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Modelica is a very powerful language to simulate a very large set of systems, including electrical, thermal, mechanical, fluidic,
control, and has already been used very extensively for several purposes, as the several Modelica conferences testify. Despite of this
large literature, no paper seems to be available regarding the use of Modelica for real-time applications or hardware-in-the loop
(HIL). This is a field where applications may be very fruitful. In this paper, the possibility of creating mixed software–hardware
experiences (i.e., HIL), through combination of a Modelica program, the related simulation tool, a LabVIEW program, and
the corresponding hardware is demonstrated. This demonstration is made using as an example a partial simulator of an electric
vehicle running in a stand-alone PC, which communicates via User Datagram Protocol (UDP) packets with another PC running
the LabVIEW program, which in turn is physically connected with the hardware-under-test. The obtained results are satisfying,
given the inherent delay times due to the UDP communication.

1. Introduction

The Modelica language has appeared around 20 years ago as a
general-purpose language for description of possibly large and
complex models, including nonlinear time varying, containing
discrete and continuous variables, etc. Modelica-based simula-
tion tools can simulate different kinds of systems, such as elec-
trical, mechanical, thermal control, etc., even simultaneously
present as subsystems of a single comprehensive system. Several
books [1, 2] and papers (all those presented at the Modelica
conferences, listed in https://modelica.org/publications/articles),
some of which by one of this paper’s authors [3–5] describe
characteristics, advantages, and applications of this simulation
language, and they will not be repeated here again.

The flexibility of this language, which allows the corre-
sponding programs to be used either for commercial (a good
example of these is [6]) and free [7] simulation tools, makes
it possible to use it for a lot, if not all, the simulation needs of
most scientists and engineers.

Enlarging its capabilities will make this language even more
attractive for existing and new users; that’s where this paper
can contribute.

Modelica is designed as a language for simulations, there-
fore is not explicitly designed for real-time operation. How-
ever, in relatively recent years the Modelica_DeviceDrivers
library has appeared (presented in [8] and available for down-
load from [9]), which allows to synchronise simulation and
wall-clock time and to interact with users (e.g., trough key-
board, mouse, joystick), and external hardware (e.g., via serial
port, User Datagram Protocol (UDP) [10], TCP/IP [11], CAN
[12], etc.).

This can be exploited to realise simulation tools which inter-
act with actual pieces of hardware, i.e., to create hardware-in-
the-loop (HIL) experiments. Obviously, this is adequate only
for relatively slow experiments since communication between
Modelica tool and the environment outside introduce signifi-
cant delays but is already very useful for many classes of the
experiments.

For this paper, among the possible communication pro-
tocols, UDP was chosen, since it is much more flexible than
the serial port, while still simpler and more manageable than
TCP/IP; naturally, once the higher level architecture of the
software is defined, people should in principle be able to
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switch to different protocols with virtual no change on the
lower level software layers.

In this paper we will consider the general architecture
shown in Figure 1; a more detailed representation will be
provided for the specific case of this paper’s simulations in
the next section.

The Modelica simulator sees the measures coming from
the supervisor computer as they were taken from a simulated
subsystem and elaborates them to generate corresponding
commands.

This architecture has been detailed in this paper for a HIL
experiment in which the piece of hardware physically tested is
the battery of an electric vehicle, where the Modelica simula-
tor simulates the vehicle and its dynamics. This is particularly
interesting given the difficulty of accurately simulating the
battery, which has a behaviour strongly nonlinear and subject
to environment temperature, to ageing, etc.

The usage of National’s LabVIEW [13] virtual instru-
ments (VIs) in the supervisor computer was chosen because
of its great flexibility, reliability, and speed of operation, and
the availability of devices which allow to interface the user
software with different pieces of equipment, including com-
munication interfaces, such as serial ports and ethernet adap-
ters. Its software allows to measure the quantities of interest
on the battery and to control the instruments for managing
battery charging and discharging in an integrated way.

Another interesting possibility to use Modelica-based
simulators for HIL experiments is creating from the Mode-
lica model a functional mockup unit (FMU), which can be
integrated in the experiment control software, e.g., the a Lab-
VIEW program; this further option will be dealt with in a
subsequent paper.

2. Methods

2.1. The System in Case of Vehicle-Battery Experiments. As
already mentioned, the architecture from Figure 1 is imple-
mented in this paper for the case in which the equipment
under test (EUT) is the battery of an electric vehicle, and the
vehicle, and its interaction with driver and road, is software
simulated.

