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Dumitru Bǎleanu, Turkey
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Volume 2012, Article ID 712743, 10 pages

Approximate Cubic ∗-Derivations on Banach ∗-Algebras, Seo Yoon Yang, Abasalt Bodaghi,
and Kamel Ariffin Mohd Atan
Volume 2012, Article ID 684179, 12 pages

Higher Ring Derivation and Intuitionistic Fuzzy Stability, Ick-Soon Chang
Volume 2012, Article ID 503671, 16 pages

The Hyers-Ulam-Rassias Stability of (m,n)(σ,τ)-Derivations on Normed Algebras, Ajda Fošner
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The original stability problem was posed by S. M. Ulam in 1940 and concerned approximate
homomorphisms. The pursuit of solutions to this problem, but also to its generalizations
and modifications for various classes of (difference, functional, differential, and integral)
equations and inequalities, is an expanding area of research and has led to the development
of what is now quite often called Ulam’s type stability theory or the Hyers-Ulam stability
theory. This theory has been the subject of many papers as well as talks presented at
various conferences, especially at the series of ICFEI conferences (International Conference
on Functional Equations and Inequalities) organized by the Department of Mathematics of
the Pedagogical University in Cracow (Poland) since 1984.

This special issue on Ulam’s type stability is focused on the recent achievements in that
type of stability for various objects. It contains 16 articles (a survey and 15 regular research
papers) which have been written by 29 authors from 11 countries.

As usual, most of the authors use in their investigations direct and fixed point
methods. Some open problems are also formulated.

The issue covers a wide variety of problems for different classes of functional
equations both in a single variable and in several variables. Their stability is traditionally
investigated in classical Banach spaces, but also in complete (probabilistic) metric spaces,
complete probabilistic quasimetric spaces, n-Banach spaces, (β, p)-Banach spaces, and fuzzy
Banach spaces.

Several papers deal with the stability of several kinds of derivations, and, thus,
derivations in Riesz algebras, (m,n)(σ,τ)-derivations in normed algebras, cubic ∗-derivations
in Banach ∗-algebras, and some higher ring derivations in intuitionistic fuzzy Banach algebras
are studied.
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The issue contains a few papers on the phenomenon of superstability, an article on the
stability of a functional inequality in p-Banach spaces, and a paper on the Cauchy fractional
differential equation in the unit disk.

Moreover, general solutions of two conditional quadratic functional equations of
Pexider type and the structure of the set of all regular points and the set of all irregular points
for a Brouwer homeomorphism which is embeddable in a flow are also considered.

Finally, the survey presents some selected recent developments (results and methods)
in the theory of Ulam’s type stability. In particular, some aspects of stability and nonstability
of functional equations in a single variable, the effect ”stability implies completeness,” some
methods of proofs applied in that theory (the Forti method and the methods of fixed points),
stability in non-Archimedean spaces, selected results on functional congruences, the notion
of hyperstability, and stability of composite functional equations (e.g., of the Goła̧b-Schinzel
equation and its generalizations) are discussed there.

We believe that this volume will have some influence on the further research in that
area of mathematics.

Janusz Brzdȩk
Nicole Brillouët-Belluot

Krzysztof Ciepliński
Bing Xu
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We present a survey of some selected recent developments (results and methods) in the theory of
Ulam’s type stability. In particular we provide some information on hyperstability and the fixed
point methods.

1. Introduction

The theory of Ulam’s type stability (also quite often connected, e.g., with the names of
Bourgin, Găvruţa, Ger, Hyers, and Rassias) is a very popular subject of investigations at the
moment. In this expository paper we do not give an introduction to it or an ample historical
background; for this we refer to [1–11]. Here we only want to attract the readers attention
to some selected topics by presenting some new results and methods in several areas of the
theory, which have not been treated at all or only marginally in those publications and which
are somehow connected to the research interests of the authors of this paper. Also the number
of references is significantly limited (otherwise the list of references would be the major part
of the paper) and is only somehow representative (but certainly not fully) to the subjects
discussed in this survey.

First we present a brief historical background for the stability of the Cauchy equation.
Next we discuss some aspects of stability and nonstability of functional equations in single
variable, somemethods of proofs applied in that theory (the Forti method and themethods of
fixed points), stability in non-Archmedean spaces, selected results on functional congruences,
stability of composite type functional equations (in particular of the Goła̧b-Schinzel equation
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and its generalizations), and finally the notion of hyperstability. We end the paper with
remarks also on some other miscellaneous issues.

2. Some Classical Results Concerning the Cauchy Equation

Throughout this paper N, Z, R, and C denote, as usual, the sets of positive integers, integers,
reals, and complex numbers, respectively. Moreover, R+ := [0,∞) and N0 := N ∪ {0}.

For the beginning let us mention that the first known result on stability of functional
equations is due to Pólya and Szegő [12] and reads as follows.

For every real sequence (an)n∈N
with

sup
n,m∈N

|an+m − an − am| ≤ 1, (2.1)

there is a real number ω such that

sup
n∈N

|an −ωn| ≤ 1. (2.2)

Moreover,

ω = lim
n→∞

an
n
. (2.3)

But the main motivation for study of that subject is due to Ulam (cf. [13]), who in 1940 in his
talk at the University of Wisconsin presented some unsolved problems and among them was
the following question.

Let G1 be a group and (G2, d) a metric group. Given ε > 0, does there exist δ > 0 such that if
f : G1 → G2 satisfies

d
(
f
(
xy

)
, f(x)f

(
y
))

< δ, x, y ∈ G1, (2.4)

then a homomorphism T : G1 → G2 exists with

d
(
f(x), T(x)

)
< ε, x ∈ G1? (2.5)

In 1941 Hyers [14] published the following answer to it.
Let X and Y be Banach spaces and ε > 0. Then for every g : X → Y with

sup
x,y∈X

∥∥g
(
x + y

) − g(x) − g(y)∥∥ ≤ ε, (2.6)

there exists a unique function f : X → Y such that

sup
x∈X

∥∥g(x) − f(x)∥∥ ≤ ε, (2.7)

f
(
x + y

)
= f(x) + f

(
y
)
, x, y ∈ X. (2.8)
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We can describe that latter result saying that the Cauchy functional equation (2.8) is Hyers-
Ulam stable (or has the Hyers-Ulam stability) in the class of functions YX . For examples of various
possible definitions of stability for functional equations and some discussions on them we
refer to [9].

The result of Hyers was extended by Aoki [15] (for 0 < p < 1; see also [16–18]), Gajda
[19] (for p > 1), and Rassias [20] (for p < 0; see also [21, p. 326] and [22]), in the following
way.

Theorem 2.1. Let E1 and E2 be two normed spaces, let E2 be complete, c ≥ 0, and let p /= 1 be a real
number. Let f : E1 → E2 be an operator such that

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ c(‖x‖p + ∥
∥y

∥
∥p), x, y ∈ E1 \ {0}. (2.9)

Then there exists a unique additive operator T : E1 → E2 with

∥∥f(x) − T(x)∥∥ ≤ c‖x‖p
∣∣1 − 2p−1

∣∣ , x ∈ E1 \ {0}. (2.10)

A further generalization was suggested by Bourgin [22] (see also [2, 6–8, 23]), without
a proof, and next rediscovered and improved many years later by Găvruţa [24]. Below, we
present the Găvruţa type result in a bit generalized form (on the restricted domain), which
can be easily derived from [25, Theorem 1].

Corollary 2.2. Let X be a linear space over a field with 2/= 0 and let Y be a Banach space. Let V ⊂ X
be nonempty, ϕ : V 2 → R, and f : V → Y satisfy

∥∥g
(
x + y

) − g(x) − g(y)∥∥ ≤ ϕ(x, y), x, y ∈ V, x + y ∈ V. (2.11)

Suppose that there is ε ∈ {−1, 1} such that 2εV ⊂ V and

H(x) :=
∞∑

i=0

2−iεϕ
(
2iεx, 2iεx

)
<∞, x ∈ V, (2.12)

lim inf
n→∞

∣∣2−nεϕ
(
2nεx, 2nεy

)∣∣ = 0, x, y ∈ V. (2.13)

Then there exists a unique F : V → Y such that

F
(
x + y

)
= F(x) + F

(
y
)
, x, y ∈ V, x + y ∈ V,

∥∥F(x) − f(x)∥∥ ≤ H0(x), x ∈ V,
(2.14)

where

H0(x) :=

{
2−1H(x), if ε = 1,
H
(
2−1x

)
, if ε = −1. (2.15)
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Corollary 2.2 generalizes several already classical results on stability of (2.8). In fact, if
we take ε = −1 and

ϕ
(
x, y

)
:= L1‖x‖p + L2

∥
∥y

∥
∥q + L3‖x‖r

∥
∥y

∥
∥s, x, y ∈ V (2.16)

with some L1, L2, L3 ∈ R+, p, q ∈ (1,∞), and r, s ∈ R with r + s > 1, thenH0 has the form

H0(x) =
L1‖x‖p
2p − 2

+
L2

∥∥y
∥∥q

2q − 2
+
L3

∥∥y
∥∥r+s

2r+s − 2
, x ∈ V. (2.17)

On the other hand, if ε = 1, V ⊂ X \ {0} and

ϕ
(
x, y

)
:= δ + L1‖x‖p + L2

∥
∥y

∥
∥q + L3‖x‖r

∥
∥y

∥
∥s, x, y ∈ V, (2.18)

with some δ, L1, L2, L3 ∈ R+, q, r ∈ (−∞, 1), and r, s ∈ R with r + s < 1, then

H0(x) = δ +
L1‖x‖p
2 − 2p

+
L2

∥∥y
∥∥q

2 − 2q
+
L3

∥∥y
∥∥r+s

2 − 2r+s
, x ∈ V. (2.19)

It is easily seen that, in this way, with V = X and L1 = L2 = L3 = 0 we get the result of Hyers
[14], with V = X, p = q, L1 = L2 and δ = L3 = 0 we obtain Theorem 2.1, with V = X and
δ = L1 = L2 = 0 we have the results of Rassias [26, 27].

Remark 2.3. Actually, as it is easily seen in the proof of [25, Theorem 1], it is enough to assume
in Corollary 2.2 that (X,+) is a commutative semigroup that is uniquely divisible by 2 (i.e.,
for each x ∈ X there exists a unique y ∈ X with x = y + y.)

For recent results on stability of some conditional versions of the Cauchy functional
equation (2.8)we refer to, for example, [28–31].

3. Stability of the Linear Functional Equation in Single Variable

In this section K ∈ {R,C}, X stands for a Banach space over K, S is a nonempty set, F : S →
X,m ∈ N, f1, . . . , fm : S → S, and a1, . . . , am : S → K, unless explicitly stated otherwise.

The functional equation

ϕ(x) =
m∑

i=1

ai(x)ϕ
(
fi(x)

)
+ F(x), (3.1)

for ϕ : S → X, is known as the linear functional equation of order m. For some information
on it we refer to [32, 33] and the references therein.

A simply particular case of functional equation (3.1), with S ∈ {N0,Z}, is the difference
equation:

yn =
m∑

i=1

ai(n)yn+i + bn, n ∈ S, (3.2)
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for sequences (yn)n∈S in X, where (bn)n∈S is a fixed sequence in X, namely, (3.1) becomes
difference equation (3.2) with

fi(n) = n + i, yn := ϕ(n) = ϕ
(
f1(0)

)
, bn := F(n), n ∈ S. (3.3)

There are only few results on stability of (3.1), and actually only of some particular cases of
it. For example, [34, Corollary 4] (cf. [34, Remark 5]) yields the following stability result.

Corollary 3.1. Assume that

q(x) :=
m∑

i=1

|ai(x)| < 1, x ∈ S, (3.4)

and ε : S → R+ are such that

ε
(
fi(x)

) ≤ ε(x), q
(
fi(x)

) ≤ q(x), x ∈ S, i = 1, . . . , m, (3.5)

(e.g., ε and q are constant). If a function ϕ : S → X satisfies the inequality

∥∥∥∥∥
ϕ(x) −

m∑

i=1

ai(x)ϕ
(
fi(x)

) − F(x)
∥∥∥∥∥
≤ ε(x), x ∈ S, (3.6)

then there exists a unique solution ψ : S → X to (3.1) with

∥∥ϕ(x) − ψ(x)∥∥ ≤ ε(x)
1 − q(x) , x ∈ S. (3.7)

The assumption (3.4) seems to be quite restrictive. So far we only know that it can be
avoided for some special cases of (3.1). For instance, this is the case when each function ai is
constant, am is nonzero, and fi = fi for i = 1, . . . , m (with some function f : S → S), where
as usual, for each p ∈ N0, fp denotes the pth iterate of f , that is,

f0(x) = x, fp+1(x) = f
(
fp(x)

)
, p ∈ N0, x ∈ S. (3.8)

Then (3.1) can be written in the following form

ϕ
(
fm(x)

)
=

m−1∑

i=0

diϕ
(
fi(x)

)
+ F(x), (3.9)

with some d0, . . . , dm−1 ∈ K, and [35, Theorem 2] implies the following stability result.
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Theorem 3.2. Let δ ∈ R+, d0, . . . , dm−1 ∈ K, ϕs : S → X satisfy

∥
∥
∥
∥∥
∥
ϕs

(
fm(x)

) −
m−1∑

j=0

djϕs
(
fj(x)

)
− F(x)

∥
∥
∥
∥∥
∥
≤ δ, x ∈ S, (3.10)

and r1, . . . , rm ∈ C denote the roots of the characteristic equation

rm −
m−1∑

j=0

djr
j = 0. (3.11)

Assume that one of the following three conditions is valid.

1◦ |rj | > 1 for j = 1, . . . , m.

2◦ |rj | ∈ (1,∞) ∪ {0} for j = 1, . . . , m and f is injective.

3◦ |rj |/= 1 for j = 1, . . . , m and f is bijective.

Then there is a solution ϕ : S → X of (3.9) with

∥∥ϕs(x) − ϕ(x)
∥∥ ≤ δ

|1 − |r1|| · . . . · |1 − |rm|| , x ∈ S. (3.12)

Moreover, in the case where 1◦ or 3◦ holds, ϕ is the unique solution of (3.9) such that

sup
x∈S

∥∥ϕs(x) − ϕ(x)
∥∥ <∞. (3.13)

The following example (see [35, Example 1]) shows that the statement of Theorem 3.2
need not to be valid in the general situation if |rj | = 1 for some j ∈ {1, . . . , m}.

Example 3.3. Fix δ > 0. Let S = X = K and let the functions f and ϕs be given by

f(x) = x + 1, ϕs(x) :=
δ

2
x2, x ∈ K. (3.14)

Then it is easily seen that

∣∣∣ϕs
(
f2(x)

)
− 2ϕs

(
f(x)

)
+ ϕs(x)

∣∣∣

=
∣∣∣∣
δ

2
(x + 2)2 − δ(x + 1)2 +

δ

2
x2
∣∣∣∣ = δ, x ∈ K.

(3.15)

Suppose that ϕ : K → K is a solution of

ϕ
(
f2(x)

)
= 2ϕ

(
f(x)

) − ϕ(x). (3.16)



Abstract and Applied Analysis 7

Clearly,

r2 − 2r + 1 = 0 (3.17)

is the characteristic equation of (3.16)with the roots r1 = r2 = 1. Let

ψ(x) := ϕ(x + 1) − ϕ(x), x ∈ K. (3.18)

Then it is easily seen that ψ(x + 1) = ψ(x) for x ∈ K, whence by a simple induction on n ∈ N

we get

ϕ(n) = ϕ(0) + nψ(0), n ∈ N. (3.19)

Consequently

lim
n→∞

∣∣ϕs(n) − ϕ(n)
∣∣ = lim

n→∞

∣∣∣∣
δ

2
n2 − ϕ(0) − nψ(0)

∣∣∣∣ = ∞, (3.20)

which means that

sup
x∈K

∣∣ϕs(x) − ϕ(x)
∣∣ = ∞. (3.21)

Thus we have shown that the statement of Theorem 3.2 is not valid in this case.

Estimation (3.12) is not optimal at least in some cases; for details we refer to [36,
Remark 1.5, and Theorem 3.1] (see also [37]).

For some investigations of stability of the functional equation

ϕ
(
fm(x)

)
=

m∑

j=1

aj(x)ϕ
(
fm−j(x)

)
+ F(x), (3.22)

with m > 1, we refer to [38] (note that the equation is a special case of (3.1) and a
generalization of (3.9)). Here we only present one simplified result from there.

To this end we need a hypothesis concerning the roots of the equations

zm −
m∑

j=1

aj(x)zm−j = 0, (3.23)

with x ∈ S, which reads as follows.
(H) Functions r1, . . . , rm : S → C satisfy the condition

m∏

i=1

(z − ri(x)) = zm −
m∑

j=1

aj(x)zm−j , x ∈ S, z ∈ C. (3.24)
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Hypothesis (H) means that, for every x ∈ S, r1(x), . . . , rm(x) ∈ C are the complex roots of
(3.23). Clearly, the functions r1, . . . , rm are not unique, but for every x ∈ S the sequence

(r1(x), . . . , rm(x)) (3.25)

is uniquely determined up to a permutation. Moreover, 0 /∈ am(S) if and only if 0 /∈ rj(S) for
each j = 1, . . . , m (see [38, Remark 1]).

We say that a function g : S → X is f-invariant provided

g
(
f(x)

)
= g(x), x ∈ S. (3.26)

Now we are in a position to present a result that can de deduced from [38, Theorem 1].

Theorem 3.4. Let ε0 : S → R+, let (H) be valid, and let rj be f-invariant for j > 1.
Assume that 0 /∈ am(S) and ϕs : S → X fulfills the inequality

∥∥∥∥∥∥
ϕs

(
fm(x)

) −
m∑

j=1

aj(x)ϕs
(
fm−j(x)

)
− F(x)

∥∥∥∥∥∥
≤ ε0(x), x ∈ S. (3.27)

Further, suppose that

ε1(x) :=
∞∑

k=0

ε0
(
fk(x)

)

∏k
p=0

∣∣r1
(
fp(x)

)∣∣
<∞, x ∈ S,

εj(x) :=
∞∑

k=0

εj−1
(
fk(x)

)

∣∣rj(x)
∣∣k+1

<∞, x ∈ S, j > 1.

(3.28)

Then (3.22) has a solution ϕ : S → X with

∥∥ϕs(x) − ϕ(x)
∥∥ ≤ εm(x), x ∈ S. (3.29)

As it folows from [38, Remark 8], the form of ϕ in Theorem 3.4 can be explicitly
described in some recurrent way.

Some further results on stability of (3.9), particular cases of it and some other similar
equations in single variable can be found in [1, 35, 39–51]. For instance, it has been shown in
[34, 52, 53] that stability of numerous functional equations of this kind is a direct consequence
of some fixed point results. We deal with that issue in the section on the fixed point methods.

At the end of this part we would like to suggest some terminology that might be useful
in the investigation of stability also for some other equations (as before, BD denotes the class
of functions mapping a nonempty set D into a nonempty set B). Moreover, that terminology
could be somehow helpful in clarification of the notion of nonstability, which is very briefly
discussed in the next section.
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Definition 3.5. Let C ⊂ R
S
+ be nonempty and let T be an operator mapping C into R

S
+. We say

that (3.1) is T-stable (with uniqueness, resp.) provided for every ε ∈ C and ϕ : S → X with

∥
∥
∥
∥
∥
ϕs(x) −

m∑

i=1

ai(x)ϕs
(
fi(x)

) − F(x)
∥
∥
∥
∥
∥
≤ ε(x), x ∈ S (3.30)

there exists a (unique, resp.) solution ϕ̃ : S → X of (3.1) such that

∥
∥ϕ(x) − ϕ̃(x)∥∥ ≤ Tε(x), x ∈ S. (3.31)

In connection with the original statement of Ulam’s problem we might think of yet
another definition that seems to be quite natural and useful sometimes.

Definition 3.6. Let ε : S → R+ and L ∈ R+. We say that functional equation (3.1) is (ε, L)-stable
(with uniqueness, resp.,) provided for every function ϕ : S → X satisfying (3.30), there exists
a (unique, resp.,) solution ϕ̃ : S → X to (3.1) such that

∥∥ϕ(x) − ϕ̃(x)∥∥ ≤ Lε(x), x ∈ S. (3.32)

Given a : S → R+ \ {0}, for each φ : S → R+ we write

Af
aφ(x) :=

∞∑

j=0

φ
(
fj(x)

)

∏j

k=0

∣∣a
(
fk(x)

)∣∣
, x ∈ S,

D :=
{
ε : S → R

0
+ : Af

aε(x) <∞, x ∈ S
}
.

(3.33)

Then Af
a is an operator mapping D into R

S and, according to Theorem 3.4, the functional
equation

ψ
(
f(x)

)
= a(x)ψ(x) + F(x), x ∈ S (3.34)

(i.e., (3.22)withm = 1) isAf
a -stable with uniqueness (cf. [48, Theorem 2.1]).

Further, note that for every ε ∈ R
S
+ with

ε
(
f(t)

) ≤ ε(t), t ∈ S,
s := inf

t∈S
|a(t)| > 1,

(3.35)

we have

Af
aε(x) ≤

∞∑

j=0

ε(x)
sk

=
ε(x)
s − 1

, x ∈ S, (3.36)
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and consequently (3.34) is (ε, L)-stable with

L :=
1

s − 1
. (3.37)

4. Nonstability

There are only few outcomes of which we could say that they concern nonstability of
functional equation. The first well-known one is due to Gajda [19] and answers a question
raised by Rassias [54]. Namely, he gave an example of a function showing that a result
analogous to that described in Theorem 2.1 cannot be obtained for p = 1 (for further such
examples see [21]; cf. also, e.g., [55, 56]).

In general it is not easy to define the notion of nonstability precisely, mostly because
at the moment there are several notions of stability in use (see [9, 57]). For instance, we could
understand nonstability as in Example 3.3. The other possibility is to refer to Definitions 3.5
and 3.6 and define T-nonstability and (ε, L)-nonstability, respectively. Finally, if there does
not exist an L ∈ R+ such that the equation is (ε, L)-stable, then we could say that it is ε-
nonstable.

For some further propositions of such definitions and preliminary results on
nonstability we refer to [58–62]. As an example we present below the result from [60,
Theorem 1] concerning nonstability of the difference equation

xn+1 = anxn + bn, n ∈ N0, (4.1)

where (xn)n≥0 and (bn)n≥0 are sequences in X and (an)n≥0 is a sequence in K.

Theorem 4.1. Let (εn)n≥0 be a sequence of positive real numbers, (bn)n≥0 a sequence inX, and (an)n≥0
a sequence in K with the property

lim
n→∞

εn|an+1|
εn+1

= 1. (4.2)

Then there exists a sequence (yn)n≥0 in X with

∥∥yn+1 − anyn − bn
∥∥ ≤ εn, n ∈ N0, (4.3)

such that, for every sequence (xn)n≥0 in X satisfying recurrence (4.1),

sup
n∈N

∥∥xn − yn
∥∥

εn−1
= ∞. (4.4)

The issue of nonstability seems to be a new promising area for research.
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5. Stability and Completeness

It is well known that the completeness of the target space is of great importance in the theory
of Hyers-Ulam stability of functional equations; we could observe this fact for the stability of
the Cauchy equation in the second section.

In [63], Forti and Schwaiger proved that if X is a commutative group containing an
element of infinite order, Y is a normed space, and the Cauchy functional equation is Hyers-
Ulam stable in the class YX , then the space Y has to be complete (let us also mention here that
Moszner [64] showed that all four assumptions are essential to get the completeness of Y ).

