
Research Article
Deep Neural Network-Based Cloth Collision
Detection Algorithm

Yanxia Jin , Zhiru Shi, Jing Yang, Yabian Liu, Xingyu Qiao, and Ling Zhang

Data Science and Technology, North University of China, Taiyuan 030051, China

Correspondence should be addressed to Yanxia Jin; jyx@nuc.edu.cn

Received 9 August 2022; Revised 27 October 2023; Accepted 18 December 2023; Published 17 January 2024

Academic Editor: Roberto Natella

Copyright © 2024 Yanxia Jin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The quality of collision detection algorithm directly affects the performance of the whole simulation system. To address the low
efficiency and low accuracy in detecting the collisions of flexible cloths in virtual environments, this paper proposes an oriented
bounding box (OBB) algorithm with a simplified model, tree structure for a root-node double bounding box, and continuous
collision detection algorithm incorporating an OpenNN-based neural network optimization. First, for objects interacting with the
cloths with more complex modeling, the model is simplified with a surface simplification algorithm based on the quadric error
metrics, and the simplified model is used to construct an OBB. Second, a bounding box technique commonly used for collision
detection is improved, and a root-node double bounding box algorithm is proposed to reduce the construction time for the
bounding box. Finally, neural networks are used to optimize the continuous collision detection algorithm, as neural networks can
efficiently process large amounts of data and remove disjoint collision pairs. An experiment shows that the construction of an OBB
using the simplified model is almost identical to that of the original model, but the taken to construct the OBB is reduced by a factor
of approximately 2.7. For the same cloth, it takes 5.51%–11.32% less time to run the root-node double bounding box algorithm
than the traditional-hybrid bounding box algorithm. With an average removal rate nearly identical to that of the traditional
filtering method, the elapsed time is reduced by 7%–11% by using the continuous collision detection algorithm based on an
OpenNN neural network optimization. The simulation results are realistic and in line with the requirements for real-time cloth
simulations.

1. Introduction

Cloth simulation is an active area of research in the computer
graphics, it is widely used in games, virtual fitting, animation,
and other fields, and collision detection has a significant
impact on the efficiency of cloth simulations. Cloths are typi-
cally flexible objects, and high-level performance is required to
detect cloth collisions in real time. Thus, effectively improving
the performance of cloth collision detection has become a key
focus in the field of cloth simulation research. Hu and Qin [1]
proposed a minimum-volume oriented bounding box (OBB)
generation algorithm. The algorithm was based on a convex
hull operation for quickly generating a well-fitting minimum
OBB by enumerating all possible combinations of edges of the
convex hull, allowing for selection of the optimal direction of
the bounding box. Jin et al. [2] proposed a thickness-free cir-
cular bounding box for accommodating cloth self-collision

detections, showing clear advantages in the scenarios where
were a sufficient number of self-collisions. Wang et al. [3]
proposed a new hierarchical OBB construction method for
optimally solving solid mesh models to increase the speed of
collision detection. Although, the use of an optimized and
improved single bounding box algorithm is efficient for colli-
sion detection, each single bounding box has its own disad-
vantages; these be solved using a hybrid hierarchical bounding
box algorithm. Using relatively simple bounding spheres,
AABBs with relatively complex OBBs and k-DOPs can be
used to build hybrid bounding boxes playing to the advantages
of both the high-detection efficiency of the simple bounding
box and high-removal rate of the complex bounding box
[4–6]. However, there are issues concerning low accuracy
and efficiency with the traversal process of hybrid hierarchical
bounding. To address these issues, Li and Wang [7] improved
the tree structure of the hierarchical bounding box.
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Continuous collision detection algorithms are often used
for the cloth simulations. These include algorithms based on
motion interpolation [8], continuous collision detection algo-
rithms based on algebraic methods [9], and distance-based
collision detection algorithms [10]. Jin et al. [11] proposed a
new algorithm for real-time and accurate collision detection
for the deformable objects. This algorithm was based on the
random collision detection, and used a differential evolution
algorithm to improve the global search capability and speed of
convergence of the particle swarm algorithm. Qu et al. [12]
introduced an optimization operator for reinitialising a itera-
tive ant colony algorithm to avoid premature convergence to
the local optima. Du et al. [13] proposed a parallel continuous
collision detection algorithm for multimodel scenarios to
address the problem of performance gains being limited to
the individual processors. Tayyub and Khan [14] proposed a
successive approximation method for evaluating an optimal
load ratio using heterogeneous processing based on a GPU–
CPU platform, aiming to improve the efficiency of collision
detection. Lu et al. [15] adopted an algebraic nonpenetration
filteringmethod to optimize continuous collision detection by
simplifying the solution process and improving the efficiency
of the cloth simulation. Wan et al. [16] proposed a spatial
linear projection filtering method for optimizing continuous
collision detection, and used a combination of nonpenetra-
tion filters and spatial linear projection filters for collision
removal, thereby improving the collision rejection rate.