To avoid undue complexity, the laboratory battery is here
just as a single cell, representative of the actual vehicle battery
which usually consists of series–parallel connections of the
individual cells. The procedure proposed in this paper, how-
ever, is easily scalable to the larger batteries.

The diagram for this specific case is as shown in Figure 2.
In this figure:

(1) I∗ is the required battery current;
(2) T is the time at which the measures are taken;
(3) U is the measured battery voltage;
(4) I is the measured battery current;
(5) Θ is a temperature considered representative of the

internal battery temperature map.

In the rare cases in which the simulated vehicle has some
internal logic that requires to determine the vehicle behaviour
also considering individual cells voltages and/or currents or
different temperatures inside the battery pack,U, I, andΘ can
be arrays of quantities. In this case, however, the increase in
transmitted data can induce significant additional delays in
the communications.

The simulator and the lab equipment can be physically
far from each other, since the communication can be routed
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FIGURE 1: General arrangement for the Modelica–LabVIEW proposed experiments.
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FIGURE 2: Arrangement of the HIL experiment in case the EUT is a BEV battery.
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through the Internet, in the cases in which corresponding
delays are compatible with the experience to be carried out.

The vehicle simulator simulates the vehicle behaviour
when subject to a specific test cycle, e.g., the NEDC [14] or
the WLTC [15], and its behaviour is therefore dependent on
its mass, mechanical (friction and aerodynamic) drag, and
inertia forces. Some details in the following section. The vehi-
cle simulator does not have a battery model inside; instead, it
computes the requested traction power P∗, and requires it to
the hardware. As an alternative, it may require the wanted
current I∗; the latter solution is just a bit trickier, since the
traction needs imply some power to be supplied, and this
power translates into a current only when the battery voltage
is known. Nevertheless, it is easy to implement, and was cho-
sen for the remainder of this paper.

LabVIEW sends this request to the battery control hard-
ware, and measures back the voltage U, current I, and cell’s
temperature Θ.

2.2. The Modelica Program. To understand the Modelica pro-
gram used in this paper, let us first illustrate a diagram that
does not use any HIL, since it has a battery model of its own,
as illustrated in Figure 3.

Let us explain the graphical elements (submodels of the
simulation model in figure) shown.

(1) Driver: To simulate a vehicle, we need a driver model.
Its purpose is to follow a kinematic drive, e.q. NEDC or
WLTC. (“NEDC.txt” in the example above). It gener-
ates signals that should be interpreted to be torque
signal: accelerator (the above arrow exiting the driver),
brake (the below arrow), combined (the midrange
arrow); the latter is the only used in this experiment,
and connected to power train in the figure above;

(2) Battery: It is a mathematical model of the EV elec-
trochemical battery, to be substituted with the physi-
cal battery in our HIL experience;

(3) Eledrive: This simulates the electric drive (= inverter,
motor). It contains evaluation of the driver efficiency,
and of maximum and minimum torque and power
and the various rotational speeds. Depending on

the vehicle operation, it determines the power to be
requested from the battery: this request is sent to the
physical battery;

(4) Gears (= reduction gears), wheel and mass: they are
self-explanatory;

(5) DragF (= drag force): It is the force that algebraically
opposes to the vehicle movement, composed by roll-
ing friction and aerodynamic drag;

(6) velSens (velocity sensor) is just a speed sensor: It
gives actual speed information to the driver that con-
sequently acts on its brake and accelerator to keep the
actual speed as near as possible to the programmed
kinematic cycle (the NEDC in figure). It pays the role
of the dashboard on the physical vehicle.

The Modelica program implementing our electric vehicle
according to Figure 2 is shown in Figure 4.

Here we have a modified version of electric drive (eled-
rive in the figure) model, which, starting from what is needed
for the vehicle propulsion, computes the power requested to
the battery.

Usually, the battery just delivers the requested power,
and returns measures of voltage, current, and temperature,
which are evaluated in the block “Battery data analysis.” This
block can compute and give as auxiliary outputs some bat-
tery parameters, e.g., internal resistance (based on an electri-
cal model), internal temperature (based on a thermal model),
etc. It also computes actual power P, which is sent to the
electric drive to close the loop.

There might be cases in which the requested charge or
discharge power is larger than allowable by the battery: in
this case the battery voltage reaches some high or low thresh-
old, respectively; in these cases, the battery control hardware in
Figure 2, will adapt to these limits and reduce the exchanged
power so that they can be satisfied, verymuch the same towhat
occurs in real-life vehicles. This happens for instance when the
battery is nearly full and still requested to charge, or very low in
charge and requested to discharge at high powers.