The above-described effect, stability implies completeness,was recently proved for some
other equations (see [65–68]). Here we present only one result of this kind. It concerns the
quadratic equation

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)

(5.1)

and comes from [67].

Theorem 5.1. LetX be a finitely generated free commutative group and Y be a normed space. If (5.1)
is Hyers-Ulam stable in the class YX , then the space Y is complete.

6. The Method of Forti

As Forti [43] (see also, e.g., [69]) has clearly demonstrated, the stability of functional
equations in single variable, in particular of the form:

Ψ ◦ F ◦ a = F (6.1)

plays a basic role in many investigations of the stability of functional equations in several
variables. Some examples presenting that method can be found in [25, 70, 71] (see also [72]).
Here we give only one such example that corrects [70, Corollary 3.2], which unfortunately
has been published with some details confused. The main tool is the following theorem (see
[70, Theorem 2.1]; cf. [43]).

Theorem 6.1. Assume that (Y, d) is a complete metric space, K is a nonempty set, f : K → Y ,
Ψ : Y → Y , a : K → K, h : K → R+, λ ∈ R+,

d
(
Ψ ◦ f ◦ a(x), f(x)) ≤ h(x), x ∈ K,

d
(
Ψ(x),Ψ

(
y
)) ≤ λd(x, y), x, y ∈ Y,

H(x) :=
∞∑

i=0

λih
(
ai(x)

)
<∞, x ∈ K.

(6.2)

Then, for every x ∈ K, the limit

F(x) := lim
n→∞

Ψn ◦ f ◦ an(x) (6.3)
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exists and F : K → Y is the unique function such that (6.1) holds and

d
(
f(x), F(x)

) ≤ H(x), x ∈ K. (6.4)

The next corollary presents the corrected version of [70, Corollary 3.2] and its proof.
Let us make some preparations for it.

First, let us recall that a groupoid (G,+) (i.e., a nonempty setG endowed with a binary
operation + : G2 → G) is uniquely divisible by 2 provided, for each x ∈ X, there is a unique
y ∈ X with x = 2y := y + y; such y we denote by (1/2)x. Next, we use the notion:

20x := x, 2nx = 2
(
2n−1x

)
, (6.5)

and (only if the groupoid is uniquely divisible by 2)

2−nx =
1
2

(
2−n+1x

)
, (6.6)

for every x ∈ G, n ∈ N.
A groupoid (G,+) is square symmetric provided the operation + is square symmetric,

that is, 2(x + y) = 2x + 2y for x, y ∈ G; it is easy to show by induction that, for each n ∈ N (for
all n ∈ Z, if the groupoid is uniquely divisible by 2), we have

2n
(
x + y

)
= 2nx + 2ny, x, y ∈ G. (6.7)

Clearly every commutative semigroup is a square symmetric groupoid. Next, let X be
a linear space over a field K, a, b ∈ K, z ∈ X, and define a binary operation ∗ : X2 → X by

x ∗ y := ax + by + z, x, y ∈ X. (6.8)

Then it is easy to check that (X, ∗) provides a simple example of a square symmetric groupoid.
The square symmetric groupoids have been already considered in several papers

investigating the stability of some functional equations (see, e.g., [73–79]). For a description
of square symmetric operations we refer to [80].

Finally, we say that (G,+, d) is a complete metric groupoid provided (G,+) is a
groupoid, (G, d) is a complete metric space, and the operation + : G2 → G is continuous,
in both variables simultaneously, with respect to the metric d.

Now we are in a position to present the mentioned above corrected version of [70,
Corollary 3.2].
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Corollary 6.2. Let (X,+) and (Y,+) be square symmetric groupoids, (Y,+) be uniquely divisible by 2,
(Y,+, d) be a complete metric groupoid, K ⊂ X, 2K ⊂ K (i.e., 2a ∈ K for a ∈ K), and χ : X2 → R+.
Suppose that there exist ξ, η ∈ R+ such that ξη < 1,

d

(
1
2
x,

1
2
y

)
≤ ξd(x, y), x, y ∈ Y,

χ
(
2x, 2y

) ≤ ηχ(x, y), x, y ∈ K,
(6.9)

and ϕ : K → Y satisfies

d
(
ϕ
(
x + y

)
, ϕ(x) + ϕ

(
y
)) ≤ χ(x, y), x, y ∈ K, x + y ∈ K. (6.10)

Then there is a unique function F : K → Y with

F
(
x + y

)
= F(x) + F

(
y
)
, x, y ∈ K, x + y ∈ K, (6.11)

d
(
ϕ(x), F(x)

) ≤ ξ

1 − ξηχ(x, x), x ∈ K. (6.12)

Proof. From (6.10), with x = y, we obtain d(ϕ(2x), 2ϕ(x)) ≤ χ(x, x) for x ∈ K, which yields

d

(
1
2
ϕ(2x), ϕ(x)

)
≤ ξd(ϕ(2x), 2ϕ(x)) ≤ ξχ(x, x), x ∈ K. (6.13)

Hence, by Theorem 6.1 (with λ = ξ, f = ϕ, Ψ(z) = (1/2)z, h(x) = ξχ(x, x), and a(x) = 2x) the
limit

F(x) := lim
n→∞

2−nϕ(2nx) (6.14)

exists for every x ∈ K and

d
(
ϕ(x), F(x)

) ≤ ξχ(x, x)
∞∑

i=0

(
ξη

)i ≤ ξ

1 − ξηχ(x, x), x ∈ K. (6.15)

Next, by (6.7) and (6.10), for every x, y ∈ K with x + y ∈ K, we have

d
(
2−nϕ

(
2n
(
x + y

))
, 2−nϕ(2nx) + 2−nϕ

(
2ny

)) ≤ (
ξη

)n
χ
(
x, y

)
, (6.16)

for n ∈ N, whence letting n → ∞we deduce that F is a solution of (6.11).
It remains to show the uniqueness of F. So suppose that G : K → Y ,

d
(
ϕ(x), G(x)

) ≤ ξ

1 − ξηχ(x, x), x ∈ K, (6.17)

G
(
x + y

)
= G(x) +G

(
y
)
, x, y ∈ K, x + y ∈ K. (6.18)
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Then

d(F(x), G(x)) ≤ d(F(x), ϕ(x)) + d(ϕ(x), G(x)) ≤ 2ξ
1 − ξηχ(x, x), x ∈ K, (6.19)

and by induction it is easy to show that (6.11) and (6.18) yield F(2nx) = 2nF(x) and G(2nx) =
2nG(x) for every x ∈ K and n ∈ N. Hence, for each x ∈ K,

d(F(x), G(x)) = d
(
2−nF(2nx), 2−nG(2nx)

)

≤ ξnχ(2nx, 2nx) ≤ (
ξη

)n
χ(x, x).

(6.20)

Since ξη < 1, letting n → ∞we get F = G.

7. The Fixed Point Methods

Apart from the classical method applied by Hyers and its modification proposed by Forti
(see also [72]), the fixed point methods seem to be the most popular at the moment in the
investigations of the stability of functional equations, both in single and several variables.
Although the fixed point method was used for the first time by Baker [39] who applied a
variant of Banach’s fixed point theorem to obtain the Hyers-Ulam stability of the functional
equation

f(t) = F
(
t, f

(
ϕ(t)

))
, (7.1)

most authors follow Radu’s approach (see [81], where a new proof of Theorem 2.1 for p ∈
R+ \ {1} was given) and make use of a theorem of Diaz and Margolis. Here we only present
one of the recent results obtained in this way.

Let us recall that a mapping f : V n → W , where V is a commutative group, W is
a linear space, and n is a positive integer, is called multiquadratic if it is quadratic in each
variable. Similarly we define multiadditive and multi-Jensen mappings. Some basic facts on
multiadditive functions can be found for instance in [82] (where their application to the
representation of polynomial functions is also presented), whereas for the general form of
multi-Jensen mappings and their connection with generalized polynomials we refer to [83].

The stability of multiadditive, multi-Jensen, and multiquadratic mappings was
recently investigated in [68, 84–93]. In particular, in [88] Radu’s approach was applied to
the proof of the following theorem.
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Theorem 7.1. Let W be a Banach space and for every i ∈ {1, . . . , n}, let ϕi : V n+1 → R+ be a
mapping such that

lim
j→∞

1
4j
ϕi
(
2jx1, x2, . . . , xn+1

)
= · · ·

= lim
j→∞

1
4j
ϕi
(
x1, . . . , xi−2, 2jxi−1, xi, . . . , xn+1

)

= lim
j→∞

1
4j
ϕi
(
x1, . . . , xi−1, 2jxi, 2jxi+1, xi+2, . . . , xn+1

)

= lim
j→∞

1
4j
ϕi
(
x1, . . . , xi+1, 2jxi+2, xi+3, . . . , xn+1

)
= · · ·

= lim
j→∞

1
4j
ϕi
(
x1, . . . , xn, 2jxn+1

)
= 0, (x1, . . . , xn+1) ∈ V n+1,

(7.2)

ϕi(x1, . . . , xi−1, 2xi, 2xi, xi+1, . . . , xn)

≤ 4Liϕi(x1, . . . , xi, xi, xi+1, . . . , xn), (x1, . . . , xn) ∈ V n,
(7.3)

for an Li ∈ (0, 1). If f : V n → W is a mapping satisfying, for any i ∈ {1, . . . , n},

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0, (x1, . . . , xi−1, xi+1, . . . , xn) ∈ V n−1, (7.4)

∥∥f
(
x1, . . . , xi−1, xi + x′

i, xi+1, . . . , xn
)
+ f

(
x1, . . . , xi−1, xi − x′

i, xi+1, . . . , xn
)

− 2f(x1, . . . , xn) − 2f
(
x1, . . . , xi−1, x′

i, xi+1, . . . , xn
)∥∥

≤ ϕi
(
x1, . . . , xi, x

′
i, xi+1, . . . , xn

)
,

(
x1, . . . , xi, x

′
i, xi+1, . . . , xn

) ∈ V n+1,

(7.5)

then for every i ∈ {1, . . . , n} there exists a unique multiquadratic mapping Fi : V n → W such that

∥∥f(x1, . . . , xn) − Fi(x1, . . . , xn)
∥∥ ≤ 1

4 − 4Li
ϕi(x1, . . . , xi, xi, xi+1, . . . , xn),

(x1, . . . , xn) ∈ V n.

(7.6)

Baker’s idea (to prove his result it is enough to define suitable (complete)metric space
and (contractive) operator, which form follows from the considered equation (in this case
T(a)(t) := F(t, a(ϕ(t)))), and apply the (Banach) fixed point theorem) was used by several
mathematicians, who applied other fixed point theorems to extend and generalize Baker’s
result. Now, we present some of these recent outcomes.
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To formulate the first of them, let us recall that a mapping γ : R+ → R+ is called a
comparison function if it is nondecreasing and

lim
n→∞

γn(t) = 0, t ∈ (0,∞). (7.7)

In [94], Matkowski’s fixed point theorem was applied to the proof of the following
generalization of Baker’s result.

Theorem 7.2. Let S be a nonempty set, let (X, d) be a complete metric space, ϕ : S → S, and
F : S ×X → X. Assume also that

d(F(t, u), F(t, v)) ≤ γ(d(u, v)), t ∈ S, u, v ∈ X, (7.8)

where γ : R+ → R+ is a comparison function, and let g : S → X, δ > 0 be such that

d
(
g(t), F

(
t, g

(
ϕ(t)

))) ≤ δ, t ∈ S. (7.9)

Then there is a unique function f : S → X satisfying (7.1) and

ρ
(
f, g

)
:= sup

{
d
(
f(t), g(t)

)
, t ∈ S} <∞. (7.10)

Moreover, ρ(f, g) − γ(ρ(f, g)) ≤ δ.

On the other hand, in [95], Baker’s idea and a variant of Ćirić’s fixed point theorem
were used to obtain the following result concerning the stability of (7.1).

Theorem 7.3. Let S be a nonempty set, let (X, d) be a complete metric space, ϕ : S → S, and
F : S ×X → X and

d
(
F(t, x), F

(
t, y

)) ≤ α1
(
x, y

)
d
(
x, y

)
+ α2

(
x, y

)
d(x, F(t, x))

+ α3
(
x, y

)
d
(
y, F

(
t, y

))
+ α4

(
x, y

)
d
(
x, F

(
t, y

))

+ α5
(
x, y

)
d
(
y, F(t, x)

)
, t ∈ S, x, y ∈ X,

(7.11)

where α1, . . . , α5 : X ×X → R+ satisfy

5∑

i=1

αi
(
x, y

) ≤ λ, (7.12)

for all x, y ∈ X and a λ ∈ [0, 1). If g : S → X, δ > 0, and (7.9) holds, then there is a unique function
f : S → X satisfying (7.1) and

d
(
f(t), g(t)

) ≤ (2 + λ)δ
2(1 − λ) , t ∈ S. (7.13)
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A consequence of Theorem 7.3 is the following result on the stability of the linear
functional equation of order 1.

Corollary 7.4. Let S be a nonempty set, let E be a real or complex Banach space, ϕ : S → S,
α : S → E, B : S → L(E) (here L(E) denotes the Banach algebra of all bounded linear operators on
E), λ ∈ [0, 1), and

‖B(t)‖ ≤ λ, t ∈ S. (7.14)

If g : S → E, δ > 0, and

∥
∥g(t) − (

α(t) + B(t)
(
g
(
ϕ(t)

)))∥∥ ≤ δ, t ∈ S, (7.15)

then there exists a unique function f : S → E satisfying

f(t) = α(t) + B(t)
(
f
(
ϕ(t)

))
, t ∈ S, (7.16)

and the condition

∥∥f(t) − g(t)∥∥ ≤ δ

1 − λ, t ∈ S. (7.17)

In [96], Miheţ gave one more generalization of Baker’s result. In order to do this he
proved a fixed point alternative and used it in the proof of this generalization. To formulate
Miheţ’s theorem, let us recall that a mapping γ : [0,∞] → [0,∞] is called a generalized strict
comparison function if it is nondecreasing, γ(∞) = ∞,

lim
n→∞

γn(t) = 0, t ∈ (0,∞),

lim
t→∞

(
t − γ(t)) = ∞.

(7.18)

Theorem 7.5. Let S be a nonempty set, let (X, d) be a complete metric space, ϕ : S → S, and
F : S ×X → X. Assume also that

d(F(t, u), F(t, v)) ≤ γ(d(u, v)), t ∈ S, u, v ∈ X, (7.19)

where γ : [0,∞] → [0,∞] is a generalized strict comparison function and let g : S → X, δ > 0 be
such that (7.9) holds. Then there is a unique function f : S → X satisfying (7.1) and

d
(
f(t), g(t)

) ≤ sup
{
s > 0 : s − γ(s) ≤ δ}, t ∈ S. (7.20)

A somewhat different fixed point approach to the Hyers-Ulam stability of functional
equations, in which the stability results are simple consequences of some new fixed point
theorems, can be found in [34, 52, 53, 97].
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Given a nonempty set S and a metric space (X, d), we define Δ : (XS)2 → R+
S by

Δ
(
ξ, μ

)
(t) := d

(
ξ(t), μ(t)

)
, ξ, μ ∈ XS, t ∈ S. (7.21)

Now, we are in a position to present the following fixed point theorem from [34].

Theorem 7.6. Let S be a nonempty set, let (X, d) be a complete metric space, k ∈ N, f1, . . . , fk : S →
S, L1, . . . , Lk : S → R+, and let Λ : R

S
+ → R

S
+ be given by

(Λδ)(t) :=
k∑

i=1

Li(t)δ
(
fi(t)

)
, δ ∈ R

S
+, t ∈ S. (7.22)

If T : XS → XS is an operator satisfying the inequality

Δ
(Tξ,Tμ)(t) ≤ Λ

(
Δ
(
ξ, μ

))
(t), ξ, μ ∈ XS, t ∈ S (7.23)

and functions ε : S → R+ and g : S → X are such that

Δ
(Tg, g)(t) ≤ ε(t), t ∈ S, (7.24)

∞∑

n=0
(Λnε)(t) =: σ(t) <∞, t ∈ S, (7.25)

then for every t ∈ S the limit

lim
n→∞

(Tng
)
(t) =: f(t) (7.26)

exists and the function f : S → X, defined in this way, is a unique fixed point of T with

Δ
(
g, f

)
(t) ≤ σ(t), t ∈ S. (7.27)

A consequence of Theorem 7.6 is the following result on the stability of a quite wide
class of functional equations in a single variable.

Corollary 7.7. Let S be a nonempty set, let (X, d) be a complete metric space, k ∈ N, f1, . . . , fk :
S → S, L1, . . . , Lk : S → R+, and let a function Φ : S ×Xk → X satisfy the inequality

d
(
Φ
(
t, y1, . . . , yk

)
,Φ(t, z1, . . . , zk)

) ≤
k∑

i=1

Li(t)d
(
yi, zi

)
, (7.28)

for any (y1, . . . , yk), (z1, . . . , zk) ∈ Xk and t ∈ S, and T : XS → XS be an operator defined by

(Tϕ)(t) := Φ
(
t, ϕ

(
f1(t)

)
, . . . , ϕ

(
fk(t)

))
, ϕ ∈ XS, t ∈ S. (7.29)



Abstract and Applied Analysis 19

Assume also that Λ is given by (7.22) and functions g : S → X and ε : S → R+ are such that

d
(
g(t),Φ

(
t, g

(
f1(t)

)
, . . . , g

(
fk(t)

))) ≤ ε(t), t ∈ S (7.30)

and (7.25) holds. Then for every t ∈ S limit (7.26) exists and the function f : S → X is a unique
solution of the functional equation

Φ
(
t, f

(
f1(t)

)
, . . . , f

(
fk(t)

))
= f(t), t ∈ S (7.31)

satisfying inequality (7.27).

Let us also mention here that very recently Cădariu et al. [97] improved the above two
outcomes considering, instead of that given by (7.22), a more general operator Λ.

Next, following [53], we deal with the case of non-Archimedean metric spaces. In
order to do this, we introduce some notations and definitions.

Let S be a nonempty set. For any δ1, δ2 ∈ R
S
+ we write δ1 ≤ δ2 provided

δ1(t) ≤ δ2(t), t ∈ S, (7.32)

and we say that an operator Λ : R
S
+ → R

S
+ is nondecreasing if it satisfies the condition

Λδ1 ≤ Λδ2, δ1, δ2 ∈ R
S
+, δ1 ≤ δ2. (7.33)

Moreover, given a sequence (gn)n∈N
in R

S
+, we write limn→∞gn = 0 provided

lim
n→∞

gn(t) = 0, t ∈ S. (7.34)

We will also use the following hypothesis concerning operators Λ : R
S
+ → R

S
+:

(C) limn→∞Λδn = 0 for every sequence (δn)n∈N
in R

S
+ with limn→∞δn = 0.

Finally, recall that a metric d on a nonempty set X is called non-Archimedean (or an
ultrametric) provided

d(x, z) ≤ max
{
d
(
x, y

)
, d

(
y, z

)}
, x, y, z ∈ X. (7.35)

We can now formulate the following fixed point theorem.

Theorem 7.8. Let S be a nonempty set, let (X, d) be a complete non-Archimedean metric space, and
let Λ : R

S
+ → R

S
+ be a nondecreasing operator satisfying hypothesis (C). If T : XS → XS is an

operator satisfying inequality (7.23) and functions ε : S → R+ and g : S → X are such that

lim
n→∞

Λnε = 0, (7.36)
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and (7.24) holds, then for every t ∈ S limit (7.26) exists and the function f : S → X, defined in this
way, is a fixed point of T with

Δ
(
g, f

)
(t) ≤ sup

n∈N0

(Λnε)(t) =: σ(t), t ∈ S. (7.37)

If, moreover,

(Λσ)(t) ≤ sup
n∈N0

(
Λn+1ε

)
(t), t ∈ S, (7.38)

then f is the unique fixed point of T satisfying (7.37).

An immediate consequence of Theorem 7.8 is the following result on the stability of
(7.31) in complete non-Archimedean metric spaces.

Corollary 7.9. Let S be a nonempty set, (X, d) be a complete non-Archimedean metric space, k ∈ N,
f1, . . . , fk : S → S, L1, . . . , Lk : S → R+, and a function Φ : S ×Xk → X satisfy the inequality

d
(
Φ
(
t, y1, . . . , yk

)
,Φ(t, z1, . . . , zk)

) ≤ max
i∈{1,...,k}

Li(t)d
(
yi, zi

)
, (7.39)

for any (y1, . . . , yk), (z1, . . . , zk) ∈ Xk and t ∈ S, and T : XS → XS be an operator defined by
(7.29). Assume also that Λ is given by

(Λδ)(t) := max
i∈{1,...,k}

Li(t)δ
(
fi(t)

)
, δ ∈ R

S
+, t ∈ S, (7.40)

and functions g : S → X and ε : S → R+ are such that (7.30) and (7.36) hold. Then for every t ∈ S
limit (7.26) exists and the function f : S → X is a solution of functional equation (7.31) satisfying
inequality (7.37).

Given nonempty sets S,Z and functions ϕ : S → S, F : S × Z → Z, we define an
operator LF

ϕ : ZS → ZS by

LF
ϕ

(
g
)
(t) := F

(
t, g

(
ϕ(t)

))
, g ∈ ZS, t ∈ S, (7.41)

and we say that U : ZS → ZS is an operator of substitution provided U = LG
ψ with some

ψ : S → S and G : S × Z → Z. Moreover, if G(t, ·) is continuous for each t ∈ S (with respect
to a topology in Z), then we say that U is continuous.

The following fixed point theorem was proved in [52].

Theorem 7.10. Let S be a nonempty set, let (X, d) be a complete metric space, Λ : S × R+ → R+,
T : XS → XS, ϕ : S → S, and

Δ
(Tα,Tβ)(t) ≤ Λ

(
t,Δ

(
α ◦ ϕ, β ◦ ϕ)(t)), α, β ∈ XS, t ∈ S. (7.42)
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Assume also that for every t ∈ S, Λt := Λ(t, ·) is nondecreasing, ε : S → R+, g : S → X,

∞∑

n=0

((
LΛ
ϕ

)n
ε
)
(t) =: σ(t) <∞, t ∈ S, (7.43)

and (7.24) holds. Then for every t ∈ S limit (7.26) exists and inequality (7.27) is satisfied. Moreover,
the following two statements are true.

(i) If T is a continuous operator of substitution or Λt is continuous at 0 for each t ∈ S, then f
is a fixed point of T.

(ii) If Λt is subadditive (that is,

Λt(a + b) ≤ Λt(a) + Λt(b), (7.44)

for all a, b ∈ R+) for each t ∈ S, then T has at most one fixed point f ∈ XS such that

Δ
(
g, f

)
(t) ≤Mσ(t), t ∈ S, (7.45)

for a positive integerM.

Theorem 7.10 with T = LF
ϕ immediately gives the following generalization of Baker’s

result.

Corollary 7.11. Let S be a nonempty set, let (X, d) be a complete metric space, F : S × X → X,
Λ : S × R+ → R+, and

d
(
F(t, x), F

(
t, y

)) ≤ Λ
(
t, d

(
x, y

))
, t ∈ S, x, y ∈ X. (7.46)

Assume also that ϕ : S → S, ε : S → R+, (7.43) holds, g : S → X, for every t ∈ S, Λt := Λ(t, ·) is
nondecreasing, F(t, ·) is continuous, and

d
(
g(t), F

(
t, g

(
ϕ(t)

))) ≤ ε(t), t ∈ S. (7.47)

Then for every t ∈ S the limit

f(t) := lim
n→∞

(
LF
ϕ

)n(
g
)
(t) (7.48)

exists, (7.27) holds and f is a solution of (7.1). Moreover, if for every t ∈ S, Λt is subadditive and
M ∈ N, then f : S → X is the unique solution of (7.1) fulfilling (7.45).

