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Identifying hotspot words associated with disease symptoms is paramount for disease prevention and diagnosis. In this study, we
propose a novel method for hotspot word recognition in disease symptoms, integrating contextual weights and co-occurrence
information. First, we establish the MDERank model, which incorporates contextual weights. This model identifies words that
align well with comprehensive weights, forming a collection of disease symptom words. Next, we construct a graph network for
disease symptom words within each time period. Utilizing the graph attention network model, we incorporate word co-occurrence
degree to identify potential hotspot words associated with disease symptoms. We conducted experiments using user-generated
posts from the Dingxiangyuan Forum as our data source. The results demonstrate that our proposed method significantly
improves the extraction quality of disease symptom words compared to other existing methods. Furthermore, the performance
of our constructed recognition model for disease symptom hotspot words surpasses that of alternative models.

1. Introduction

Recently, the application and development of artificial intelli-
gence in the medical field have gained extensive attention.
Leveraging the analysis of large-scale medical data, we can
extract disease symptom hotspot words to assist in disease-
related endeavors. Disease symptom hotspot words refer to
symptom-related terms that have garnered substantial atten-
tion and discussion within the medical field during specific
time periods. Identifying these hotspot words can offer guid-
ance to the medical community, enabling early detection,
warnings, and proactive responses to potential disease risks.
Consequently, the accurate identification of disease symptom
hotspot words has emerged as a prominent research area.

Existing research primarily relies on electronic medical
records and specialized medical datasets of patients for identi-
fication purposes [1]. However, this approach has several lim-
itations. Electronic medical record data is typically obtained
after patients’ visits, resulting in identification occurring during
the middle or later stages of a disease. Furthermore, the process
of collecting and integrating medical data is time-consuming,

making it challenging to promptly reflect on the most recent
disease and medical conditions. Consequently, there is a delay
in early warning and intervention efforts.

In contrast, utilizing data from online medical forums
offers distinct advantages. These platforms capture users’
conditions and requests for help in real-time, allowing for
the timely identification of trending keywords related to
potential disease symptoms. Patients tend to post various
symptoms in various medical forums for consultation in
the early stage of the disease. We can collect these symptoms
and use them to predict upcoming epidemics. The doctor-
patient communication information published in the medi-
cal forum has a strong timeliness and early warning effect. As
a result, the identification process becomes more responsive
and can facilitate early detection and intervention strategies.

Disease symptom words play a crucial role in recognizing
and monitoring disease hotspots, as they reflect the signs and
symptoms of a disease. Many researchers commonly employ
keyword extraction techniques to obtain disease symptom
words. However, when utilizing content from medical for-
ums for disease symptom word extraction, challenges arise
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due to the presence of noisy information and nonrelevant
content.

Existing keyword extraction models like TF-IDF, YAKE
[2], and TextRank [3] can assist in the extraction of disease
symptom words. However, these models have limitations in
considering contextual semantics, word co-occurrence degree,
and the intrinsic properties of words. As a result, their targeting
of disease descriptions for symptom word extraction is rela-
tively weaker, leading to lower accuracy rates.

Certain researchers have explored the application of
graph neural networks (GNNs) in modeling and recognizing
disease symptom hotspot words. This approach effectively
captures the intricate relationships between nodes and uti-
lizes node information to extract context-aware features,
thereby enhancing the precision and accuracy of disease
symptom hotspot word recognition. In disease descriptions,
there exists a certain level of association among disease
symptom words, including co-occurrence and thematic rele-
vance. Leveraging this association can facilitate a more effec-
tive determination of relationships and importance between
nodes. However, the graph attention network (GAT) primar-
ily relies on node connectivity, overlooking the significance
and diversity of edge features. Consequently, this limitation
restricts the model’s expressive power to some extent.

To address the aforementioned issue and further enhance
the quality of disease symptom hotspot identification, we pro-
pose a research framework that integrates contextual informa-
tion for disease symptom word extraction and improves upon
the GAT model for disease symptom hotspot word identifica-
tion. The main objectives and contributions of this research
framework are as follows:

(1) A novel method for disease symptom word extrac-
tion that incorporates contextual weights into the
MDERank model is proposed. This method com-
bines the contextual weights of words with their
semantic relevance. By identifying words that align
well with the integrated weights, we extract disease
symptom words more effectively.

(2) We designed an improved GAT model for disease
symptom hotspot word recognition, which incorpo-
rates word co-occurrence weights. By integrating co-
occurrence degree into the edge features, this model
enhances the learning of node representations, lead-
ing to improved accuracy in identifying disease symp-
tom hotspot words.

