.

The flowchart of the algorithm is shown in Figure 3
For a noisy image of size

ffiffiffiffi
N

p
×

ffiffiffiffi
N

p
, the computational

complexity of the algorithm for denoising using this algo-
rithm was O N ×ð P ×MÞ which assumes that the size of the
neighborhood used was

ffiffiffi
P

p
×

ffiffiffi
P

p
, and the size of the search

window was
ffiffiffiffiffi
M

p
×

ffiffiffiffiffi
M

p
:

4. Algorithm Testing and Application

4.1. Experimental Setting. The equipment configuration for
this experiment was Intel(R) Core(TM) I5-7500 with 8.00GB
of RAM, Windows 10, and the processing software was
MATLAB R2022b. Eight standard grayscale images (Jetplane
512× 512, Boat 512× 512, Lena 512× 512, Parrot 512× 512,
Barbara 512× 512, C.man 256× 256, Lax 256× 256, Peppers
256× 256) shown in Figure 4 were used as the test image set,

Image region classification method based on image structure tensor
(determination of variable size search window)

Neighborhood multifeature calculation method based
on gradient feature, gray feature and spatial feature

Gaussian double kernel function and an adaptive method to
quantitatively estimate the optimal value of filter parameters 

(neighborhood similarity weight calculation)

Center pixel noise is removed by weighted average of neighborhood pixels

FIGURE 2: The overall technology diagram.

lnputting noise-containing images

Calculate the structure tensor of the image to realize the region division

Variable size search window size, filtering parameter was determined

Multidirectional gradient feature

Distribution of rights and plants

Neighborhood pixel
 traversal was complete?

Pixel estimation

The entire image pixel
traversal was complete? 

Output result

Yes

Yes

No

No

Gray feature Spatial feature

FIGURE 3: Flowchart of multifeature NLM algorithm with variable
size windows.
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which were added to additive Gaussian white noise with mean
0 and different noise standard deviations σ. They were tested by
the traditional NLM method, the Gaussian kernel function
NLM method, literature [12–15], and the method of this
paper. For the convenience of analysis and evaluation, the
conventional NLM algorithm and Gaussian kernel function
NLM algorithm, literature [12–14] used a neighborhood
window size of 9× 9 and a search window size of 15× 15 in
successive simulation experiments and literature [15] used a

neighborhoodwindow size of 9× 9 and a search window size of
9× 9, with several iterations of 3 and a step size of 6. The
algorithm in this paper had a neighborhood window size of
9× 9 and a search window size of 9× 9 (edge/texture region),
15× 15 (transition region), and 21× 21 (smoothing region) for
the three sizes, respectively.

4.2. Determination of the Parameters. As shown in
Equation (17), the filtering parameters affected the denoising

ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ
FIGURE 4: Test image set (noiseless image): (a) jetplane; (b) C.man; (c) boat; (d) lax; (e) lena; (f ) peppers; (g) parrot; (h) barbara.
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results; therefore, the optimal parameters needed to be deter-
mined. In this paper, the filtering parameter with the maximum
peak signal-to-noise ratio (PSNR) value was selected as the
optimal parameter. The h1 was calculated adaptively using
Equation (18); thus only the optimal value of h2 needed to be
determined. When testing h2, the value of h1 was fixed at 0.02,
and the value of h2 was varied from 0 to 0.1, and then the
optimal value of the filtering parameter h2 was determined
according to the PSNR variation curve of the test image. Four
grayscale images (jetplane, C.man, boat, lax) shown in Figure 4
were used for simulation tests. The images were added with
Gaussian white noise with mean μ¼ 0 and standard deviation
σ¼ 40, then the relationship between h2 and PSNR changes as
shown in Figure 5.

From Figure 5, it can be seen that the PSNR transforma-
tion trend of the test image was increasing and then decreas-
ing, and the best denoising effect was achieved when the
PSNR value was maximum at h2 ¼ 0:03. Therefore, h2 was
tested with the above value in the subsequent simulation.

4.3. Experimental Results and Their Comparative Analysis.
To analyze the effect of noise intensity on different denoising
methods, Gaussian white noise with mean μ¼ 0 and stan-
dard deviationσ¼ 20; 40; 60 was added to the six standard
grayscale images shown in Figure 4, and then the denoising
process was tested by using seven methods. The values of
PSNR and structural similarity (SSIM) for 126 simulation
results are shown in Tables 1 and 2, respectively.

0

PS
N

R

0.02 0.04 0.06 0.08 0.1
Optimal value of the filter h2

30

28

26

24

22

20

Jetplan
C.man

Boat
Lax

FIGURE 5: Schematic diagram of the filtering parameters and PSNR variation curve.

TABLE 1: PSNR (dB) table for different simulation results.