Let us finally mention that the fixed point method is also a useful tool for proving
the Hyers-Ulam stability of differential (see [98, 99]) and integral equations (see for instance
[100–102]). Some further details and information on the connections between the fixed point
theory and the Hyers-Ulam stability can be found in [103].
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8. Stability in Non-Archimedean Spaces

Let us recall that a non-Archimedean valuation in a field K is a function | · | : K → R+ with

|r| = 0, iff r = 0,

|rs| = |r||s|, r, s ∈ K,

|r + s| ≤ max{|r|, |s|}, r, s ∈ K.

(8.1)

A field endowed with a non-Archimedean valuation is said to be non-Archimedean. Let X be
a linear space over a field K with a non-Archimedean valuation that is nontrivial (i.e., we
additionally assume that there is an r0 ∈ K such that 0/= |r0|/= 1). A function ‖ · ‖ : X → R+ is
said to be a non-Archimedean norm if it satisfies the following conditions:

‖x‖ = 0, iff x = 0,

‖rx‖ = |r|‖x‖, r ∈ K, x ∈ X,
∥∥x + y

∥∥ ≤ max
{‖x‖,∥∥y∥∥}, x, y ∈ X.

(8.2)

If ‖ · ‖ : X → R+ is a non-Archimedean norm in X, then the pair (X, ‖ · ‖) is called a non-
Archimedean normed space.

If (X, ‖ · ‖) is a non-Archimedean normed space, then it is easily seen that the function
dX : X2 → R+, given by dX(x, y) := ‖x − y‖, is a non-Archimedean metric on X. Therefore
non-Archimedean normed spaces are special cases of metric spaces. The most important
examples of non-Archimedean normed spaces are the p-adic numbers Qp (here p is any prime
number), which have gained the interest of physicists because of their connections with some
problems coming from quantum physics, p-adic strings, and superstrings (see, for instance,
[104]).

In [105], correcting the mistakes in the proof given by the second author in 1968,
Arriola and Beyer showed that the Cauchy functional equation is Hyers-Ulam stable in R

Qp .
Schwaiger [106] did the same in the class of functions from a commutative group which is
uniquely divisible by p to a Banach space over Qp. In 2007, Moslehian and Rassias [107]
proved the generalized Hyers-Ulam stability of the Cauchy equation in a more general
setting, namely, in complete non-Archimedean normed spaces. After their results a lot of
papers (see, for instance, [87–89, 93] and the references given there) on the stability of other
equations in such spaces have been published. Here we present only one example of these
outcomes which is a generalization of the result of Moslehian and Rassias and was obtained
in [87] (cf. also Theorem 7 in [106]).
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Theorem 8.1. Let V be a commutative semigroup and W be a complete non-Archimedean normed
space over a non-Archimedean field of characteristic different from 2. Assume also that n ∈ N and for
every i ∈ {1, . . . , n}, ϕi : V n+1 → R+ is a mapping such that for each (x1, . . . , xn+1) ∈ V n+1,

lim
j→∞

1

|2|j
ϕi
(
2jx1, x2, . . . , xn+1

)
= . . .

= lim
j→∞

1

|2|j
ϕi
(
x1, . . . , xi−2, 2jxi−1, xi, . . . , xn+1

)

= lim
j→∞

1

|2|j
ϕi
(
x1, . . . , xi−1, 2jxi, 2jxi+1, xi+2, . . . , xn+1

)

= lim
j→∞

1

|2|j
ϕi
(
x1, . . . , xi+1, 2jxi+2, xi+3, . . . , xn+1

)
= . . .

= lim
j→∞

1

|2|j
ϕi
(
x1, . . . , xn, 2jxn+1

)
= 0,

(8.3)

and the limit

lim
k→∞

max

{
1

|2|j
ϕi
(
x1, . . . , xi−1, 2jxi, 2jxi, xi+1, . . . , xn

)
: 0 ≤ j < k

}

, (8.4)

denoted by ϕ̃i(x1, . . . , xn), exists. If f : V n → W is a function satisfying

∥∥f
(
x1, . . . , xi−1, xi + x′

i, xi+1, . . . , xn
) − f(x1, . . . , xn)

− f
(
x1, . . . , xi−1, x′

i, xi+1, . . . , xn
)∥∥

≤ ϕi
(
x1, . . . , xi, x

′
i, xi+1, . . . , xn

)
,

(
x1, . . . , xi, x

′
i, xi+1, . . . , xn

) ∈ V n+1, i ∈ {1, . . . , n},

(8.5)

then for every i ∈ {1, . . . , n} there exists a multiadditive mapping Fi : V n → W for which

∥∥f(x1, . . . , xn) − Fi(x1, . . . , xn)
∥∥ ≤ 1

|2| ϕ̃i(x1, . . . , xn), (x1, . . . , xn) ∈ V n. (8.6)

For every i ∈ {1, . . . , n} the function Fi is given by

Fi(x1, . . . , xn) := lim
j→∞

1
2j
f
(
x1, . . . , xi−1, 2jxi, xi+1, . . . , xn

)
, (x1, . . . , xn) ∈ V n. (8.7)
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If, moreover,

lim
l→∞

lim
k→∞

max

{
1

|2|j
ϕi
(
x1, . . . , xi−1, 2jxi, 2jxi, xi+1, . . . , xn

)
: l ≤ j < k + l

}

= 0,

i ∈ {1, . . . , n}, (x1, . . . , xn) ∈ V n,

(8.8)

then for every i ∈ {1, . . . , n}, Fi is the unique multiadditive mapping satisfying condition (8.6).

It seems that [53] was the first paper where the Hyers-Ulam stability was considered
in the most general setting, namely, in complete non-Archimedean metric spaces. One of its
results (Corollary 7.9)wasmentioned in Section 6; the others, which can be also derived from
Theorem 7.8, read as follows (from now on X denotes a nonempty set and (Y, d) stands for a
complete non-Archimedean metric space).

Corollary 8.2. Suppose that (Y, ∗) is a groupoid and

d
(
x ∗ z, y ∗ z) = d

(
x, y

)
, x, y, z ∈ Y. (8.9)

Let k,m ∈ N, L1, . . . , Lk : X → R+, G : X × Ym → Y , f1, . . . , fk, g1, . . . , gm : X → X, and
Φ : X ×Yk → Y satisfy inequality (7.39) for any (y1, . . . , yk), (z1, . . . , zk) ∈ Yk and t ∈ X. Assume
also that functions ϕ, μ1, . . . , μm : X → Y , and ε : X → R+ are such that

d
(
ϕ(x),Φ

(
x, ϕ

(
f1(x)

)
, . . . , ϕ

(
fk(x)

)) ∗G(x, μ1
(
g1(x)

)
, . . . , μm

(
gm(x)

))) ≤ ε(x), x ∈ X
(8.10)

and (7.36) holds with Λ given by (7.40). Then the limit limn→∞(T0
nϕ)(x) =: ψ(x) exists for every

x ∈ X, where T0 : YX → YX is defined by

(T0ξ)(x) := Φ
(
x, ξ

(
f1(x)

)
, . . . , ξ

(
fk(x)

)) ∗G(x, μ1
(
g1(x)

)
, . . . , μm

(
gm(x)

))
, (8.11)

and the functions μ1, . . . , μm, and ψ : X → Y fulfil

ψ(x) = Φ
(
x, ψ

(
f1(x)

)
, . . . , ψ

(
fk(x)

)) ∗G(x, μ1
(
g1(x)

)
, . . . , μm

(
gm(x)

))
,

d
(
ϕ(x), ψ(x)

) ≤ supn∈N0
(Λnε)(x), x ∈ X.

(8.12)

Corollary 8.3. Suppose that (Y,+) is a commutative group and d is invariant (i.e., d(x + z, y + z) =
d(x, y) for x, y, z ∈ Y ). Let k ∈ N, ϕ1, . . . , ϕk : X → Y ,Φ1, . . . ,Φk : X ×Y → Y , and ε : X → R+

satisfy

d

(
k∑

i=1

ϕi(x),
k∑

i=1

Φi

(
x, ϕi(x)

)
)

≤ ε(x), x ∈ X. (8.13)
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Assume also that there is a number j ∈ {1, . . . , k} such that

d
(
Φj

(
x, y

)
,Φj(x, z)

) ≤ Lj(x)d
(
y, z

)
, x ∈ X, y, z ∈ Y (8.14)

with a function Lj : X → [0, 1). Then the limit limn→∞(Tnϕj)(x) =: ψ(x) exists for every x ∈ X,
where T : YX → YX is given by

(Tϕ)(x) := Φj

(
x, ϕ(x)

)
+

k∑

i=1,i /= j

Φi

(
x, ϕi(x)

) −
k∑

i=1,i /= j

ϕi(x), (8.15)

and the function ψ : X → Y , defined in this way, is the unique solution of the functional equation

Φj

(
x, ψ(x)

)
+

k∑

i=1,i /= j
Φi

(
x, ϕi(x)

)
= ψ(x) +

k∑

i=1,i /= j
ϕi(x), (8.16)

such that d(ϕj(x), ψ(x)) ≤ ε(x) for x ∈ X.

Corollary 8.4. Let (X, ∗) be a groupoid, k ∈ N, d1, . . . , dk ∈ X, c ∈ R+, ϕ : X → Y , L1, . . . , Lk :
X → R+, a functionΦ : X×Yk → Y satisfy inequality (7.39) for any (y1, . . . , yk), (z1, . . . , zk) ∈ Yk

and t ∈ X, and T : YX → YX be an operator defined by

(Tϕ)(x) := Φ
(
x, ϕ(x ∗ d1), . . . , ϕ(x ∗ dk)

)
, ϕ ∈ YX, x ∈ X. (8.17)

Assume also that a function σ : X → R+ is such that

q := sup
x∈X

(
max

i∈{1,...,k}
Li(x)σ(di)

)
< 1,

σ
(
x ∗ y) ≤ σ(x)σ(y), x, y ∈ X,

d
(
ϕ(x),Φ

(
x, ϕ(x ∗ d1), . . . , ϕ(x ∗ dk)

)) ≤ c σ(x), x ∈ X.

(8.18)

Then there exists a function ψ : X → Y such that

ψ(x) = Φ
(
x, ψ(x ∗ d1), . . . , ψ(x ∗ dk)

)
, x ∈ X,

d
(
ϕ(x), ψ(x)

) ≤ cσ(x), x ∈ X.
(8.19)

9. Functional Congruences

In this section Y denotes a real Banach space, K stands for a subgroup of the group (Y,+),
and E is a real linear space, unless explicitly stated otherwise. We write

D1 + TD2 :=
{
x + ty : x ∈ D1, y ∈ D2, t ∈ T

}
, (9.1)

for T ⊂ R and D1, D2 ⊂ E.
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Baron et al. [108] have started the study of conditions on a convex set C ⊂ Y and a
function h : E → Y with

h
(
x + y

) − h(x) − h(y) ∈ K + C, for x, y ∈ E, (9.2)

which guarantee that there exists an additive functionA : E → Y (i.e.,A(x+y) = A(x)+A(y)
for x, y ∈ E) such that

h(x) −A(x) ∈ K + C, for x ∈ E, (9.3)

or, in other words, that h can be represented in the form

h = A + γ + κ, (9.4)

with some γ : E → C, κ : E → K. That is a continuation and an extension of some earlier
investigations in [109–111]. Here we present some examples of results from [112] (see also
[113, 114]), which generalize those in [108].

They correspond simultaneously to the classical Ulam’s problem of stability for the
Cauchy equation (with K = {0}) and to the subjects considered, for example, in [115–128],
where functions satisfying (9.2) with C = {0} (mainly on restricted domains), have been
investigated. The latter issue appears naturally in connection with descriptions of subgroups
of some groups (see [129]) and some representations of characters (see, e.g., [109, 115, 116,
122–125]).

It is proved in [112, Example 1] that without any additional assumptions on h, the
mentioned above decomposition of h is not possible in general.

In what follows we say that two nonempty sets D1, D2 ⊂ Y are separated provided

inf
{∥∥x − y∥∥ : x ∈ D1, y ∈ D2

}
> 0. (9.5)

In the rest of this section C stands for a nonempty closed, symmetric (i.e., −x ∈ C for each
x ∈ C), and convex subset of Y . The next theorem (see [112, Theorem 10]) involves the notion
of Christensen measurability and we refer to [130] (cf. [131, 132]) for the details concerning
it.

Theorem 9.1. Suppose that E is a Polish real linear space, h : E → Y is Christensen measurable,
(9.2) holds, and one of the following three conditions is valid.

(i) The sets 4C and K \ {0} are separated and Y is separable.

(ii) The sets 10C and K \ {0} are separated, K is countable, and C is bounded.

(iii) The sets (10 + ε)C and K \ {0} are separated for some ε ∈ (0,∞) and K is countable.

Then there exists an additive function A : E → Y satisfying (9.3).
Moreover, in the case where C is bounded, A is unique and continuous.

Remark 9.2. There arises a natural question to what extent each of assumptions (i)–(iii) in
Theorem 9.1, but also in Theorems 9.3 and 9.4, can be weakened (if at all)?
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Certainly, the boundedness of C in Theorem 9.1 is necessary for the uniqueness and
continuity of A as it follows from [112, Remark 4]. It is also the case for the uniqueness,
linearity, and continuity of A in Theorems 9.3 and 9.4.

For the next theoremwe need the notion of Baire property. Let us recall that h : E → Y
has the Baire property provided, for every open set V ⊂ Y , the set h−1(V ) has the Baire
property, that is, there are an open setU ⊂ E and sets T1, T2 ⊂ E of the first category, with

h−1(V ) = (U ∪ T1) \ T2. (9.6)

Let us yet recall that a topology in a real linear space Z is called semilinear provided the
mapping

R × Z × Z 
 (
α, x, y

) −→ αx + y ∈ Z (9.7)

is separately continuous with respect to each variable (see, e.g., [133]). A real linear space Z
endowed with a semilinear topology is called a semilinear topological space.

Now we are in a position to present [112, Theorem 13].

Theorem 9.3. Suppose that E is a real semilinear topological space of the second category of Baire (in
itself), one of conditions (i)–(iii) of Theorem 9.1 is valid, and h : E → Y fulfills (9.2) and has the Baire
property. Then there exists an additive function A : E → Y such that (9.3) holds.

Moreover, in the case where C is bounded, A is unique and linear; in the case where C is
bounded and E is a linear topological space, A is unique and continuous.

For our last theorem (see [112, Theorem 15]), let us recall that f , mapping a topological
space X into Y , is universally measurable provided, for every open setU ⊂ Y , the set f−1(U)
is universally measurable, that is, it is in the universal completion of the Borel field in E (see
e.g., [131, 132]); f is Borel provided, for every Borel set D ⊂ Y , the set f−1(D) is Borel in X.

Theorem 9.4. Let E be endowed with a topology such that the mapping

R 
 t −→ tx ∈ E (9.8)

is Borel for every x ∈ E, one of conditions (i)–(iii) of Theorem 9.1 be valid, and h : E → Y fulfill (9.2)
and be universally measurable. Then there exists an additive function A : E → Y such that (9.3)
holds.

Moreover, if C is bounded, then A is unique and linear; if C is bounded and the topology in E
is linear and metrizable with a complete metric, then A is unique and continuous.

10. Hyperstability

In this part, X and Y are normed spaces, U ⊂ X is nonempty, and ϕ : U2 → R+. We say that
the following conditional Cauchy functional equation

f
(
x + y

)
= f(x) + f

(
y
)
, x, y ∈ U, x + y ∈ U (10.1)
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is ϕ-hyperstable in the class of functions f : U → Y provided each f : U → Y satisfying the
inequality

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ ϕ(x, y), x, y ∈ U, x + y ∈ U, (10.2)

must fulfil (10.1).
According to our best knowledge, the first hyperstability result was published in [134]

(for the constant function ϕ) and concerned the ring homomorphisms. However, the term
hyperstability has been used for the first time probably in [135].

Now we present two very elementary hyperstability results for (10.1). The first one is
a simple consequence of Corollary 2.2.

Corollary 10.1. Let L and p /= 1 be fixed positive real numbers, 2U = U, C : U → X, and C(2x) =
2C(x) for x ∈ U. Assume that f : U → Y satisfies (10.2) with ϕ : U2 → R given by

ϕ
(
x, y

)
= L

∥∥C(x) − C(y)∥∥p, x, y ∈ U. (10.3)

Then f is a solution to (10.1).

Proof. It is easily seen that condition (2.13) is valid with ε = 1 for p < 1 and with ε = −1 for
p > 1. Hence it is enough to use Corollary 2.2.

We have as well the following.

Proposition 10.2. Let X > 2 and let g : X → Y . Suppose that there exist functions η, μ : R → R

with μ(0) = 0 and

∥∥g
(
x + y

) − g(x) − g(y)∥∥ ≤ μ
(
η(‖x‖) − η(∥∥y∥∥)), x, y ∈ X. (10.4)

Then g is additive.

Proof. Inequality (10.4) yields

g
(
x + y

)
= g(x) + g

(
y
)
, x, y ∈ X, ‖x‖ =

∥
∥y

∥∥. (10.5)

Hence, by [136, Theorem 3.1], g is additive.

Below we provide two simple examples of applications of those hyperstability results;
they correspond to the investigations in [137–149] concerning the inhomogeneous Cauchy
equation and the cocycle equation.

Corollary 10.3. Let G : U2 → Y be such that G(x0, y0)/= 0 for some x0, y0 ∈ U with x0 + y0 ∈ U.
Assume that one of the following two conditions is valid.

(a) 2U = U and there exist C : U → X and positive reals L and p /= 1 with

C(2x) = 2C(x), x ∈ U,
∥∥G

(
x, y

)∥∥ ≤ L∥∥C(x) − C(y)∥∥p, x, y ∈ U.
(10.6)
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(b) U = X, X > 2 and there are functions η, μ : R → R with μ(0) = 0, and

∥
∥G

(
x, y

)∥∥ ≤ μ(η(‖x‖) − η(∥∥y∥∥)), x, y ∈ X. (10.7)

Then the conditional functional equation

g
(
x + y

)
= g(x) + g

(
y
)
+G

(
x, y

)
, x, y ∈ U, x + y ∈ U (10.8)

has no solutions in the class of functions g : U → Y .

Proof. Let g : U → Y be a solution to (10.8). Then

∥∥g
(
x + y

) − g(x) − g(y)∥∥ ≤ ∥∥G
(
x, y

)∥∥, x, y ∈ U, x + y ∈ U. (10.9)

Hence, by Corollary 10.1 (if (a) holds) and Proposition 10.2 (if (b) holds), g is a solution to
(10.1). This means that G(x0, y0) = 0, which is a contradiction.

Corollary 10.4. Let U = X, and G : X2 → Y be a symmetric (i.e., G(x, y) = G(y, x) for x, y ∈ X)
solution to the cocycle functional equation

G
(
x, y

)
+G

(
x + y, z

)
= G

(
x, y + z

)
+G

(
y, z

)
, x, y, z ∈ X. (10.10)

Assume that one of conditions (a) and (b) holds. Then G(x, y) = 0, for x, y ∈ X.

Proof. G is coboundary (see [146] or [149]), that is, there is g : X → Y with G(x, y) = g(x +
y) − g(x) − g(y) for x, y ∈ X. Clearly g is a solution to (10.8). Hence Corollary 10.3 implies
the statement.

For some further (more involved) examples of hyperstability results, concerning also
some other functional equations, we refer to [150–153]. The issue of hyperstability seems to
be a very promising subject to study within the theory of Ulam’s type stability.

11. Stability of Composite Functional Equations

The problem of studying the stability of the composite functional equations was raised by
Ger in 2000 (at the 38th International Symposium on Functional Equations) and in particular
it concerned the Hyers-Ulam stability of the Goła̧b-Schinzel equation

f
(
x + f(x)y

)
= f(x)f

(
y
)
, (11.1)

for the information concerning that equation and generalizations of it we refer to the survey
paper [154].
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In 2005, Chudziak [155] answered this question and proved that in the class of
continuous real functions equation (11.1) is superstable. More precisely, he showed that if
f : R → R is a continuous function satisfying

∣
∣f
(
x + f(x)y

) − f(x)f(y)∣∣ ≤ ε, x, y ∈ R, (11.2)

with a positive real number ε, then either f is bounded or it is a solution of (11.1).
In [156], Chudziak and Tabor generalized this result. Namely, they proved that if K

is a subfield of C, X is a vector space over K and f : X → K, is a function satisfying the
inequality

∣
∣f
(
x + f(x)y

) − f(x)f(y)∣∣ ≤ ε, x, y ∈ X (11.3)

and such that the limit

lim
t→ 0

f(tx) (11.4)

exists (not necessarily finite) for every x ∈ X \ f−1(0), then either f is bounded or it is a
solution of (11.1) on X. Therefore, (11.1) is superstable also in this class of functions.

Later on, in [157, 158], the same results have been proved for the generalized Goła̧b-
Schinzel equation

f
(
x + f(x)ny

)
= λf(x)f

(
y
)
, (11.5)

where n is a positive integer and λ is a nonzero complex number. If λ ∈ R, then functional
equation (11.5) is superstable in the class of continuous real functions. If K ∈ {R,C}, λ ∈
K \ {0}, and X is a vector space over K, then (11.5) is superstable in the class of functions
f : X → K such that the limit (11.4) (not necessarily finite) exists for every x ∈ X\f−1(0).

It is known (see [159]) that the phenomenon of superstability is caused by the fact
that we mix two operations. Namely, on the right-hand side of (11.1) we have a product,
but in (11.2) we measure the distance between the two sides of (11.1) using the difference.
Therefore, it is more natural tomeasure the difference between 1 and the quotients of the sides
of (11.1). In [159] it has been proved that for the exponential equation this approach leads to
the traditional stability. The result is different in the case of the Goła̧b-Schinzel equation.

In [160] it is proved that if f : R → R is continuous at 0 and satisfies the following
two inequalities

∣∣∣∣∣
f(x)f

(
y
)

f
(
x + f(x)y

) − 1

∣∣∣∣∣
≤ ε, whenever f

(
x + f(x)y

)
/= 0,

∣∣∣∣∣
f
(
x + f(x)y

)

f(x)f
(
y
) − 1

∣∣∣∣∣
≤ ε, whenever f(x)f

(
y
)
/= 0

(11.6)

for a given ε ∈ (0, 1), then either f is close to 1 or it is a solution of (11.1). Therefore, with this
definition of (quotient) stability, the Goła̧b-Schinzel equation is also superstable in the class



Abstract and Applied Analysis 31

of real functions that are continuous at 0. This approach to stability, using quotients, is now
called the stability in the sense of Ger.

Chudziak generalized this result in [161] where he proved that if X is a vector space
over K ∈ {R,C}, λ ∈ K \ {0}, n is a positive integer and f : X → K is such that X \ f−1(0)
admits an algebraically interior point (i.e., a point a such that, for every x ∈ X \ {0}, there
exists rx > 0 such that a + sx ⊂ X \ f−1(0) for s ∈ K with |s| ≤ rx) and f satisfies the following
two inequalities

∣
∣
∣
∣
∣

λf(x)f
(
y
)

f
(
x + f(x)ny

) − 1

∣
∣
∣
∣
∣
≤ ε, whenever f

(
x + f(x)ny

)
/= 0,

∣
∣
∣
∣
∣
f
(
x + f(x)ny

)

λf(x)f
(
y
) − 1

∣
∣
∣
∣
∣
≤ ε, whenever f(x)f

(
y
)
/= 0,

(11.7)

for a given ε ∈ (0, 1), then either f is bounded or it is a solution of (11.5). Thus, in the class
of functions f : X → K such that X \ f−1(0) admits an algebraically interior point, (11.5) is
superstable in the sense of Ger.

