
Research Article
ScoringNet: A Neural Network Based Pruning Criteria for
Structured Pruning

Shuang Wang and Zhaogong Zhang

Heilongjiang University, Xuefu Road 73, Harbin 150080, China

Correspondence should be addressed to Zhaogong Zhang; 2013010@hlju.edu.cn

Received 30 November 2022; Revised 5 March 2023; Accepted 13 March 2023; Published 14 April 2023

Academic Editor: Dongpo Xu

Copyright © 2023 Shuang Wang and Zhaogong Zhang. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Convolutional neural networks (CNNs) have shown their great power in multiple computer vision tasks. However, many recent
works improve their performance by adding more layers and parameters, which lead to computational redundancy in many
application scenarios, making it harder to implement on low-end devices. To solve this problem, model pruning methods are
proposed, which aim to lower the computational and memory requirements of CNNs. In this paper, we propose ScoringNet,
a neural network (NN) based pruning criteria for structured pruning procedure. ScoringNet generates a set of scores for each
output channel in a model, which is used to reconstruct a prunedmodel later in a structured pruning way. ScoringNet can also use
the gradient information to generate better scores, making the pruned model perform better. By using NNs, there are fewer
hyperparameters, making it easier to implement. Experiment results demonstrate that the proposed ScoringNet can outperform
or achieve competitive results compared to many state-of-the-art methods in both postpruning and pruning-at-initialization
setups.

1. Introduction

Deep learning based computer vision solutions are using
massive convolutional neural networks (CNNs) and large-
scale datasets recently, which require heavy computational
resources. However, computer vision-related tasks are
usually deployed on low-end devices, where users’ tolerance
for latency and computational resources are limited.
Terefore, compressing a large model to a smaller one
without signifcant accuracy loss is important [1–13]. Net-
work pruning is one of the methods which can lower the
computational and memory requirements of CNNs. It
generates a sparse network by removing redundant weights
or activations through iterative training [2, 4, 5, 10, 14–16].

Te early pruning methods focus on unstructured
pruning, which removes single parameters from models
[4, 5, 10, 14–16]. However, these methods require hardware
and software support, making it hard to deploy in the real
world situations. Terefore, many recent works are focusing
on structured pruning [1, 2, 7]. Using structured pruning,

a model can be pruned channel-wise, making the pruned
model require no extra support than the original model.

Te lottery ticket hypothesis (LTH) is introduced re-
cently, which hypothesizes the existence of a sparse sub-
network in the original network, which can perform not
worse than the original network if trained from scratch [17].
Inspired by the LTH, some variants are proposed, such as
generalized LTH [18] and dual LTH [19]. However, most
conventional training-based sparse pruning and LTH-
inspired methods are using train-prune-retrain process,
which is slow and expensive [20]. Terefore, pruning-at-
initialization (PAI) is proposed to minimize the cost of
pruning [20–23]. PAI prunes the models after initialization,
so the training and pruning phase are decoupled, reducing
the pruning process’ complexity.

However, due to the design space of the pruning
function, the handcrafted methods mentioned above, which
are intuitive and explicit, are usually suboptimal solutions,
and enumerating all functions with human labor under the
space is impossible. Terefore, in Liu’s work, evolution

Hindawi
Scientific Programming
Volume 2023, Article ID 9983781, 9 pages
https://doi.org/10.1155/2023/9983781

https://orcid.org/0000-0003-0734-8969
https://orcid.org/0000-0002-1195-936X
mailto:2013010@hlju.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9983781

strategy and genetic programming are used to obtain high-
quality and transferable pruning functions. Terefore, in
Liu’s work [24], evolution strategy and genetic programming
are used to obtain high-quality and transferable pruning
functions. It shows that good pruning functions can be
nonintuitive.

However, despite such nonintuitive functions being
obtained using evolution strategy and genetic programming,
it still needs a lot of computational resources. Since NNs are
known for their ability to obtain implicit mappings from
some features to other features, we use NNs to obtain the
desired implicit mapping, which can approximate such
nonintuitive functions mentioned above, with less time and
computational resources consumed. To this end, we propose
ScoringNet, a tiny NN to obtain the importance score of
each channel, which is suitable for channel pruning, efcient
in computational cost, and transferable, so that one can train
ScoringNet with a small model, making the computational
cost even less. Many studies have shown that the pruning
ratio is better to set layer-wise instead of globally [1], so we
use PRO [25] to obtain the desired layer-wise pruning ratio.

Te input of ScoringNet is the statistical features of each
channel, which has a fxed size. Former methods use norm-
based and gradient-based scoring systems, which can be
calculated by the statistical features we use in ScoringNet’s
input. So ScoringNet should at least outperform those
methods as they can be derived from those statistical
features.

Our main contributions are as follows:

(1) We propose ScoringNet, a neural network based
pruning criteria that can obtain implicit mappings,
which can approximate such nonintuitive functions,
with less time and computational resources con-
sumed. And it is the frst NN-based pruning criteria
to the best of our knowledge.