Image σ
Noisy
image

Traditional
NLM

Gaussian
kernel NLM

Literature [12]
method

Literature [13]
method

Literature [14]
method

Literature [15]
method

Algorithms
in this paper

Jetplane
20 22.57 28.12 28.45 28.77 29.25 29.56 30.45 30.38
40 17.26 26.32 26.65 26.92 27.25 27.52 28.15 28.57
60 15.37 23.12 24.45 24.72 25.25 25.42 25.75 26.81

C.man
20 22.68 25.45 26.88 26.95 27.28 28.45 28.88 28.72
40 17.39 23.21 23.52 24.31 24.62 25.61 26.32 26.88
60 15.48 22.47 22.61 23.37 23.71 24.47 24.71 25.14

Boat
20 22.32 27.21 27.78 28.21 28.78 29.21 29.78 28.62
40 17.29 24.21 24.83 25.21 25.83 26.21 26.83 27.56
60 15.61 22.73 23.32 23.73 24.32 24.73 25.32 25.58

Lax
20 22.64 24.12 24.63 25.12 25.83 26.72 27.23 27.06
40 17.43 23.21 23.72 24.21 24.82 25.21 25.98 26.42
60 15.26 20.21 21.63 22.41 22.73 23.21 23.83 24.12

Lena
20 22.49 29.06 29.32 29.75 29.98 30.04 30.13 31.15
40 17.98 24.03 24.67 25.31 25.92 26.36 26.89 26.69
60 15.67 22.23 23.28 23.85 24.36 24.82 25.27 25.84

Peppers
20 22.71 28.96 29.18 29.69 29.75 30.15 30.42 30.12
40 17.42 24.15 24.36 25.27 25.74 26.18 26.91 27.82
60 15.26 23.01 23.41 23.26 24.29 24.75 25.31 25.61
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From Tables 1 and 2, it can be seen that at low noise σ¼ð
20Þ, literature [15] obtained a better denoising effect with
maximum PSNR and SSIM values. The PSNR and SSIM of
the improved algorithm in this paper were closest to the
maximum value, although not the maximum value. How-
ever, as the noise level increased σ¼ð 40; σ¼ 60Þ, the
method in this paper then obtained a better denoising effect,
and its PSNR and SSIM were better than the comparative
literature methods. In this case, at σ¼ 40, the PSNR value of
the traditional NLM method was increased by an average of
38.571%, and the SSIM value reached an average of 0.654.
The PSNR value of the Gaussian kernel function NLM
results was increased by an average of 41.07%, and the SSIM
value reached an average of 0.669. The PSNR value of litera-
ture [12] method results were increased by an average of
44.38%, and the SSIM value reached an average of 0.682. The
PSNR values of the results of the method of literature [13]
increased on average by 47.19%, and the SSIM values
reached an average of 0.694. The PSNR values of the results
of the method of literature [14] increased on average by
49.97%, and the SSIM values reached an average of 0.712.
The PSNR values of the results of the method of literature
[15] increased on average by 53.78%, and the SSIM values
reached an average of 0.745. The PSNR values of the results
of the method in this paper were improved by 56.53% on
average, and the SSIM values reached 0.778 on average, as
shown in Figures 6 and 7.

From the above experimental data, it can be seen that
with the increase of noise intensity, the results of this paper’s
method have been maintaining higher values of PSNR and
SSIM, indicating that this paper’s algorithm had a better

denoising ability and can maintain better image quality while
removing noise.

To have a visual impression of the denoising effect of
each algorithm on the noisy images, the denoising results
of four noise-containing images with noise mean μ¼ 0 and
standard deviation σ¼ 40 were shown. Noise-containing
images and denoising results are shown in Figures 8–11.

From Figures 8 to 11, it can be seen that although the
traditional NLM algorithm removed the noise contained in
the image, the excessive smoothing led to the loss of some
detail information in the image, resulting in blurring of the
details and the regions with rich edge information, as shown
in Figures 8(b), 9(b), 10(b), and 11(b). The denoising effect of
the Gaussian kernel function NLM algorithm was relatively
good, but the denoising results showed some “bar” textures,
as shown in Figures 8(c), 9(c), 10(c), and 11(c), which, com-
bined with the original noiseless image, indicated that the
above textures were extraneous noise. Literature [12] method
improved the quality of the results, but the layout of the
“ringing” phenomenon, as shown in Figures 8(d), 9(d),
10(d), and 11(d), affected the quality of the image. The local
details of the results of literature [13] method were relatively
blurred, as shown in Figures 8(e), 9(e), 10(e), and 11(e).
Literature [14] method resulted in poor denoising of regions
with lower brightness and blurring of local details, as shown
in Figures 8(f ), 9(f), 10(f ), and 11(f). Literature [15] and the
results of the method in this paper had the best noise
removal, the closest to the original noise-free image, and
the details were kept the clearest, especially the letters in
the jetplane image as well as the fuselage, hull and other
positions in the boat image were more easily recognized.