In [162] those results were extended to a class of functional equations which includes
(11.1), (11.4), and the exponential equation. Consider, namely, the functional equation

f
(
x +M

(
f(x)

)
y
)
= λf(x)f

(
y
)
, (11.8)

where λ ∈ R \ {0} andM : R → R is a continuous nonzero multiplicative function. It turns
out (see [162]) that if f : R → R is continuous and satisfies the inequality

1
ε1 + 1

≤
∣∣∣∣∣
f
(
x +M

(
f(x)

)
y
)

λf(x)f
(
y
)

∣∣∣∣∣
≤ ε2 + 1, whenever f

(
x +M

(
f(x)

)
y
)
f(x)f

(
y
)
/= 0, (11.9)

then either f is a solution of the functional equation

f
(
x +M

(
f(x)

)
y
)
f(x)f

(
y
)
= 0, (11.10)

or the following three conditions are valid.

(i) IfM is odd, then either f is bounded or it is a solution of (11.8) with λ = 1.

(ii) If M is even and M(R)/= {1}, then either f is bounded or it is a solution of (11.8)
with some λ ∈ {1,−1}.

(iii) IfM(R) = {1}, then there exists a unique α ∈ R such that

∣∣∣∣
λf(x)
eαx

∣∣∣∣ ∈
[

1
ε1 + 1

, ε2 + 1
]
, x ∈ R. (11.11)

(For some results on (11.10) see [163]).
In [164], the stability in the sense of Ger of (11.8) was studied in the following more

general setting.
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Theorem 11.1. Let X be a real linear space and let M be multiplicative and continuous at a point
x0 ∈ R. Assume also that f : X → R with f(X)/= {0} satisfies the inequalities

∣
∣
∣
∣
∣
f
(
x +M

(
f(x)

)
y
)

λf(x)f
(
y
) − 1

∣
∣
∣
∣
∣
≤ ε1, whenever f(x)f

(
y
)
/= 0,

∣
∣
∣
∣
∣

λf(x)f
(
y
)

f
(
x +M

(
f(x)

)
y
) − 1

∣
∣
∣
∣
∣
≤ ε2, whenever

(
x +M

(
f(x)

)
y
)
/= 0,

(11.12)

for some ε1, ε2 ∈ (0, 1). If M(R) ⊂ {−1, 0, 1}, then there exists a unique function g : X → R with
g−1(0) = f−1(0) satisfying (11.8) and

∣
∣∣∣
f(x)
g(x)

∣
∣∣∣ ∈

[
1

ε1 + 1
, ε2 + 1

]
, x ∈ X \ g−1(0). (11.13)

IfM(R)/⊂{−1, 0, 1} and the setX \f−1(0) has an algebraically interior point, then either f is bounded
or it is solution of (11.8) with λ replaced by sign(λ).

In view of the above result, some questions arise. Can we obtain analogous results in
the complex case? Are the assumptions onM and the set X \ f−1(0) necessary?

The results related to the stability of composite functional equations which have been
obtained up to now andwhich have been described previously concern essentially the Goła̧b-
Schinzel type functional equations. A few other equations have been investigated in [165–
167]. For instance, another very important example of composite functional equations is the
translation equation

F(t, F(s, x)) = F(s + t, x), (11.14)

(see [168–171] for more information on it and its applications) and its stability has been
studied in [172–177].

It would be interesting to study also the stability of other composite type functional
equations such as the Baxter functional equation [178] and the Ebanks functional equation
[179].

12. Miscellaneous

At the end of this survey we would like to attract the attention of the readers to the results
and new techniques of proving the stability results in [77, 180–186]; those techniques involve
the methods of multivalued function.

A new approach to the stability of functional equations has been proposed by Paneah
(see, e.g., [187]) with some critique of the notions that have been commonly accepted so
far. Another method, using the concept of shadowing, was presented in [188] and recently
applied in [79, 189–192].

An approach to stability in the ring of formal power series is suggested in [173].
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Stability of some conditional versions of the Cauchy equation has been studied in
[193–197], for example, of the following Mikusiński functional equation

f
(
x + y

)(
f
(
x + y

) − f(x) − f(y)) = 0. (12.1)

For some connections between Ulam’s type stability and the number theory see [198–200].
For some recent results on stability of derivations in rings and algebras see, for

example, [201, 202] and the references therein.
Stability for ODE and PDE has been studied, for example, in [98, 99, 203–225], for

stability results for some integral equations see [100–102, 226].
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[120] J. Brzdȩk, “On functionals which are orthogonally additive modulo Z,” Results in Mathematics, vol.
30, no. 1-2, pp. 25–38, 1996.
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Brzdȩk, Eds., vol. 52 of Springer Optimization and its Applications, pp. 191–200, Springer, New York,
NY, USA, 2012.

[218] T. Miura, S.-M. Jung, and S.-E. Takahasi, “Hyers-Ulam-Rassias stability of the Banach space valued
linear differential equations y

′
= λy,” Journal of the Korean Mathematical Society, vol. 41, no. 6, pp.

995–1005, 2004.
[219] T. Miura, S. Miyajima, and S.-E. Takahasi, “Hyers-Ulam stability of linear differential operator with

constant coefficients,”Mathematische Nachrichten, vol. 258, pp. 90–96, 2003.
[220] T. Miura, S. Miyajima, and S.-E. Takahasi, “A characterization of Hyers-Ulam stability of first order

linear differential operators,” Journal of Mathematical Analysis and Applications, vol. 286, no. 1, pp.
136–146, 2003.
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52 of Springer Optimization and its Applications, pp. 207–222, Springer, New York, NY, USA, 2012.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 269701, 10 pages
doi:10.1155/2012/269701

Research Article
Probabilistic (Quasi)metric Versions
for a Stability Result of Baker
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Copyright q 2012 D. Miheţ and C. Zaharia. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

By using the fixed point method, we obtain a version of a stability result of Baker in probabilistic
metric and quasimetric spaces under triangular norms of Hadžić type. As an application, we prove
a theorem regarding the stability of the additive Cauchy functional equation in random normed
spaces.

1. Introduction

The use of the fixed point theory in the study of Ulam-Hyers stability was initiated by Baker
in the paper [1]. Baker used the classical Banach fixed point theorem to prove the stability of
the nonlinear functional equation

f(x) = Φ
(
x, f

(
η(x)

))
. (1.1)

His result reads as follows.

Theorem 1.1 (see [1, Theorem 2]). Suppose S is a nonempty set, (X, d) is a complete metric space,
η : S → S, Φ : S ×X → X, λ ∈ [0, 1), and

d
(
Φ(u, x),Φ

(
u, y

)) ≤ λd(x, y), ∀u ∈ S, x, y ∈ X. (1.2)
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Also, suppose that f : S → X, δ > 0, and

d
(
f(u),Φ

(
u, f

(
η(u)

))) ≤ δ, ∀u ∈ S. (1.3)

Then there exists a unique mapping g : S → X such that

g(u) = Φ
(
u, g

(
η(u)

))
, ∀u ∈ S,

d
(
f(u), g(u)

) ≤ δ

1 − λ, ∀u ∈ S.
(1.4)

Starting with the papers [2, 3], the fixed point method has become a fundamental tool
in the study of Ulam-Hyers stability. In the probabilistic and fuzzy setting, this approach was
first used in the papers [4, 5] for the case of random and fuzzy normed spaces endowed with
the strongest triangular norm TM. In fact, by identifying a suitable deterministic metric, the
stability problem in such spaces was reduced to a fixed point theorem in generalized metric
spaces. This idea was adopted by many authors, see for example, [6–11]. It is worth noting
that, in applying this method, the fact that the triangular norm is TM is essential.

In this paper we study the stability of (1.1) when the unknown f takes values in a
probabilistic (quasi-) metric space endowed with a triangular norm of Hadžić type. To this
end, we employ the fixed point theory in probabilistic metric spaces, rather than that inmetric
spaces.

2. Hyers-Ulam Stability of the Equation f(x) = Φ(x, f(η(x)))
in Probabilistic Metric Spaces

In this section, we study the stability of the equation f(x) = Φ(x, f(η(x))), where the
unknown function f is a mapping from a nonempty set S to a probabilistic metric space
(X,F, T), and Φ : S ×X → X and η : S → S are given mappings.

We assume that the reader is familiar with the basic concepts of the theory of
probabilistic metric spaces. As usual, Δ+ denotes the space of all functions F : R → [0, 1],
such that F is left-continuous and nondecreasing on R, F(0) = 0, andD+ denotes the subspace
of Δ+ consisting of functions F with limt→∞ F(t) = 1. Here we adopt the terminology from
[12], hence the probabilistic metric takes values in Δ+.

We recall some facts from the fixed point theory in probabilistic metric spaces.

Definition 2.1. A t-norm T is said to be of H-type [13] if the family of its iterates {Tn}n∈N
,

given by T0(x) = 1, and Tn(x) = T(Tn−1(x), x) for all n ≥ 1, is equicontinuous at x = 1.

A trivial example of a t-norm of H-type is the t-norm TM, TM(a, b) = Min{a, b}, but
there exist t-norms ofH-type different from Min [14].

The theorem below provides a characterization of continuous t-norms ofH-type.

Proposition 2.2 (see [15]). (i) Suppose that there exists a strictly increasing sequence (bn)n∈N
in

[0, 1) such that limn→∞ bn = 1 and T(bn, bn) = bn. Then T is ofH-type.
(ii) Conversely, if T is continuous and of H-type, then there exists a sequence as in (i).
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Definition 2.3 (see [16]). Let (X,F, T) be a probabilistic metric space. A mapping f : X → X
is said to be a Sehgal contraction (or B-contraction) if the following relation holds:

Ff(p)f(q)(kt) ≥ Fpq(t),
(
p, q ∈ X, t > 0

)
. (2.1)

Theorem 2.4 (see [17]). Let (X,F, T) be a complete probabilistic metric space with T of Hadžić-type
and f : X → X be a B-contraction. Then f has a fixed point if and only if there is p ∈ X such
that Fpf(p) ∈ D+. If Fpf(p) ∈ D+, then p∗ := limn→∞fn(p) is the unique fixed point of f in the set
Y = {q ∈ X : Fpq ∈ D+}.

The following lemma completes Theorem 2.4 with an estimation relation, in the case
T = TM.

Lemma 2.5 (see [18]). Let (X,F, TM) be a complete probabilistic metric space and f : X → X be a
k − B contraction. Suppose that Fpf(p) ∈ D+ and let p∗ = limn→∞fn(p). Then

Fpp∗(t + 0) ≥ Fpf(p)((1 − k)t), ∀t > 0. (2.2)

This lemma can be extended to the case of probabilistic metric spaces under a
continuous t-norm ofH-type.

Lemma 2.6. Let (X,F, T) be a complete probabilistic metric space, with T a continuous t-norm of
H-type and (bn)n be a strictly increasing sequence of idempotents of T . Suppose f : X → X is a
B-contraction with Lipschitz constant k ∈ (0, 1). If there exists p ∈ X such that Fpf(p) ∈ D+, then
p∗ = limn→∞ fn(p) is the unique fixed point of f in the set

{
q ∈ X : Fpq ∈ D+

}
. (2.3)

Moreover, if t > 0 is so that Fpf(p)((1 − k)t) ≥ bn, then Fpp∗(t + 0) ≥ bn.

Proof. We have to prove only the last part of the theorem. We show by induction on m that
Fpf(p)((1 − k)s) ≥ bn implies Fpfm(p)(s) ≥ bn, for allm ≥ 1.

The casem = 1 is obvious. Now, suppose that Fpfm(p)(s) ≥ bn. Then

Fpfm+1(p)(s) ≥ T
(
Fpf(p)((1 − k)s), Ff(p)fm+1(p)(ks)

)

≥ T(Fpf(p)((1 − k)s), Fpfm(p)(s)
)

≥ T(bn, bn) = bn.
(2.4)

Let t > 0 be such that Fpf(p)((1 − k)t) ≥ bn, and let s > 0. Then

Fpp∗(t + s) ≥ T
(
Fpfm(p)(t), Ffm(p)p∗(s)

) ≥ T(bn, Ffm(p)p∗(s)
)
, (2.5)

for allm ≥ 1. Since (fm(p)) converges to p∗, Ffm(p)p∗(s) goes to 1 asm tends to infinity, so

Fpp∗(t + s) ≥ T(bn, 1) = bn. (2.6)
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By taking s → 0 we obtain

Fpp∗(t + 0) ≥ bn. (2.7)

In order to state our first stability result, we define an appropriate concept of ap-
proximate solution for the functional equation (1.1).

Definition 2.7. A probabilistic uniform approximate solution of (1.1) is a function f : S → X
with the property that

lim
t→∞

Ff(u)Φ(u,f(η(u)))(t) = 1 (2.8)

uniformly on S.

Example 2.8. Let (X, d) be a metric space, and let F : X ×X → D+ be defined by

Fxy(t) =
t

t + d
(
x, y

)
(
x, y ∈ X, t ≥ 0

)
. (2.9)

Then (X,F, TM) is a probabilistic metric space (the induced probabilistic metric space). One
can easily verify that f is a probabilistic uniform approximate solution of (1.1) if and only if
it satisfies relation (1.3), thus being an approximate solution in the sense of Theorem 1.1.

Theorem 2.9. Let S be a nonempty set, (X,F, T) be a complete probabilistic metric space, with T a
continuous t-norm ofH-type, and (bn)n be a strictly increasing sequence of idempotents of T . Suppose
Φ : S ×X → X is a mapping for which there exists k ∈ (0, 1) with

FΦ(u,x)Φ(u,y)(kt) ≥ Fxy(t), (2.10)

for all u ∈ S, x, y ∈ X and t > 0.
If f : S → X is a probabilistic uniform approximate solution of (1.1), then there exists a

function a : S → X which is an exact solution of (1.1), with the property that, if t > 0 is such that

Ff(u)Φ(u,f(η(u)))(t) > bn, ∀u ∈ S, (2.11)

then

Ff(u)a(u)

(
t

1 − k + 0
)

≥ bn, ∀u ∈ S. (2.12)
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Proof. Denote by Y the set of all mappings g : S → X, and let J : Y → Y be Baker’s operator,
given by J(g)(u) = Φ(u, g(η(u))) for all g ∈ Y, u ∈ S. We define the distribution function Fgh

by

Fgh(t) = sup
s<t

inf
u∈S

Fg(u)h(u)(s), (2.13)

for all g, h ∈ Y.
The assumptions on the space (X,F, T) ensure that (Y,F, T) is a complete probabilistic

metric space. Also,

FJ(g)J(h)(kt) = sup
s<kt

inf
u∈S

FJ(g)(u)J(h)(u)(s) = sup
s<t

inf
u∈S

FJ(g)(u)J(h)(u)(ks)

≥ sup
s<t

inf
u∈S

Fg(η(u))h(η(u))(s) ≥ Fgh(t),
(2.14)

that is, J is a Sehgal contraction on (Y,F, T).
Moreover, the relation limt→∞Ff(u)Φ(u,f(η(u)))(t) = 1, uniformly on X implies

FfJ(f) ∈ D+. (2.15)

Nowwe can apply Lemma 2.6 to obtain a fixed point of J , that is a mapping a : S → X
which is a solution of (1.1), with a(u) = limn→∞Jnf(u) for all u ∈ S.

Next, let t > 0 be such that Ff(u)Φ(u,f(η(u)))(t) > bn for all u ∈ S. Then, from the left
continuity of F, it follows that Ff(u)Φ(u,f(η(u)))(s0) > bn(u ∈ S), for some s0 ∈ (0, t). Therefore
infu∈SFf(u)Φ(u,f(η(u)))(s0) ≥ bn , so FfJ(f)(t) ≥ bn. By Lemma 2.6, Ffa(t/(1−k)+0) ≥ bn, whence
we conclude that the estimation (2.12) holds.

Remark 2.10. The result of Baker [1] can be obtained as a particular case of Theorem 2.9, by
considering in this theorem the induced probabilistic metric space (see Example 2.8).

From Theorem 2.9 one can derive a stability result for the Cauchy additive functional
equation

f
(
x + y

)
= f(x) + f

(
y
)

(2.16)

in random normed spaces.
Recall (see [12]) that a random normed space (RN-space) is a triple (X, ν, T), whereX

is a real linear space, ν is a mapping from X toD+, and T is a t-norm, satisfying the following
conditions (ν(x) will be denoted by νx):

(i) νx(t) = 1 for all t > 0 iff x = θ, the null vector of X;

(ii) ναx(t) = νx(t/|α|), for all α ∈ R, α/= 0, and all x ∈ X;

(iii) νx+y(t + s) ≥ T(νx(t), νy(s)), for all x, y ∈ X and all t, s > 0.
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Definition 2.11. A probabilistic uniform approximate solution of (2.16) is a function f : S →
X with the property that

lim
t→∞

νf(u+v)−f(u)−f(v)(t) = 1 (2.17)

uniformly on S × S.

Theorem 2.12. Let S be a real linear space, (X, ν, T) be a complete RN-space with T—a continuous
t-norm ofH-type, and (bn)n be a strictly increasing sequence of idempotents of T .

If f : S → X is a probabilistic uniform approximate solution of (2.16), then there exists a
mapping a : S → X which is an exact solution of (2.16), with the property that, if t > 0 is such that

νf(u)−f(2u)/2(t) > bn, ∀u ∈ S, (2.18)

then

νf(u)−a(u)(2t + 0) ≥ bn, ∀u ∈ S. (2.19)

Proof. We apply Theorem 2.9 for Φ : S ×X → X, Φ(u, x) = x/2, and η : S → S, η(u) = 2u in
the probabilistic metric space (X,F, T)with F defined by

Fxy(t) = νx−y(t) (2.20)

for all x, y ∈ X, t > 0. Note that F satisfies (2.10) for k = 1/2, since

FΦ(u,x)Φ(u,y)

(
t

2

)
= F(x/2)(y/2)

(
t

2

)
= ν(1/2)(x−y)

(
t

2

)
= νx−y(t) = Fxy(t), (2.21)

for all u ∈ S, x, y ∈ X and t > 0.
It is easy to see that f is a probabilistic uniform approximate solution of (1.1), so there

exists an exact solution of (1.1), that is, a mapping a : S → X satisfying a(u) = (1/2)a(2u)
for all u ∈ S. The estimation (2.19) can be immediately derived from the corresponding one
in Theorem 2.9.
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It remains to show that a is additive. This follows from the fact that a(u) =
limn→∞(1/2n)f(2nu), for all u ∈ S, and f is a probabilistic uniform approximate solution
of (2.16). Namely, for all t > 0,

νa(u+v)−a(u)−a(v)(t) ≥ T
(
νa(u+v)−f(2n(u+v))/2n

(
t

4

)
, νa(u)−f(2nu)/2n

(
t

4

)
,

νa(v)−f(2nv)/2n
(
t

4

)
, νf(2n(u+v))/2n−f(2nu)/2n−f(2nv)/2n

(
t

4

))

≥ T
(
νa(u+v)−f(2n(u+v))/2n

(
t

4

)
, νa(u)−f(2nu)/2n

(
t

4

)
,

νa(v)−f(2nv)/2n
(
t

4

)
, νf(2n(u+v))−f(2nu)−f(2nv)

(
2nt
4

))
n→∞−−−−−→ 1,

(2.22)

implying a(u + v) = a(u) + a(v) for all u, v ∈ S.

3. Hyers-Ulam Stability of the Equation f(x) = Φ(x, f(η(x)))
in Probabilistic Quasimetric Spaces

The defining feature of quasimetric structures is the absence of symmetry. This allows one to
consider different notions of convergence and completeness. We state the terminology and
notations, following [19] (also see [20]).

Definition 3.1. A probabilistic quasimetric space is a triple (X, P, T), where X is a nonempty
set, T is a t-norm, and P : X ×X → Δ+ is a mapping satisfying

(i) Pxy = Pyx = ε0 if and only if x = y;

(ii) Pxy(t + s) ≥ T(Pxz(t), Pzy(s)), for all x, y, z ∈ X, for all t, s > 0.

We note that if P verifies the symmetry assumption Pxy = Pyx, for all x, y ∈ X, then
(X, P, T) is a probabilistic metric space.

If (X, P, T) is a probabilistic quasimetric space, then themappingQ : X2 → Δ+ defined
by Qxy = Pyx for all x, y ∈ X is called the conjugate probabilistic quasimetric of P .

Definition 3.2. Let (X, P, T) be a probabilistic quasimetric space. A sequence (xn)n in X is said
to be:

(i) right K-Cauchy (left K-Cauchy) if, for each ε > 0 and λ ∈ (0, 1), there exists k ∈ N
so that, for allm ≥ n ≥ k, Pxnxm(ε) > 1 − λ (Qxnxm(ε) > 1 − λ resp.);

(ii) P -convergent (Q-convergent) to x ∈ X if, for each ε > 0 and λ ∈ (0, 1), there exists
k ∈ N so that Pxxn(ε) > 1 − λ (Qxxn(ε) > 1 − λ), for all n ≥ k.

Definition 3.3. LetA ∈ {right K, left K} and B ∈ {P,Q}. The space (X, P, T) is (A−B) complete
if every A-Cauchy sequence is B convergent.

Definition 3.4. The probabilistic quasimetric space (X, P, T) has the L-US (R-US) property if
every P -(Q-) convergent sequence has a unique limit.
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The following lemma is a quasimetric analogue of Lemma 2.6.

Lemma 3.5. Let (X, P, T) be a (right K−Q)-complete probabilistic quasimetric space with the R-US
property, where T is a continuous t-norm of H-type. Let (bn)n be a strictly increasing sequence of
idempotents of T .

Suppose f : X → X is a Sehgal contraction with Lipschitz constant k ∈ (0, 1), and p is an
element of X such that Ppf(p) ∈ D+. Then p∗ := limn→∞fn(p) is a fixed point of f and if t > 0 is so
that Ppf(p)((1 − k)t) ≥ bn, then Ppp∗(t + 0) ≥ bn.

Proof. We proceed in the classical manner to show that the sequence of iterates (fn(p))n is
right K-Cauchy, therefore it is Q-convergent to p∗ ∈ X. The fact that p∗ is a fixed point of f is
a consequence of the R-US property of the space X. Next, as in the proof of Lemma 2.6 we
show by induction onm that Ppf(p)((1 − k)s) ≥ bn implies Ppfm(p)(s) ≥ bn, for allm ≥ 1.

Let t > 0 be such that Ppf(p)((1 − k)t) ≥ bn, and let s > 0. Then

Ppp∗(t + s) ≥ T
(
Ppfm(p)(t), Pfm(p)p∗(s)

) ≥ T(bn, Pfm(p)p∗(s)
)
, (3.1)

for all m ≥ 1. Since (fm(p)) is Q-convergent to p∗, Pfm(p)p∗(s) goes to 1 as m tends to infinity,
so

Ppp∗(t + s) ≥ T(bn, 1) = bn. (3.2)

By taking s → 0 we obtain

Ppp∗(t + 0) ≥ bn. (3.3)

The probabilistic quasimetric version of Baker’s theorem can be stated as follows.