Machine learning has the advantages of a high-classification
accuracy, a high-learning capacity, and the ability to process
large amounts of data quickly. Some studies have combined
machine learning and cloth simulations. Holden et al. [17]
combined subspace methods for simulation with machine
learning, which when coupled, could enable very effective
physical simulations of the supported subspaces. The use of
machine learning combined with cloth simulations allows
cloths to have greater details [18, 19] and enriches the pleated
meshes of low-resolution cloths [20]. Jin et al. [2] used deep
neural networks (DNN) to accelerate the detection speed for a
bounding box and improve the efficiency of self-collision
detection. Oh et al. [21] proposed a cloth simulation method
by combining DNNs with traditional physical methods. Shi
et al. [22] used machine learning to study the relationship
between human movement and costume deformation in cos-
tume animation, so as to make the cloth more accurate. Jiang
et al. [23] proposed a method to simulate cloth drape by using
different cloth. By constructing BP neural network, the non-
linear relationship between cloth mechanics parameters and
control parameters of 3D textile simulation system is obtained.
Virtual clothing based on this method is more specific. Zhang
[24] studied the relationship between the changes in the details
of clothing folds in human body models and the human
motion form, and used machine learning algorithm modeling
to find the connection between the two, so as to quickly and
accurately show the changes in the clothing folds. Runia et al.
[25] established the deep network and took the real situa-
tion as a reference to compare whether the current simula-
tion results were different. According to the comparison

results, the parameters of the network model are adjusted.
Correspondence is measured using the embedding feature,
which maps physically similar examples to neighboring points.
Gundogdu et al. [26] solved the problem of static cloth hanging
on the human body, and learned themethod based on physical
simulation by using the network. Meanwhile, the required
calculation time was reduced by two orders of magnitude,
and the loss function was added to increase the cloth details.
Ju and Choi [27] proposed a neural network learning method
to estimate a set of clothing simulation parameters from the
static drape of a given cloth. Montazeri et al. [28] collected the
horizontal data generated by cloth and yarns in the simulation
and used the regression neural network training model to
represent the cloth shape in a very real way.

In this paper, the collision detection in cloth simulation is
divided into rough collision detection and precise collision
detection. Two improvements are proposed for the rough
detection stage, as follows: (1) As an OBB has good compact-
ness, a simplified model of the OBB algorithm is proposed to
address the problem of the time-consuming construction of
OBBs for complex modeled objects. The model is simplified
by as much as possible while maintaining the characteristics
of the original model, thereby greatly reducing the computa-
tional effort required for the OBB. (2) To address the prob-
lem of the time-consuming construction of the bounding
box, a root-node double bounding box tree structure is pro-
posed. For the precise detection stage, based on a continuous
collision detection algorithm optimized by algebraic nonpe-
netration filtering and spatial linear projection filtering and
neural network algorithms, this study proposes an OpenNN-
based neural network training method for learning algebraic
nonpenetration filtering and spatial linear projection filtering
(for removing the collision pairs). Accordingly, it is possible
to optimize the continuous collision detection algorithm.

2. Related Studies

2.1. Surface Simplification Algorithm Based on Quadric Error
Metrics. In this study, we use a surface simplification algorithm
based on the quadric error metrics [29] to quickly produce
high-quality polygonal model approximations. The algorithm
uses iterative shrinkage of a vertex pair to simplify the model,
and uses a quadratic matrix to maintain the surface error
approximations. The flow of the algorithm is shown in Figure 1.

The simplified algorithm for quadric error metrics is
based on iterative shrinkage of the vertex pair, where the
shrinkage pair (v1, v2) ⟶ v denotes that the fixed points
v1 and v2 are moved to a new position v. Any degraded edges
or multiple faces are then removed, as shown in Figure 2.

Two individual parts of the model are joined at v, as
shown in Figure 3.

We define a shrinkage cost to select the shrinkage pair
suitable for performing the shrinkage. For this, we need to
describe the error on each vertex. Here, we create a symmet-
ric 4× 4 matrix Q for each vertex, and define the error at the
vertex as Δ(v)= vTQv. Inspired by the heuristic algorithm by
Ronfard and Rossignac [30], we can associate a set of planes
with each vertex to form a set, and define the error of a vertex
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with respect to this set as the sum of the squares of the
distances from its plane, as follows:

Δ vð Þ ¼ Δ vxvyvz1
Â Ã

T
À Á¼ ∑

p2v
pTvð Þ2; ð1Þ

p= (a, b, c, d)T in Equation (1) is the plane defined in Equation
ax+ by+ cz+ d= 0, where a2+ b2+ c2= 1. Equation (1) can
be rewritten as follows:

Δ vð Þ ¼ ∑
p2v

vTpð Þ pTvð Þ

¼ ∑
p2v

vT ppTð Þv

¼ vT ∑
p2v

Kpv;

ð2Þ

Kp ¼ ppT ¼
a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

: ð3Þ

For a shrinkage pair (v1, v2) ⟶ v, we must provide the
position of v after the shrinkage such that Δ(v) is minimal. As
the error function is a quadratic function, finding the mini-
mum value of the error function is a linear problem that can
be solved to obtain v, as follows:

Start

In the rough collision detection phase,
OBB algorithm of simplified model and
double layer bounding box algorithm of

root node are used for optimization 

Roughly detect whether
a collision is detected?