(2) We show that the ScoringNet we trained using a tiny
model and a tiny dataset can also be used for pruning
a large model.

(3) Experiments show that our model can prune NNs
with relatively low precision loss, which works in
both before training and after training settings, and
its performance is competitive compared to many
state-of-the-art algorithms.

2. Related Work

2.1. Pruning Methods

2.1.1. Unstructured Pruning. Unstructured pruning
methods are simply pruning with a granularity of a single
parameter [4, 5, 10, 14–16]. Although it is hard to speed up
the inference procedure, it still has its value in research.
Recent methods such as sparse structure selection (SSS) [26],
single-shot network pruning based on connection sensitivity
(SNIP) [21], gradient signal preservation (GraSP) [23], and
evolving transferable pruning functions (ETPFs) [24] are
using unstructured pruning manner. Tey make some
breakthroughs by using feature maps, gradient fow and

evolution strategy, and genetic programming, which can also
be used for structured pruning.

2.1.2. Structured Pruning. Unstructured pruning methods
focus on single parameters in a network, they do compress
networks but are difcult to implement in current hardware
and software settings. Terefore, many recent works are
focusing on structured pruning, where network channels
can be removed and the models can be practically com-
pressed and accelerated without any further requirements
[1, 2, 7]. A structured pruning method usually contains
a reconstruction stage, which uses the output channels
remaining and their weights to reconstruct pruned CNNs.

2.1.3. Lottery Ticket Teory. Te Lottery Ticket Hypothesis
(LTH): A randomly initialized, dense neural network con-
tains a subnetwork that is initialized such that, when trained
in isolation, it can match the test accuracy of the original
network after training for at most the same number of it-
erations. Tis hypothesis suggests that one can prune
a network’s weight at initialization, which can not only
reduce the redundant parameters, but also accelerate the
training process thereafter. It is diferent from the original
pruning methods, which prune the given trained dense
networks, so lots of computational costs by training the
dense networks are removed [17].

2.1.4. Pruning Ratio Optimization. Tuning pruning ratios is
a complex task, as determining the level of redundancy in
each layer can be challenging. Furthermore, retraining the
model is often the only way to assess if the current pruning
ratios are efective or not, which can be time-consuming and
expensive. Tus, the pruning ratio optimizer (PRO) [25] is
proposed to optimize pruning ratios in a greedy fashion
based on the error in the fnal layer of the model.

2.2. Other Types of AccelerationMethods for CNNs. Here are
some other common approaches that can accelerate the
CNN models. Combined with pruning methods, these ap-
proaches can be used to achieve further acceleration.

2.2.1. Low-Rank Decomposition. Low-rank decomposition
is an alternative for network compression [27–30]. It ap-
proximates convolutional operations by representing the
weight matrix as a low-rank product of two smaller matrices.
It reduces the computational costs in a diferent way from
pruning, which means there are no convolutional operations
left if it applies in a certain layer. Tough low-rank de-
composition can beneft the compression and speedup of
CNNs, if the compression rate is high enough, the accuracy
drop is not acceptable.

2.2.2. Quantization. Instead of using data type foat or
double, methods based on quantization aims to use integer
weight to reduce the computational costs, therefore accel-
erating its inference [31, 32]. Recent quantization methods

2 Scientifc Programming

have stepped further that they use low-bit integer weight to
reduce the size of the model and computational cost even
more, like ternary quantization [9] only uses 2 bit weight to
represent (−1, 0, 1) which saves 16x in model size. However,
lower bit often causes lower precision.

Despite quantization technique having all the benefts
mentioned above, implementation of the methods based on
quantization still requires both hardware and software
support.

2.2.3. Knowledge Distillation. Knowledge distillation (KD)
is another important branch of network compression tech-
niques. By mimicking the output of a pretrained large model
(also called teacher model), a relatively small model (also called
student model) can obtain the knowledge from the teacher
model, which makes the student model behave as good as its
teacher [3, 33, 34]. Te teacher model is usually treated as
a black box in KD preset, which means only the input and
output (softmax output in most cases) of the teacher model are
accessible, but the parameters are not accessible.

3. Methods

Te motivation for our work mainly comes from [24] that
one can use combination features like L1 − Norm to rep-
resent a large number of weights in a single output channel.
And we can extract the importance score of an output
channel using the features mentioned above. Because neural
networks (NNs) are known for their ability to obtain an
implicit mapping from some features to other features, we
can then use relatively small NNs to map those features to an
important score. To this end, we designed ScoringNet using
simple NNs to get an implicit mapping without causing
heavy computational costs.

An illustration of the pruning procedure of ScoringNet is
shown in Figure 1. Tere are three main components in our
method, namely feature extractor, PRO, and ScoringNet.
Te feature extractor can transfer channels into their sta-
tistical features and can be set to global or layer-wise mode.
We only use the pruning ratio of PRO since the ScoringNet
cannot generate the pruning ratio itself. And the last part,
ScoringNet, is designed to generate scores for every channel
in the original model.

