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Alternanthera philoxeroides, an invasive alien malignant weed, competes with rice for water, fertilizer, light, and growth space
before seedling closure stages, which commonly stresses the growth of rice. Chemical herbicides are mainly used to control weeds.
However, excessive use of chemical herbicides could lead to serious environmental pollution. With the rapid development of
artifcial intelligence and deep-learning techniques, it is possible to reduce the use of chemical herbicides by spraying herbicides on
only precise regions of weeds in rice felds. To improve the accuracy of the model in identifying weed regions, in this study the
performance among the you only look once (YOLO) series and single-shot multibox detector (SSD) one-stage target detection
models, i.e., YOLOv3, YOLOv4-tiny, YOLOv5-s, and SSD target detection networks, is discussed. Te experimental results
showed that the SSD-based target detection model for Alternanthera philoxeroides was better than the YOLO series due to its
higher recall, mAP (mean average precision), and F1 values, which reached 0.874, 0.942, and 0.881, respectively. Meanwhile, the
target detection model based on SSD performed better than the YOLO series when dealing with mutual occlusion images between
seedlings and Alternanthera philoxeroides. In conclusion, in this study a high-accuracy method is provided for detecting precise
regions of Alternanthera philoxeroides by constructing a model based on SSD, contributing to the reduction of environmental
pollution.

1. Introduction

Weeds mainly compete with rice seedlings before the closure
stages for fertilizer, light, growth space, and other resources
[1]. Consequently, weeds could afect the efective tillering
and growth of rice seedlings, and could even reduce the yield
by up to 45% in the later stage [2]. Alternanthera philox-
eroides [3] is a malignant weed in paddy felds that invaded
foreign plants worldwide and have a great impact on habitats
and indigenous species. Te growth competition ability of
Alternanthera philoxeroides is stronger than that of rice. As
the weed population density increases, the height of rice

plants decreases. Te presence of Alternanthera philoxer-
oides seriously hinders the growth and development of rice,
resulting in decreases in rice spike length and efective spike
number, and a signifcant reduction in rice yield [4]. Due to
its strong asexual propagation ability, Alternanthera phil-
oxeroides cannot be efectively removed through mechanical
weeding. To date, spraying chemical herbicides is the main
method for controlling Alternanthera philoxeroides [5]. Te
chemical weeding method has the advantages of high ef-
ciency and can save considerable time and manpower.
However, chemical weeding includes continuous and full
spraying. Tus, crops cannot be distinguished from weeds,

Hindawi
Scientific Programming
Volume 2023, Article ID 9958827, 10 pages
https://doi.org/10.1155/2023/9958827

https://orcid.org/0000-0003-3863-3092
https://orcid.org/0000-0003-3256-1614
https://orcid.org/0000-0002-7987-8929
mailto:dengxiangwu123456@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9958827


and herbicides will be evenly distributed in the spray area,
which is undesirable. Tis process not only pollutes the
environment but also causes certain damage to rice seedlings
when indiscriminate herbicide spraying is adopted in paddy
felds. Terefore, chemical herbicides should be sprayed
efectively in areas with weeds. With the rapid development
of artifcial intelligence and deep learning [6], it is possible to
spray chemical herbicides accurately according to the re-
gional position of weeds in rice felds [7, 8].