(3) We construct a disease symptom word association
graph and utilize the improved GAT model to imple-
ment the embedded representation of nodes. This
approach enables the identification of disease symptom
hotspot words through time series analysis. Experiment
results demonstrate that our proposed method outper-
forms comparison methods in terms of the quality of
disease symptom hotspot word recognition.

The rest of the paper is organized as follows: Section 2
provides an overview of existing research on the identifica-
tion of hotspot words for disease symptoms. In Section 3, we

present the proposed method for extracting disease symptom
words. In Section 4, we detail the methodology to recognize
hotspot words based on the extracted disease symptom
words. Experiment is provided to evaluate the performance
of the proposed method in Section 5. Finally, Section 6 con-
cludes the paper and outlines future work.

2. Related Work

The open and communicative nature of online medical for-
ums provides a valuable source of user-generated text, which
presents an opportunity to extract disease symptom words
and identify disease symptom hotspot words. To address
this, researchers have explored various approaches, including
the utilization of regression models.

Regression models involve building mathematical models
that describe the relationship between known independent
variables and corresponding dependent variable data. For
instance, Yang et al. [4] constructed a word frequency matrix
using TF-IDF and combined a Logistic growth model with a
word frequency rate of change model to identify demand word
attributes. Feng and Kong [5] employed weighted keyword
word frequency analysis to calculate the integrated value of
keywords, revealing research hotspots and change trends.
These approaches demonstrate how regression models can be
applied to extract meaningful information from user-generated
text, aiding in the identification of disease symptom words and
hotspot words.

In addition to the aforementioned approaches, other
researchers have employed various techniques for analyzing
and understanding disease-related information. For exam-
ple, Zhong et al. [6] utilized machine learning and conducted
bibliometric analysis. They employed co-occurrence rela-
tionships and clustering methods to identify the key causes
of disease causation, specifically focusing on infectious disease
research among liver transplant recipients [6]. Dong et al. [7]
employed a topic modeling approach to analyze the semantic
relationships among topics within a corpus. By comparing the
distribution of topics between COVID-19 and other corona-
virus infections, they aimed to explore the research hotspots
in the field of disease infections [7].

Khan et al. [8] utilized convolutional neural networks
and long short-term memory (LSTM) to extract multidi-
mensional time-scale features. These features were then fed
as inputs to the LSTM model, enabling the identification of
potential disease outbreaks by learning representations from
time-series data [8]. Zhang et al. [9] proposed a graph neural
network incorporating attention. Their approach introduced
an attention mechanism in the node feature representation
and leveraged attention from neighbors during the embed-
ding process to recognize node categories [9]. Chen et al. [10]
employed BERT-BiLSTM to learn word embedding repre-
sentations and contextual semantic relations. They then used
graph convolutional networks (GCN) to utilize these repre-
sentations as node features. The recognition results were
obtained through a Softmax layer [10]. Peng et al. [11] uti-
lized the self-attention mechanism of GATs to calculate node
attention coefficients. By assigning different weights to nodes
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in the neighborhood, they achieved the recognition of node
attributes [11]. These studies showcase a range of methodol-
ogies, including bibliometric analysis, topic modeling, deep
learning, and graph neural networks, to analyze disease-
related data and extract valuable insights.

To address the problems of noise, chromatic aberration,
and detail distortion for enhancing low-light images using
existing enhancement methods, Yang et al. [12] proposed an
integrated learning approach (LightingNet) for low-light
image enhancement. Similarly, he designed a powerful
Vision Transformer-based Generative Adversarial Network
(Transformer-GAN) for enhancing low-light images [13].
Guo et al. [14] proposed a deep dual-dynamic context-aware
Poly (A) signal prediction model, called multiscale convolu-
tion with self-attention networks, to adaptively uncover the
spatial–temporal contextual dependence information. He
also presented a variational gated autoencoder-based feature
extraction model to extract complex contextual features for
inferring potential disease-miRNA associations [15]. Li et al.
[16] devised an efficient gated convolutional recurrent net-
work with residual learning to dynamically extract depen-
dency patterns of raw genomic sequences in an efficient
fusion strategy and successfully improve the predicting per-
formance of the translation initiation sites.

Although the mentioned methods encompass various
categories, they do not explicitly incorporate word co-
occurrence weights in GATs. Recognizing this gap, we inte-
grated word co-occurrence information into our disease
symptom hotspot word recognition method through a cor-
relation graph. This fusion of word co-occurrence with side
features aims to enhance the overall quality of disease symp-
tom hotspot word recognition. By incorporating word co-
occurrence weights within the correlation graph, we can cap-
ture the relationships and associations between disease
symptom words more effectively. This integration allows
for a more comprehensive understanding of the context
and connectivity among the words, thereby improving the
accuracy and reliability of identifying disease symptom hot-
spot words.