3.1. Notions. In this section, we defne the notions. M de-
notes the original model that is to be pruned. D denotes the
dataset used for pruning. K denotes the total number of
layers. Ck represents the k-th output channel in a certain
layer. Ln denotes the n-th layer in a certain model. wi denotes
the i-th weight in a certain output channel and gi is its
gradient. pn denotes the pruning ratio of the n-th layer. fn

denotes the FLOPs in the n-th layer.

3.2. Feature Extractor. Feature extractor (FE) is designed to
calculate the statistical features of all output channels.
Motivated by [24], we also considered the statistical char-
acteristics of other channels within the same layer as

important factors because they give some extra information
combined with the statistical characteristics of a certain
output channel.

Te statistical characteristics we used are listed below:

(i) Channel’s l1 norm

wi∈Ck

abs wi(. (1)

(ii) Channel’s l2 norm
�������

wi∈Ck

w
2
i

. (2)

(iii) Channel’s mean
1

count Ck(

wi∈Co

wi. (3)

(iv) Channel’s variance
1

count Ck(

��������������������

wi∈Ck

mean Ck(− wi(
2

. (4)

(v) Other channel’s l1 norm

wi∈Ln,wi∉Ck

abs wi(.
(5)

(vi) Other channel’s l2 norm
�����������

wi∈Ln,wi ∉Ck

w
2
i

. (6)

(vii) Other channel’s mean
1

count Ln(

wi∈Ln,wi∉Ck

wi. (7)

(vii) Other channel’s variance
1

count Ln(

�����������������������

wi∈Ln,wi∉Ck

mean Ln(− wi(
2

. (8)

For gradient-related features, just replace wi with its
gradient gi.

3.3. ScoringNet. It is hard to simply apply NNs to this kind of
task because the input dimension is usually not a constant,
and even if it were, the computational cost is unacceptable.
To solve this input dimension problem, we use statistical
characteristics of the weights instead of the weights them-
selves. Although we are utilizing those statistical charac-
teristics, it may still not be enough to evaluate an output
channel’s importance, so gradient fow, which is considered
to be an important factor in both pruning before training
and pruning at the early phase of training tasks [21–23],
together with the weights themselves, is also added into the
input of our proposed ScoringNet.

Scientifc Programming 3

As shown in some previous works, only a single L1 or L2-
norm based method can perform well enough, so simply ap-
plying a linear function to those statistical characteristics should
also get an acceptable result, which should be not worse than
only using one of them. NNs can be treated as a combination of
linear functions and nonlinear functions (if activation functions
like ReLU are used), which suit this kind of task well.

To this end, we propose weight-only networks, namely
ScoringNet-s and ScoringNet-l, and gradient-related net-
works, ScoringNet-gs and ScoringNet-gl. “-s” stands for
small, “-l” stands for large, and “-g” stands for gradient-
related. Te abovementioned small networks contain only 4
fully connected (FC) layers with 128 nodes in each layer,
which is the same with all FC layers below, followed by 3
ReLU functions after the frst three FC layers and the large
ones contain 8 FC layers, with 7 ReLU functions after the
frst seven FC layers; for both networks, there is a normal-
ization layer which normalizes all the “scores” to (−5, 5). All
ScoringNets mentioned above are used for the convolution
layer. For linear layers, there are ScoringNet-s-l, ScoringNet-
l-l, ScoringNet-gs-l, and ScoringNet-gl-l with the same
settings mentioned above. Since the input vector only has 8
or 16 attributes, a very large NN is not necessary.

3.4. Training ScoringNet. Training such NNs is quite tricky
since removing or masking out the pruned parameters is not
a diferentiable operation. One way to solve this problem is
to imitate other methods’ output masks, the other is to use
a soft mask to keep the gradient fow.

For the soft mask solution, instead of reconstructing
a new model, we multiply exp(tanh(score(Ck)) − 1) to all
weights in Ck, so that the backward propagation can work in
our ScoringNet.

4. Experiment Result

4.1. Datasets. We evaluate our method and other pruning
algorithms on CIFAR-10, CIFAR-100 [39], and
ILSVRC2012 (ImageNet) [40]. Tese datasets are used for
the single-label image classifcation task, which is usually
considered to be a baseline among visual tasks. CIFAR-10

and CIFAR-100 have 10 and 100 classes, respectively, both
consisting of 50,000 training images and 10,000 testing
images. Te 3-channel RGB images have 32× 32 resolution,
and the label distribution is equally balanced. At the training
and evaluating stage, we use 40,000 randomly sampled
training images to train the model, and the other 10,000
training set images form a validation set.

ImageNet is a large-scale benchmark compared to
CIFAR-10 or CIFAR-100, consisting of a train-split of 1.28
million images and a val-split of 50,000 images. Te 1,000
classes have balanced label distribution in both splits. Te
images have various resolutions, so the images are resized to
25× 256 for batched training and testing. At the training and
evaluating stage, 95% of the train-split (randomly sampled,
referred as the training set in this section) are used to train
the models, and perform validation on the remaining 5%
train-split.