Theorem 3.6. Let S be a nonempty set, (X, P, T) be a (right K−Q)-complete probabilistic quasimetric
space with the R-US property, with T a continuous t-norm of H-type, and (bn)n be a strictly
increasing sequence of idempotents of T . Suppose Φ : S × X → X is a mapping for which there
exists k ∈ (0, 1) with

PΦ(u,x)Φ(u,y)(kt) ≥ Pxy(t), (3.4)

for all u ∈ S, x, y ∈ X and t > 0.
If f : S → X is a probabilistic uniform approximate solution of (1.1), then there exists a

function a : S → X which is an exact solution of (1.1), with the property that, if t > 0 is such that

Pf(u)Φ(u,f(η(u)))(t) > bn, ∀u ∈ S, (3.5)

then

Pf(u)a(u)

(
t

1 − k + 0
)

≥ bn, ∀u ∈ S. (3.6)
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Proof. We only sketch the proof, as it is very similar to that of Theorem 2.9.
As in the mentioned proof, denote by Y the set of all mappings g : S → X, and define

the distribution function Fgh by

Fgh(t) = sup
s<t

inf
u∈S

Pg(u)h(u)(s), (3.7)

for all g, h ∈ Y and Baker’s operator J : Y → Y , J(g)(u) = Φ(u, g(η(u))) for all g ∈ Y, u ∈ S.
The assumptions on the space (X, P, T) ensure that (Y, F, T) is a (right K−Q)-complete

probabilistic quasimetric space with the R-US property and that J is a Sehgal contraction on
(Y, F, T), and the relation limt→∞Pf(u)Φ(u,f(η(u)))(t) = 1, uniformly on X implies

FfJ(f) ∈ D+. (3.8)

We can now apply Lemma 3.5 to obtain a mapping a : S → X which is a solution of
(1.1), with a(u) = limn→∞Jnf(u) for all u ∈ S.

The estimation (3.6) follows by using the left continuity of P , as in the proof of
Theorem 2.9.
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Let F be a Riesz algebra with an extended norm || · ||u such that (F, || · ||u) is complete. Also, let || · ||v
be another extended norm in F weaker than || · ||u such that whenever (a) xn → x and xn · y → z
in || · ||v , then z = x · y; (b) yn → y and x · yn → z in || · ||v, then z = x · y. Let ε and δ > be two
nonnegative real numbers. Assume that a map f : F → F satisfies ||f(x + y) − f(x) − f(y)||u ≤ ε
and ||f(x · y) − x · f(y) − f(x) · y||v ≤ δ for all x, y ∈ F. In this paper, we prove that there exists a
unique derivation d : F → F such that ||f(x) − d(x)||u ≤ ε, (x ∈ F). Moreover, x · (f(y) − d(y)) = 0
for all x, y ∈ F.

1. Introduction

Let E and E′ be Banach spaces and let δ > 0. A function f : E → E′ is called δ-additive
if ||f(x + y) − f(x) − f(y)|| < δ for all x, y ∈ E. The well-known problem of stability of
functional equation f(x + y) = f(x) + f(y) started with the following question of Ulam [1].
Does there exist for each ε > 0, a δ > 0 such that, to each δ-additive function f of E into E′

there corresponds an additive function l of E into E′ satisfying the inequality ||f(x)− l(x)|| ≤ ε
for each x ∈ E? In 1941, Hyers [2] answered this question in the affirmative way and showed
that δmay be taken equal to ε. The answer of Hyers is presented in a great number of articles
and books. For the theory of the stability of functional equations see Hyers et al [3].

Let F be an algebra. A mapping d : F → F is called a derivation if and only if it
satisfies the following functional equations:

d(a + b) = d(a) + d(b), (1.1)

d(ab) = ad(b) + d(a)b, (1.2)

for all a, b ∈ F.
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The stability of derivations was first studied by Jun and Park [4]. Further, approximate
derivations were investigated by a number of mathematicians (see, e.g., [5–7]).

The aim of the present paper is to examine the stability problem of derivations for
Riesz algebras with extended norms.

2. Preliminaries

A vector space F with a partial order ≤ satisfying the following two conditions:

(1) x ≤ y ⇒ αx + z ≤ αy + z for all z ∈ F and 0 ≤ α ∈ R,

(2) for all x, y ∈ F, the supremum x∨y and infimum x∧y exist in F (hence, themodulus
|x| := x ∨ (−x) exists for each x ∈ F),

is called a Riesz space or vector lattice. Typical examples of Riesz spaces are provided by the
function spaces. C(K) the spaces of real valued continuous functions on a topological space
K, lp real valued absolutely summable sequences, c the spaces of real valued convergent
sequences, and c0 the spaces of real valued sequences converging to zero are natural examples
of Riesz spaces under the pointwise ordering. A Riesz space F is called Archimedean if 0 ≤
u, v ∈ F and nu ≤ v for each n ∈ N imply u = 0. A subset S in a Riesz space F is said to be
solid if it follows from |u| ≤ |v| in F and v ∈ S that u ∈ S. A solid linear subspace of a Riesz
space F is called an ideal. Every subset D of a Riesz space F is included in a smallest ideal
FD, called ideal generated byD. A principal ideal of a Riesz space F is any ideal generated by
a singleton {u}. This ideal will be denoted by Iu. It is easy to see that

Iu = {v ∈ F : λ ≥ 0 such that |v| ≤ λ|u|}. (2.1)

Let F be a Riesz space and 0 ≤ u ∈ F. Firstly, we give the following definition.

Definition 2.1. (1) The sequence (xn) in F is said to be u-uniformly convergent to the element
x ∈ F whenever, for every ε > 0, there exists n0 such that |xn0+k − x| ≤ εu holds for each k.

(2) The sequence (xn) in F is said to be relatively uniformly convergent to xwhenever
xn converges u-uniformly to x ∈ F for some 0 ≤ u ∈ F.

When dealing with relative uniform convergence in an Archimedean Riesz space F, it
is natural to associate with every positive element u ∈ F an extended norm || · ||u in F by the
following formula:

‖x‖u = inf{λ ≥ 0 : |x| ≤ λu} (x ∈ F). (2.2)

Note that ||x||u <∞ if and only if x ∈ Iu. Also |x| ≤ δu if and only if ||x||u ≤ δ.
A Banach lattice is a vector lattice F that is simultaneously a Banach space whose norm

is monotone in the following sense.
For all x, y ∈ F, |x| ≤ |y| implies ||x|| ≤ ||y||. Hence, ||x|| = ‖|x|‖ for all x ∈ F.

The sequence (xn) in (F, || · ||u) is called an extended u-normed Cauchy sequence, if for
every ε > 0 there exists k such that ||xn+k −xm+k||u < ε for allm,n. If every extended u-normed
Cauchy sequence is convergent in F, then F is called an extended u-normed Banach lattice.
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A Riesz space F is called a Riesz algebra or a lattice ordered algebra if there exists an
associative multiplication in F with the usual algebra properties such that 0 ≤ u · v for all
0 ≤ u, v ∈ F.

For more detailed information about Riesz spaces, the reader can consult the book
Riesz Spaces by Luxemburg and Zaanen [8]. In the sequel, all the Riesz spaces are assumed to
be Archimedean.

3. Main Result

Recently, Polat [9] generalized the Hyers’ result [2] to Riesz spaces with extended norms and
proved the following.

Theorem 3.1. Let E be a linear space and F a Riesz space equipped with an extended norm || · ||u such
that the space (F, || · ||u) is complete. If, for some δ > 0, a map f : E → (F, || · ||u) is δ-additive, then
limit l(x) = limn→∞f(2nx)/2n exists for each x ∈ E. l(x) is the unique additive function satisfying
the inequality ||f(x) − l(x)||u ≤ δ for all x ∈ E.

By using Theorem 3.1, we give the main result of the paper as follows.

Theorem 3.2. Let F be a Riesz algebra with an extended norm || · ||u such that (F, || · ||u) is complete.
Also, let || · ||v be another extended norm in F weaker than || · ||u such that whenever

(a) xn → x and xn · y → z in || · ||v, then z = x · y;
(b) yn → y and x · yn → z in || · ||v, then z = x · y.

Let ε and δ be two nonnegative real numbers. Assume that a map f : F → F satisfies

∥∥f
(
x + y

) − f(x) − f(y)∥∥u ≤ ε, (3.1)
∥∥f

(
x · y) − x · f(y) − f(x) · y∥∥v ≤ δ, (3.2)

for all x, y ∈ F. Then, there exists a unique derivation d : F → F such that ||f(x) − d(x)||u ≤ ε,
(x ∈ F). Moreover, x · (f(y) − d(y)) = 0 for all x, y ∈ F.

Proof. By Condition (3.1), Theorem 3.1 shows that there exists a unique additive function
d : F → F such that

∥∥f(x) − d(x)∥∥u ≤ ε, (3.3)

for each x ∈ F. It is enough to show that d satisfies Condition (1.2). The inequality (3.3)
implies that

∥∥f(nx) − d(nx)∥∥u ≤ ε (x ∈ F, n ∈ N). (3.4)

By the additivity of d, we then have

∥∥∥∥
1
n
f(nx) − d(x)

∥∥∥∥
u

≤ 1
n
ε (x ∈ F, n ∈ N), (3.5)
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which means that

d(x) = lim
n→∞

1
n
f(nx), (x ∈ F), (3.6)

with respect to || · ||u norm and so is with respect to || · ||v norm. Condition (3.2) implies that
the function r : F ×F → F defined by r(x, y) = f(x ·y)−x · f(y)− f(x) ·y is bounded. Hence

lim
n→∞

1
n
r
(
nx, y

)
= 0,

(
x, y ∈ F), (3.7)

with respect to || · ||v norm. Applying (3.6) and (3.7), we have

d
(
x · y) = x · f(y) + d(x) · y, (

x, y ∈ F). (3.8)

Indeed, we have the following with respect to || · ||v norm,

d
(
x · y) = lim

n→∞
1
n
f
(
n
(
x · y)) = lim

n→∞
1
n
f
(
(nx) · y)

= lim
n→∞

1
n

(
nx · f(y) + f(nx) · y + r

(
nx, y

))

= lim
n→∞

(

x · f(y) + f(nx)
n

· y +
r
(
nx, y

)

n

)

= x · f(y) + d(x) · y, (
x, y ∈ F).

(3.9)

Let x, y ∈ F and n ∈ N be fixed. Then using (3.8) and additivity of d, we have

x · f(ny) + nd(x) · y = x · f(ny) + d(x) · ny = d
(
x · ny)

= d
(
nx · y) = nx · f(y) + d(nx) · y

= nx · f(y) + nd(x) · y.
(3.10)

Therefore,

x · f(y) = x · f
(
ny

)

n
,

(
x, y ∈ F, n ∈ N

)
. (3.11)

Sending n to infinity, by (3.6), we see that

x · f(y) = x · d(y), (
x, y ∈ F). (3.12)

Combining this formula with (3.8), we have that d satisfies (1.2) which is the desired result.
Moreover, the last formula yields x · (f(y) − d(y)) = 0 for all x, y ∈ F.
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We present two theorems describing the structure of the set of all regular points and the set of all
irregular points for a Brouwer homeomorphism which is embeddable in a flow. The theorems are
counterparts of structure theorems proved by Homma and Terasaka. To obtain our results, we use
properties of the codivergence relation.

1. Introduction

Throughout the paper, f will denote a Brouwer homeomorphism, that is, orientation preserving
homeomorphism of the plane onto itself which has no fixed points.

For any sequence of subsets (An)n∈Z+
of the plane, we define limes superior

lim supn→∞ An as the set of all points p ∈ R
2 such that any neighbourhood of p has common

points with infinitely many elements of the sequence (An)n∈N
. For any subset B of the plane,

we define the positive limit set ωf(B) as the limes superior of the sequence of its iterates
(fn(B))n∈N

and negative limit set αf(B) as the limes superior of the sequence (f−n(B))n∈N
.

Under the assumption that B is compact, Nakayama [1] proved that

ωf(B) =
{
q ∈ R

2 : there exist sequences
(
pj
)
j∈N

and
(
nj
)
j∈N

such that pj ∈ B, nj ∈ N, nj −→ +∞, fnj
(
pj
) −→ q as j −→ +∞

}
,

αf(B) =
{
q ∈ R

2 : there exist sequences
(
pj
)
j∈N

and
(
nj
)
j∈N

such that pj ∈ B, nj ∈ N, nj −→ +∞, f−nj(pj
) −→ q as j −→ +∞

}
.

(1.1)
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A point p is called positively irregular if ωf(B)/= ∅ for each Jordan domain B containing
p in its interior, and negatively irregular if αf(B)/= ∅ for each Jordan domain B containing p
in its interior, where by a Jordan domain we mean the union of a Jordan curve J and the
Jordan region determined by J (i.e., the bounded component of R

2 \ J). A point which is not
positively irregular is said to be positively regular. Similarly, a point which is not negatively
irregular is called negatively regular. A point which is positively or negatively irregular is
called irregular, otherwise it is regular.

We say that a set A ⊂ R
2 is invariant if f(A) = A. An invariant region M is said to be

parallelizable if there exists a homeomorphism ϕ :M → R
2 such that

f
∣
∣
M = ϕ−1 ◦ T ◦ ϕ, (1.2)

where T is given by the formula T(t, s) = (t + 1, s). On account of the Brouwer Translation
Theorem, for each p ∈ R

2, there exists a parallelizable region M containing p (see [2]). This
implies that a Brouwer homeomorphism looks locally like a translation. However, its global
behaviour may be very complicated (cf. [3, 4]).

For any p ∈ R
2, one can construct an arc K with endpoints p and f(p) such that

f(K) ∩K = {f(p)} (see [5]). Such an arc is called a translation arc. The Brouwer Lemma says
that if K is a translation arc, then

⋃
n∈Z

fn(K) is a homeomorphic image of a straight line
(see [2]). The set

⋃
n∈Z

fn(K) is called a translation line. A translation line needs not be a
topological line, where by a topological line we mean a closed set which is a homeomorphic
image of a straight line.

Homma and Terasaka [6] proved two theorems describing the structure of a Brouwer
homeomorphism. The theorems can be formulated in the following way.

Theorem 1.1 (see [6], First Structure Theorem). Let f be a Brouwer homeomorphism. Then, the
plane is divided into at most three kinds of pairwise disjoint sets: {Oi : i ∈ I}, where I = N or
I = {1, . . . , n} for a positive integer n, {O′

i : i ∈ N} and F. The sets {Oi : i ∈ I} and {O′
i : i ∈ N} are

the components of the set of all regular points such that each Oi is a parallelizable unbounded simply
connected region, and each O′

i is a simply connected region satisfying the condition O′
i ∩ fn(O′

i) = ∅
for n ∈ Z \ {0}. The set F is invariant, closed, and consists of all irregular points.

Theorem 1.2 (see [6], Second Structure Theorem). Let f be a Brouwer homeomorphism. Then,
the plane is divided into at most three kinds of pairwise disjoint sets: {Oi : i ∈ I}, where I = N or
I = {1, . . . , n} for a positive integer n, {O′

i : i ∈ N} and F. The sets {Oi : i ∈ I} and {O′
i : i ∈ N} are

the components of the set of all negatively regular points such that each Oi is an invariant unbounded
simply connected region and can be filled with a family of translation lines which are closed sets inOi,
and each O′

i is a simply connected region satisfying the condition O′
i ∩ fn(O′

i) = ∅ for n ∈ Z \ {0}.
The set F is invariant, closed, and consists of all negatively irregular points.

The set F occurring in the theorems above is the union of sets called singular lines
and their cluster set. Homma and Terasaka [6] showed many properties describing mutual
relationships among singular lines. Moreover, they proved that the set of all singular lines is
at most countable. But the set F occurring in the theorems above can also contain the cluster
points of singular lines which do not belong to any singular line. Thus, to obtain the complete
description of the set F, the study of the set of these cluster points is needed. In the case of an
arbitrary Brouwer homeomorphism, the problem is still open.
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In this paper, we prove the counterparts of the structure theorems under the assump-
tion that f is embeddable in a flow. By a flow, we mean a group of homeomorphisms of the
plane onto itself {ft : t ∈ R} under the operation of composition which satisfies the following
conditions:

(1) the function φ : R
2 × R → R

2, φ(x, t) = ft(x) is continuous,

(2) f0(x) = x for x ∈ R
2,

(3) ft(fs(x)) = ft+s(x) for x ∈ R
2, t, s ∈ R.

We say that f is embeddable in a flow if there exists a flow {ft : t ∈ R} such that f = f1.

2. Codivergence Relation

In this section, we characterize the sets of regular and irregular points of any Brouwer
homeomorphism embeddable in a flow using the codivergence relation defined by Andrea
[7].

For any Brouwer homeomorphism f , the codivergence relation is defined in the follow-
ing way:

p ∼ q if p = q or p and q are endpoints of some arc K for which fn(K) −→ ∞
as n −→ ±∞.

(2.1)

By an arc K with endpoints p and q, we mean the image of a homeomorphism c : [0, 1] →
c([0, 1]) satisfying conditions c(0) = p, c(1) = q, where the topology on c([0, 1]) is induced by
the topology of R

2.
It turns out that the relation defined above is an equivalence relation and under

the assumption that f is embeddable in a flow each equivalence class of the relation is an
invariant simply connected set (see [7, 8]).

Proposition 2.1. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}.
Then, the set of all regular points is equal to the union of the interiors of all equivalence classes of the
codivergence relation.

Proof. First we prove that every point p belonging to the interior of an equivalence class G0

is regular. By the definition of the interior, there exists a Jordan curve J contained in G0 such
that the point p belongs to the Jordan region U whose boundary is equal to J . In the proof of
the main theorem of [8], it has been showed that for every Jordan domain B contained in an
equivalence class which does not consist of just one orbit we have fn(B) → ∞ as n → ±∞.
Thus, ωf(cl U) = ∅ and αf(cl U) = ∅.

Conversely, if a point p is regular, then there exists a Jordan regionU containing p such
that fn(cl U) → ∞ as n → ±∞. SinceU is arcwise connected, for each q ∈ U\{p} there exists
an arcK with endpoints p, q contained inU. Hence, K satisfies the condition fn(K) → ∞ as
n → ±∞. Thus, each point of the Jordan regionU belongs to the same equivalence class as p.
Consequently, p belongs to the interior of this equivalence class.

From the proposition above, we obtain immediately the following.
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Corollary 2.2. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Then,
the set of all irregular points is equal to the union of the boundaries of all equivalence classes of the
codivergence relation.

3. Structure of the Set of Regular Points

In this section, we show an application of properties of the codivergence relation to describe
the set of all regular points for a Brouwer homeomorphism f which is embeddable in a flow.

Proposition 3.1. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Let
p be a regular point. Then, each point of the trajectory Cp = {ft(p) : t ∈ R} is a regular point.

Proof. Let p be a regular point. Denote by G0 the equivalence class which contains p. By
Proposition 2.1, we have p ∈ intG0. Hence, the trajectory Cp is contained in intG0, since
the interior of each equivalence class is invariant under any element of the flow {ft : t ∈ R}
(see [9]). Using Proposition 2.1 once again, we obtain that each element of the trajectory is a
regular point.

In Theorem 1.1 describing the structure of any Brouwer homeomorphism, there are
three types of sets: Oi, O′

i, and F. Under the assumption that a Brouwer homeomorphism is
embeddable in a flow, we only have two types of sets: Oi and F. However, sets of type O′

i

cannot occur.

Theorem 3.2. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Then,
the plane is divided into at most two kinds of pairwise disjoint sets: {Oi : i ∈ I}, where I = N or
I = {1, . . . , n} for a positive integer n, and F. The sets {Oi : i ∈ I} are the components of the set of all
regular points such that each Oi is a parallelizable unbounded simply connected region. The set F is
closed and consists of all irregular points.

Proof. Suppose, on the contrary, that there exists a family of simply connected regions
{O′

i : i ∈ N} occurring in Theorem 1.1. Let us fix a point p ∈ O′
i for some i ∈ N. Then, by

Theorem 1.1, p is a regular point and there exists a j ∈ N, j /= i such that f(p) ∈ O′
j .

By Proposition 3.1, each point of the trajectory Cp is regular. In particular, all points
belonging to the arc with endpoints p and f(p) contained in this trajectory are regular. On the
other hand, the arc K has to contain an irregular point, since p and f(p) belong to different
components O′

i and O
′
j of the sets of all regular points.

At the end of this section, let us note that the invariance of the set of all irregular points
(and the set of all regular points) under each element of a flow {ft : t ∈ R} such that f = f1

can also be obtained from the relation f = f−t ◦ f ◦ ft (see [10]).

4. Structure of the Set of Irregular Points

In this section, we proceed to study the structure of the set F of all irregular points for a
Brouwer homeomorphism f which is embeddable in a flow {ft : t ∈ R}.

For any irregular point p, the set P+ is defined as the intersection of all ωf(B) and
the set P− as the intersection of all αf(B)/= ∅, where B is a Jordan domain containing p in
its interior. An irregular point p is strongly positively irregular if P+ /= ∅, otherwise it is weakly
positively irregular. Similarly, p is strongly negatively irregular if P− /= ∅, otherwise it is weakly
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negatively irregular. We say that p is strongly irregular if it is strongly positively irregular or
strongly negatively irregular. Otherwise, an irregular point p is said to be weakly irregular.

Nakayama [10] has proved that for any Brouwer homeomorphism the subset of F
consisting of all strongly irregular points has no interior points. In the case where f is
embeddable in a flow, the set F is the union of a family of invariant topological lines, since
the boundary of each equivalence class is the union of trajectories of the flow {ft : t ∈ R}
(see [9]). But some of these trajectories are not singular lines in the sense of Homma and
Terasaka. The union of all singular lines is equal to the set of all strongly irregular points,
and, moreover, the cluster points of singular lines which do not belong to any singular line
are weakly irregular points (see [6]).

In the description of the set F, the notion of the first prolongational limit set can be
used. For any point p, we define the first prolongational limit set of p as J(p) = J+(p) ∪ J−(p),
where

J+
(
p
)
:=

{
q ∈ R

2 : there exist sequences
(
pn

)
n∈N

, (tn)n∈N

such that pn −→ p, tn −→ +∞, f tn
(
pn

) −→ q as n −→ +∞
}
,

J−
(
p
)
:=

{
q ∈ R

2 : there exist sequences
(
pn

)
n∈N

, (tn)n∈N

such that pn −→ p, tn −→ −∞, f tn
(
pn

) −→ q as n −→ +∞
}
.

(4.1)

For anH ⊂ R
2, we put

J(H) =
⋃

p∈H
J
(
p
)

(4.2)

(see [11]). From the definition above, we obtain that

p ∈ J+(q) ⇐⇒ q ∈ J−(p) (4.3)

for all p, q ∈ R
2. Hence,

J
(
p
)
/= ∅ ⇐⇒ p ∈ J

(
R

2
)
. (4.4)

Proposition 4.1. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Let
p be a strongly irregular point. Then, J(p)/= ∅.

Proof. Without loss of generality, we assume that P+ /= ∅. We will show that P+ ⊂ J+(p). Let
q ∈ P+. For every positive integer n, we denote by Cn the ball with centre p and radius 1/n
and by Dn the ball with centre q and radius 1/n. Fix an n ∈ N. Then, q ∈ ωf(Cn). By the
definition of ωf(Cn), there exist sequences (pj)j∈N

and (mj)j∈N
such that pj ∈ Cn, mj ∈ N,

mj → +∞, fmj (pj) → q as j → +∞. Hence, there exists an i ∈ N such that mi > n and
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fmi(pi) ∈ Dn. Put qn = pi and tn = mi. Thus, we constructed sequences (qn)n∈N
and (tn)n∈N

such that

qn ∈ Cn, tn > n, ftn
(
qn
) ∈ Dn (4.5)

for every n ∈ N. Hence, qn → p, tn → +∞ and ftn(qn) → q as n → +∞. Consequently,
q ∈ J+(p).

From the proposition above, we obtain the following.

Corollary 4.2. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Then,
the set of all irregular points is equal to the closure of the first prolongational limit set of the plane.