Due to the strong feature learning ability of deep
learning, such as convolutional neural network (CNNs)
extracting features through convolution, AlexNet [9], and
VGGNet [10], the target detection feld has been rapidly
developed and applied in the agricultural feld [11]. Te
RCNN series includes target detection algorithms such as
the frst-stage target detection algorithm and the second-
stage target detection algorithm. First, the RCNN target
detection method [12] was proposed based on the selective
search algorithm. Although the accuracy of this method has
been greatly improved compared with that of traditional
manual feature detection, RCNN has shortcomings such as
slow training and large-disk space requirements. To avoid
the shortcomings of RCNN, fast RCNN directly uses the
softmax function to replace the traditional SVM classifer
[13]. Tis method extracts the features of the proposed
region on the convolution feature map of the last layer,
avoids the problem of repeated convolution calculation in
RCNN, and improves the speed and accuracy. To avoid the
large amount of time consumption required by the selective
search method in Fast RCNN [14], Faster RCNN proposes
a method to quickly generate fewer candidate frames with
high quality and accuracy, that is, region proposed network
(RPN) [15]. Faster RCNN was applied to weed identifcation
in cotton felds under complex feld backgrounds [16, 17]
and achieved good results. Faster RCNNwas deployed to the
detection algorithm of weed targets with a weeding robot
[18], and it achieved good results on lawn weeds [19].

Te YOLO [20] and SSD series are frst-stage target
detection algorithms. SSD network can efectively learn the
RPN idea of Fast RCNN. By referring to YOLO-related
processing methods, it could predict multiple bounding
boxes and corresponding categories at the same time in the
detection process, and fnally, generated detection results
through the nonmaximum suppression method. SSD could
use multiresolution feature maps for simultaneous detection
in multiple degrees, and each feature map independently
predict the target category and frame ofset; thus, realizing
a more accurate real-time monitoring framework.

Te SSD target detection algorithm adopts a design idea
based on regression. By adding multiple convolution layers
to the basic VGGNet network, and regressing the categories
and boundary boxes of multiple regions from multiple
convolution feature maps, this method can better balance
the accuracy and efciency of target detection.Tree datasets
[21] were constructed with diferent resolutions for weeds in
cotton felds, and the YOLOv3 model was used to optimize
diferent datasets. Te experimental results showed that the
models could meet the production needs. YOLOv4 was used
to detect weeds at the seedling stage of 3–5 leaves of corn, 52

pixels× 52 pixels of corn seedlings, and 13 pixels× 13 pixels
of weeds could be detected [22]. Te method of YOLO V5s
was used to apply target detection before fruit thinning,
which is signifcant to achieve early production forecast and
automatic fruit thinning [23].

Due to the small row spacing and plant spacing of rice
seedlings at the seedling stage, the gap between the seedlings
returning to green after transplanting [24, 25], provided time
and space for the propagation of Alternanthera philoxer-
oides. With the gradual tillering of seedlings and the growth
of weeds, seedlings and weeds inevitably block each other in
paddy felds. Tese factors pose a great challenge to target
detection based on the target frame. Terefore, in this paper
the target detection method of Alternanthera philoxeroides
in the seedling stage of rice felds is studied. Te problem of
shelter is very common in the agricultural feld. Seedlings
and weeds in the rice seedling stage are often intertwined.
However, when rice seedlings and weeds are seriously
blocked, the detection algorithm faces a large challenge, and
it is an urgent problem to be solved in the current feld of rice
feld weed detection. In this paper, taking weeds in the rice
seedling stage as the research object, aiming at images with
complex backgrounds in natural environments an end-
to-end weed target detection model is proposed to improve
the recognition rate of small targets of weeds in the rice
seedling stage in images with complex backgrounds.

2. Materials and Methods

2.1. Collection of Sample Images in Paddy Fields. Te sample
images of Alternanthera philoxeroides in rice felds were
collected 15 days after rice transplanting. Te rice seedlings
were not sealed when the images were collected. A total of
210 images were collected and unifed to themodel input size
by size transformation for further processing. Te four
model input dimensions are shown in Table 1. Each image
contained at least one target regional of Alternanthera
philoxeroides. Figure 1 showed a sample image of rice
seedlings and two regions of Alternanthera philoxeroides
that were manually labeled with a red wire frame.

2.2. Process of Detecting Target Regions. Te research fow of
the target detection method of Alternanthera philoxeroides,
the weed in the rice seedling stage, based on the SSD model,
is given as follows (Figure2):

(1) RGB sample images of Alternanthera philoxeroides
in a natural paddy feld environment were obtained.