The proposed method can accurately obtain hot symp-
tom words from the disease help posts provided by patients,
which is conducive to predicting the current popular dis-
eases. Therefore, the research work of this paper can help
the government or the hospital to make preparations for the
prevention and treatment of the epidemic in advance with
the help of the doctor-patient exchange information on the
mutual benefit network in the early stage of the epidemic.

3. A Disease Symptom Word Extraction Model
Incorporating Contextual Weights

Disease symptom words play a vital role in disease descrip-
tions due to their high semantic relevance and importance.
However, extracting these words from disease descriptions
can be challenging due to the presence of noisy information,
including emotional words and irrelevant topics. Such noise
complicates the task of accurately identifying disease symp-
tom words.

We extracted the hot words of disease symptoms from
the help-seeking posts of disease diagnosis information pub-
lished by patients on various doctor-patient communication
websites such as Dingxiangyuan Forum. The following for-
mal definitions are given for descriptive convenience.

Definition 1: Disease Description. A disease description is
defined as a triplet, denoted as d= (t, h, c), where t represents
the date of the description, h represents the title, and c repre-
sents the content of the disease description.

Figure 1 illustrates a disease description example where
disease symptom words, such as “cervical pain,” “insufficient
cerebral blood supply,” “systemic soreness,” “myopia,” and
“fainting,” are identified. The hotspots of the disease symp-
toms are determined to be “cervical pain” and “insufficient
cerebral blood supply.” Table 1 presents the symbols and
their meanings used in this paper.

MDERank [17] is a keyword extraction model that uti-
lizes a pretraining approach. It obtains representations of
masked documents and their originals by masking candidate
words. These representations are then used to calculate sim-
ilarities and rank the candidate words for keyword extrac-
tion. In comparison to other keyword extraction methods,
MDERank maximizes the utilization of contextual semantic
information and mitigates the issue of biased long keyword
selection. However, MDERank does not account for infor-
mation interference and the intrinsic properties of words
themselves.

To address this, we propose incorporating contextual
weight into MDERank to improve the extraction quality of
disease symptom words. To achieve this, we introduce a dis-
ease symptom word extraction model called CW-MDERank
(Contextual Weight MDERank). The model flowchart is
depicted in Figure 2. CW-MDERank incorporates contextual
weight, which considers the degree of association between a
word and other words, as well as the word’s importance

Time: July 15, 2023
Title: Cervical pain with insufficient cerebral blood supply
Content: A 36-year-old female complained of frequent cervical pain and systemic soreness. Upon examination,
she was found to have insufficient blood supply to the brain. Recently, she was found to have myopia of 120
degrees and occasionally fainted. May I ask where to check again?

FIGURE 1: An example of a disease description.
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within the dataset. By doing so, we aim to mitigate the issue of
inappropriate extraction caused by noise interference in
MDERank.

CW-MDERank builds upon the semantic similarity foun-
dation of the MDERank model and enhances it by incorpo-
rating semantic relevance and contextual weights. By doing
so, it provides a more comprehensive evaluation of the impor-
tance and semantic relevance of candidate words, ultimately
improving the quality of disease symptom word extraction.

3.1. Semantic Relevance. w is a word contained in the disease
description d, Em is the masked description text vector

generated by BERT after masking w, and Eo is the original
description text vector generated by BERT. Both do similar-
ity calculations, as shown in Equation (2).

Em ¼ BERT w; dð Þ;  Eo ¼ BERT dð Þ; ð1Þ

D Em; Eoð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Ei
m − Ei

mð Þ2
r

; ð2Þ

where n is the length of d. The higher the value of D (Em, Eo),
the less information is lost from the text after masking and
the less important the words are. For this reason, the seman-
tic relevance is defined as follows:

Wsem ¼ 1
D Em; Eoð Þ : ð3Þ

The larger the value, the more important the word is in
the text.

3.2. Context Weight. D is a set of disease descriptions, w is a
word contained in disease description d, MeanSemSim (w, d)
is the mean of semantic similarity between w and words in d,
and TF-IDF (w, d, D) is the TF-IDF value of the word w. The
context weight is defined as follows:

Wfre ¼MeanSemSim w; dð Þ × TF − IDF d;w;Dð Þ: ð4Þ

The comprehensive weight of a word in a disease descrip-
tion is determined based on the two feature weights men-
tioned previously. This weight value is calculated according
to Equation (5). A higher weight value signifies a greater
importance of the word within the disease description d.