Proof. By Proposition 4.1, if p is a strongly irregular point, then p ∈ J(R2). If p is a weakly
irregular point, then it belongs to the closure of the set of all strongly irregular points (see
[6]). Consequently, p ∈ cl J(R2). The closure of the first prolongational limit set of the plane
cannot contain any regular point, since for each p belonging to the interior of an equivalence
class we have p /∈ J(R2) (see [12]).

Using the main theorem of [13], we replace the regions Oi occurring in Theorem 3.2
by larger parallelizable unbounded simply connected regions Ui such that the union of all
these regionsUi contains the set of all weakly irregular points. A strongly irregular point can
belong either to a region Ui or to the set F. Moreover, for every singular line contained in
the boundary of a region Ui, there can exist at most one singular line contained in the region
(see [14]). Therefore, the counterpart of the Second Structure Theorem can be stated in the
following way.

Theorem 4.3. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}.
Then, the plane is divided into at most two kinds of pairwise disjoint sets: {Ui : i ∈ I}, where I = N

or I = {1, . . . , n} for a positive integer n, and F. The sets {Ui : i ∈ I} are parallelizable unbounded
simply connected regions. The set F is closed, contained in J(R2), and is the union of at most countable
family of trajectories of the flow. Each of these trajectories is contained in the boundary of an region
Ui.

Using a decomposition described in the theorem above, we can obtain generalizations
of results concerning Reeb homeomorphisms given by Béguin and Le Roux in [15].

5. Final Remarks

Let us consider the one-point compactification of a plane into the sphere S2. Then, we can
extend any Brouwer homeomorphism f to a homeomorphism of the sphere by putting
f(∞) = ∞. Let us assume that f is embeddable in a flow. Then, all trajectories are closed
sets on the plane, since for all p ∈ R

2 we have ft(p) → ∞ as t → ±∞ (see [7]). Since the
closure of each trajectory contains the stationary point ∞ of the flow, the phase portrait of
the flow restricted to a Jordan region U containing ∞ is divided into sectors (see [16], pages
161–174).
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The index of ∞ is equal to

1 +
ne − nh

2
, (5.1)

where ne is the number of elliptic sectors and nh is the number of hyperbolic sectors (the
expression gives an integer, since the difference of the number of elliptic sectors and the
number of hyperbolic sectors is even). Applying the Lefschetz-Hopf Theorem to our case,
we obtain that the index of the stationary point ∞ equals 2, since the Euler characteristic of
the sphere equals 2. In the case where f is a translation, there are two elliptic sectors and
two parabolic sectors. In the case where f is a Reeb homeomorphism, there are three elliptic
sectors, one hyperbolic sector and four parabolic sectors.

If a Jordan domain B is contained in an elliptic sector of U, then fn(B) is contained in
this sector for each n ∈ Z. However, this property does not hold for parabolic and hyperbolic
sectors. In the case where f is a translation, for each Jordan region U containing ∞ and each
Jordan domain B contained in one of the parabolic sectors, there exists an n ∈ N such that
fn(B) is not contained in U. Thus even in case f is a translation, the fixed point ∞ is not
stable in the sense of the following definition: an invariant set C is called Lyapunov stable if
for any Jordan domain U containing C there is a Jordan domain V containing C such that
fn(V ) ⊂ U for all n ∈ N (see, e.g., [17]).

For a subset D of the set of all homeomorphisms of a metric space M equipped with
the topology of uniform convergence on compact subsets, we say that f ∈ D is structurally
stable if there exists a neighborhood U of f in D such that each g ∈ U is topologically
conjugate to f . If M = R

2 and D is the set of all Brouwer homeomorphisms, then there are
no f ∈ D which are structurally stable. Moreover, each of the topological conjugacy classes is
dense in D (see [18]).

Le Roux [19] gave a classification of the topological conjugacy classes of flows whose
orbits are leaves of a given Reeb foliation of the plane. It could be interesting to study the
structural stability of flows of Brouwer homeomorphisms. A flow {ft : t ∈ R} is said to be
structurally stable if for any flow {gt : t ∈ R} in a neighbourhood of {ft : t ∈ R} there is a
homeomorphism h : R

2 → R
2 that sends the orbits of {ft : t ∈ R} to the orbits of {gt : t ∈ R}

preserving the orientation of the orbits. This means that the phase portraits of the flows are
homeomorphic.
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Theory and Dynamical Systems, vol. 21, no. 1, pp. 233–247, 2001.
[19] F. Le Roux, “Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb,”
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The main goal of this paper is the investigation of the general solution and the generalized
Hyers-Ulam stability theorem of the following Euler-Lagrange type quadratic functional equation
f(ax + by) + af(x − by) = (a + 1)b2f(y) + a(a + 1)f(x), in (β, p)-Banach space, where a, b are fixed
rational numbers such that a/= − 1, 0 and b /= 0.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in
which he discussed a number of unsolved problems. Among these was the following ques-
tion concerning the stability of homomorphisms.

Let G be a group and let G′ be a metric group with metric ρ(·, ·). Given ε > 0, does
there exist a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G,
then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

In 1941, the first result concerning the stability of functional equations was presented
by Hyers [2]. He has answered the question of Ulam for the case whereG1 andG2 are Banach
spaces.

Let E1 and E2 be real vector spaces. A function f : E1 → E2 is called a quadratic func-
tion if and only if f is a solution function of the quadratic functional equation

f
(
x + y

)
+ f
(
x − y) = 2f(x) + 2f

(
y
)
. (1.1)

It is well known that a function f between real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive function B such that f(x) = B(x, x) for all x, where
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the mapping B is given by B(x, y) = (1/4)(f(x + y) − f(x − y)). See [3, 4] for the details. The
Hyers-Ulam stability of the quadratic functional equation (1.1) was first proved by Skof [5]
for functions f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa
[6] demonstrated that Skof’s theorem is also valid if E1 is replaced by an Abelian group G.
Assume that a function f : G → E satisfies the inequality

∥
∥f
(
x + y

)
+ f
(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ δ, (1.2)

for some δ ≥ 0 and for all x, y ∈ G. Then there exists a unique quadratic function Q : G → E
such that

∥
∥f(x) −Q(x)

∥
∥ ≤ δ

2
, (1.3)

for all x ∈ G. Czerwik [7] proved the Hyers-Ulam-Rassias stability of quadratic functional
equation (1.1). Let E1 and E2 be a real normed space and a real Banach space, respectively, and
let p /= 2 be a positive constant. If a function f : E1 → E2 satisfies the inequality

∥∥f
(
x + y

)
+ f
(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p), (1.4)

for some ε > 0 and for all x, y ∈ E1, then there exists a unique quadratic function q : E1 → E2

such that

∥∥f(x) − q(x)∥∥ ≤ 2ε
|4 − 2p| ‖x‖

p, (1.5)

for all x ∈ E1. Furthermore, according to the theorem of Borelli and Forti [8], we know the
following generalization of stability theorem for quadratic functional equation. Let G be an
Abelian group and E a Banach space, and let f : G → E be amappingwith f(0) = 0 satisfying
the inequality

∥∥f
(
x + y

)
+ f
(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ ϕ(x, y), (1.6)

for all x, y ∈ G. Assume that one of the series

Φ
(
x, y
)
:=

⎧
⎪⎪⎨

⎪⎪⎩

∞∑

k=0

1
22(k+1)

ϕ
(
2kx, 2ky

)
<∞,

∞∑

k=0
22kϕ

(
x

2(k+1)
,

y

2(k+1)

)
<∞,

(1.7)

then there exists a unique quadratic function Q : G → E such that

∥∥f(x) −Q(x)
∥∥ ≤ Φ(x, x), (1.8)
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for all x ∈ G. During the last three decades, a number of papers and research monographs
have been published on various generalizations and applications of the generalized Hyers-
Ulam stability of several functional equations, and there are many interesting results
concerning this problem [9–13].

The notion of quasi-β-normed space was introduced by Rassias and Kim in [14]. This
notion is a generalization of that of quasi-normed space. We consider some basic concepts
concerning quasi-β-normed space. We fix a real number β with 0 < β ≤ 1 and let K denote
either R or C. Let X be a linear space over K. A quasi-β-norm ‖ · ‖ is a real-valued function on
X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

(2) ‖λx‖ = |λ|β‖x‖ for all λ ∈ K and all x ∈ X,

(3) there is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on X. The
smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-β-Banach space is a
complete quasi-β-normed space. A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if

∥∥x + y
∥∥p ≤ ‖x‖p + ∥∥y∥∥p, (1.9)

for all x, y ∈ X. In this case, the quasi-β-Banach space is called a (β, p)-Banach space. We
observe that if x1, x2, . . . , xn are nonnegative real numbers, then

(
n∑

i=1

xi

)p

≤
n∑

i=1

x
p

i , (1.10)

where 0 < p ≤ 1 [15].
J. M. Rassias investigated the stability of Ulam for the Euler-Lagrange functional equa-

tion

f
(
ax + by

)
+ f
(
bx − ay) =

(
a2 + b2

)[
f(x) + f

(
y
)]

(1.11)

in the paper of [16]. Gordji and Khodaei investigated the generalized Hyers-Ulam stability
of other Euler-Lagrange quadratic functional equations [17]. Jun et al. [18] introduced a new
quadratic Euler-Lagrange functional equation

f
(
ax + y

)
+ af

(
x − y) = (a + 1)f

(
y
)
+ a(a + 1)f(x), (1.12)

for any fixed a ∈ Z with a/= 0,−1, which was a modified and instrumental equation for [19],
and solved the generalized stability of (1.12). Now, we improve the functional equation (1.12)
to the following functional equations:

f
(
ax + by

)
+ af

(
x − by) = (a + 1)f

(
by
)
+ a(a + 1)f(x), (1.13)

f
(
ax + by

)
+ af

(
x − by) = (a + 1)b2f

(
y
)
+ a(a + 1)f(x), (1.14)
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for any fixed rational numbers a, b ∈ Qwith a/= 0,−1 and b /= 0, which are generalized versions
of (1.12). In this paper, we establish the general solution of (1.13) and (1.14) and then prove
the generalized Hyers-Ulam stability of (1.13) and (1.14). We remark that there are some
interesting papers concerning the stability of functional equations in quasi-Banach spaces
[15, 20–23] and quasi-β-normed spaces [14, 24, 25].

2. General Solution of (1.13) and (1.14)

First, we present the general solution of (1.14) in the class of all functions between vector
spaces.

Lemma 2.1. Let X and Y be vector spaces over K. Then a mapping f : X → Y is a solution of the
functional equation (1.12) for any fixed rational number a ∈ Q with a/= 0,−1 if and only if f is quad-
ratic.

Proof. See the same proof in [18].

Lemma 2.2. Let X and Y be vector spaces over K. Then a mapping f : X → Y is a solution of the
functional equation (1.13) if and only if f is quadratic.

Proof. We assume that a mapping f : X → Y satisfies the functional equation (1.13). Letting
by = u in (1.13), then (1.13) is equivalent to (1.12). Then by Lemma 2.1, f is quadratic. Con-
versely, if f is quadratic, then it is obvious that f satisfies (1.13).

Theorem 2.3. Let X and Y be vector spaces over K. Then a mapping f : X → Y with f(0) = 0
satisfies the functional equation (1.14) if and only if f is quadratic. In this case, f(ax) = a2f(x) and
f(bx) = b2f(x) hold for all x ∈ X.

Proof. We assume that a mapping f : X → Y with f(0) = 0 satisfies the functional equation
(1.14). Then replacing y in (1.14) by 0, we also get the equality f(ax) = a2f(x) for all x ∈ X.
Now, we decompose f into the even part and the odd part by setting

fe(x) =
1
2
(
f(x) + f(−x)), fo(x) =

1
2
(
f(x) − f(−x)), (2.1)

for all x ∈ X. Then fe and fo satisfy the functional equation (1.14). Therefore, we may assume
without loss of generality that f is even and satisfies (1.14) for all x, y ∈ X. If we replace x in
(1.14) by 0, then we get

f
(
by
)
+ af

(−by) = (a + 1)b2f
(
y
)
, (2.2)

for all y ∈ X. From this equality, we have f(by) = b2f(y) for all y ∈ X. Therefore, (1.14)
implies (1.13) for all x, y ∈ X. By Lemma 2.2, f is quadratic.

Now, we assume that f is odd and satisfies (1.14) for all x, y ∈ X. For the case a = 1,
we have

f
(
x + by

)
+ f
(
x − by) = 2b2f

(
y
)
+ 2f(x), (2.3)
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for all x, y ∈ X. Setting x by 0 in (2.3), one obtains f ≡ 0. Let a/= 1. Replacing x by 0 in (1.14),
we have

(1 − a)f(by) = (a + 1)b2f
(
y
)
, (2.4)

for all y ∈ X. From (1.14) and (2.4), we get

f
(
ax + by

)
+ af

(
x − by) = (1 − a)f(by) + a(a + 1)f(x), (2.5)

for all x, y ∈ X. Putting by = u in (2.5), then we obtain

f(ax + u) + af(x − u) = (1 − a)f(u) + a(a + 1)f(x), (2.6)

for all x, u ∈ X. Replacing u by au in (2.6), we get

f(ax + au) + af(x − au) = (1 − a)f(au) + a(a + 1)f(x), (2.7)

for all x, u ∈ X. Since f(ax) = a2f(x), (2.7) yields

af(x + u) + f(x − au) = (1 − a)af(u) + (a + 1)f(x), (2.8)

for all x, u ∈ X. Interchanging x and u in (2.8), we have by oddness of f

−f(ax − u) + af(x + u) = (1 − a)af(x) + (a + 1)f(u), (2.9)

for all x, u ∈ X. Replacing u by −u in (2.6), we get

f(ax − u) + af(x + u) = −(1 − a)f(u) + a(a + 1)f(x), (2.10)

for all x, u ∈ X. Adding (2.9) and (2.10) side by side, this leads to

f(x + u) = f(x) + f(u), (2.11)

for all x, u ∈ X. Therefore, f is additive and so f(ax) = af(x) for all x ∈ X and for any
odd function satisfying (1.14). Using the equality f(ax) = a2f(x), we obtain f(x) = 0 for all
x ∈ X. Therefore, f(x) = fe(x) + fo(x) is a quadratic mapping, as desired.

Conversely, if f is quadratic, then it is obvious that f satisfies (1.14).

We note that f(0) = 0 if a + b2 /= 1 and f satisfies (1.14).
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3. Generalized Stability of (1.14) for a/= 1

For convenience, we use the following abbreviation: for any fixed rational numbers a and b
with a/= − 1, 0, 1 and b /= 0,

Df

(
x, y
)
:= f
(
ax + by

)
+ af

(
x − by) − (a + 1)b2f

(
y
) − a(a + 1)f(x), (3.1)

for all x, y ∈ X, which is called the approximate remainder of the functional equation (1.14)
and acts as a perturbation of the equation.

From now on, let X be a vector space, and let Y be a (β, p)-Banach space unless we
give any specific reference. We will investigate the generalized Hyers-Ulam stability problem
for the functional equation (1.14). Thus, we find some conditions such that there exists a true
quadratic function near an approximate solution of (1.14).

Theorem 3.1. Let ϕ : X ×X → [0,∞) be a function such that

Φ(x) :=
∞∑

n=0

1

|a|2βnp
(
ϕ(anx, 0)

)p
<∞, (3.2)

lim
n→∞

1

|a|2βn
ϕ
(
anx, any

)
= 0, (3.3)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Df

(
x, y
)∥∥

Y
≤ ϕ(x, y), (3.4)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

|a|2β
[Φ(x)]1/p, (3.5)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

1
a2k

f
(
akx
)
, (3.6)

for all x ∈ X.

Proof. Letting y by 0 in (3.4), we get

∥∥∥f(ax) − a2f(x)
∥∥∥
Y
≤ ϕ(x, 0), (3.7)

for all x ∈ X. Multiplying both sides by 1/|a|2β in (3.7), we have

∥∥∥∥
1
a2
f(ax) − f(x)

∥∥∥∥
Y

≤ 1

|a|2β
ϕ(x, 0), (3.8)
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for all x ∈ X. Replacing x by anx and multiplying both sides by 1/|a|2nβ in (3.8), we have
∥
∥
∥
∥

1
a2(n+1)

f
(
an+1x

)
− 1
a2n

f(anx)
∥
∥
∥
∥
Y

≤ 1

|a|2β(n+1)
ϕ(anx, 0), (3.9)

for all x ∈ X. Next we show that the sequence {(1/a2n)f(anx)} is a Cauchy sequence. For any
m,n ∈ N,m > n ≥ 0, and x ∈ X, it follows from (3.9) that

∥
∥
∥
∥

1
a2(m+1)

f
(
am+1x

)
− 1
a2n

f(anx)
∥
∥
∥
∥

p

Y

=

∥
∥∥
∥
∥

m∑

i=n

1
a2(i+1)

f
(
ai+1x

)
− 1
a2i

f
(
aix
)
∥
∥∥
∥
∥

p

Y

≤
m∑

i=n

∥
∥
∥
∥

1
a2(i+1)

f
(
ai+1x

)
− 1
a2i

f
(
aix
)∥∥
∥
∥

p

Y

≤
m∑

i=n

1

|a|2βp(i+1)
(
ϕ
(
aix, 0

))p

=
1

|a|2βp
m∑

i=n

1

|a|2βpi
(
ϕ
(
aix, 0

))p
,

(3.10)

for all x ∈ X. It follows from (3.2) and (3.10) that the sequence {(1/a2n)f(anx)} is a Cauchy
sequence in Y for all x ∈ X. Since Y is a (β, p)-Banach space, the sequence {(1/a2n)f(anx)}
converges for all x ∈ X. Therefore, we can define a mapping Q : X → Y by

Q(x) = lim
n→∞

1
a2n

f(anx), (3.11)

for all x ∈ X. Takingm → ∞ and n = 0 in (3.10), we have

∥∥Q(x) − f(x)∥∥pY ≤ 1

|a|2βp
∞∑

i=0

1

|a|2βpi
(
ϕ
(
aix, 0

))p
=

1

|a|2βp
Φ(x), (3.12)

for all x ∈ X. Therefore,

∥∥Q(x) − f(x)∥∥Y ≤ 1

|a|2β
[Φ(x)]1/p, (3.13)

for all x ∈ X, that is, the mapping Q satisfies (3.5). It follows from (3.3) and (3.4) that

∥∥DQ

(
x, y
)∥∥

Y = lim
n→∞

∥∥∥∥
1
a2n

Df

(
anx, any

)
∥∥∥∥
Y

= lim
n→∞

1

|a|2βn
∥∥Df

(
anx, any

)∥∥
Y

≤ lim
n→∞

1

|a|2βn
ϕ
(
anx, any

)
= 0,

(3.14)

for all x, y ∈ X. Therefore, Q satisfies (1.14), and so the function Q is quadratic.
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To prove the uniqueness of the quadratic function Q, let us assume that there exists a
quadratic function Q′ : X → Y satisfying the inequality (3.5). Then we have

∥
∥Q(x) −Q′(x)

∥
∥p
Y =
∥
∥
∥
∥

1
a2n

Q(anx) − 1
a2n

Q′(anx)
∥
∥
∥
∥

p

Y

=
1

a2nβp
∥
∥Q(anx) −Q′(anx)

∥
∥p
Y

≤ 1
a2nβp

(∥
∥Q(anx) − f(anx)∥∥pY +

∥
∥Q′(anx) − f(anx)∥∥pY

)

≤ 1

|a|2nβp
2

|a|2βp
Φ(anx)

=
2

|a|2βp(n+1)
∞∑

i=0

1

|a|2βpi
(
ϕ
(
ai+nx, 0

))p

=
2

|a|2βp
∞∑

i=n

1

|a|2βpi
(
ϕ
(
aix, 0

))p
,

(3.15)

for all x ∈ X and n ∈ N. Therefore, letting n → ∞, one has Q(x) − Q′(x) = 0 for all x ∈ X,
completing the proof of uniqueness.

In the following corollary, we get a stability result of (1.14).

Corollary 3.2. LetX be a quasi-α-normed space for fixed real number αwith 0 < α ≤ 1. Let θ1, θ2, θ3,
α1, α2, γ1, γ2 be positive reals such that either (1) |a| > 1, (α1 +α2)α < 2β, and γiα < 2β or (2) |a| < 1,
(α1+α2)α > 2β, and γiα > 2β, for i = 1, 2. Assume that a function f : X → Y with f(0) = 0 satisfies
the inequality

∥∥Df

(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥∥y
∥∥α2 + θ2‖x‖γ1 + θ3

∥∥y
∥∥γ2 , (3.16)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥∥f(x) −Q(x)
∥∥
Y ≤ θ2‖x‖γ1

(
|a|2βp − |a|γ1αp

)1/p , (3.17)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

f
(
akx
)

a2k
, (3.18)

for all x ∈ X.
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Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 + θ2‖x‖γ1 + θ3‖y‖γ2 . Then

Φ(x) =
∞∑

n=0

1

|a|2βnp
(
ϕ(anx, 0)

)p =
∞∑

n=0

1

|a|2βnp
θ
p

2‖anx‖γ1p

= θ
p

2‖x‖γ1p
∞∑

n=0
|a|(γ1α−2β)np <∞,

(3.19)

lim
n→∞

1

|a|2βn
ϕ
(
anx, any

)
= lim

n→∞
1

|a|2βn
[
θ1
(‖anx‖α1∥∥any∥∥α2) + θ2‖anx‖γ1 + θ3

∥
∥any

∥
∥γ2]

= θ1
(‖x‖α1∥∥y∥∥α2) lim

n→∞
|a|((α1+α2)α−2β)n + θ2‖x‖γ1 lim

n→∞
|a|(γ1α−2β)n

+ θ3
∥
∥y
∥
∥γ2 lim

n→∞
|a|(γ2α−2β)n = 0.

(3.20)

By Theorem 3.1, there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

|a|2β
[Φ(x)]1/p

=
θ2‖x‖γ1
|a|2β

( ∞∑

n=0
|a|(γ1α−2β)np

)1/p

=
θ2‖x‖γ1

(
|a|2βp − |a|γ1αp

)1/p ,

(3.21)

for all x ∈ X.

Theorem 3.3. Let ϕ : X ×X → [0,∞) be a function such that

Ψ(x) :=
∞∑

n=0
|a|2βnp

(
ϕ

(
x

an+1
, 0
))p

<∞, (3.22)

lim
n→∞

|a|2βnϕ
( x
an
,
y

an

)
= 0, (3.23)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Df

(
x, y
)∥∥

Y
≤ ϕ(x, y), (3.24)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ [Ψ(x)]1/p, (3.25)
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for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

a2kf

(
x

ak

)
, (3.26)

for all x ∈ X.

Proof. Letting y by 0 in (3.24), we get

∥
∥
∥f(ax) − a2f(x)

∥
∥
∥
Y
≤ ϕ(x, 0), (3.27)

for all x ∈ X. Replacing x by x/a in (3.27), we have

∥∥∥f(x) − a2f
(x
a

)∥∥∥
Y
≤ ϕ
(x
a
, 0
)
, (3.28)

for all x ∈ X. Replacing x by x/an and multiplying both sides by |a|2βn in (3.28), we have

∥∥∥∥a
2nf
( x
an

)
− a2(n+1)f

(
x

an+1

)∥∥∥∥
Y

≤ |a|2βnϕ
(

x

an+1
, 0
)
, (3.29)

for all x ∈ X. Next we show that the sequence {a2nf(x/an)} is a Cauchy sequence. For any
m,n ∈ N,m > n ≥ 0, and x ∈ X, it follows from (3.29) that

∥∥∥∥a
2nf
( x
an

)
− a2(m+1)f

(
x

am+1

)∥∥∥∥

p

Y

=

∥∥∥∥∥

m∑

i=n

a2if

(
x

ai

)
− a2(i+1)f

(
x

ai+1

)∥∥∥∥∥

p

Y

≤
m∑

i=n

∥∥∥∥a
2if

(
x

ai

)
− a2(i+1)f

(
x

ai+1

)∥∥∥∥

p

Y

≤
m∑

i=n
|a|2βpi

(
ϕ

(
x

ai+1
, 0
))p

.