(2) Te artifcial target frame containing Alternanthera
philoxeroides was marked on each image to form the
corresponding target label; 80% of all RGB sample
images of Alternanthera philoxeroides and their
corresponding labels were randomly selected as
training samples, and the remaining 20% of the
sample images were used as testing samples.

(3) Based on the SSD model, a sketch image target
detection model of weedy lotus seeds in the rice
seedling stage was constructed.
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(4) Temodel was trained with the corresponding target
frame label sample images formed by the RGB
sample images of the Alternanthera philoxeroides
weed and the artifcial target frame label in-
formation. Te SSD model was used to detect the
position of Alternanthera philoxeroides, and the
position of Alternanthera philoxeroides in the rice
feld was output to realize weed position detection in
the rice feld seedling stage. Ten, we tested and
analyzed each target detection model based on the
test set.

2.3. Target Detection Model Based on SSD. Te SSD algo-
rithm improves the model detection ability for small objects.
At present, multiscale feature detection represented by
a feature pyramid has become a basic method to improve the
model detection ability for small targets. Te feature pyra-
mid model frst appeared in the feature pyramid networks
(FPN) detection model. Tis method extracts feature images
of diferent resolutions from the backbone network and then
uses the upsamplingmethod to improve the resolution of the
deep low-resolution image and fuse the features with the
shallow high-resolution feature layer through a lateral
branch network. Finally, the detector is used to detect objects
of diferent scales in a fused multiscale feature layer. Tis
method extracts features of diferent scales from feature
layers of diferent resolutions, which is conducive to the
performance improvement of the detector. However, at the
same time, the amount of calculation is increased and the
reasoning performance is reduced. To improve the operation
speed, SSD adopts a simple multiscale feature layer pre-
diction and does not fuse diferent scales. Terefore, it has
a fast reasoning speed and improves the model detection
ability for small targets.

In this study, the model realizes the detection target
through three steps. First, a convolution layer in a deep
convolution neural network extracts the depth features of
a weed image. Second, a region box extraction algorithm is
used to locate the position of the weed region. Tird, the
extracted features are used to distinguish the category of
weeds. In the SSD regression framework, which is shown in
Figure 3, a pretrained VGG-16 convolutional neural net-
work model was selected as the basic network and the target
detection task was realized by modifying and fne tuning the
VGG-16 network. Based on SSD regression, the position and
category information of multiple targets could be obtained
and combined with the idea of an RPN multiscale anchor
frame, the real-time detection efect was realized under the
premise of ensuring a certain level of accuracy. Te con-
volution neural network was used as the backbone network,
and an auxiliary structure were added to the network to
generate a multiscale feature map detection method.
Convolution layers were added to the end of the truncated
basic network, and the size of these convolution layers was
gradually decreased to obtain the predicted multiscale
detection value. Te detected convolution model was dif-
ferent for each feature layer. Using the multiscale regional
features of each position of a whole image for regression
not only had the characteristics of fast detection speed but
could also greatly improve the accuracy of region box
prediction.

Table 1: Te model detection performance for Alternanthera philoxeroides.

Model Input dimension Network mAP F1 Precision Recall
YOLOv3 416× 416 DarkNet-53 0.661 0.392 0. 7 0.246
YOLOv4-tiny 416× 416 CSPDarkNet 0.791 0.701 0.909 0.571
YOLOv5-s 640× 640 Focus +CSPDarkNet 0.939 0.880 0.908 0.851
SSD 300× 300 VGGNet 0. 42 0.881 0.884 0.874
Te highest result was bold-facing.

Figure 1: A sample image containing rice seedlings and Alter-
nanthera philoxeroides in a paddy feld.