CWMDERank wð Þ ¼ αWsem þ 1 − αð ÞWfre; ð5Þ

where α is the weight balance factor. The top K words ranked
by their comprehensive weights are selected as the extracted
disease symptom words from d, denoted as S= {s1, s2,…, sK}.

4. Incorporating Co-Occurrence for
Recognizing Disease Symptom
Hotspot Words

After extracting disease symptom words, many methods
employ time series analysis and curve-fitting techniques to
infer future trends and identify disease symptom hotspots.
However, these methods often overlook the interword asso-
ciations within the data. GNNs are a class of neural network
models specifically designed to handle graph-structured data,
enabling the learning and representation of relationships
between nodes. Popular GNN models include GCN, Graph-
SAGE, and GATs [18]. Among these models, GAT stands
out by utilizing graph attention mechanisms to learn rela-
tionships between nodes. It calculates attention coefficients
between vertices and their neighboring nodes, aggregating
node features. GAT is advantageous as it does not solely

Disease symptom
words

Rank

Comprehensive
weight

Semantic
relevance

Cosine
similarity

Document embeddingContextual
weight

Document

BERT

Mask candidate
Candidates

Mask
document

Masked document
embedding

FIGURE 2: Framework of the CW-MDERank model.

TABLE 1: Symbols and meanings.

Symbol Description

d Disease description
D The set of disease descriptions
Em Masked vector for d
Eo Original vector for d

MeanSemSim (w, d)
The mean value of semantic similarity

between w and words in d
TF-IDF (w, d, D) The value of TF-IDF for the word w in d
α The weight balance factor
si The ith disease symptom word
G Disease symptom word association graph
si↔sj. si and sj satisfy co-occurrence association
Nco (si, sj) The weight of the co-occurrence edge

vi
(K) Vector feature representation of the ith

node in the Kth time step
P(K) The predicted value at Kth time step

pi
The output result corresponding to

the ith node
L(K) The loss at Kth time step
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rely on graph structure information and effectively captures
correlations between node features [19].

However, GAT solely considers the connectivity of edges
and does not fully leverage edge features. In cases where two
disease symptom words frequently co-occur in the text, there
may exist some relationship or correlation, such as semantic
association or contextual dependency. Consequently, the
GAT model may overlook important information, leading
to a potential loss of information and a decrease in recogni-
tion accuracy.

To address these limitations, we propose a disease symptom
hotspot word recognition model called CO-GAT (co-occur-
rence-based GAT). CO-GAT incorporates the co-occurrence
degree and accounts for the time series data. To facilitate better
understanding, the following definitions are provided:

Definition 2: Co-Occurrence Correlation. Two disease symp-
tom words, si and sj, are considered to be a co-occurrence
association if they exist in the same disease description d.
They are denoted as si↔sj.

Definition 3: Disease SymptomWord Association Graph. G=
{V, E, W} is a disease symptom word association graph,
where

(1) V= {v1, v2,…, vn} is the set of nodes, and node vi
denotes the disease symptom word si;

(2) E= {e1, e2, …, em} is the set of edges, the si and sj
corresponding to vi and vj in e= (vi, vj) satisfy si↔sj;

(3) W= {wij} is the set of edge weights, for ∀e= (vi, vj)2
E, wij=Nco (si, sj). Where Nco (si, sj) represents the
weight of the co-occurrence edge, which denotes the
number of times si and sj appear together in the same
description d.

Figure 3 illustrates a portion of the association graph
constructed using disease symptom words extracted from
disease descriptions posted on the Dingxiangyuan Forum
platform. In this graph, each node represents a specific dis-
ease symptom word, while the edges represent the co-
occurrence relationships between these words. The numeri-
cal values assigned to the edges indicate the corresponding
edge weights, providing a measure of the strength or signifi-
cance of the co-occurrence relationship.

Within the GATmodel, node vectors are initially generated
through random initialization and iteratively updated during
the training process using self-attention mechanisms. How-
ever, it is crucial to incorporate the semantic information of
words as an additional feature. To tackle this, the CO-GAT
model integrates Word2Vec to generate word embeddings
for each word. These word embeddings are subsequently
employed as the initial embedding vectors for the nodes. This
initialization step facilitates the creation of more expressive
node representations, ultimately enhancing the learning and
modeling of node relationships. The initial time step node
embedding vectors can be characterized as follows:

v 0ð Þ
i ¼Word2Vec sið Þ; vi 2 V ; ð6Þ
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FIGURE 3: Disease symptom word association graph.
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where vi2RF is the initial node embedding representation of
the corresponding disease symptom word si.