(3.30)

It follows from (3.22) and (3.30) that the sequence {a2nf(x/an)} is a Cauchy sequence in Y
for all x ∈ X. Since Y is a (β, p)-Banach space, the sequence {a2nf(x/an)} converges for all
x ∈ X. Therefore, we can define a mapping Q : X → Y by

Q(x) = lim
n→∞

a2nf
( x
an

)
, (3.31)

for all x ∈ X. The rest of the proof is similar to the corresponding proof of Theorem 3.1.

Corollary 3.4. Let X be a quasi-α-normed space for fixed real number α with 0 < α ≤ 1. Let
θ1, θ2, θ3, α1, α2, γ1, γ2 be positive reals such that either (1) |a| > 1, (α1 + α2)α > 2β, and γiα > 2β or
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(2) |a| < 1, (α1 + α2)α < 2β, and γiα < 2β, for i = 1, 2. Assume that a function f : X → Y with
f(0) = 0 satisfies the inequality

∥
∥Df

(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥
∥y
∥
∥α2 + θ2‖x‖γ1 + θ3

∥
∥y
∥
∥γ2 , (3.32)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥
∥f(x) −Q(x)

∥
∥
Y ≤ θ2‖x‖γ1

(
|a|γ1αp − |a|2βp

)1/p , (3.33)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

a2kf

(
x

ak

)
, (3.34)

for all x ∈ X.

Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 +θ2‖x‖γ1 +θ3‖y‖γ2 . Then ϕ satisfies the conditions (3.22) and
(3.23). Applying Theorem 3.3, we obtain the results, as desired.

4. Generalized Stability of (1.13)

For convenience, we use the following abbreviation: for any fixed rational numbers a and b
with a/= − 1, 0 and b /= 0,

Ef
(
x, y
)
:= f
(
ax + by

)
+ af

(
x − by) − (a + 1)f

(
by
) − a(a + 1)f(x), (4.1)

for all x, y ∈ X, which is called the approximate remainder of the functional equation (1.13)
and acts as a perturbation of the equation.

We will investigate the generalized Hyers-Ulam stability problem for the functional
equation (1.13).

Theorem 4.1. Let ϕ : X ×X → [0,∞) be a function such that

Φ(x) :=
∞∑

n=0

1

|a + 1|2βnp
(
ϕ

(
(a + 1)nx,

(a + 1)nx
b

))p
<∞, (4.2)

lim
n→∞

1

|a + 1|2βn
ϕ
(
(a + 1)nx, (a + 1)ny

)
= 0, (4.3)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Ef
(
x, y
)∥∥

Y
≤ ϕ(x, y), (4.4)
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for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

|a + 1|2β
[Φ(x)]1/p, (4.5)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

1

(a + 1)2k
f
(
(a + 1)kx

)
, (4.6)

for all x ∈ X.

Proof. Replacing x by by in (4.4), we get

∥∥∥f
(
(a + 1)by

) − (a + 1)2f
(
by
)∥∥∥

Y
≤ ϕ(by, y), (4.7)

for all y ∈ X. Letting by be x in (4.7), we have

∥∥∥f((a + 1)x) − (a + 1)2f(x)
∥∥∥
Y
≤ ϕ
(
x,
x

b

)
, (4.8)

for all x ∈ X. Multiplying both sides by 1/|a + 1|2β in (4.8), we have

∥∥∥∥∥
1

(a + 1)2
f((a + 1)x) − f(x)

∥∥∥∥∥
Y

≤ 1

|a + 1|2β
ϕ
(
x,
x

b

)
, (4.9)

for all x ∈ X. Replacing x by (a + 1)ix and multiplying both sides by 1/|a + 1|2iβ in (4.9), we
have

∥∥∥∥∥
1

(a + 1)2(i+1)
f
(
(a + 1)i+1x

)
− 1

(a + 1)2i
f
(
(a + 1)ix

)
∥∥∥∥∥
Y

≤ 1

|a + 1|2β(i+1)
ϕ

(

(a + 1)ix,
(a + 1)ix

b

)

,

(4.10)

for all x ∈ X. Next we show that the sequence {(1/(a + 1)2n)f((a + 1)nx)} is a Cauchy
sequence. For anym,n ∈ N,m > n ≥ 0, and x ∈ X, it follows from (4.10) that

∥∥∥∥∥
1

(a + 1)2(m+1)
f
(
(a + 1)m+1x

)
− 1

(a + 1)2n
f
(
(a + 1)nx

)
∥∥∥∥∥

p

Y

=

∥∥∥∥∥

m∑

i=n

1

(a + 1)2(i+1)
f
(
(a + 1)i+1x

)
− 1

(a + 1)2i
f
(
(a + 1)ix

)
∥∥∥∥∥

p

Y

≤
m∑

i=n

∥∥∥∥∥
1

(a + 1)2(i+1)
f
(
(a + 1)i+1x

)
− 1

(a + 1)2i
f
(
(a + 1)ix

)
∥∥∥∥∥

p

Y
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≤
m∑

i=n

1

|a + 1|2βp(i+1)
(

ϕ

(

(a + 1)ix,
(a + 1)ix

b

))p

=
1

|a + 1|2βp
m∑

i=n

1

|a + 1|2βpi
(

ϕ

(

(a + 1)ix,
(a + 1)ix

b

))p

,

(4.11)

for all x ∈ X. It follows from (4.2) and (4.11) that the sequence {f((a + 1)nx)/(a + 1)2n}
is a Cauchy sequence in Y for all x ∈ X. Since Y is a (β, p)-Banach space, the sequence
{f((a + 1)nx)/(a + 1)2n} converges for all x ∈ X. Therefore, we can define a mapping Q :
X → Y by

Q(x) = lim
n→∞

1

(a + 1)2n
f
(
(a + 1)nx

)
, (4.12)

for all x ∈ X. The rest of the proof is similar to the corresponding proof of Theorem 3.1.

In the following corollary, we get a stability result of (1.13).

Corollary 4.2. LetX be a quasi-α-normed space for fixed real number αwith 0 < α ≤ 1. Let θ1, θ2, θ3,
α1, α2, γ1, γ2 be positive reals such that either (1) |a + 1| > 1, (α1 + α2)α < 2β, and γiα < 2β or
(2) |a + 1| < 1, (α1 + α2)α > 2β, and γiα > 2β, for i = 1, 2. Assume that a function f : X → Y with
f(0) = 0 satisfies the inequality

∥∥Ef
(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥∥y
∥∥α2 + θ2‖x‖γ1 + θ3

∥∥y
∥∥γ2 , (4.13)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥∥f(x) −Q(x)
∥∥
Y ≤
⎧
⎨

⎩
θ
p

1‖x‖(α1+α2)p

|b|αα2p
(
|a + 1|2βp − |a + 1|(α1+α2)αp

)

+
θ
p

2‖x‖γ1p

|a + 1|2βp − |a + 1|γ1αp
+

θ
p

3‖x‖γ2p

|b|γ2αp
(
|a + 1|2βp − |a + 1|γ2αp

)

⎫
⎬

⎭

1/p

,

(4.14)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

1

(a + 1)2k
f
(
(a + 1)kx

)
, (4.15)

for all x ∈ X.
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Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 + θ2‖x‖γ1 + θ3‖y‖γ2 . Then ϕ satisfies the conditions (4.2) and
(4.3). By Theorem 4.1, there exists a unique quadratic mapping Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥
Y ≤ 1

|a + 1|2β
[ ∞∑

n=0

1

|a + 1|2βnp
(
ϕ

(
(a + 1)nx,

(a + 1)nx
b

))p]1/p

≤
⎧
⎨

⎩
θ
p

1‖x‖(α1+α2)p

|b|αα2p
(
|a + 1|2βp − |a + 1|(α1+α2)αp

)

+
θ
p

2‖x‖γ1p

|a + 1|2βp − |a + 1|γ1αp
+

θ
p

3‖x‖γ2p

|b|γ2αp
(
|a + 1|2βp − |a + 1|γ2αp

)

⎫
⎬

⎭

1/p

,

(4.16)

for all x ∈ X.

Theorem 4.3. Let ϕ : X ×X → [0,∞) be a function such that

Ψ(x) :=
∞∑

n=0
|a + 1|2βnp

(

ϕ

(
x

(a + 1)n+1
,

x

(a + 1)n+1b

))p

<∞,

lim
n→∞

|a + 1|2βnϕ
(

x

(a + 1)n
,

y

(a + 1)n

)
= 0,

(4.17)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Ef(x, y)
∥∥
Y
≤ ϕ(x, y), (4.18)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ [Ψ(x)]1/p, (4.19)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

(a + 1)2kf

(
x

(a + 1)k

)

, (4.20)

for all x ∈ X.

Proof. Replacing x by x/(a + 1) in (4.8), we have

∥∥∥f(x) − (a + 1)2f
( x

a + 1

)∥∥∥
Y
≤ ϕ
(

x

a + 1
,

x

(a + 1)b

)
, (4.21)

for all x ∈ X. The rest of the proof is similar to the corresponding proof of Theorem 3.3.
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Corollary 4.4. LetX be a quasi-α-normed space for fixed real number αwith 0 < α ≤ 1. Let θ1, θ2, θ3,
α1, α2, γ1, γ2 be positive reals such that either (1) |a + 1| > 1 and (α1 + α2)α > 2β, γiα > 2β or (2)
|a + 1| < 1 and (α1 + α2)α < 2β, γiα < 2β, for i = 1, 2. Assume that a function f : X → Y with
f(0) = 0 satisfies the inequality

∥
∥Ef
(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥
∥y
∥
∥α2 + θ2‖x‖γ1 + θ3

∥
∥y
∥
∥γ2 , (4.22)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥
∥f(x) −Q(x)

∥
∥
Y ≤
⎧
⎨

⎩
θ
p

1‖x‖(α1+α2)p

|b|αα2p
(
|a + 1|(α1+α2)αp − |a + 1|2βp

)

+
θ
p

2‖x‖γ1p

|a + 1|γ1αp − |a + 1|2βp
+

θ
p

3‖x‖γ2p

|b|αγ2p
(
|a + 1|γ2αp − |a + 1|2βp

)

⎫
⎬

⎭

1/p

,

(4.23)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

(a + 1)2kf

(
x

(a + 1)k

)

, (4.24)

for all x ∈ X.

Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 + θ2‖x‖γ1 + θ3‖y‖γ2 . Then ϕ satisfies the conditions (4.17).
Applying Theorem 4.3, we obtain the results, as desired.
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We prove the Hyers-Ulam stability of the following Jensen functional inequality ‖f((x − y)/n +
z) + f((y −z)/n+x) + f((z−x)/n+y)‖ ≤ ‖f((x+y +z)‖ in p-Banach spaces for any fixed nonzero
integer n.

1. Introduction

The stability problem of equations originated from a question of Ulam [1] concerning the
stability of group homomorphisms.

We are given a group G1 and a metric group G2 with metric ρ(·, ·). Given ε > 0, does
there exist a number δ > 0 such that if f : G1 → G2 satisfies ρ(f(xy), f(x)f(y)) < δ for all
x, y ∈ G1, then a homomorphism h : G1 → G2 exists with ρ(f(x), h(x)) < ε for all x ∈ G1?

In 1941, Hyers [2] considered the case of approximately additive mappings between
Banach spaces and proved the following result.

Suppose that E1 and E2 are Banach spaces and f : E1 → E2 satisfies the following
condition: if there is a number ε ≥ 0 such that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε (1.1)

for all x, y ∈ E1, then the limit h(x) = limn→∞f(2nx)/2n exists for all x ∈ E1 and there exists
a unique additive mapping h : E1 → E2 such that

∥∥f(x) − h(x)∥∥ ≤ ε. (1.2)

Moreover, if f(tx) is continuous in t ∈ R for each x ∈ E1, then the mapping h is R-linear.
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Themethodwhich was provided by Hyers, and which produces the additive mapping
h, is called a direct method. This method is the most important and most powerful tool
for studying the stability of various functional equations. Hyers’ theorem was generalized
by Aoki [3] and Bourgin [4] for additive mappings by considering an unbounded Cauchy
difference. In 1978, Rassias [5] also provided a generalization of Hyers’ theorem for linear
mappings which allows the Cauchy difference to be unbounded. Let E1 and E2 be two Banach
spaces and let f : E1 → E2 be a mapping such that f(tx) is continuous in t ∈ R for each fixed
x. Assume that there exist ε > 0 and 0 ≤ p < 1 such that

∥
∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p), ∀x, y ∈ E1.
(1.3)

Then, there exists a unique R-linear mapping T : E1 → E2 such that

∥
∥f(x) − T(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.4)

for all x ∈ E1. A generalized result of Rassias’ theorem was obtained by Găvruţa in [6]
and Jung in [7]. In 1990, Rassias [8] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for p ≥ 1. In 1991,
Gajda [9], following the same approach as in [5], gave an affirmative solution to this question
for p > 1. It was shown by Gajda [9], as well as by Rassias and Šemrl [10], that one cannot
prove a Rassias’ type theorem when p = 1. The counterexamples of Gajda [9], as well as of
Rassias and Šemrl [10], have stimulated several mathematicians to invent new approximately
additive or approximately linear mappings.

We recall some basic facts concerning quasinormed spaces and some preliminary
results. Let X be a real linear space. A quasinorm is a real-valued function on X satisfying
the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constantM ≥ 1 such that ‖x + y‖ ≤M(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasinormed space if ‖ · ‖ is a quasinorm on X [11, 12].
The smallest possibleM is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a
complete quasinormed space.

A quasinorm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

∥∥x + y
∥∥p ≤ ‖x‖p + ∥∥y∥∥p (1.5)

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant metric

on X. By the Aoki-Rolewicz theorem [12], each quasinorm is equivalent to some p-norm
(see also [11]). Since it is much easier to work with p-norms, henceforth, we restrict our
attention mainly to p-norms. We observe that if x1, x2, . . . , xn are nonnegative real numbers,
then (

n∑

i=1

xi

)p

≤
n∑

i=1

x
p

i , (1.6)

where 0 < p ≤ 1.
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In 2009, Moslehian and Najati [13] introduced the Hyers-Ulam stability of the additive
functional inequality:

∥
∥
∥
∥f
(
x − y
2

+ z
)
+ f
(
y − z
2

+ x
)
+ f
(
z − x
2

+ y
)∥∥
∥
∥ ≤ ∥∥f(x + y + z

)∥∥, (1.7)

and then have investigated the general solution and the Hyers-Ulam stability problem for the
functional inequality. The stability problems of several functional equations in quasi-normed
spaces and several functional inequalities have been investigated by a number of authors and
there are many interesting results concerning the stability of various functional inequalities
[14–17].

In this paper, we consider a modified and general Jensen functional inequality:

∥∥∥∥f
(
x − y
n

+ z
)
+ f
(
y − z
n

+ x
)
+ f
(
z − x
n

+ y
)∥∥∥∥ ≤ ∥∥f(x + y + z

)∥∥ (1.8)

for any fixed nonzero integer n. First of all, it is easy to see that a function f satisfies the
inequality (1.8) if and only if f(x) is additive. Thus the inequality (1.8) may be called the
Jensen functional inequality and the general solution of inequality (1.8) may be called the
Jensen function. In the sequel, we investigate the generalized Hyers-Ulam stability of (1.8) in
p-Banach spaces for any fixed nonzero integer n by using the techniques of [14, 15].

2. Generalized Hyers-Ulam Stability

First, we present the general solution of the inequality (1.8).

Lemma 2.1. Let both X and Y be real vector spaces. A function f : X → Y satisfies (1.8) for all
x, y, z ∈ X if and only if f is additive.

Proof. Letting x = y = z = 0 in (1.8), we have f(0) = 0. Putting y = −(n + 1)x/2 and z =
(n − 1)x/2 in (1.8), we get

∥∥∥∥∥
f

((
n2 + 3

)
x

2n

)

+ f

(
−(n2 + 3

)
x

2n

)∥∥∥∥∥
≤ ∥∥f(0)∥∥ (2.1)

for all x ∈ X. Hence f(−x) = −f(x) for all x ∈ X. Replacing z by −x − y in (1.8), we obtain

∥∥∥∥f
(
(1 − n)x − (n + 1)y

n

)
+ f
(
(n + 1)x + 2y

n

)
+ f
(−2x + (n − 1)y

n

)∥∥∥∥ ≤ ∥∥f(0)∥∥, (2.2)

that is,

f
(
(1 − n)x − (n + 1)y

)
+ f
(
(n + 1)x + 2y

)
+ f
(−2x + (n − 1)y

)
= 0 (2.3)
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for all x, y ∈ X. Putting u = (n + 1)x + 2y and v = −2x + (n − 1)y in (2.3), we get by oddness
of f ,

f(u + v) = f(u) + f(v) (2.4)

for all u, v ∈ X. So f is additive.
The proof of the converse is trivial.

From now on, assume that X is a quasinormed space with quasinorm ‖ · ‖ and that Y
is a p-Banach space with p-norm ‖ · ‖. LetM be the modulus of concavity of ‖ · ‖ in Y .

Before taking up the main subject, given a mapping f : X → Y , we define the
difference operator Df : X3 → Y by

Df
(
x, y, z

)
:=
∥
∥∥∥f
(
x − y
n

+ z
)
+ f
(
y − z
n

+ x
)
+ f
(
z − x
n

+ y
)∥∥∥∥ −

∥∥f
(
x + y + z

)∥∥ (2.5)

for all x, y, z ∈ X and for any fixed nonzero integer n.

Theorem 2.2. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the functional inequality

Df
(
x, y, z

) ≤ ϕ(x, y, z) (2.6)

for all x, y, z ∈ X and the perturbing function ϕ : X3 → R
+ satisfies

Φ
(
x, y, z

)
:=

∞∑

i=0

1
2ip

ϕ
(
2ix, 2iy, 2iz

)p
<∞ (2.7)

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y defined by h(x) =
limk→∞(1/2k)f(2kx) such that

∥∥f(x) − h(x)∥∥ ≤ M

2

[

Φ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x
n2 + 3

)

+Φ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
4nx
n2 + 3

)]1/p
(2.8)

for all x ∈ X.

Proof. Replacing z by −x − y in (2.6), we obtain

∥∥∥∥f
(
(1 − n)x − (n + 1)y

n

)
+ f
(
(n + 1)x + 2y

n

)
+ f
(−2x + (n − 1)y

n

)∥∥∥∥

≤ ϕ(x, y,−x − y)
(2.9)
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for all x, y ∈ X. Letting x = (n − 3)x/(n2 + 3) and y = (n + 3)x/(n2 + 3) in (2.9), we get

∥
∥
∥
∥f
(
−2x
n

)
+ 2f

(
x

n

)∥∥
∥
∥ ≤ ϕ

(
(n − 3)x
n2 + 3

,
(n + 3)x
n2 + 3

,
−2nx
n2 + 3

)
(2.10)

for all x ∈ X. Putting x = −(n + 1)z/2 and y = (n − 1)z/2 in (2.6), we have

∥
∥
∥
∥
∥
f

(
−(n2 + 3

)
z

2n

)

+ f

((
n2 + 3

)
z

2n

)∥∥
∥
∥
∥
≤ ϕ
(−(n + 1)z

2
,
(n − 1)z

2
, z

)
(2.11)

for all z ∈ X. Replacing z by 4x/(n2 + 3) in (2.11), we obtain

∥∥∥∥f
(
−2x
n

)
+ f
(
2x
n

)∥∥∥∥ ≤ ϕ
(−2(n + 1)x

n2 + 3
,
2(n − 1)x
n2 + 3

,
4x

n2 + 3

)
(2.12)

for all x ∈ X. It follows from (2.10) and (2.12) that

∥∥∥∥f
(
2x
n

)
− 2f

(
2x
n

)∥∥∥∥ ≤ M

[∥∥∥∥f
(
−2x
n

)
+ 2f

(
x

n

)∥∥∥∥ +
∥∥∥∥f
(
−2x
n

)
+ f
(
2x
n

)∥∥∥∥

]

≤ M

[
ϕ

(
(n − 3)x
n2 + 3

,
(n + 3)x
n2 + 3

,
−2nx
n2 + 3

)

+ϕ
(−2(n + 1)x

n2 + 3
,
2(n − 1)x
n2 + 3

,
4x

n2 + 3

)]

(2.13)

for all x ∈ X. If we replace x by nx in (2.13), then we get that

∥∥f(2x) − 2f(x)
∥∥ ≤ M

[

ϕ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x
n2 + 3

)

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
4nx
n2 + 3

)]

.

(2.14)
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It follows from (2.14) that

∥
∥
∥
∥
∥
f
(
2lx
)

2l
− f(2mx)

2m

∥
∥
∥
∥
∥

p

≤
m−1∑

i=l

∥
∥
∥
∥
1
2i
f
(
2ix
)
− 1
2i+1

f
(
2i+1x

)∥∥
∥
∥

p

=
m−1∑

i=l

1
2ip

∥
∥
∥
∥f
(
2ix
)
− 1
2
f
(
2i+1x

)∥∥
∥
∥

p

≤ Mp

2p
m−1∑

i=l

1
2ip

[

ϕ

(
n(n − 3)2ix
n2 + 3

,
n(n + 3)2ix
n2 + 3

,

(−2n2)2ix
n2 + 3

)p

+ϕ

(
−2n(n + 1)2ix

n2 + 3
,
2n(n − 1)2ix

n2 + 3
,
(4n)2ix
n2 + 3

)p]

(2.15)

for all nonnegative integers m and l with m > l ≥ 0 and x ∈ X. Since the right-hand side
of (2.15) tends to zero as l → ∞, by the convergence of the series (2.7), we obtain that the
sequence {f(2mx)/2m} is Cauchy for all x ∈ X. Because of the fact that Y is complete, it
follows that the sequence {f(2mx)/2m} converges in Y . Therefore, we can define a mapping
h : X → Y as

h(x) = lim
m→∞

f(2mx)
2m

, x ∈ X. (2.16)

Moreover, letting l = 0 and takingm → ∞ in (2.15), we get

∥∥f(x) − h(x)∥∥ ≤ M

2

[

Φ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x
n2 + 3

)

+Φ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
4nx
n2 + 3

)]1/p
(2.17)

for all x ∈ X.
It follows from (2.6) and (2.7) that

∥∥∥∥h
(
x − y
n

+ z
)
+ h
(
y − z
n

+ x
)
+ h
(
z − x
n

+ y
)∥∥∥∥

p

= lim
m→∞

∥∥∥∥
1
2m

{
f

(
2m
(
x − y
n

+ z
))

+ f
(
2m
(
y − z
n

+ x
))

+ f
(
2m
(
z − x
n

+ y
))}∥∥∥∥

p

≤ lim
m→∞

{∥∥∥∥
1
2m

f
(
2m
(
x + y + z

))
∥∥∥∥

p

+
1

2mp
ϕ
(
2mx, 2my, 2mz

)p
}

=
∥∥h
(
x + y + z

)∥∥p

(2.18)

for all x, y, z ∈ X. So the mapping h is additive.
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Next, let h′ : X → Y be another additive mapping satisfying (2.8). Then, we have

∥
∥h(x) − h′(x)∥∥p

=
∥
∥
∥
∥
1
2k
h
(
2kx
)
− 1
2k
h′
(
2kx
)∥∥
∥
∥

p

≤ 1
2kp
(∥∥
∥h
(
2kx
)
− f
(
2kx
)∥∥
∥
p
+
∥
∥
∥f
(
2kx
)
− h′
(
2kx
)∥∥
∥
p)

≤
∞∑

i=0

2Mp

2(i+k+1)p

[

ϕ

(
n(n − 3)2i+kx

n2 + 3
,
n(n + 3)2i+kx

n2 + 3
,

(−2n2)2i+kx
n2 + 3

)p

+ϕ

(
−2n(n + 1)2i+kx

n2 + 3
,
2n(n − 1)2i+kx

n2 + 3
,
(4n)2i+kx
n2 + 3

)p]

=
∞∑

i=k

2Mp

2(i+1)p

[

ϕ

(
n(n − 3)2ix
n2 + 3

,
n(n + 3)2ix
n2 + 3

,

(−2n2)2ix
n2 + 3

)p

+ϕ

(
−2n(n + 1)2ix

n2 + 3
,
2n(n − 1)2ix

n2 + 3
,
(4n)2ix
n2 + 3

)p]

(2.19)

for all k ∈ N and all x ∈ X. Taking the limit as k → ∞, we conclude that

h(x) = h′(x) (2.20)

for all x ∈ X. This completes the proof.