Color sample images of weeds at seedling stage of
rice field were collected under natural conditions

Artificial marking of seedling and weeds
in the image

Build target detection model of SSD

Training and testing of weed target model
in paddy field

Image preprocessing and data amplification

Figure 2: Flow chart of the target detection method for Alter-
nanthera philoxeroides.
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SSD processes are performed on multiple feature maps,
and SSD directly performs classifcation and region box
regression using a scoring mechanism. As shown in Figure 4,
an input image with small set of 8× 8 or 4× 4 default boxes
with diferent aspect ratios were evaluated at each position
on the feature map and the SSD processed in the network
performs convolution. For each default box, the shape ofset
and confdence for all object categories were predicted.
During training, these default boxes were frst matched to
the real labeled area boxes. Te SSD method is based on
a feedforward convolutional neural network, which gener-
ates a set of region boxes with a fxed size and score of object
categories and fnally achieves detection by utilizing
a nonmaximum suppression (NMS) process.

2.3.1. Priori Bounding Box. A priori bounding box refers to
a frame with a fxed size and position that is preset before the
image is processed to cover the possible objects at a given
position. Te preset of a priori frame inevitably deviates
from the real object, so the priori frame will be fne-tuned
through the regression method to approach the edge of the
real object as much as possible.Te concept of a priori frame
was frst proposed in YOLOv1, was greatly improved by SSD
and, became a classic example of a detection algorithm. Te
priori frame includes two parts the center and size of the
priori frame. Te center of the priori frame can be divided
into N×N grids. Te center of the grid is the center of the
priori frame, which is also referred to as the anchor point. Due
to the unique feature pyramid structure of SSD, the size of the
feature map for detection is [38, 19, 10, 5, 3, 1], which is
actually equivalent to dividing the input image into grids with
sizes of (38× 38, 19×19, 10×10, 5× 5, 3× 3, 1× 1). Te
calculation formula of the grid center coordinate is as follows:

(x, y) �
i + 0.5

fk




,
j + 0.5

fk




 , i, j ∈ 0, fk


 , k ∈ [1, m],

(1)

where i and j are the coordinates of the corresponding points
of the feature map, fk is the size of the feature map, and m is
the number of efective feature layers.

An anchor point corresponds to 4 to 6 prior boxes of
diferent sizes and proportions. Te concept of the scaling
factor is introduced here.Te scaling factor refers to the ratio
of the size of the box to the size of the original image. For
example, if the scaling factor of the frst layer is manually set

to 0.1, the size of the frame of this layer in the original image
is 300× 0.1, that is, 30 pixels. SSD uses the scaling factor
recurrence formula to calculate the scaling factor of each
layer. Te recurrence formula is as follows:

sk � smin +
smax − smin

m − 1
(k − 1), k ∈ [1, m], (2)

where Smin� 0.2, Smax� 0.9, and m� 6. According to the
zoom factor and the size of the input image, the maximum
and minimum sizes of the priori box in each efective feature
layer can be calculated.

With each anchor point as the center, 4 to 6 boxes are
preset according to diferent length and width sizes and
proportions, which is a priori box. Tere are two squares,
the size of the smaller square prior box is Sk and the side
length of the larger square prior box is ������

sk · sk+1
√ . Te side

lengths of the other two rectangular boxes are
1/

����������
aspect ratio


· sk,

����������
aspect ratio


· sk,

����������
aspect ratio


· sk,

and 1/
����������
aspect ratio


· sk, where aspect_ratio is a manually

preset prior frames aspect ratio. A priori frame with dif-
ferent sizes and aspect ratios can be obtained.

2.3.2. Nonmaximum Suppression. NMS is a postprocessing
method of the SSD algorithm when applied to target de-
tection. When performing target detection, we need to
obtain a priori frame of the detected target. However, there
may be multiple diferent small targets in the same detection
image, so multiple diferent priori frames will be generated
in the image. Te NMS method is added to the end of the
SSD algorithm. Te purpose is to select a candidate box that
is closest to the real labeled prior box that can also flter out
the candidate box with a low intersection score of the real
labeled box and give up the redundant priori box that has
a low intersection score. Finally, the priori box that is closest
to the real label is selected.