In the CO-GAT model, we introduce the co-occurrence
degree of nodes as an additional component within the edge
features. This incorporation of the co-occurrence degree
serves as the initial edge embedding representation, contrib-
uting to the improved learning and modeling of relationships
between nodes.

u 0ð Þ
i j ¼ Owij;wij 2W: ð7Þ

In this process, a trainable transfer matrix denoted as
O2RF is utilized to map the co-occurrence degree of disease
symptom word to high-dimensional feature vectors. Then,
the node embedding representations and edge embedding
representations of the current time step are inputted into
the model. To replace the fixed normalization operation in
graph convolution, the attention mechanism is applied,
assigning attention to the set of nodes Ni

(0) in the neighbor-
hood of node vi to learn the weights between the nodes. The
self-attention weights, as in Equation (8), are constructed as
the importance of node vj for node vi. where Wij2RF’×F are
the parameters to be trained, and bij is the bias matrix.

eij ¼ sigmoid Wij ⋅ v
0ð Þ
i þWij ⋅ v

0ð Þ
j þWij ⋅ u

0ð Þ
i j þ bij

� �
:

ð8Þ

To facilitate the comparison of eij between different
neighboring nodes vj of node vi, we normalize it using the
softmax function, as shown in Equation (9). This value
represents the importance coefficient of node vj to node vi.

αij ¼
exp eij

À Á
∑

N 0ð Þ
ij j

n¼1 exp einð Þ
: ð9Þ

Finally, the node features are aggregated and updated at
the current time step to obtain the output of the node fea-
tures for the next time step, as depicted in Equation (10).

v 1ð Þ
i ¼ ∑

N 0ð Þ
ij j

n¼1
αin ⋅ v

0ð Þ
n : ð10Þ

The output of each time step is used as the input for the
next time step, then the output of the node at step K is as
follows:

v Kð Þ
i ¼ ∑

N K−1ð Þ
ij j
n¼1

αin ⋅ v
K−1ð Þ
n : ð11Þ

The set of node vectors is obtained as V(K)= {v1
(K), …,

vi
(K), …, vn

(K)}, with n being the number of nodes, which is
passed through the fully connected layer to obtain the pre-
diction of the nodes, as shown in Equation (12).

P Kð Þ ¼ sigmoid WV Kð Þ þ b
À Á

: ð12Þ

In the given equation, P= {p1,.., pi,…, pN}, pi represents
the prediction result indicating whether node vi is a hotspot
word for disease symptoms, W is a trainable parameter, and
b is a bias matrix.

The model is optimized using the cross-entropy loss
function, and the loss function for the Kth time step is
defined as Equation (13):

L Kð Þ ¼ −
1
N

∑
N

i¼1
yiln pið Þ þ 1 − yið Þln 1 − pið Þ½ �; ð13Þ

where y is the true label, and p is the predicted value.
Finally, the loss function is constructed by taking the sum

of the losses of all time steps as the final loss of the model,
denoted as L= L(1)+…+L(K)+…+L(T), which is used to min-
imize the difference between the model’s predicted results
and the ground truth results, where T represents the total
number of time steps.

5. Experimentation

5.1. Data Set and Parameter Settings. The data source for our
study consisted of disease descriptions posted by users in the
Clinical Internal Medicine section of the Dingxiangyuan
Forum, covering the period from January 2019 to March
2023. To ensure data quality, we excluded disease descrip-
tions that were deemed too short, resulting in a total of
89,644 valid disease descriptions. Python was employed for
data preprocessing tasks, such as segmentation and removal
of stop-words.

To identify disease symptom words and disease symp-
tom hotspot words, we employed the method of expert anno-
tation. Experts with authoritative status in relevant fields
were invited to carry out the annotation work, ensuring
the accuracy and credibility of the results.

To evaluate the recognition effect, we divided the dataset
into 19 subsets based on quarters. We then employed the
Monte Carlo cross-validation method, taking 10 consecutive
subsets at a time. The first seven subsets were used as the
training set, while the last three subsets served as the testing
set. A sliding window of four subsets was utilized, and these
subsets are denoted as DS1–DS3.

The configuration of the experimental machine is Intel
12,900 k, 128GB RAM, ubuntu18.02 operating system, GPU
is RTX3090 ∗2, 24GB video memory, and the programing
language is Python3.8+ pytorch1.8. The optimal parameter
Settings of the adopted model or method are shown in
Table 2.