This behaviour of actual vehicle is reproduced in our sys-
tem through the Battery data analysis block in Figure 4. This is
one of the major advantages of this HIL system in comparison
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FIGURE 3: The Modelica diagram of the electric vehicle fully simulated in a Modelica tool.
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with full simulations using a battery model according to the
diagram in Figure 3: battery behaviour in such limit situations
is very difficult to predict by means of battery mathematical
modelling; the proposed HIL technique, instead, uses actual
measured battery quantities to consider it.

The yellow boxes contain actual communication inter-
faces. They transfer data from and to the ethernet port, via
UDP blocks using the DeviceDrivers Modelica library. In

addition, in the case of the experiments done in this paper,
they convert quantities from pack level to the cell level.

2.2.1. Interface with the External World. Communication is
done through EDP packets. Library Modelica DeviceDrivers,
allows to build packets from individual numbers, which ensures
simultaneity of the exchanged values. Although,Modelica Devi-
ceDrivers allows to exchange real numbers, in this experience,
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FIGURE 4: The Modelica diagram of the electric vehicle running in the vehicle simulator.
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for simplicity, it was decided to send actual values through two-
byte integer numbers.

From the Modelica part, therefore, data exchange were
arranged as illustrated in Figure 5.

The simulator computes powerRequest (the value P∗ shown
in Figure 4), encodes it and sends it to the hardware. On the
other hand, it retrieves from the hardware voltage, current,
temperature, along with the time at which these samples were
taken: these are the quantities from blocks getI, getI, getQ, and
getTime, respectively. Before being sent, all values are con-
verted in the defined two-byte format, and when received are
decoded back. For instance, since in our experience we are
sure to have currents within (−300–300A), the following for-
mula was used, where subscript “i” indicates the integer-
coded version of the current: I= Ii/100−300;

Here, some explanation of the new blocks:

(1) RealtimeSync: It is needed because Modelica is
thought for simulations, and the simulator is designed
to go as fast as possible. Here, instead, we must have
the same speed as wall time, and therefore real-time
synchronisation must be provided.

(2) STOP button: If for some reason we want to stop the
experience, stopping the simulator leaves the power
request at its last value, which could discharge of charge
too much the battery. Obviously, some safety features
are also implemented in the LabVIEW interface, but
much better to first put powerRequest= 0, before actu-
ally ending the experience. This can be done using the
STOP button, an instance of the free Modelica Library
“UserInteraction,” component “Inputs.trigButton”.

(3) getTime, getU, getI, getQ, retrieve time, voltage, cur-
rent, temperature as integer numbers from the UDP
interface through the block uDPReceive.

(4) PackInt sends the power request to the UDP inter-
face, thus the hardware, through the block uDPSend.

Note that the data received from the battery are com-
bined in packets, each of which carrying time voltage, cur-
rent, and temperature.

2.3. The LabVIEW Program. The software in the LabVIEW
environment is organized into three distinct VIs operating in
parallel, the front panels of which are shown in Figure 6.

The RECEIVER VI (upper plot in Figure 6) receives the
parameters to be set (battery current I or power P) via UDP
from the Modelica software and controls the instruments
(power supply and electronic load) connected to the PC
via GPIB (IEEE 488) interface to set the desired current (or
power) charging or discharging on the battery. The MEA-
SUREMENT VI (bottom of Figure 6) handles measurements,
made by the acquisition modules (NI 9219) housed inside a
NI cDAQ-9,172 chassis. The SAFETY VI (with blank front
panel as operating without user interaction) handles safeties
and alarms, and operates in parallel with the others and
with independent measurements, allowing experiments to
be automatically stopped in case of danger.

The following basic LabVIEW functions were used to
communicate to Modelica:

(1) UDP Open function to open a UDP socket on a port
(it returns a network connection refnum that uniquely

FIGURE 6: The three views of the LabVIEW program.
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FIGURE 7: Block diagram of the LabVIEW receiver VI.

FIGURE 8: UDP communication LabVIEW SubVI.
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identifies the UDP socket and must be used to refer to
this socket in subsequent VI calls);

(2) UDP Write function to send data to a destination;
(3) UDP Read function to read that data;
(4) UDP Close function at the end to free system resources.

The block diagram of the RECEIVER VI is shown in the
Figure 7.