2.4. Evaluation Performance of Target Detection Models.
Generally, the performance of a target detection model can
be evaluated in terms of classifcation accuracy, precision,
recall rate, precision and recall (PR) curve, average precision
(AP), mAP, etc.

Te four basic evaluation indicators are TPs (true pos-
itives), which means that positive samples are allocated and
the correct samples are allocated, representing correctly
classifed positive samples. TNs (true negatives) refer to the
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negative samples assigned and correct samples assigned
representing correctly classifed negative samples. FPs (false-
positives) refer to samples that are incorrectly allocated as
positive samples and represents negative samples that are
misclassifed. FNs (false-negative) refer to samples that are
incorrectly assigned as negative samples and represents
positive samples that are misclassifed.

2.4.1. Recall. Te specifc meaning of recall is as follows: the
proportion of the number of correct and positive classes
detected by the classifer to the number of all positive classes.
It evaluates the ability of the classifer to detect positive
samples.

Te calculation formula of recall is as follows:

recall �
TP

TP + FN
. (3)

2.4.2. Precision. Te accuracy rate is the probability of
correct detection among all detected targets. Precision and
accuracy are diferent. Accuracy is for all samples, and
precision is only for some of the samples detected (in-
cluding false detection). Te calculation formula is as
follows (4):

precision �
TP

TP + FP
. (4)

2.4.3. Accuracy. Accuracy is the proportion of correct
predictions in all predictions.

Acc �
TP + TN

TP + TN + FP + FN
. (5)

2.4.4. Intersection over Union (IoU). To evaluate the posi-
tioning accuracy of the model, it is necessary to calculate the
IoU, which is the degree of overlap between the real label box

and the network prediction box. Te smaller the IoU is, the
farther the distance between the network prediction box and
the real annotation box. Only when the IoU value between
the real box and the prediction box is greater than the set
threshold value is the prediction box considered a true
positive, and when the IoU value between the real box and
the prediction box is less than the set threshold value, it is
considered a false-positive. Te IoU calculates the ratio of
the intersection and union of the “predicted border” and
“real border,” as shown in Figure 5.

2.4.5. Average Precision (AP). Precision and recall is a pair of
contradictory opposite indicators. Generally, when the
precision is high, the recall is low; when the recall rate is
high, the precision rate is low. Terefore, only in some
simple tasks can the recall rate and precision rate be high.
Terefore, the AP is proposed tomeasure the performance of
the model more comprehensively. Before looking at the AP,
let us take a look at the precision-recall (PR) curve; that is,
the horizontal axis is recall and the vertical axis is precision.
Te AP represents the average value of the detector in each
recall case, which corresponds to the area under the PR curve
(AUC).

From a discrete point of view, the AP can be expressed as
follows:

AP �
 Pri

 r
, (6)

where Pri represents the value of p corresponding to r − i on
the PR curve, and  r � 1.

2.4.6. mAP. Te AP is an identifer for one category,
and the mAP is the average of the AP from the dimension
of categories, so it can evaluate the performance of
multiple classifers. Te size of the map must be in the
interval of [0, 1], and the larger the map is, the better. Tis
index is also the most critical index in the target detection
algorithm.

(a) (b) (c)

Figure 4: Te detection process of SSD: (a) target block diagram, (b) characteristic diagram of 8× 8, and (c) characteristic diagram of 4× 4.
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Figure 6: Continued.

6 Scientifc Programming



mAP �
AP

num classes
. (7)

3. Results and Discussion

3.1. Development Environment. Te model training envi-
ronment used a Windows 10 64-bit operating system.
Anaconda was used for virtual environment construction,
the Python compiler was PyCharm and the deep learning
framework was PyTorch1.2.0. Te dataset annotation used
the wizard annotation assistant to record the BBox in-
formation of weed samples, and the GPU was a GTX 1080 Ti
with 11GB video memory.