In the precise detection phase, 
an OpenNN-based neural network is 

used to optimize the process

Precisely detect whether
a collision is detected?

Yes
No

No

End

The next collision
detection is performed

Conduct collision
response

Yes

FIGURE 1: Flowchart of this paper.

V1 V2
V

FIGURE 2: Edge contraction. The edge is shrunk to a point, shadow
triangles degenerate and are removed during shrinkage.
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q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1

v ¼

0

0

0

1

: ð4Þ

If the matrix to the left of v is invertible, we get a calcu-
lation as follows:

v ¼

q11 q12 q13 q14 0

q12 q22 q23 q24 0

q13 q23 q33 q34 0

0 0 0 1 1

: ð5Þ

If the matrix to the left of v is not invertible, we find the
optimal vertex along the line segment. If the optimal vertex is
still not found, v is chosen from the endpoints or midpoint.

The surface simplification algorithm based on quadric
error metrics can produce a high-quality simplified model
with the characteristics of the original model in a fairly short
period of time. A simplified model using this method is
shown in Figure 4, and it can be seen that the characteristics
of the 90%-simplified model are almost identical to those of
the original model.

2.2. Continuous Collision Detection Algorithm Optimized by
Algebraic Nonpenetration Filtering. According to the litera-
ture [15], we can quickly determine the presence of roots
using the Descartes’ rule of signs and Vincent’s theorem
on D(t), as shown in Equation (7). If a root exists, the colli-
sion time t needs to be calculated exactly; otherwise, it indi-
cates that no collision has occurred in the time interval.

The condition for a collision to occur is whether the four
points are coplanar, which essentially requires solving a
cubic equation. The collision time t is solved for using a
four-point coplanarity feature. According to Brochu et al.
[31], if edge–edge and point–plane collisions occur during
a time interval, the four points of the collision lie on the same
plane, and a calculation can be deduced as follows:

D tð Þ ¼ x10 þ tv10ð Þ × x20 þ tv20ð Þ ⋅ x30 þ tv30ð Þ ¼ 0:

ð6Þ

Here, x10 is the positional difference between vertices x0
and x1 at time point t; v10 is the difference in velocity between

vertices v0 and v1; the scalar triple product, i.e., D(t), is 0,
indicating that a collision must have occurred.

In response to the problem where multiple solutions may
exist for D(t)= 0 in the time interval, approximation testing
is performed to avoid collisions occurring to the neglected
errors. The above equation can be reduced to a standard
cubic equation as follows:

D tð Þ ¼ aþ bt þ ct2 þ dt3: ð7Þ

2.3. Continuous Collision Detection Algorithm Optimized by
Spatial Linear Projection Filtering. To improve the removal
rate in the precise collision detection stage and reduce the
requirement for precise computation and correspondingly
increased performance requirements, Wan et al. [16] pro-
posed spatial linear filtering to remove collision pairs failing
to satisfy the internal conditions. Their approach was based
on the theorem that if two objects do not intersect in a given
projective space during a certain time interval, the two
objects will not intersect in the original space either. Accord-
ing to this method, after calculation and deduction, in the
case of a point–plane collision pair, if Z1, Z2, Z3, Z4, Z5, and
Z6 are of the same sign in Equation (8), it can be extrapolated
that no collision has occurred during this time interval.

Z1 ¼ V0 ⋅ F0ð Þs
Z2 ¼ V1 ⋅ F1ð Þs
Z3 ¼ V0 ⋅ G0ð Þs
Z4 ¼ V1 ⋅ G1ð Þs
Z5 ¼ V0 ⋅ H0ð Þs
Z6 ¼ V1 ⋅ H1ð Þs

: ð8Þ

In the above, V represents the point in the collision pair,
F, G, and H are faces. During the time interval, V0, F0, G0,
and H0 are the initial positions of the corresponding points,
V1, F1, G1, and H1 are the end positions of the corresponding
points, and s is the projection vector.

If Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 are of the same sign in
Equation (9), in the case of edge–edge collision pairs, it can
be inferred that no collision has occurred during this time
interval.

Z1 ¼ A0 ⋅ C0ð Þs
Z2 ¼ A1 ⋅ C1ð Þs
Z3 ¼ A0 ⋅ D0ð Þs
Z4 ¼ A1 ⋅ D1ð Þs
Z5 ¼ B0 ⋅ C0ð Þs
Z6 ¼ B1 ⋅ C1ð Þs
Z7 ¼ B0 ⋅ D0ð Þs
Z8 ¼ B1 ⋅ D1ð Þs

: ð9Þ

Here, AB is one side and CD is the other side. During the
time interval, A0, B0, C0, andD0 are the initial positions of the
corresponding points, and A1, B1, C1, and D1 are the end