Data are read via UDP (subVI on the left inside the red
square), converted (middle part) and used to set the battery

charge or discharge current through the right part of the code
that handles instrument control. As mentioned the first block
on the left (red square) handles UDP communication and has
the architecture shown in the following Figure 8.

The structure of theMEASUREMENT VI is shown in the
following Figure 9. Measurement data are acquired using the
DAQ Assistant block, then encoded and packaged to be sent
via UDP to the Modelica software.

In particular, the appropriately encoded data are stored
in a local variable (data block on the right in the figure), that

FIGURE 9: Measurement VI block diagram.
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is read by a parallel while loop responsible for transmitting
the data via UDP to Modelica. The block diagram of this part
of the code is shown in the following Figure 10.

In our application data are transmitted to the destination
frequently enough that a few lost segments of data are not

problematic, so it was decided to implement direct data trans-
mission without using the queuing mechanism.

Finally, the data transmission block, which uses the pre-
viously described functions (UDP Open, UDP Write, UDP
Close), has the structure reported in Figure 11.

FIGURE 10: Data transmission to Modelica.

FIGURE 11: Data transmission block.
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2.4. The Battery Control Hardware. The battery control hard-
ware must be able to apply to the battery both charge and
discharge currents. This may be obtained with a bidirectional
converter (typically a voltage source converter—VSC). How-
ever, this was not the case of the experience of this paper,
where two separate pieces of hardware were available for
charge and discharge (Figure 12).

3. Simulations (Virtual HIL)

To check the whole software environment, a “Virtual HIL”
environment, has been created: In personal computer 1 (PC1)
the software running contains the vehicle without battery
(as per Figure 4) in personal computer 2 (PC2) the battery
model which receives required current from PC1, through
UDP interface, and sends back to the battery voltage, (actual)
current, and temperature.

3.1. Simulation of a Simple Driving Cycle (Sort1). In this case,
PC1 simulates a simple driving cycle, commonly used for busses,
named Sort11 (It seems there are no scientific papers describing
this cycle. Some useful info can however be taken from https://
www.uitp.org/publications/uitp-sort-e-sort-brochures/).

The battery is simulated in PC2; the effect of splitting this
simulation into two different PCs, is just demonstrative of
the technology, since the battery actual behaviour on this
example does not determine any special action to be under-
taken in simulation running in PC1; the situation will be
different in the next example.

Figure 13 contains a few curves of our vehicle running
under Sort1; traction force and vehicle speed are from PC1,
while battery voltage, although plotted from the program
running on PC1, has been determined by PC2, from the
current received through UDP communication from PC1.
The battery current plot represents both I∗ and I, since
they are nearly indistinguishable from each other. Also the
battery voltage is nearly indistiguishable from what could
have been determined running the battery model inside
PC1. Only when zooming very deep a small effect from the
discretisation used is seen (figure bottom-right where voltage
is slightly jagged).

3.2. Power Limitation due to Battery too High Voltage. The
usage of actual hardware for mixed hardware-software experi-
ments is important when the hardware influences the system’s
behaviour. In case of the battery, for instance, this happens
when the battery becomes too full and cannot receive charge
anymore, or too empty, and the vehicle performance degrades,
up to a complete stop.

Before doing this kind of test with the system containing
actual hardware, this has been simulated with the “Virtual
HIL” arrangement shown in Figure 14.

The vehicle is simulated to go downhill for a very long
time. At a given point, the battery is not able to receive any
more energy, and regenerative braking must be stopped. In
actual vehicles, mechanical, dissipative braking takes over;
since in our simulation the mechanical braking addition is
not simulated, we will see the vehicle taking excess speed in
comparison with that requested by the driver.

The feedback from the battery behaviour on the power
train control is as per Figure 15.

The generation of additional torque in data analysis is
done here with just a simple PI controller without optimisation
of proportional and integral gains, which is activated only when
the cell’s voltage overcomes the maximum allowed threshold.

Some results coming from the battery (simulated in PC2)
are shown in Figure 16; if the voltage overcomes 3.95V/cell,
the electric drive is subject to an additional “accelerating”
torque, that tends to reduce the regen braking, so that to avoid
the battery to overcharge.

Although the control law is not optimised (it is just to show
the concept) once the limit cell voltage, here set to 3.95V, is
reached, the additional torque has the effect to generate a cur-
rent able to keep, with a limited overshoot, the voltage within
the limit value. In the final part of the transient the system
stabilises at a current 0, which corresponds to a battery having
as OCV (open circuit voltage) the threshold value, i.e., 3.95V.