3.2. Target Detection Results. Table 1 summarizes the model
performance of the one-stage target detection model
YOLO series (YOLOv3, YOLOv4 tin, and YOLOv5-s) and
SSD. Te precision value of the target detection model
based on the YOLO series was higher than that of the SSD
model, but the recall, mAP, and F1 values of the target
detection model based on SSD were higher than those of
the YOLO series.

Due to the small row spacing and plant spacing of rice
seedlings, there would inevitably be mutual shielding be-
tween seedlings and Alternanthera philoxeroides. In view of
the above situation, as shown in Figure 6, the detection
efect of the target detection model of Alternanthera
philoxeroides based on SSD was better than that of the
YOLO series. As shown in Figure 6(a), the YOLOv3 model
did not detect any weed targets, as shown in Figure 6(b),
YOLOv4-tiny only detected one weed target, as shown in

Figure 6(c), and YOLOv5-s lost one weed target. As shown
in Figure 6(d), the SSD model could identify all weed
targets.

3.3. Target Detection Analysis. As shown in Figure 7, in the
comparison of PR curves of diferent models, the abscissa is
recall and the ordinate is precision. Te area at the bottom
left of the PR diagram represents the efect of the model on
the dataset. Te results showed that the efect of the SSD
model with the dataset of Alternanthera philoxeroides was
higher than that of the YOLOv3, YOLOv4-tiny, and
YOLOv5-s models.

In the comparison of the recall curves of diferent models
in Figure 8, the abscissa is the threshold value of the reserved
prediction frame of the algorithm model and the ordinate is
recall. Te curve represents the ratio of the number of
correct frames predicted by the algorithm model to the
number of all real frames when the threshold was fxed and
the threshold value was 0.5. When the threshold was larger,
the model could still maintain a high recall value, which
proved that the algorithm model performed well with the
dataset. Te results showed that the SSD model had a better
recall curve than the YOLOv3, YOLOv4-tiny, and YOLOv5-
s models.

In the comparison of the F1 value curves of diferent
models in Figure 9, the abscissa is the threshold value of the
reserved prediction frame of the algorithm model and the
ordinate is F1. To discuss the performance of diferent al-
gorithms, the concept of the F1 value was proposed on the
basis of precision and recall to evaluate precision and recall
as a whole. When the curve of the F1 value contained more
areas, the detection efect of the model with the dataset was

(d)

(e)

Figure 6: Detection results of diferent models under occlusion: (a) original images, (b) YOLOv3, (c) YOLOv4-tiny, (d) YOLOv5-s, and (e)
SSD.
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better. Te results showed that the evaluation efect of the
SSD model on the F1 value curve of the Alternanthera
philoxeroides dataset was better than that of the YOLOv3,
YOLOv4-tiny, and YOLOv5-s models.

4. Conclusions

In this study, a target detection method for Alternanthera
philoxeroides in paddy felds was successfully developed by
constructing a model based on an SSD network, and the
position information of the Alternanthera philoxeroides
target was obtained by combining the idea of the RPN
multiscale anchor frame. Under the premise of ensuring
certain accuracy, the real-time detection efect was realized.
While comparing the performance of models constructed
with the target detection networks of YOLOv3, YOLOv4 tin,
YOLOv5-s, and SSD, the values of recall, map, and F1 of the
target detection model of Alternanthera philoxeroides based
on SSD were higher than other models, reaching 0.874 0.942
and 0.881, respectively. For the mutual occlusion images
between seedlings and Alternanthera philoxeroides, the
performance efect of the target detection model based on
SSDwas also better than that of YOLOv3, YOLOv4-tiny, and
YOLOv5-s. It could scrupulously be concluded that the
proposed method might somehow contribute to the re-
duction of environmental pollution by only spraying
chemical herbicides within the precise region of Alter-
nanthera philoxeroides. However, the shortcomings of the
research are as follows: frst, the sample of Alternanthera
philoxeroides in paddy feld is not rich enough and second,
the model is not embedded in the terminal device for
experiment.
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