4.2. Base Models. We evaluate our method and other
pruning algorithms on VGG-16/19 [44] and ResNet-50 [45].
VGG architecture features sequentially connected con-
volutional layers, followed by 3 fully connected layers for
classifcation. Each convolutional or fully connected layer is
rescaled by a batch normalization layer and activated by
a ReLU function. VGG-16 and VGG-19 have 13 and 16
convolutional layers of 3× 3 kernels, and the channel
number range from 64 to 512.

4.3. Setups. For PAI setting, we frst train a VGG-16 model
for 5 epochs. Ten, we train ScoringNets with the soft mask
method on the half-trained VGG-16 on CIFAR-10, then use
the trained ScoringNets on eachmodel-dataset combination.
We train convolution-related ScoringNet and linear-related
ScoringNet separately. We use the output of the original
model as ground truth, which means we do not want the
pruned model to have better accuracy; we want the pruned
model to have a similar behavior with the original model.

For experiments with CIFAR-10/100, we use the PAI
setting; our method is compared with other SOTA-pruning
methods with VGG-16/CIFAR-10 and VGG-19/CIFAR-

original
model

Feature
Extracter ScoringNet

scores

PRO

parameters

pruning ratio pruned
model

Figure 1: An illustration of the pruning procedure of ScoringNet.Te original model’s parameters are frst fed into the feature extractor and
PRO. With the statistical features, ScoringNet can generate scores for every channel. Te pruned model then can be generated from the
scores, pruning ratio, and the original parameters.

4 Scientifc Programming

100. Base model and pruned model are trained for the same
epochs and learning rate.

For experiments with ImageNet, we use a train-prune-
retrain manner. In the retraining phase, the pruned models
use the same data in the training phase. Te ScoringNets, in
this part, are trained with pretrained VGG-19 on CIFAR-100
and then transfered to prune pretrained VGG-16 and
ResNet-50 with ImageNet.

4.4. Compared Methods. Our method is evaluated in com-
parison with several SOTA-pruning methods, including L1-
norm [35], generative adversarial learning (GAL) [36], sparse
structure selection (SSS) [26], generalized symmetric divergence
(GSD) [37], high rank of feature maps (HRank) [38], slimming
(SLIM) [41], evolving transferable pruning functions (ETPF)
[24], single-shot network pruning based on connection sensi-
tivity (SNIP) [21], gradient signal preservation (GraSP) [23], CP
[2], runtime neural pruning (RNP) [42] and feature boosting
and suppression (FBS) [43], channel pruning via Lookahead
Search-Guided Reinforcement Learning (RL-MCTS) [46], and
structural redundancy reduction (SRR) [47].

4.5. CIFAR-10. We conduct our experiment on dataset
CIFAR-10 with base model VGG-16. To demonstrate the
performance of our ScoreNets, we compare ScoreNets with
L1, GAL, SSS, G-SD, and HRank.

As shown in Table 1, ScoringNet-gl gets the highest test
accuracy, and all our results maintain the base accuracy with
a smaller size and fewer FLOPs. Our models saved 51.0% to
52.1% FLOPs and 82.8% to 83.3% parameters, respectively,
which is comparable with other SOTA methods. Deeper
ScoringNets (ScoringNet-l and ScoringNet-gl) get better
performance, and ScoringNets with extra gradient input
(ScoringNet-gs and ScoringNet-gl) do not have a signifcant
performance boost in this setup. Compared to the well-
performed G-SD method, we are using small NNs instead of
handcrafted metric, which cannot be derived from a shallow
NN, showing that there should be NNs that can have a better
performance.

4.6. CIFAR-100. On dataset CIFAR-100, we evaluate our
methods with base model VGG-19. We choose SLIM, G-SD,
ETPF, SNIP, and GraSP to compare with. In these methods,
G-SD uses handcrafted metric, ETPF uses intuitive metric
obtained by genetic programming, and SNIP and GraSP use
gradient-based metrics.

As shown in Table 2, our models saved 66.7% FLOPs and
4.7% parameters, respectively. Compared to ETPF, our models
get similar accuracy with slightly more FLOPs and parameters,
but it is much quicker to get the desired pruning function with
our approach. Compared to G-SD, our models saved more
FLOPs and parameters and achieved similar accuracy drop.

4.7. ImageNet. On ImageNet, we evaluate our methods with
base model VGG-16 and ResNet-50, and compare themwith
CP, G-SD-A, ETPF-A, RNP, SLIM, FBS, G-SD-B, ETPF-B,
RL-MCTS, and SRR.

Te experiment results with VGG-16 are shown in
Table 3, ScoringNets outperform other methods with similar
pruning rates. Since our ScoringNets used here are trained
from VGG-19/CIFAR-100, the experiment results also show
that our method is transferable through datasets and CNNs
with plain architecture.