V1 V2 V

FIGURE 3: Nonedge shrinkage. When nonedge pairs are contracted,
then unconnected parts of the model will connected.
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positions of the corresponding points. As it is considered that
using toomany projection vectors swill affect the computational

efficiency, five projection vectors are finally selected for removal
after the experiment, as follows:

s¼ 1; 0; 0ð Þ; ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2; 0

À Á
;

ffiffiffi
2

p
=2; 0;

ffiffiffi
2

p
=2

À Á
; 0;

ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2

À Á
;

ffiffiffi
3

p
=3;

ffiffiffi
3

p
=3;

ffiffiffi
3

p
=3

À ÁÈ É
: ð10Þ

3. Methods

3.1. Oriented Bounding Box (OBB) Simplified Modeling. In
graphic rendering projects for large scenes, simplified models
are often used for objects far away from the scene. As the
objects are far away and do not need to be rendered overly
accurately, they can be rendered using simplified models to
improve the rendering efficiency of the entire scene. In this
study, the simplified model approach is used for the con-
struction update of the OBB. Thereby reducing the compu-
tational effort and improving the efficiency of the OBB.

3.1.1. OBB Construction with Simplified Modeling. The highly
real-time nature of the OBB requires real-time updates, and the
increasing refinement of today’s models makes constructing
this bounding box more time-consuming than other options.
Accordingly, a simplified model is used for the OBB construc-
tion, and can effectively reduce the operational overhead of
the program. In particular, in this study, we embed the simpli-
fied model into the original model to build the OBB, so as to
improve the efficiency of the OBB algorithm.

The traditional OBB algorithm takes the average of the
sum of all triangle vertices as its center position; each triangle
block is unevenly sized, and will have a different orientation.
This study uses a fast adaptive OBB algorithm [32] to reduce
the influence of the triangular surfaces in the model. Corre-
spondingly, the method has less overhead than the tradi-
tional OBB algorithm. The method is as follows.

Calculate the centroid O of the model, and denote the
vertices of the t-th triangle of the model by at, bt and ct,
respectively. Ot is its centroid, St is the surface area, and Z
is the total area of the model. Calculate the centroid of the
triangle as follows:

ot ¼ at þ bt þ ctð Þ=3: ð11Þ

The surface area of the triangle and the total area of the
model are, respectively, expressed as follows:

St ¼ at ⋅ btð Þ × at ⋅ ctð Þj j=2; ð12Þ

Z ¼ ∑
n

t¼1
St: ð13Þ

The center point of the bounding box is denoted by:

O¼ ∑
n

t¼1
St ⋅ otð Þ=2: ð14Þ

Calculate the projection of the model on the x-axis. The
maximum and minimum values of the projection area are
Qmax and Qmin, respectively. Subsequently, divide the model
vertices according to the positions of the projection on the
axes. Divide the projection area into blocks, k is the length, as
follows:

k¼ QmaxQmin

s
: ð15Þ

Divide the set of model vertices S into s subsets according
to the projected position of each vertex on the x-axis, and
calculate its subset code as follows:

Ss ¼ x; y; zð Þ Qxminj þ s × k ≤ x   Qxmin<Qxmin þ sþ 1ð Þ × kf g;
ð16Þ

where Ss is the s-th subset.
Extract the set of vertices away from the centroid of the

model and construct the set of vertices S’ of the bounding
box. Similarly, find the coordinates corresponding to the
Y-axis and Z-axis, and construct the maximum point S’.
Construct the OBB on the extracted S’. Calculate the
expected value of the vertex set of S’ and its covariance
matrix as follows:

u¼ 1
6n

∑
n

i¼1
pi þ qi þ rið Þ; ð17Þ

Cjk ¼
1
3m

∑
n

i¼1
pi

j pik þ qij qik þ rij rik pi ¼ pi − u

qi ¼ qi − u r i ¼ ri − u:
ð18Þ

In the above, n is the number of triangular faces. Calcu-
late the eigenvectors based on the covariance matrix, and
regard them as the three directions of the OBB. Finally,
calculate the projection length of the vertex set S’ in the
three directions of the OBB to complete the bounding box
calculation.

3.2. Root-Node Double Bounding Box Algorithm. During col-
lision detection, the time needed for the construction and
updating of the different bounding boxes and for intersection
detection between the bounding boxes varies. To reduce the
time consumed by the construction and updating of the
bounding box while ensuring the removal rate, this study
proposes a root-node double bounding box algorithm.
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3.2.1. Construction and Collision Detection of the Root-Node
Double Bounding Box. The bounding volume hierarchy (BVH)
structure constructed by the AABB and bounding sphere is
shown in Figure 5. In the BVH, bounding spheres are used
for nonroot nodes, and double bounding boxes are used for
root nodes. During the cloth simulation, a bounding sphere is
first constructed for the root node, and when the bounding
sphere collides, an AABB is constructed, at which point the
root node has a double bounding box.When the collision occurs
in the second AABB of the root node, the BVH structure is
traversed down to the leaf node.

The exact process of collision detection is as follows.

(1) Starting from the root node, construct the BVH tree
using a bounding sphere, and traverse the tree.

(2) When a collision is detected at the root node, construct
an AABB for the root node; otherwise, perform Step 5.