Naturally, this reduction in braking torque from the battery
in the vehicle will have to be compensated by addition of dissi-
pative braking torque (mechanical brakes), not simulated here.

The results in Figure 16, refer to a battery having a rather
larger variation of voltage during charge. Batteries with reduced
variation like the one used in the experimental verification
(next section) have different behaviour, but in principle the
mechanism is the same.

4. Experimental Verification

4.1. First Interaction Tests. Before performing large tests, a lot
of communication tests were carried out.

In Figure 17, we just show the graphical output of a cur-
rent step required by a test Modelica program, and obtained
through the arrangement in Figure 2.

We see the effects of a Modelica simulator requested cur-
rent step, on LabVIEW VIs, controlling the actual hardware.

4.2. Power Limitation due to Battery too High Voltage with Actual
Hardware. In the previous Section 4, the whole mechanism
envisaged to make a Modelica simulation program interact
with the hardware was simulated, using instead of the actual
battery a second USB-interfaced personal computer (PC2).
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FIGURE 12: Battery control hardware used for the experiments.
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At this point, a final experimental verification with the
full HIL arrangement as depicted in Figure 2 was made,
for the evaluation of power limitation due to battery low
voltage.

Unfortunately, we did not have at disposal the same cell
whose model was used in the tests shown in Section 4 (a

lithium–cobalt–oxide cell), but a different lithium cell, a
lithium–iron–phosphate (LFP) cell which has different elec-
trical behaviour, in particular a reduced variation of voltage
ad different states of charge.

For the rest, the test was the same as in Section 4.2. The
results obtained are shown in Figures 18 and 19.
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Consider Figure 18which is the twin of Figure 16 obtained
earlier; the following comments apply:

(1) Also in this case, when the voltage threshold is reached,
the system starts to generate additional torque which

reduces the regen braking (and induces subsequent
mechanical braking);

(2) In this case at t= 200 s the current is still large (54 A),
and the voltage continues to grow, but very slowly. It
is apparent that in this experiment the integral part of
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FIGURE 17: Interaction test with current step required by a test Modelica program.
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the control takes nearly no effect, since the additional
torque stabilises even when a finite-voltage error is
present. To eliminate this error (and to obtain results
like the ones in Figure 16), the integral part should be
enlarged. This has not been done her, since the pur-
pose of the experience was not to study the control to
limit regen braking, but the effectiveness of the HIL;

(3) Once that this HIL architecture is created, experi-
mental studies can be carried on the control of the
vehicle in several situations, e. g., large positive and
negative slopes, very large or small values of SOC,
etc., that will be object of the further papers.

In the top upper part of Figure 19 we see the current
requested by the Modelica-based vehicle simulator and cor-
responds to the plot shown as “cell current” in Figure 18 in
the time window 50–110 s. In the lower part of the screen, we
see VI monitoring cell parameters, with large degree of zoom.

5. Conclusions

This paper has shown that HIL simulations can be per-
formed through Modelica-based software, communicating
to LabVIEW-based control software and actual hardware.
The considered case-study regarded an electric vehicle whose
battery, instead of being software-simulated, is the actual
battery, subject to simulation software current and voltage.
For simplicity, here the actual battery was represented by a
single physical cell; its current and voltage were scaled back
to the battery level to be used in the vehicle simulator.

The obtained results are satisfying, given the inherent
delays due to the UDP-based communication. It has been
shown that to prepare theseHIL experiences, a good procedure

is to first create a “Virtual HIL” experiment, which facilitates
fine-tuning the system, before going to the actual test with
hardware.

Furter studies can consider converting the Modelica simula-
tor into FMU, which is inserted in the LabVIEW program, thus
dramatically reducing delays, and therefore further expanding
the capability of the proposed technique.

Appendix

Research Data

The description of Sort1 Cycle in our Modelica code is made
through a simple CSV file, which is composed by the follow-
ing rows:

#1
#1stcolumn:time,2ndcolumn:speed(km/hr)
double Cycle (13,2)

00.00 0.00
05.39 20.0
17.22 20.0
24.17 0.00
44.17 0.00
54.99 30.0
68.37 30.0
78.79 0.00
98.79 0.00

116.71 40.0
120.60 40.0
134.49 0.00
150.00 0.00

This file allows reproducing the left part of Figure 13. The
right part, however, depends on the specific battery tested.

FIGURE 19: Some LabVIEW plots of the experience whose Modelica plots are in Figure 18.
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