For experiment with ResNet-50, we add ScoringNet-gl-
Scratch that train from ResNet-50/CIFAR-100 for com-
parison. Table 4 shows the experiment results with ResNet-
50, and ScoringNets also get competitive results compared to
other methods. Since ResNet has skip connections, which
VGG-19 does not have, our results shows that we can
transfer the ScoringNets trained from plain architecture to
other architectures like ResNet. But the results also show that
the ScoringNets trained from VGG-19 are not optimized,
and one can get better ScoringNets by training them from
the same architecture.

For ResNet-50, inspired by [48], we also designed a 90-
epoch schedule, marked with “-90” in 4, which have better
performance than the default 30-epoch schedule. Tese
results show that it is possible to improve the pruned model
using a better retraining schedule.

4.8. Training by Imitating Other Methods. Tere is another
way to train ScoringNets, which is by imitating other methods’
behavior. We use the L1-norm as a reference to train Scor-
ingNets by taking the channel’s L1-norm rank as ground truth.

We test both strategies on VGG-16/CIFAR-10, using
ScoringNet-s and the target FLOPs to be pruned is 50%. As
shown in Figure 2, ScoringNets trained in this way perform
worse than the “train from scratch” strategy, but they do
learn something useful from the L1-norm method. Based on
this observation, we use the “train from scratch” manner to
train our ScoringNets in other sections.

4.9. Implementation Details. We use Pytorch to implement
the proposed ScoringNet approach. We use the stochastic
gradient descent algorithm (SGD) as our optimizer with an
initial learning rate of 0.01. Batch size, weight decay, and
momentum are set to 128, 0.0005, and 0.9, respectively.

For experiments conducted on CIFAR-10/100, we use
half-trained torchvision model as stated in 4.3. For exper-
iments conducted on ImageNet, we use the pretrained
torchvision model. After pruning, we retrain the pruned
model for 30 epochs, with the learning rate being divided by
10 every 10 epochs.

For experiments marked with “−90”, we use a diferent
schedule, which is inspired by [48]. We use the stochastic
gradient descent algorithm (SGD) as our optimizer with an
initial learning rate of 0.1 for 10 epochs, then 0.01 for 15
epochs, then 0.001 for 25 epochs, and 0.0001 for 40 epochs.

5. Ablation Study

In this section, we discuss which factor is more important in
our method. Tere are some main components in our
method, the feature extractor (FE), pruning ratio optimi-
zation (PRO), and ScoringNet. Since ScoringNet depends on
the output of FE, we only consider the impact of ScoringNet
and PRO.

Scientifc Programming 5

Table 1: Result on VGG-16/CIFAR-10.

Methods Test Acc.
(%)

Acc. ↓
(%) FLOPs (M) FLOPs ↓

(%) Params (M) Params ↓
(%)

L1 [35] 93.25⟶ 93.40 −0.15 211 34.2 5.40 64.0
GAL [36] 93.96⟶ 93.42 0.54 172 45.2 2.67 82.2
SSS [26] 93.96⟶ 93.02 0.94 183 49.6 3.93 73.8
G-SD [37] 93.45⟶ 93.68 −0.23 62 80.1 0.57 96.2
HRank [38] 93.96⟶ 93.43 0.53 146 53.5 2.51 82.9
ScoringNet-s (ours) 93.96⟶ 94.16 −0.20 165 51.5 2.50 83.0
ScoringNet-l (ours) 93.96⟶ 94.19 −0.23 166 51.7 2.48 83.1
ScoringNet-gs (ours) 93.96⟶ 94.11 −0.15 167 52.1 2.45 83.3
ScoringNet-gl (ours) 93.96⟶ 94.20 − .24 164 51.0 2.52 82.8
Te bold values represent the best values of the these methods.

Table 2: Result on VGG-19/CIFAR-100.

Methods Test Acc.
(%)

Acc. ↓
(%) FLOPs (M) FLOPs ↓

(%) Params (M) Params ↓
(%)

SLIM [41] 73.26⟶ 73.48 −0.22 256 37.1 5.0 75.1
G-SD [37] 73.40⟶ 73.67 −0.27 161 59.5 3.2 84.0
ETPF [24] 73.40⟶ 74.02 −0.62 155 61. 2.9 85.5
SNIP [21] 74.16⟶ 72.84 1.32 — — 2. 9 .
GraSP [23] 74.16⟶ 71.95 2.21 — — 2. 9 .
ScoringNet-s 73.40⟶ 73.89 −0.49 162 60.1 3.0 85.1
ScoringNet-l 73.40⟶ 73.97 −0.57 162 60.3 3.0 85.2
ScoringNet-gs 73.40⟶ 73.95 −0.55 162 60.3 3.0 85.2
ScoringNet-gl 73.40⟶ 74.03 − .63 162 60.2 3.0 85.2
Te bold values represent the best values of the these methods.

Table 3: Result on VGG-16/ImageNet.