TABLE 2: SSIM table for different simulation results.

Image σ
Noisy
image

Traditional
NLM

Gaussian
kernel NLM

Literature [12]
method

Literature [13]
method

Literature [14]
method

Literature [15]
method

Algorithms in
this paper

jetplane
20 0.637 0.804 0.851 0.804 0.851 0.804 0.851 0.832
40 0.601 0.761 0.768 0.771 0.781 0.791 0.799 0.815
60 0.572 0.623 0.675 0.683 0.715 0.723 0.745 0.781

C.man
20 0.613 0.685 0.728 0.785 0.798 0.815 0.828 0.816
40 0.581 0.628 0.631 0.648 0.651 0.678 0.731 0.768
60 0.532 0.605 0.621 0.635 0.639 0.655 0.661 0.679

Boat
20 0.623 0.704 0.725 0.734 0.765 0.784 0.825 0.814
40 0.564 0.631 0.652 0.671 0.692 0.711 0.752 0.792
60 0.528 0.611 0.626 0.631 0.656 0.661 0.676 0.687

Lax
20 0.625 0.636 0.662 0.686 0.712 0.736 0.762 0.751
40 0.579 0.629 0.648 0.659 0.668 0.689 0.718 0.732
60 0.531 0.579 0.611 0.639 0.641 0.651 0.661 0.665

Lena
20 0.612 0.713 0.732 0.748 0.772 0.786 0.827 0.821
40 0.599 0.635 0.661 0.679 0.702 0.718 0.749 0.789
60 0.524 0.612 0.624 0.641 0.648 0.657 0.671 0.692

Pepper
20 0.619 0.698 0.718 0.729 0.771 0.792 0.831 0.824
40 0.576 0.641 0.652 0.661 0.672 0.686 0.724 0.774
60 0.511 0.603 0.621 0.638 0.652 0.667 0.681 0.698

8 Scientific Programming



To further analyze the denoising effect of the methods in
this paper, the noise residuals of the seven methods were
displayed, as shown in Figures 12–15.

From Figures 12 to 15, it can be seen that the traditional
NLM noise residuals contained more edge texture informa-
tion, especially in Figures 12(a), 13(a), and 14(a), the con-
tours of the aircraft, the camera frame, the hull of the ship
can be seen, which showed that the algorithm lost a large
amount of detail information while removing the noise. The
Gaussian kernel function NLM algorithm removed the noise
residuals with a similar “bar” texture, as shown by the wir-
eframes in Figures 12(b), 13(b), 14(b), and 15(b). Detailed
information such as edges/textures were also present to vary-
ing degrees in the noise residuals of literature [12–14] and in
the noise residuals of literature [15]. In the noise residuals of
this paper’s method, the detail information, such as edge
texture, was the least, and there were almost few signals

that were continuous or had a certain morphology, indicat-
ing better protection of detail information, as shown in
Figures 12(g), 13(g), 14(g), and 15(g).

To better evaluate the quality of the denoised image, the
denoising results can be evaluated using a completely nonre-
ferential algorithm (natural image quality evaluator, NIQE),
and the expert evaluation values (in percentage) were added
together to obtain the evaluation averages of the seven meth-
ods as shown in Table 3. As can be seen from Table 3, the
denoised image obtained using the denoising algorithm pro-
posed in this paper was of the highest quality and was able to
retain the details and texture features of the image better.

Next, the time spent by different processing methods to
process different images was counted, and the average time
was derived using 30 experiments, respectively, as shown in
Figure 16. From Figure 16, it can be seen that compared to
other denoising methods, the running time of the method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ad

iti
on

al
 N

LM

G
au

ss
ia

n 
ke

rn
el

 N
LM

Li
te

ra
tu

re
 [1

2]
 m

et
ho

d

Li
te

ra
tu

re
 [1

3]
 m

et
ho

d

Li
te

ra
tu

re
 [1

4]
 m

et
ho

d

Li
te

ra
tu

re
 [1

5]
 m

et
ho

d

A
lg

or
ith

m
s i

n 
th

is 
pa

pe
r Algorithm name

Av
er

ag
e v

al
ue

 o
f S

SI
M 0.654

0.6055 0.630

0.669 0.682 0.694

0.669

0.712 0.746 0.778

0.6585 0.6825 0.700333333
0.6445

σ = 40
σ = 60

FIGURE 7: Average SSIM for different algorithms.