We record the results of different settings during the
experiment by observing the curves of training loss and vali-
dation performance and perform comparative analysis to
select the optimal model parameters. The choice of batch
size depends on multiple factors, such as hardware resources
and dataset size. An appropriate batch size can affect the
training speed and memory utilization efficiency of the
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model. A larger batch size can increase the training speed,
but it may also lead to insufficient memory. Considering the
size of the dataset, we set the batch size to 32 in this study to
ensure that more data is used to update the model parame-
ters at each training step.

For the choice of train epoch, it indicates the number of
times the model traverses the entire training dataset. The
selection of the number of training epochs in this study is
based on the early stopping method, where we observe the
performance of the model on the training set. When the
performance on the training set tends to stabilize, we stop
training, and in this case, we choose this value as 10.

Regarding Word2Vec, it determines the dimensionality of
the vector representation of each word. Generally, a larger
dimension can capture more semantic information, but it also
requires more training data and computational resources. In this
study, we choose a moderate dimensionality of 300 to maintain
sufficient semantic informationwhile avoiding excessive compu-
tational resources and training data requirements.

As for the learning rate, it is a parameter that controls the
step size of model weight updates, which greatly affects the
convergence speed and stability of the model. We initially set
the learning rate value to 0.001 and adopt learning rate
scheduling technique to gradually adjust the learning rate.
The learning rate is gradually reduced according to a certain
rule, decreasing by a certain proportion at the end of each
epoch. We observe the loss of the model on the training set
and finally set this value to 5e-5.

5.2. Evaluation Indicators. The evaluation metrics utilized for
assessing the recognition quality of disease symptom hotspot
words were Recall, Precision, and F1 score. In the context of
these metrics, TP, FP, and FN represent positive samples pre-
dicted to be in the positive category, negative samples predicted
to be in the positive category, and positive samples predicted to
be in the negative category, respectively.

(1) Recall: Recall is calculated as the ratio of correctly
predicted disease symptom hotspot words to the total
number of actual disease symptom hotspot words. A
higher Recall value indicates a greater proportion of
disease symptom hotspot words that are correctly
predicted, indicating a higher quality of recognition.
The equation for Recall is as follows:

Recall¼ TP
TPþ FN

: ð14Þ

(2) Precision: Precision is determined by the number of
correctly predicted disease symptom hotspot words
divided by the total number of predicted disease
symptom hotspot words. A higher Precision value
signifies a larger proportion of correctly predicted
disease symptom hotspot words and reflects a higher
quality of recognition. The Precision equation is
given by the following:

Precision¼ TP
TPþ FP

: ð15Þ

(3) F1 score: F1 Score serves as a composite metric for
evaluating the performance of the model; the larger
the value, the more robust the model is as follows:

F1¼ 2 × Precision × Recall
Precisionþ Recall

: ð16Þ

5.3. Experimental Results and Analysis

5.3.1. Quality Evaluation of CW-MDERank. We selected
YAKE, TextRank, KeyBERT [20], and MDERank [17] as
the comparison models. YAKE and TextRank are statistically
based methods, while KeyBERT and MDERank are neural
network models based on BERT. We extracted Symptom
words from the disease descriptions using different models,
and each evaluation index is shown in Table 3.

Among these models, TextRank exhibited the poorest
performance in terms of accuracy, recall, and F1 score, result-
ing in the lowest quality of disease symptom words. This can
be attributed to TextRank’s inability to capture semantic
information and its heavy reliance on high-frequency words.
YAKE, on the other hand, demonstrated significantly better
extraction quality than TextRank. YAKE considers the posi-
tional information of the words in the text and models the
positional weights to access the words importance. However,
both are limited in their ability to the semantic metrics.

The KeyBERT model, which employs BERT embeddings
and cosine similarity, outperformed TextRank and YAKE in
extracting symptom words. KeyBERT effectively utilizes con-
textual semantic information from the text, leading to
improved extraction quality. Building upon KeyBERT,MDER-
ank addresses the mismatch between words and document
representations by converting from phrase-text level to
text–text level for similarity computation. As a result, MDER-
ank achieved higher metric scores compared to the previous
three models, indicating superior performance. Overall, the
comparison models demonstrated varying levels of perfor-
mance in terms of accuracy, recall, and F1 score, with MDER-
ank exhibiting the highest scores, followed by KeyBERT,
YAKE, and TextRank.

Among all the models, CW-MDERank achieved the high-
est Recall and Precision scores, surpassing MDERank with an
average improvement of 2.4% and 3.57%, respectively. This

TABLE 2: Experiment parameters.