Methods Top-1 Acc.
(%)

Acc. ↓
(%) Top-5 Acc. (%) Acc. ↓

(%)
FLOPs ↓

(%)
Params ↓

(%)
L1 [35] — — 89.90⟶ 89.10 0.80 50.0 —
CP [2] — — 89.90⟶ 89.90 0.00 50.0 —
G-SD-A [37] 71.30⟶ 71.88 −0.58 90.10⟶ 90.66 −0.56 57.2 3.4
ETPF-A [24] 71.30⟶ 72.37 −1.07 90.10⟶ 91.05 −0.95 59.0 3.5
RNP [42] — — 89.90⟶ 86.67 3.23 66.7 —
SLIM [41] — — 89.90⟶ 88.53 1.37 66.7 —
FBS [43] — — 89.90⟶ 89.86 0.04 66.7 —
G-SD-B [37] 71.30⟶ 71.26 0.04 90.10⟶ 90.36 −0.26 69.7 5.2
ETPF-B [24] 71.30⟶ 71.64 −0.34 90.10⟶ 90.60 −0.50 66.9 4.8
ScoringNet-s 71.30⟶ 71.43 −0.13 90.10⟶ 90.34 −0.24 66.7 4.7
ScoringNet-l 71.30⟶ 71.59 −0.29 90.10⟶ 90.54 −0.44 66.7 4.7
ScoringNet-gs 71.30⟶ 71.63 −0.33 90.10⟶ 90.60 −0.50 66.7 4.7
ScoringNet-gl 71.30⟶ 72.73 −0.43 90.10⟶ 90.64 −0.54 66.7 4.7

Table 4: Result on ResNet-50/ImageNet.

Methods Top-1 Acc.(%) Acc. ↓
(%) Top-5 Acc. (%) Acc. ↓

(%)
FLOPs ↓

(%)
Params ↓

(%)
SSS [26] 76.12⟶ 74.18 1.94 92.86⟶ 91.91 0.95 31.0 —
G-SD-A [37] 76.15⟶ 76.21 −0.06 92.87⟶ 92.92 −0.05 29.1 14.1
G-SD-B [37] 76.15⟶ 75.85 0.30 92.87⟶ 92.66 0.21 44.3 23.2
RL-MCTS [46] 77.34⟶ 76.80 0.54 93.27⟶ 93.00 0.27 46.1 —
SRR [47] 76.13⟶ 75.76 0.37 92.86⟶ 92.67 0.19 44.1 —
ScoringNet-gs 76.13⟶ 75.52 0.61 92.86⟶ 92.44 0.42 45.5 23.7
ScoringNet-gl 76.13⟶ 75.54 0.59 92.86⟶ 92.45 0.41 45.4 23.7
ScoringNet-gl-Scratch 76.13⟶ 75.69 0.44 92.86⟶ 92.62 0.24 45.4 23.7
ScoringNet-gl-90 76.13⟶ 75.76 0.37 92.86⟶ 92.63 0.23 45.4 23.7
ScoringNet-gl-Scratch-90 76.13⟶ 75.83 0.32 92.86⟶ 92.65 0.21 45.4 23.7

6 Scientifc Programming

Train from Scratch
Train from L1-norm

5 10 15 20 25 300
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Figure 2: Experiment result of the training from scratch (top line) and training from L1-norm (bottom line). Both training processes are
sharing the same setup (ScoringNet-s with target FLOPs to be pruned� 50.0%).

Table 5: Comparison between using global pruning ratio and layer-wise pruning ratio.

Methods Test Acc. (%) Acc. Lost
(%) FLOPs (M) FLOPs ↓

(%) Params (M) Params ↓
(%)

ScoringNet-s(global) 93.96⟶ 92.86 1.10 167 51.0 2.50 83.0
ScoringNet-s(global) 93.96⟶ 92.53 1.43 118 65.3 1.86 87.3
ScoringNet-s(global) 93.96⟶ 90.14 3.82 84 75.4 1.36 90.7
ScoringNet-s(layer-wise) 93.96⟶ 94.16 −0.20 165 51.5 2.50 83.0
ScoringNet-s(layer-wise) 93.96⟶ 94.12 −0.16 117 65.5 1.83 87.5
ScoringNet-s(layer-wise) 93.96⟶ 94.05 −0.09 80 76.6 1.17 92.0

Double ScoringNets
Single ScoringNet

5 10 15 20 25 300
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 3: Experiment result of pruning by using double ScoringNets (top line) and pruning by using single ScoringNet (bottom line). Both
training processes are sharing the same setup (ScoringNet-s with target FLOPs to be pruned� 50.0%).

Scientifc Programming 7

5.1. Global Pruning Ratio vs. Layer-Wise Pruning Ratio.
Without the layer-wise pruning ratio obtained from PRO,
there is only a global pruning ratio that can be used. So we
compare these two approaches with VGG-16/CIFAR-10. As
shown in Table 5, the layer-wise pruning ratio outperforms
the global pruning ratio by 1.3% to 3.91%, which proves that
it is important to use a layer-wise pruning ratio. By in-
creasing the pruning ratio, the global pruning ratio also
sufers from performance degradation caused by in-
formation loss in several layers.