(3) When a collision occurs in the AABB of the root
node, a depth-first search principle is used to traverse
the BVH tree up to the leaf node. If the collision does
not occur, perform Step 5.

(4) When a collision is detected at a leaf node, collision
detection is performed for the underlying fundamen-
tal primitives, followed by a collision response.

(5) Detect the collision occurrence again from the root
node in the next time step.

3.2.2. Advantages of the Root-Node Double Bounding Box
Algorithm. In this study, we use the level of compactness of
the bounding box τ to better illustrate the advantages of the

algorithm. τ As represented by Equation (19), τS; τA denotes
the compactness of the bounding sphere and AABB, respec-
tively. V(O) denotes the volume of the cloth simulation, and
V(B) denotes the volume of the bounding box.

τ ¼ V Bð Þ
V Oð Þ ; τS ¼

VS Bð Þ
V Oð Þ ; τA ¼ VA Bð Þ

V Oð Þ ; ð19Þ

τS ¼
π xmax − xminð Þ2 þ ymax − yminð Þ2 þ zmax − zminð Þ2½ �32

6V Oð Þ ;

ð20Þ

τA ¼ xmaxj j þ xminj jð Þ ymaxj j þ yminj jð Þ zmaxj j þ zminj jð Þ
V Oð Þ :

ð21Þ

From the above equation, it can be seen that the smaller
the values of τS and τA, i.e., the larger V(O) and smaller V(B),
the higher the level of compactness. The use of the root-node
double bounding box algorithm combines the strengths of
the bounding sphere and AABB. Thus, compared with the
simple bounding box algorithm, the algorithm proposed
herein has a higher level of compactness (as its low level of
compactness is addressed by constructing the double bound-
ing box).

3.3. Continuous Collision Detection Algorithm Based on
OpenNN Optimization. The use of algebraic nonpenetration
filtering and spatial linear projection filtering can effectively
improve the removal rate of collision pairs. As a DNN is

(a) (b) (c)

(d) (e) (f)

FIGURE 4: Simplify the rabbit model to varying degrees. (a) Original model, (b) 20%-simplified model, (c) 40%-simplified model, (d)
80%-simplified model, (e) 90%-simplified model, and (f ) 99%-simplified model.
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versatile owing to its powerful nonlinear fitting, strong fea-
ture extraction capabilities, and the ability to quickly process
large amounts of data, this study proposes a removal method
in which DNNs are used to learn algebraic nonpenetrating
filtering and spatial linear projection filtering. This provides
a way to quickly remove collision pairs within a time interval.

3.3.1. Neural Network Fusion-Based CollisionDetection Algorithm.
The neural network construction in this study was based on
an open source neural network library, i.e., OpenNN. The
neural network model was constructed through five main
steps, as discussed more fully below.

(1) Datasets. The first step is dataset preparation, so as to
provide the source of information for the problem solving.
During the experiment, the collision pairs are removed using
the filters mentioned in Sections 3.3.1 and 3.3.2. Those that
are removed, i.e., where no collision occurred, are marked
as 0, and the others are marked as 1. The resulting set of
instances is divided into training, selection, and testing sub-
sets accounting for 60%, 20%, and 20% of the original
instances, respectively. To provide a suitable range for all
inputs, the dataset is scaled using the min–max scaling as
shown in Equation (22), where x denotes the data before
scaling, X denotes the data after scaling, and min and max
denote the minimum and maximum values in the dataset,
respectively. The scaled dataset ranges from −1 to 1.

X¼2 ×
x −min

max −min
− 1: ð22Þ

(2) Network Construction. The second step is to construct
the correct neural network structure. This structure is mainly
used for classification and to determine whether a collision
has occurred. The neural network structure consists of the
following parts: a scaling layer, two perceptron layers, and a
probabilistic layer. The structure is shown in Figure 6, where
there are 15 input variables in the input layer and 15 neurons
in the corresponding scaling layer, three neurons in the first
perceptron layer, one neuron in the second perceptron layer,
and finally, one neuron in the probabilistic layer.

The “Neural Network” class constructs the neural net-
work and uses the constructor to appropriately organize the

neuron layers. Once the neural network is constructed, the
input and output information can then be introduced into
the layers.

The most important part of the perceptron layer is the
perceptron neuron, as shown in Figure 7, where x1, x2,…,xn
represents the input information, w1, w2,…,wn represents the
weights, b represents the deviation, and c represents the value
for combining the input values. act(x) represents the activa-
tion function, and y represents the final output. The output
of the perceptron neuron can be represented as shown in
Equation (24).

act xð Þ ¼ 1
1þ e−x

; ð23Þ

y ¼ act bþ ∑
n

i¼1
wi ⋅ xi

� �
: ð24Þ

The activation function used for the perceptron layer is
the logical activation function as shown in Equation (23),
and varies between 0 and 1.