Parameter name Parameter value

Batch size 32
Train epoch 10
Word2Vec dim 300
Learning rate 5e-5
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notable improvement can be attributed to the incorporation of
contextual weights in CW-MDERank, which helps address
noise and irregularities in disease descriptions. This model
not only leverages contextual semantic information but also
enhances the attribute features of individual words. Conse-
quently, CW-MDERank achieves superior recognition quality
for disease symptom words.

Across different datasets, CW-MDERank consistently
outperformed other models in terms of metric scores. It effec-
tively considers factors such as word similarity and semantic
relevance, resulting in the highest quality of disease symptom
word recognition.

5.3.2. Ablation Experiment. Our proposed model, CWC-
GAT (contextual weights co-occurrence GAT), primarily
consists of two main components: MDERank (CW-MDER-
ank) and GAT (CO-GAT). These components are fuzed
together within the CWC-GAT framework to achieve the
desired model performance.

GAT-MDERank: This variant of the CWC-GAT model
removes the incorporation of contextual weights in CW-
MDERank and the co-occurrence degree in CO-GAT.
Instead, it consists of MDERank and the GAT. MDERank is
responsible for generating disease symptom words, while the
GAT performs disease symptom hotspot word recognition.

GAT-CW-MDERank: In this variant, the incorporation
of the co-occurrence degree in CO-GAT is removed. It pri-
marily consists of CW-MDERank and the GAT. CW-
MDERank is responsible for extracting disease symptom
words, while the GAT focuses on disease symptom hotspot
word recognition.

CWC-GAT: Our proposed model, CWC-GAT, encom-
passes both CW-MDERank and CO-GAT. CW-MDERank
is responsible for extracting disease symptom words from
disease descriptions, while CO-GAT identifies disease symp-
tom hotspot words from the extracted symptom words.

The recognition results of different datasets show that CWC-
GAT improves synchronously in all metrics compared to GAT-
CW-MDERank and GAT-MDERank. After the introduction of
the contextual weighting of words, GAT-CW-MDERank
improves in Recall, Precision, and F1, with an average improve-
ment of 5.33%, 4.6%, and 4.94%, respectively. Comparing GAT-
CW-MDERank, CWC-GAT improved the Recall, Precision, and
F1 scores by 3%, 2.47%, and 2.71% on average. It indicates that

incorporating co-occurrence degree into node relations can
effectively improve the quality of disease symptom hotspot
word recognition.

5.3.3. Comparison of CWC-GAT with Other Methods. For the
purpose of verifying the advancement of our proposed
method, we selected identification methods published in
domestic journals within the last 3 years for comparison.
The identification quality index is presented in Table 4,
and it includes the following methods:

(1) FP-tree [21]: This method utilizes an improved version
of the FP-tree algorithm to extract recurring words as
candidate hotspot words. These candidates are then
expanded into multivariate pointwise mutual informa-
tion (PMI) based on binary PMI. Themethod introduces
temporal features of hotspot words by incorporating
time pointwise mutual information (TPMI). Finally,
neighbor entropy is employed to determine candidate
boundaries and screen out the final hotspot words.

(2) I-BERT [22]: The I-BERT method segments the text
description based on composite keywords. It obtains
word vector representations using the BERT model
and represents each composite word as a collection
of lexical meanings after segmentation. Density clus-
tering is performed, and the retained centers are
concatenated to obtain the centers of the keyword
collection, which are considered hotspot words.

(3) L-ATTN [23]: In this method, hotspot words are
extracted using an improved Latent Dirichlet Alloca-
tion (LDA) model. Additionally, a recognition model
based on the attention mechanism and LSTM net-
work is proposed to predict the popularity and long-
term trends of hotspot words. This information is
then utilized to recognize disease symptom hotspot
words.

(4) BBGANS [24]: BBGANS encodes syntactic features,
such as contextual features and intersentence depen-
dencies, using BioBERT. Themethod generates fusion
representations by incorporating contextual and syn-
tactic features with the help of GATs. Finally, the soft-
max function is employed to compute the values and
obtain the results of disease symptom hotspot words.

TABLE 3: Performance comparison of different disease symptom feature word extraction models.