5.2. Single ScoringNets vs. Double ScoringNets. Tere are two
ways to utilize ScoringNets to prune CNNs. Te frst one is
to use a single ScoringNet to handle both convolutional
layers, which are the main part of CNNs, and the fully
connected layers at the end of CNNs. Te second one is to
use two ScoringNets to handle convolutional layers and fully
connected layers separately. We compare these two ap-
proaches with VGG-16/CIFAR-10. Figure 3 demonstrates
that the double ScoringNets approach performs better,
which means despite the FE’s output are statistical char-
acteristics, there are notable diferences in thestatistical
features between convolutional layers and fully connected
layers in neural networks. So, double ScoringNets approach
is recommended.

6. Conclusion and Future Works

In this paper, we propose ScoringNet, a method to obtain
pruning criteria for CNNs’ structured pruning. We use the
FE to extract the statistical characteristics so that the input
dimension of ScoringNet can be fxed and the width of
ScoringNet can be narrowed. We show that by utilizing
gradient information, the quality of the prunedmodel can be
improved. Because CNN models usually have a lot of layers,
which have diferent information densities, we use a layer-
wise pruning ratio which is generated by PRO. Considering
the output of ScoringNet, the layer-wise pruning ratio can be
obtained using other methods.

By proposing ScoringNet, we show that there is a way to
use NNs to prune CNN models. If designed carefully, there
should be better pruning criterion that uses NNs or other
kinds of networks.

Data Availability

Te data that support the fndings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the Natural Science Foundation
of China (61972135) and the Foundation of Graduate In-
novative Research Project of Heilongjiang University
(YJSCX2022-089HLJU).

References

[1] Y. Li, K. Adamczewski, L. Wen, S. Gu, T. Radu, and
L. Van Gool, “Revisiting random channel pruning for neural
network compression,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 191–201, New Orleans, LA, USA, June 2022.

[2] Y. He, X. Zhang, and J. Sun, “Channel pruning for acceler-
ating very deep neural networks,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 1389–1397,
Venice, Italy, October 2017.

[3] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, https://arxiv.org/abs/1503.02531.

[4] Y. Li, S. Gu, L. Van Gool, and T. Radu, “Learning flter basis
for convolutional neural network compression,” in Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 5623–5632, Seoul, Korea, June 2019.

[5] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Re-
thinking the value of network pruning,” 2018, https://arxiv.
org/abs/1810.05270.

[6] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: hardware-
aware automated quantization with mixed precision,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8612–8620, Long Beach, CA,
USA, June 2019.

[7] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-
norm-less-informative assumption in channel pruning of
convolution layers,” 2018, https://arxiv.org/abs/1802.00124.

[8] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep
convolutional networks for classifcation and detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 10, pp. 1943–1955, 2016.

[9] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary
quantization,” 2016, https://arxiv.org/abs/1612.01064.

[10] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural
networks via layer-wise optimal brain surgeon,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[11] C. Li, Z. Wang, and H. Qi, “An efcient pipeline for pruning
convolutional neural networks,” in Proceedings of the
202019th IEEE International Conference onMachine Learning
and Applications (ICMLA), Miami, FL, USA, December 2020.

[12] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via
growing regularization,” in Proceedings of the International
Conference on Learning Representations, Vienna, Austria, May
2021.

[13] S. Gao, F. Huang, W. Cai, and H. Huang, “Network pruning
via performance maximization,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, June 2021.

[14] P. Molchanov, T. Stephen, T. Karras, T. Aila, and J. Kautz,
“Pruning convolutional neural networks for resource efcient
inference,” 2016, https://arxiv.org/abs/1611.06440.

[15] H. Yang, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning
via geometric median for deep convolutional neural networks
acceleration,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4340–4349,
Long Beach, CA, USA, June 2019.

[16] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,”
Advances in Neural Information Processing Systems, vol. 2,
1989.

[17] J. Frankle and M. Carbin, “Te lottery ticket hypothesis:
fnding sparse, trainable neural networks,” 2018, https://arxiv.
org/abs/1803.03635.

8 Scientifc Programming

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1802.00124
https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

[18] I. Alabdulmohsin, L. Markeeva, D. Keysers, and I. Tolstikhin,
“A generalized lottery ticket hypothesis,” 2021, https://arxiv.
org/abs/2107.06825.

[19] B. Yue, H. Wang, T. A. O. Zhiqiang, K. Li, and Y. Fu, “Dual
lottery ticket hypothesis,” in Proceedings of the International
Conference on Learning Representations, Vancouver, BC,
Canada, May 2022.

[20] Y. Cai, W. Hua, H. Chen, G. E. Suh, C. De, and Z. Zhang,
“Structured pruning is all you need for pruning cnns at
initialization,” 2022, https://arxiv.org/abs/2203.02549.