The probabilistic layer provides a way of interpreting the
output information as probabilities. In this study, the
method used for the probabilistic layer is binary probability.
Specifically, the binary probability method is used for binary
classification, where the output y in Equation (25) can have
the value 1 or 0, x is the input, and λ is the decision threshold.

y ¼ 0; x<λ

1; x ≥ λ

(
: ð25Þ

(3) Loss Function. The loss function is the normalized
squared error (NSE), and NSE is obtained by dividing the
square of the difference between the output of the neural
network out and target in the dataset by the normalization
factor A. If the result is 1, the neural network will predict the
data at the mean value; if the result is 0, it indicates a perfect
prediction of the data. The NSE can be expressed as follows:

FIGURE 5: Double-layer bounding box BVH structure of root-node
diagram.

Input 1

Input 2

Input 3

Input 15

Output y

Input layer Scaling layer Perceptron layer Probability layer Output layer

FIGURE 6: Initial structure diagram of neural network.
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NSE¼ ∑ out − tarð Þ2
A

: ð26Þ

(4) Optimization Algorithms. The optimization algorithm
uses a quasi-Newton method to find the neural network
parameters minimizing the loss function xk as shown in
Equation (27), where the learning rate η is adjusted by
each neuron using a linear minimization method.

x kþ1ð Þ ¼ x kð Þ
− GK ⋅ yk ⋅ ηk: ð27Þ

We derive GK by expanding f(x) at xk using the second
degree Taylor polynomial as follows:

f xð Þ ¼ f x kð ÞÀ Áþ gT
k x − x kð ÞÀ Áþ 1

2
x − x kð ÞÀ Á

TH x kð ÞÀ Á
x − x kð ÞÀ Á

:

ð28Þ

To derive x, we obtain the approximation function of
rf ðxÞin the domain x= xk as follows:

rf xð Þ ¼ gk þHK x − x kð ÞÀ Á
: ð29Þ

Further, let yk ¼gkþ1 −gk; δk ¼ xðkþ1Þ
− xðkÞ then the

quasi-Newton method is as follows:

gkþ1 − gk ¼HK x kþ1ð Þ
− x kð ÞÀ Á

; ð30Þ

H−1
K yk ¼ δk: ð31Þ

The iterative calculations of the quasi-Newton method
using an n order matrix Gk to replace H−1

k and Gk are as
follows:

Gkþ1 ¼ Gk þ ΔGk: ð32Þ

(5) Model Selection. In the fourth step, to find the network
structure with the best generalization characteristics andmin-
imize the error in the selected dataset instances, we need to
select the number of neurons in the neural network model.
During the experiment, an incremental sequence method is
used to optimize the number of neurons in the network struc-
ture, starting with a small number of neurons. The incremental
sequence method increases in complexity with each iteration,
and Figure 8 demonstrates the neural network structure that
best fits the proposed algorithm.

3.3.2. Advantages of the Neural Network Fusion-Based Algorithm.
In addition to processing a large amount of particles at once,
the proposed algorithm also improves efficiency by omitting
edge–edge collision detections. In traditional detection, a col-
lision detection among triangles is required after a leaf node
collision. As shown in Figure 9, there are eight triangles in
total, and one triangle at a time is taken for point-face inter-
section detection. This requires a total of 24 vertices to be
detected, whereas the model has only nine vertices in reality.

In practice, the model structure is far more complex than in
Figure 9, and if vertices that have already been detected are
not excluded, there will be a large number of repeatedly
detected particles, increasing the computational effort of the
algorithm and reducing the operating speed. To avoid this, the
basic elements contained in the cloth used to construct the
bounding boxes are particles, not triangles. In this way, many
repetitive tests can be avoided, while allowing for a larger
number of particles to be processed.

4. Experiments

To verify the effectiveness of the proposed algorithm, the
simulation system was built under a Windows operating
system using the development tool VS2017, using both
C++ and OpenGL techniques. The models used in this arti-
cle are downloaded from the network model library. The
experimental results were obtained by comparing the pro-
posed algorithm with existing algorithms.

4.1. OBB Algorithm with Simplified Model. In this study, we
used an OBB algorithm with simplified model. As shown in
Figure 10, the OBB constructed by the simplified model was
approximately the same size as that constructed by the origi-
nal model, but effectively reduced the amount of computa-
tion and accelerated the construction speed of the OBB.
Moreover, the use of the fast adaptive OBB algorithm not
only reduced the impact of the orientation bias created by the
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FIGURE 8: The most suitable neural network structure.
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triangular faces in the model, but also sped up the construc-
tion of the bounding box. The detailed comparisons are
shown in Table 1.

The proposed OBB algorithm with simplified model
was not only effective in reducing the time consumption
required for the construction of the bounding box, but
also showed good performance in ensuring the bounding
compactness of the model. Rabbit, cat, dinosaur, and human
models were used in the experiments for comparison with a
compactly constructed minimum-volume OBB generation
algorithm [1]. The ratio of the constructed OBB to the
model volume was used as the evaluation value, with a
smaller value representing a higher level of compactness
between the bounding box and model. As shown in
Figure 11, the OBB algorithm with simplified model used
herein was not as compact as the minimum-volume OBB
generation algorithm, but the difference was negligible in
the application scenario.