0.00

σ = 40
σ = 60

PS
N

R 
gr

ow
th

 ra
te

 (%
)

Tr
ad

iti
on

al
 N

LM

G
au

ss
ia

n 
ke

rn
el

 N
LM

Li
te

ra
tu

re
 [1

2]
 m

et
ho

d

Li
te

ra
tu

re
 [1

3]
 m

et
ho

d

Li
te

ra
tu

re
 [1

4]
 m

et
ho

d

Li
te

ra
tu

re
 [1

5]
 m

et
ho

d

A
lg

or
ith

m
s i

n 
th

is 
pa

pe
r

10.00
20.00
30.00
40.00
50.00
60.00
70.00

Algorithm name

44.380%
49.707% 52.550% 56.138% 59.094%

49.972%47.195%44.383%41.066%

62.108%

53.785%

65.248%

56.537%

38.571%

FIGURE 6: PSNR growth rate of different algorithms.

Scientific Programming 9



ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ
FIGURE 8: Noisy images and denoising results of different algorithms (jetplane): (a) noise image; (b) traditional NLM denoising results; (c)
Gaussian kernel NLM denoising results; (d) literature [12] denoising results; (e) literature [13] denoising results; (f ) literature [14] denoising
results; (g) literature [15] denoising results; (h) denoising results of this paper’s method.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ
FIGURE 9: Noisy images and denoising results of different algorithms (C.man): (a) noise image; (b) traditional NLM denoising results; (c)
Gaussian kernel NLM denoising results; (d) literature [12] denoising results; (e) literature [13] denoising results; (f ) literature [14] denoising
results; (g) literature [15] denoising results; (h) denoising results of this paper’s method.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ
FIGURE 10: Noisy images and denoising results of different algorithms (boat): (a) noise image; (b) traditional NLM denoising results; (c)
Gaussian kernel NLM denoising results; (d) literature [12] denoising results; (e) literature [13] denoising results; (f ) literature [14] denoising
results; (g) literature [15] denoising results; (h) denoising results of this paper’s method.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ
FIGURE 11: Noisy images and denoising results of different algorithms (lax): (a) noise image; (b) traditional NLM denoising results; (c)
Gaussian kernel NLM denoising results; (d) literature [12] denoising results; (e) literature [13] denoising results; (f ) literature [14] denoising
results; (g) literature [15] denoising results; (h) denoising results of this paper’s method.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ
FIGURE 12: Noise residuals of test image (jetplane): (a) traditional NLM method residuals; (b) Gaussian kernel NLM method residuals; (c)
literature [12] method residuals; (d) literature [13] method residuals; (e) literature [14] method residuals; (f ) literature [15] method residuals;
(g) residuals of the method in this paper.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ
FIGURE 13: Noise residuals of test image (C.man): (a) traditional NLM method residuals; (b) Gaussian kernel NLM method residuals; (c)
literature [12] method residuals; (d) literature [13] method residuals; (e) literature [14] method residuals; (f ) literature [15] method residuals;
(g) residuals of the method in this paper.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ
FIGURE 14: Noise residuals of test image (boat): (a) traditional NLM method residuals; (b) Gaussian kernel NLM method residuals; (c)
literature [12] method residuals; (d) literature [13] method residuals; (e) literature [14] method residuals; (f ) literature [15] method residuals;
(g) residuals of the method in this paper.
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ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ
FIGURE 15: Noise residuals of test image (lax): (a) traditional NLMmethod residuals; (b) Gaussian kernel NLMmethod residuals; (c) literature
[12] method residuals; (d) literature [13] method residuals; (e) literature [14] method residuals; (f ) literature [15] method residuals; (g)
residuals of the method in this paper.
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proposed in this paper was not the shortest but still better
than the methods proposed in literature [13–15].

5. Summary

In this paper, a dual-kernel adaptive NLM algorithm based
on the variable-size window and neighborhood multifeature
was used for digital image noise removal, which could effec-
tively reduce the interference of neighborhood noise on sim-
ilarity computation, thus improving the accuracy of
neighborhood pixel similarity computation. The algorithm
applied a variable-size search window to determine the
search window size and smoothing parameters of the current
neighborhood and adapted the Gaussian–Sinusoidal dual-
kernel function for similarity weight calculation, which effec-
tively improved the denoising effect and the protection of
edge texture based on effectively improving the image quality
and signal-to-noise ratio. After simulation and verification,
the method in this paper had a better denoising effect and
edge/texture protection ability, which had a certain value of
popularization and application in digital image processing.
However, the experimental images used in this study were
the standard test images in the field of image processing.
How to extend this research to hyperspectral images and
achieve real-time processing results in a short period will

be a pressing issue to be addressed in the next research.
Meanwhile, how to combine this algorithm with the latest
research techniques, such as sparse representation and neu-
ral networks, to obtain more stable and better denoising
results is also an area that needs to be further worked on
in future work.
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