[21] N. Lee, T. Ajanthan, and P. H. S. Torr, “Snip: single-shot
network pruning based on connection sensitivity,” 2018,
https://arxiv.org/abs/1810.02340.

[22] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning
neural networks without any data by iteratively conserving
synaptic fow,” Advances in Neural Information Processing
Systems, vol. 33, pp. 6377–6389, 2020.

[23] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets
before training by preserving gradient fow,” 2020, https://
arxiv.org/abs/2002.07376.

[24] Y. Liu, S.-Y. Kung, and D. Wentzlaf, “Evolving transferable
neural pruning functions,” in Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 385–394, New
York, NY, USA, July 2022.

[25] K. Kamma, S. Inoue, and T. Wada, “Pruning ratio optimi-
zation with layer-wise pruning method for accelerating
convolutional neural networks,” IEICE - Transactions on Info
and Systems, no. 1, pp. 161–169, 2022.

[26] Z. Huang and N. Wang, “Data-driven sparse structure se-
lection for deep neural networks,” in Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pp. 304–320,
Tel Aviv, Israel, October 2018.

[27] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural
network acoustic models with singular value decomposition,”
in Proceedings of the Interspeech, pp. 2365–2369, Lyon,
France, August 2013.

[28] J. Ye, L. Wang, G. Li et al., “Learning compact recurrent
neural networks with block-term tensor decomposition,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 9378–9387, Salt Lake City, UT, USA,
June 2018.

[29] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep
models by low rank and sparse decomposition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7370–7379, Honolulu, HI, USA, July
2017.

[30] Y. Li, S. Lin, J. Liu et al., “Rongrong. Towards compact cnns
via collaborative compression,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, June 2021.

[31] S. Jung, C. Son, S. Lee et al., “Learning to quantize deep
networks by optimizing quantization intervals with task loss,”
in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4350–4359, Long Beach,
CA, USA, June 2019.

[32] K. Zhao, S. Huang, P. Pan et al., “Distribution adaptive int8
quantization for training cnns,” in Proceedings of the AAAI
Conference on Artifcial Intelligence, pp. 3483–3491, Wash-
ington, DC, USA, February 2021.

[33] Z. Wang, “Zero-shot knowledge distillation from a decision-
based blackbox model,” in Proceedings of the International
Conference on Machine Learning, New York, NY, USA, July
2021.

[34] C. Li, Z.Wang, and H. Qi, “Online knowledge distillation with
history-aware teachers,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN), Shenzhen,
China, July 2022.

[35] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning flters for efcient convents,” 2016, https://arxiv.org/
abs/1608.08710.

[36] S. Lin, R. Ji, C. Yan et al., “Towards optimal structured cnn
pruning via generative adversarial learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2790–2799, Long Beach, CA, USA, June 2019.

[37] Y. Liu, D. Wentzlaf, and S.-Y. Kung, “Rethinking class-
discrimination based cnn channel pruning,” 2020, https://
arxiv.org/abs/2004.14492.

[38] M. Lin, R. Ji, Y. Wang et al., “Hrank: flter pruning using high-
rank feature map,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1529–1538,
Seattle, WA, USA, July 2020.

[39] A. Krizhevsky and G. Hinton, Learning Multiple Layers of
Features from Tiny Images, Technical report, University of
Toranto, Ontario, Canada, 2009.

[40] D. Jia, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei,
“Imagenet: a large-scale hierarchical image database,” in
Proceedings of the 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255, Miami, FL, USA, June
2009.

[41] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,
“Learning efcient convolutional networks through network
slimming,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 2736–2744, Venice, Italy, Oc-
tober 2017.

[42] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,”
Advances in Neural Information Processing Systems, vol. 30,
2017.

[43] X. Gao, Y. Zhao, Ł. Dudziak, R. Mullins, and C. Xu, “Dynamic
channel pruning: feature boosting and suppression,” 2018,
https://arxiv.org/abs/1810.05331.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 Computer
Vision and Pattern Recognition, pp. 770–778, IEEE, Las Vegas,
NV, USA, June 2016.

[46] Z. Wang and C. Li, “Channel pruning via lookahead search
guided reinforcement learning,” in Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer Vision,
New Orleans, LA, USA, June 2022.

[47] Z. Wang, C. Li, and X. Wang, “Convolutional neural network
pruning with structural redundancy reduction,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Nashville, TN, USA, June 2021.

[48] H.Wang, C. Qin, B. Yue, and Y. Fu, “Why is the state of neural
network pruning so confusing? on the fairness, comparison
setup, and trainability in network pruning,” 2023, https://
arxiv.org/abs/2301.05219.

Scientifc Programming 9

https://arxiv.org/abs/2107.06825
https://arxiv.org/abs/2107.06825
https://arxiv.org/abs/2203.02549
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2002.07376
https://arxiv.org/abs/2002.07376
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/2004.14492
https://arxiv.org/abs/2004.14492
https://arxiv.org/abs/1810.05331
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2301.05219
https://arxiv.org/abs/2301.05219