4.2. Optimization of Number of Neurons in the Neural
Network. As mentioned above, to select the appropriate neu-
ral network structure, we used the incremental sequence
method, starting with a small number of neurons and
increasing the complexity of the method with each iteration.
Figure 12 illustrates the track record of the selection and
training errors for the different neuron selection processes,
with the blue line indicating the training error and orange
line indicating the selection error, respectively. The number
of neurons for the minimum selection error was nine; there-
fore, a neural network with nine neurons in the first percep-
tron layer was selected.

4.3. Neural Network Performance Analysis. In this study, we
evaluated the performance of the neural network by compar-
ing the output of the neural network with the training
instances. Herein, if instances collide, such instances are
called positive classes. If no collision occurs, such an instance
is called a negative class. The confusion matrix of the experi-
mental results is shown in Table 2, and shows that all test
instances were well-classified, with 435 correctly classified
instances and 32 incorrectly classified instances. The classifi-
cation accuracy is 93.75%, and the error rate is 6.25%.

The receiver operating characteristic curves of the exper-
imental results are shown in Figure 13; they indicate the false
positive class on the X-axis and true positive class on the
Y-axis. The discriminatory ability is measured by calculating
the area under the curve (AUC), and the closer the AUC is to
1, the better the classifier. In this study, AUC= 0.927, indi-
cating that the neural network predicts well in most cases.

4.4. Comparison of Time Consumption of Different Algorithms
for Collision Detection. We compared the removal efficiency
when using algebraic nonpenetration filtering [15], spatial
linear projection filtering [16], a combination of algebraic
nonpenetration filtering and spatial linear projection filtering,
and the DNN-based algorithm proposed in this study. As can
be seen from Table 3, the use of the DNN-based algorithm
appears to be less time-consuming. As can be seen from
Table 4, although using both the nonpenetration filtering
and spatial linear projection has the highest average removal
rate, there is very little difference between this result and that
using the DNN-based algorithm. Taken together, the DNN-
based algorithm reduced the required time by an average of
approximately 13% over the best removal method, i.e., the
combination of algebraic nonpenetration filtering and the
spatial linear projection filtering, while nearly equaling its
average removal rate.

To compare the average time used by the different
methods for collision detection, the classical bounding box
algorithm, root-node double bounding box algorithm, fuzed
DNN-based self-collision detection algorithm [2], and pro-
posed algorithm were compared. Experiments were con-
ducted with the same cloth model and the different collision
object models, respectively, and the experimental results are
shown in Table 5.

To more visually compare the methods in Table 5, we
generated a histogram, as shown in Figure 14. As can be seen
from Figure 14, it takes less time to use the traditional hybrid
bounding box algorithm than the single bounding box algo-
rithm. The root-node double bounding box is faster than the
traditional hybrid bounding box algorithm in terms of run-
ning speed, with a time reduction of 5.51%–11.32%. The
OpenNN-based collision detection algorithm outperforms
all other algorithms in terms of speed, with a total time
reduction of 11.70% compared to the root-node double
bounding box, and a total time reduction of 6.62% compared
to the fuzed DNN-based self-collision detection algorithm.
The result indicates that the proposed algorithm has good
detection efficiency in the simulation scenarios, along with
high real-time performance.

FIGURE 9: Simple fabric structure diagram.

TABLE 1: Time consuming comparison of OBB bounding box
construction.

Method Time consuming/s

OBB 2.817
Fast adaptive OBB algorithm [32] 1.554
OBB algorithm with simplified model 0.997
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The comparison of different models in the experiments
reveals that the more complex the model, the more evident
the time advantage of the proposed algorithm. To further
validate this conclusion, cloth materials A, B, and C with
different levels of precision were subjected to collision

simulations with a fish model. The detailed cloth model
information is shown in Table 6, and the time consumption
statistics are shown in Table 7.

To visually present the data in Table 7, a line graph was
generated as shown in Figure 15. As can be seen from
Figure 15, the collision detection time for each algorithm
increases as the amount of cloth model data increases.
When cloth model increased in precision by 84% from A
to C, the two traditional algorithms and root-node double
bounding box algorithm increased in time by 96% and the
fuzed DNN-based self-collision detection algorithm increased

ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ
FIGURE 10: OBB bounding box construction by simplifying models of different degrees. (a) Original model, (b) 20%-simplified model,
(c) 40%-simplified model, (d) 80%-simplified model, (e) 90%-simplified model, and (f ) 99%-simplified model.
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TABLE 2: Confusion matrix.

Prediction is
positive class

Prediction is
negative class

Result is positive class 291 12
Result is negative class 17 144
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FIGURE 12: The influence of the number of neurons on the error.
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TABLE 3: Comparison of elimination time for different models interacting with cloth.

Model
Algebraic nonpenetration

filtering [15]/s
Spatial linear projection

filtering [16]/s

Combination of algebraic
nonpenetration filtering and spatial linear

projection filtering/s
Ours/s

Rabbit 19.08 19.29 19.56 17.34
Cat 19.12 19.34 19.87 16.84
Dinosaur 22.54 22.79 23.07 20.98
Human body 27.38 27.56 27.86 23.95

TABLE 4: Comparison of rejection rate between different models and cloth interactive collision.