Data set Metrics TextRank YAKE KeyBERT MDERank CW-MDERank

DS1
Recall 0.488 0.543 0.575 0.599 0.628

Precision 0.455 0.52 0.535 0.552 0.589
F1 score 0.471 0.531 0.554 0.575 0.608

DS2
Recall 0.491 0.559 0.599 0.608 0.639

Precision 0.452 0.5 0.534 0.571 0.614
F1 score 0.471 0.528 0.565 0.589 0.626

DS3
Recall 0.495 0.577 0.616 0.619 0.631

Precision 0.435 0.477 0.488 0.554 0.581
F1 score 0.463 0.522 0.545 0.585 0.605
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Table 5 provides a performance comparison of each
model across different datasets. It can be observed that mod-
els utilizing the attention mechanism outperform FP-tree
and I-BERT. This finding indicates that the introduction of
the attention mechanism in the hotspot word recognition
task effectively enhances the performance of the models.

Moreover, our proposed CWC-GAT model consistently
outperforms previous models in terms of evaluation metrics.
When compared to FP-tree, I-BERT, L-ATTN, and BBGANS,
CWC-GAT exhibits significant improvements in the Recall
metric, with average enhancements of 23.63%, 17.3%, 10.2%,
and 3.83%, respectively. This indicates that CWC-GAT excels
in identifying a greater number of true disease symptom hot-
spot words. In Precision, CWC-GAT demonstrates average
improvements of 17.03%, 13.87%, 9.2%, and 5.43%, respec-
tively, indicating a higher proportion of correctly identified
disease symptom hotspot words compared to alternative
methods. Moreover, in terms of the F1 score, CWC-GAT
exhibits average improvements of 19.96%, 15.39%, 9.69%,
and 4.85%, respectively, indicating better overall recognition
performance of the model.

Among the compared methods, FP-tree exhibits the lowest
recognition quality. It overlooks polysemy and word disambigu-
ation, solely relying on frequency statistics within different time
windows for recognizing disease symptom hotspot words. Con-
sequently, its quality is relatively poor. I-BERT employs the
BERT model to generate vector representations and conducts
clustering based on semantic representations for hotspot word

recognition. However, it is more sensitive to noise and outlier
points.

The L-ATTN method incorporates the attention mecha-
nism into the LSTM network, assigning varying weights to
individual words. BBGANS learns vector representations of
contextual features, models node relationships, and assigns
weights based on their importance. However, both methods
lack consideration of node association relationships and fail
to obtain richer features for attention mechanism calculation
[25]. Consequently, their combined mean values for the
three metrics are lower compared to our proposed CWC-
GAT method.

6. Conclusion

To enhance the recognition quality of disease symptom hot-
spot words, we have developed a method that incorporates
both contextual weights and co-occurrence degrees. Our
approach begins with the MDERank model, which utilizes
contextual weights to extract disease symptom words and
effectively remove text information noise interference. Build-
ing upon this, we have constructed an improved GAT model
that incorporates co-occurrence degree. By integrating the
interword co-occurrence degree into the edge features, we
enhance the representation of internode relationships, result-
ing in higher-quality recognition of disease symptom hotspot
words. Experimental results have demonstrated the superi-
ority of our method compared to the comparison method, as

TABLE 4: Performance comparison of CWC-GAT and other methods.

Data set Metrics FP-tree I-BERT L-ATTN BBGANS CWC-GAT

DS1
Recall 0.411 0.478 0.538 0.591 0.643

Precision 0.356 0.395 0.443 0.479 0.532
F1 score 0.382 0.433 0.486 0.529 0.582

DS2
Recall 0.388 0.451 0.526 0.589 0.624

Precision 0.349 0.388 0.428 0.466 0.514
F1 score 0.367 0.417 0.472 0.520 0.564

DS3
Recall 0.395 0.456 0.533 0.608 0.636

Precision 0.365 0.382 0.434 0.473 0.535
F1 score 0.379 0.416 0.478 0.532 0.581

TABLE 5: Results of ablation experiment.

Data set Metrics GAT-MDERank GAT-CW-MDERank CWC-GAT

DS1
Recall 0.556 0.616 0.643

Precision 0.465 0.507 0.532
F1 score 0.506 0.556 0.582

DS2
Recall 0.548 0.596 0.624

Precision 0.456 0.488 0.514
F1 score 0.498 0.537 0.564

DS3
Recall 0.549 0.601 0.636

Precision 0.448 0.512 0.535
F1 score 0.493 0.553 0.581
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indicated by improved precision, recall, and other evaluation
metrics.

Future work will focus on optimizing the calculation
method of contextual weights for words in disease descrip-
tions. We also aim to further enhance the GAT model to
improve the recognition quality of disease symptom hotspot
words. Additionally, we plan to model and cluster potential
disease symptom hotspot words for analysis, enabling us to
predict the emergence of potential diseases.
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