Model
Algebraic nonpenetration

filtering [15]
Spatial linear projection

filtering [16]

Combination of algebraic
nonpenetration filtering and spatial linear

projection filtering
Ours

Rabbit 34.52% 51.89% 53.45% 52.28%
Cat 36.47% 53.23% 55.13% 55.87%
Dinosaur 35.23% 52.34% 54.76% 54.58%
Human body 38.84% 54.86% 57.69% 56.74%

TABLE 5: Collision detection time of different models.

Model AABB/s AABB-OBB/s
Root-node double bounding

box algorithm/s
Fuzed DNN-based self-collision

detection algorithm/s
Ours/s

Chicken 0.0607 0.0574 0.0509 0.0498 0.0461
Sphere 0.0682 0.0635 0.0600 0.0554 0.0521
Cube 0.0553 0.0536 0.0490 0.0458 0.0423
Fish 0.0677 0.0627 0.0588 0.0558 0.0526

0.00
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0.50TP
R

0.75

1.00

0.00 0.25 0.50
FPR

0.75 1.00

FIGURE 13: ROC curve.

TABLE 6: Comparison of different cloth models.

Cloth model Vertex Triangular face piece

Cloth A 400 722
Cloth B 900 1682
Cloth C 2,500 4,802

TABLE 7: Time for collision detection of different precision fabrics.

Cloth model AABB/s AABB-OBB/s
Root-node double bounding

box algorithm/s
Fuzed DNN-based self-collision

detection algorithm/s
Ours/s

Cloth A 0.0154 0.0151 0.0143 0.0295 0.0378
Cloth B 0.0677 0.0627 0.0588 0.0558 0.0526
Cloth C 0.3768 0.3724 0.3683 0.2983 0.1195
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in time by 90.11%, whereas the OpenNN-based algorithm
increased by only 68.37%.

For cloth A (a simple model), the most time was spent
when using the OpenNN-based algorithm, and among the
traditional methods, the least time was spent when using the

root-node double bounding box algorithm. This result indi-
cates that the OpenNN-based algorithm is more suitable for
dealing with complex and highly accurate models than sim-
ple models. The root-node double bounding box is suitable
for small- and medium-sized models, similar to the

ðaÞ ðbÞ

ðcÞ ðdÞ

ðeÞ ðfÞ
FIGURE 16: The effect of cloth collision with different models. (a, c, e) Using bounding box AABB simulation; (b, d, f ) using neural network
simulation.
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traditional bounding box algorithms. However, under the
same conditions, the root-node double bounding box algo-
rithm has an advantage in that it is less time-consuming than
the traditional bounding box algorithms.

4.5. Validity Verification of the Algorithm Simulations. To
verify that the proposed algorithm not only improves effi-
ciency, but also ensures the validity of the simulations, cloth
B was subjected to collision experiments with different mod-
els: (1) the cloth falls by gravity, collides with a wooden box
and rests on the box; (2) the cloth collides with a game
character with sharp edges and covers the game character;
(3) a moving human body passes through the vertically fall-
ing cloth, and the cloth falls on the human body.

The simulation effectiveness values for different frames
during the experiment are shown in Figure 16. The simulation
effectiveness values using the traditional AABB algorithm are
shown in Figures 16(a), 16(c), and 16(e). The simulation effec-
tiveness values using the neural network are shown in
Figures 16(b), 16(d), and 16(f). Through comparisons, the
validity of the simulation effectiveness of the proposed algo-
rithm is found to be approximately the same as that of the
AABB algorithm. The simulation does not affect the visual
perception, thereby ensuring the simulation effectiveness.

5. Conclusion

To address the problems, concerning the high-computational
effort and low-running rate arising from the complex models
when constructing OBBs, we propose an OBB algorithm with
simplified model. By simplifying the model, the amount of
computation required to construct the OBB is greatly reduced,
and the shapes of the bounding box constructed before and after
the simplifiedmodel are approximately the same. Therefore, the
bounding box constructed by the simplified model can be trea-
ted as the bounding box of the model before the simplification.
Second, we proposed a root-node double bounding box collision
detection algorithm. A combination of the simplest AABB and
bounding sphere is used to improve the removal rate of the
bounding box and to enhance the efficiency of the collision
detection algorithm. Third, we also propose an OpenNN-based
collision detection algorithm for managing a large number of
cloth particles in one time step, thereby reducing the construc-
tion time for the bounding box and accelerating the collision
detection. In comparison with the traditional single bounding
box algorithm, hybrid bounding box algorithm, and fuzed
DNN-based self-collision detection algorithm, this proposed
approach reduces the collision detection timewhile the accuracy
is guaranteed and the performance is greatly improved.

The stability of the model as obtained by training the
neural network in this experiment can be further improved.
A larger and more comprehensive amount of samples should
be obtained in the future to train the neural network to
obtain a better model. To better integrate the collision detec-
tion algorithm with the neural networks, future research
should attempt to use neural networks to predict the posi-
tions of cloth model particles after collisions, thereby reduc-
ing the time used for the collision response and improving
the efficiency of the overall algorithm simulation.
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