If we put ϕ(x, y, z) := θ(‖x‖r1‖y‖r2‖z‖r3) and ϕ(x, y, z) := θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 in
the following corollaries, respectively, then we lead to the desired results.

Corollary 2.3. Let ri > 0 for i = 1, 2, 3 with
∑3

i=1 ri < 1 and θ ≥ 0. If a mapping f : X → Y with
f(0) = 0 satisfies the following functional inequality

Df
(
x, y, z

) ≤ θ(‖x‖r1∥∥y∥∥r2‖z‖r3) (2.21)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥∥f(x) − h(x)∥∥ ≤ Mθ‖x‖r
p
√
2p − 2rp

(∣∣∣∣
n(n − 3)
n2 + 3

∣∣∣∣

r1p
∣∣∣∣
n(n + 3)
n2 + 3

∣∣∣∣

r2p
∣∣∣∣∣

2n2

n2 + 3

∣∣∣∣∣

r3p

+
∣∣∣∣
2n(n + 1)
n2 + 1

∣∣∣∣

r1p
∣∣∣∣
2n(n − 3)
n2 + 3

∣∣∣∣

r2p
∣∣∣∣

4n
n2 + 3

∣∣∣∣

r3p
)1/p

(2.22)

for all x ∈ X, where r =
∑3

i=1 ri.
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Corollary 2.4. Let 0 < ri < 1 and θi ≥ 0 for i = 1, 2, 3. If a mapping f : X → Y with f(0) = 0
satisfies the following functional inequality

Df
(
x, y, z

) ≤ θ1‖x‖r1 + θ2
∥
∥y
∥
∥r2 + θ3‖z‖r3 (2.23)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥
∥f(x) − h(x)∥∥ ≤ M

[(∣∣
∣
∣
n(n − 3)
n2 + 3

∣
∣
∣
∣

r1p

+
∣
∣
∣
∣
2n(n + 1)
n2 + 3

∣
∣
∣
∣

r1p)θ
p

1‖x‖r1p
2p − 2r1p

+
(∣∣
∣∣
n(n + 3)
n2 + 3

∣
∣
∣∣

r2p

+
∣
∣
∣∣
2n(n − 1)
n2 + 3

∣
∣
∣∣

r2p)θ
p

2‖x‖r2p
2p − 2r2p

+

(∣∣∣∣∣
2n2

n2 + 3

∣∣∣∣∣

r3p

+
∣∣∣∣

4n
n2 + 3

∣∣∣∣

r3p
)
θ
p

3‖x‖r3p
2p − 2r3p

]1/p

(2.24)

for all x ∈ X.

Theorem 2.5. Suppose that a mapping f : X → Y satisfies the functional inequality

Df
(
x, y, z

) ≤ ϕ(x, y, z) (2.25)

for all x, y, z ∈ X, and the perturbing function ϕ : X3 → R
+ satisfies

Φ
(
x, y, z

)
:=

∞∑

i=0

2ipϕ
(

x

2i+1
,

y

2i+1y
,
z

2i+1

)p
<∞ (2.26)

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y defined by h(x) =
limk→∞2kf(x/2k) such that

∥∥f(x) − h(x)∥∥ ≤ M

[

Φ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x
n2 + 3

)

+Φ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
4nx
n2 + 3

)]1/p
(2.27)

for all x ∈ X.
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Proof. We note that f(0) = 0 since ϕ(0, 0, 0) = 0 by the convergence of (2.26). Now, if we
replace x by x/2 in (2.14),

∥
∥
∥f(x) − 2f

(x
2

)∥∥
∥ ≤ M

[

ϕ

(
n(n − 3)x
2(n2 + 3)

,
n(n + 3)x
2(n2 + 3)

,
−n2x

(n2 + 3)

)

+ϕ
(−n(n + 1)x

n2 + 3
,
n(n − 1)x
n2 + 3

,
2nx
n2 + 3

)]
(2.28)

for all x ∈ X. Then, it follows from the last inequality that

∥
∥∥f(x) − 2mf

( x
2m
)∥∥∥

p
≤ Mp

m−1∑

i=0

2ip
[

ϕ

(
n(n − 3)x
2i+1(n2 + 3)

,
n(n + 3)x
2i+1(n2 + 3)

,
−2n2x

2i+1(n2 + 3)

)p

+ϕ
(−2n(n + 1)x

2i+i(n2 + 3)
,
2n(n − 1)x
2i+1(n2 + 3)

,
4nx

2i+1(n2 + 3)

)p]
(2.29)

for all nonnegative integerm and all x ∈ X. The remaining proof is similar to the correspond-
ing part of Theorem 2.2. This completes the proof.

If we put ϕ(x, y, z) := θ(‖x‖r1‖y‖r2‖z‖r3) and ϕ(x, y, z) := θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 in
the following corollaries, respectively, then we lead to the desired results.

Corollary 2.6. Let ri > 0 for i = 1, 2, 3 with
∑3

i=1 ri > 1 and θ ≥ 0. If a mapping f : X → Y satisfies
the following functional inequality

Df
(
x, y, z

) ≤ θ(‖x‖r1∥∥y∥∥r2‖z‖r3) (2.30)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥∥f(x) − h(x)∥∥ ≤ Mθ‖x‖r
p
√
2rp − 2p

(∣∣∣∣
n(n − 3)
n2 + 3

∣∣∣∣

r1p
∣∣∣∣
n(n + 3)
n2 + 3

∣∣∣∣

r2p
∣∣∣∣∣

2n2

n2 + 3

∣∣∣∣∣

r3p

+
∣∣∣∣
2n(n + 1)
n2 + 1

∣∣∣∣

r1p
∣∣∣∣
2n(n − 3)
n2 + 3

∣∣∣∣

r2p
∣∣∣∣

4n
n2 + 3

∣∣∣∣

r3p
)1/p

(2.31)

for all x ∈ X, where r =
∑3

i=1 ri.
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Corollary 2.7. Let ri > 1 and θi ≥ 0 for i = 1, 2, 3. If a mapping f : X → Y satisfies the following
functional inequality

Df
(
x, y, z

) ≤ θ1‖x‖r1 + θ2
∥
∥y
∥
∥r2 + θ3‖z‖r3 (2.32)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥
∥f(x) − h(x)∥∥ ≤ M

[(∣∣
∣
∣
n(n − 3)
n2 + 3

∣
∣
∣
∣

r1p

+
∣
∣
∣
∣
2n(n + 1)
n2 + 3

∣
∣
∣
∣

r1p)θ
p

1‖x‖r1p
2r1p−2p

+
(∣∣
∣
∣
n(n + 3)
n2 + 3

∣
∣
∣
∣

r2p

+
∣
∣
∣
∣
2n(n − 1)
n2 + 3

∣
∣
∣
∣

r2p)θ
p

2‖x‖r2p
2r2p − 2p

+

(∣∣∣∣∣
2n2

n2 + 3

∣∣∣∣∣

r3p

+
∣∣∣∣

4n
n2 + 3

∣∣∣∣

r3p
)
θ
p

3‖x‖r3p
2r3p − 2p

]1/p

(2.33)

for all x ∈ X.

The following is a simple example that the additive functional inequalityDf(x, y, z) ≤
θ(‖x‖ + ‖y‖ + ‖z‖) is not stable for the singular case r1, r2, r3 = 1 in Corollaries 2.4 and 2.7.

Example 2.8. Fix θ ≥ 0 and put μ := θ/8. Let φ : R → R be defined by

φ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ for x ∈ [1,∞),

μx for x ∈ (−1, 1),

−μ for x ∈ (−∞,−1],

(2.34)

and define f : R → R by

f(x) =
∞∑

i=0

φ
(
2ix
)

2i
, ∀x ∈ R, (2.35)

which can be found in [9]. It follows from the same argument as in the example of [9] that f
satisfies the functional inequality

∣∣∣∣

∣∣∣∣f
(
x − y
n

+ z
)
+ f
(
y − z
n

+ x
)
+ f
(
z − x
n

+ y
)∣∣∣∣ −

∣∣f
(
x + y + z

)∣∣
∣∣∣∣

≤ 8μ
(|x| + ∣∣y∣∣ + |z|)

(2.36)
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for all x, y, z ∈ R. In fact, if x = y = z = 0, then (2.36) is trivially fulfilled. Next, if 0 <
|x| + |y| + |z| < 1, then there exists anN ∈ N such that

1
2N

≤ |x| + ∣∣y∣∣ + |z| < 1
2N−1 , (2.37)

which implies that

2i
(
x − y
n

+ z
)
, 2i
(
y − z
n

+ x
)
, 2i
(
z − x
n

+ y
)
, 2i
(
x + y + z

) ∈ (−1, 1),

∀i ∈ {0, . . . ,N − 1}.
(2.38)

Thus, we see that

φ

(
2i
(
x − y
n

+ z
))

+ φ
(
2i
(
y − z
n

+ x
))

+ φ
(
2i
(
z − x
n

+ y
))

− φ
(
2i
(
x + y + z

))
= 0

(2.39)

for all i ∈ {0, . . . ,N − 1}. As a result, we infer that

∣∣f
(((

x − y)/n) + z) + f(((y − z)/n) + x) + f(((z − x)/n) + y) − f(x + y + z
)∣∣

|x| + ∣∣y∣∣ + |z|

≤
∞∑

i=N

∣∣φ
(
2i
(((

x−y)/n)+z))+φ(2i(((y−z)/n)+x))+φ(2i(((z−x)/n)+y))−φ(2i(x+y+z))∣∣
2i
(|x| + ∣∣y∣∣ + |z|)

≤ 8μ
(2.40)

for all x, y, z ∈ R. Finally, if |x| + |y| + |z| ≥ 1, then one has by use of boundedness of f

∣∣f
(((

x − y)/n) + z) + f(((y − z)/n) + x) + f(((z − x)/n) + y) − f(x + y + z
)∣∣

|x| + ∣∣y∣∣ + |z| ≤ 8μ

(2.41)

for all x, y, z ∈ R. Therefore, f satisfies the functional inequality (2.36) and so

Df
(
x, y, z

) ≤ 8μ
(|x| + ∣∣y∣∣ + |z|) (2.42)

for all x, y, z ∈ R. However, there do not exist an additive function T : R → R and a constant
c > 0 such that

∣∣f(x) − T(x)∣∣ ≤ c|x| ∀x ∈ R. (2.43)
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Remark 2.9. The stability problem on the singular case r = 1 in Corollaries 2.3 and 2.6 is not
easy and it remains with us unsolved for providing a counterexample on the singular case
r = 1.

3. Alternative Generalized Hyers-Ulam Stability of (1.8)

From now on, we investigate the generalized Hyers-Ulam stability of the functional inequal-
ity (1.8) using the contractive property of perturbing term of the inequality (1.8).

Theorem 3.1. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the functional inequality

Df
(
x, y, z

) ≤ ϕ(x, y, z) (3.1)

for all x, y, z ∈ X and there exists a constant L with 0 < L < 1 for which the perturbing function
ϕ : X3 → R

+ satisfies

ϕ
(
2x, 2y, 2z

) ≤ 2Lϕ
(
x, y, z

)
(3.2)

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y given by h(x) =
limk→∞(1/2k)f(2kx) such that

∥∥f(x) − h(x)∥∥ ≤ M

2 p
√
1 − Lp

[

ϕ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x
n2 + 3

)p

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
4nx
n2 + 3

)p]1/p
(3.3)

for all x ∈ X.

Proof. It follows from (2.15) and (3.2) that

∥∥∥∥∥
f
(
2lx
)

2l
− f(2mx)

2m

∥∥∥∥∥

p

≤ Mp

2p
m−1∑

i=l

1
2ip

[

ϕ

(
n(n − 3)2ix
n2 + 3

,
n(n + 3)2ix
n2 + 3

,

(−2n2)2ix
n2 + 3

)p

+ϕ

(
−2n(n + 1)2ix

n2 + 3
,
2n(n − 1)2ix

n2 + 3
,
(4n)2ix
n2 + 3

)p]

≤ Mp

2p
m−1∑

i=l

Lip
[

ϕ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,

(−2n2)x
n2 + 3

)p

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
(4n)x
n2 + 3

)p]

(3.4)
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for all nonnegative integers m and l with m > l ≥ 0 and x ∈ X. Since the sequence
{f(2mx)/2m} is Cauchy for all x ∈ X, we can define a mapping h : X → Y by

h(x) = lim
m→∞

f(2mx)
2m

, x ∈ X. (3.5)

Moreover, letting l = 0 andm → ∞ in the last inequality yields the approximation (3.3).
The remaining proof is similar to the corresponding part of Theorem 2.2. This

completes the proof.

Corollary 3.2. Let ξ : [0,∞) → [0,∞) be a nontrivial function satisfying

ξ(2t) ≤ ξ(2)ξ(t), (t ≥ 0), 0 < ξ(2) < 2. (3.6)

If f : X → Y with f(0) = 0 is a mapping satisfying the following functional inequality

Df
(
x, y, z

) ≤ θ{ξ(‖x‖) + ξ(∥∥y∥∥) + ξ(‖z‖)} (3.7)

for all x, y, z ∈ X and for some θ ≥ 0, then there exists a unique additive mapping h : X → Y such
that

∥∥f(x) − h(x)∥∥

≤ Mθ
p
√
2p − ξ(2)p

[

ξ

(∣∣∣∣
n(n − 3)
n2 + 3

∣∣∣∣‖x‖
)p

+ ξ
(∣∣∣∣

n(n + 3)
n2 + 3

∣∣∣∣‖x‖
)p

+ ξ

(∣∣∣∣∣
2n2

n2 + 3

∣∣∣∣∣
‖x‖
)p

+ξ
(∣∣∣∣

2n(n + 1)
n2 + 3

∣∣∣∣‖x‖
)p

+ ξ
(∣∣∣∣

2n(n − 1)
n2 + 3

∣∣∣∣‖x‖
)p

+ ξ
(∣∣∣∣

4n
n2 + 3

∣∣∣∣‖x‖
)p]1/p

(3.8)

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = θ{ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖)} and applying Theorem 3.1 with L :=
ξ(2)/2, we obtain the desired result.

Theorem 3.3. Suppose that a mapping f : X → Y satisfies the functional inequality

Df
(
x, y, z

) ≤ ϕ(x, y, z) (3.9)

for all x, y, z ∈ X and there exists a constant L with 0 < L < 1 for which the perturbing function
ϕ : X3 → R

+ satisfies

ϕ
(x
2
,
y

2
,
z

2

)
≤ L

2
ϕ
(
x, y, z

)
(3.10)



14 Abstract and Applied Analysis

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y defined by h(x) =
limk→∞ 2kf(x/2k) such that

∥
∥f(x) − h(x)∥∥ ≤ ML

2 p
√
1 − Lp

[

ϕ

(
n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x
n2 + 3

)p

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x
n2 + 3

,
4nx
n2 + 3

)p]1/p
(3.11)

for all x ∈ X.

Proof. We observe that f(0) = 0 because ϕ(0, 0, 0) = 0, which follows from the condition
ϕ(0, 0, 0) ≤ L/2 ϕ(0, 0, 0). It follows from (2.29) and (3.10) that

∥∥∥f(x) − 2mf
( x
2m
)∥∥∥

p
≤ Mp

m−1∑

i=0

2ip
[

ϕ

(
n(n − 3)x
2i+1(n2 + 3)

,
n(n + 3)x
2i+1(n2 + 3)

,
−2n2x

2i+1(n2 + 3)

)p

+ϕ
(−2n(n + 1)x

2i+i(n2 + 3)
,
2n(n − 1)x
2i+1(n2 + 3)

,
4nx

2i+1(n2 + 3)

)p]

≤ Mp

2p
m−1∑

i=0

L(i+1)p

[

ϕ

(
n(n − 3)x
(n2 + 3)

,
n(n + 2)x
(n2 + 3)

,
−2n2x
(n2 + 3)

)p

+ϕ
(−2n(n + 1)x

(n2 + 3)
,
2n(n − 1)x
(n2 + 3)

,
4nx

(n2 + 3)

)p]

(3.12)

for all nonnegative integerm and all x ∈ X.
The remaining proof is similar to the corresponding part of Theorem 2.2. This

completes the proof.

Corollary 3.4. Let ξ : [0,∞) → [0,∞) be a nontrivial function satisfying

ξ

(
t

2

)
≤ ξ
(
1
2

)
ξ(t), (t ≥ 0), 0 < ξ

(
1
2

)
<

1
2
. (3.13)

If f : X → Y is a mapping satisfying the following functional inequality

Df
(
x, y, z

) ≤ θ{ξ(‖x‖) + ξ(∥∥y∥∥) + ξ(‖z‖)} (3.14)
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for all x, y, z ∈ X and for some θ ≥ 0, then there exists a unique additive mapping h : X → Y such
that

∥
∥f(x) − h(x)∥∥

≤ Mθξ(1/2)
p
√
1 − 2pξ(1/2)p

[

ξ

(∣∣
∣
∣
n(n − 3)
n2 + 3

∣
∣
∣
∣‖x‖

)p
+ ξ
(∣∣
∣
∣
n(n + 3)
n2 + 3

∣
∣
∣
∣‖x‖

)p
+ ξ

(∣∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣
‖x‖
)p

+ξ
(∣∣
∣
∣
2n(n + 1)
n2 + 3

∣
∣
∣
∣‖x‖

)p
+ ξ
(∣∣
∣
∣
2n(n − 1)
n2 + 3

∣
∣
∣
∣‖x‖

)p
+ ξ
(∣∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣‖x‖

)p]1/p

(3.15)

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = θ{ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖)} and applying Theorem 3.3 with L :=
2ξ(1/2), we lead to the approximation.
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Based on the studies on the Hyers-Ulam stability and the orthogonal stability of some Pexider-
quadratic functional equations, in this paper we find the general solutions of two quadratic
functional equations of Pexider type. Both equations are studied in restricted domains: the first
equation is studied on the restricted domain of the orthogonal vectors in the sense of Rätz, and
the second equation is considered on the orthogonal vectors in the inner product spaces with the
usual orthogonality.

1. Introduction

Stability problems for some functional equations have been extensively investigated by
several authors, and in particular one of the most important functional equation studied in
this topic is the quadratic functional equation,

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)

(1.1)

(Skof [1], Cholewa [2], Czerwik [3], Rassias [4], among others).
Recently, many articles have been devoted to the study of the stability or orthogonal

stability of quadratic functional equations of Pexider type on the restricted domain of
orthogonal vectors in the sense of Rätz.

We remind the definition of orthogonality space (see [5]). The pair (X,⊥) is called
orthogonality space in the sense of Rätz if X is a real vector space with dimX ≥ 2 and ⊥ is a
binary relation on X with the following properties:

(i) x ⊥ 0, 0 ⊥ x for all x ∈ X,

(ii) if x, y ∈ X − {0}, x ⊥ y, then the vectors are linearly independent,



2 Abstract and Applied Analysis

(iii) if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R,
(iv) let P be a 2-dimensional subspace of X. If x ∈ P then there exists y0 ∈ P such that

x ⊥ y0 and x + y0 ⊥ λx − y0.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x.
An example of orthogonality in the sense of Rätz is the ordinary orthogonality on an

inner product space (H, (·, ·)) given by ⊥ y ⇔ (x, y) = 0.
In the class of real functionals f, g, h defined on an orthogonality space in the sense of

Rätz, f, g, h : (X,⊥) → R, a first version of the quadratic equation of Pexider type is

f
(
x + y

)
+ f

(
x − y) = 2g(x) + 2h

(
y
)

(1.2)

and its relative conditional form is

x ⊥ y =⇒ f
(
x + y

)
+ f

(
x − y) = 2g(x) + 2h

(
y
)
. (1.3)

Although the Hyers-Ulam stability of the conditional quadratic functional equation (1.3) has
been studied by Moslehian [6], we do not know the characterization of the solutions of the
conditional equation (1.3).

In the same class of functions, f, g, h, k : (X,⊥) → R, another version of the quadratic
functional equation of Pexider type is

f
(
x + y

)
+ g

(
x − y) = h(x) + k

(
y
)
, (1.4)

and its relative conditional form is

x ⊥ y =⇒ f
(
x + y

)
+ g

(
x − y) = h(x) + k

(
y
)
. (1.5)

Equation (1.4) has been solved by Ebanks et al. [7]; its stability has been studied, among
others, by Jung and Sahoo [8] and Yang [9] and its orthogonal stability has been studied by
Mirzavaziri and Moslehian [10], but also in this case we do not know the general solutions
of (1.5).

Based on those studies, we intend to consider the above-mentioned functional
equations (1.3) and (1.5) on the restricted domain of orthogonal vectors in order to present
the characterization of their general solutions.

Throughout the paper, the orthogonality ⊥ in the sense of Rätz is assumed to be
symmetric.

2. The Conditional Equation x ⊥ y ⇒ f(x + y) + f(x − y) = 2g(x) + 2h(y)
in Orthogonality Spaces in the Sense of Ratz

In the class of real functionals f, g, h defined on an orthogonality space in the sense of Rätz,
f, g, h : (X,⊥) → R, let us consider the conditional equation (1.3).
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We describe its solutions first assuming that f is an odd functional, then an even
functional, finally, using the decomposition of the functionals f, g, h into their even and odd
parts, we describe the general solutions.

Theorem 2.1. Let f, g, h : (X,⊥) → R be real functionals satisfying (1.3).
If f is an odd functional, then the solutions of (1.3) are given by

f(x) = A(x),

g(x) = A(x) + g(0),

h(x) = h(0),

(2.1)

where A : (X,⊥) → R is an additive function, that is, A is solution of A(x + y) = A(x) +A(y) for
all (x, y) ∈ X2.

If f is an even functional, then the solutions of (1.3) are given by

f(x) = Q(x) + f(0),

g(x) = Q(x) + g(0),

h(x) = Q(x) + h(0),

(2.2)

whereQ : (X,⊥) → R is an orthogonally quadratic function, that is, solution ofQ(x+y)+Q(x−y) =
2Q(x) + 2Q(y) for x ⊥ y.

Proof. Let us first consider f an odd functional. Letting x = 0 and y = 0 in (1.3), by f(0) = 0
for the oddness of f , we obtain

g(0) + h(0) = 0. (2.3)

Now, putting (x, 0) in place of (x, y) in (1.3), we have f(x) = g(x) + h(0), then putting again
(0, x) in place of (x, y) we get g(0) + h(x) = 0 for all x ∈ X, since f is odd. The first equation
gives

g(x) = f(x) + g(0) (2.4)

from (2.3), and the last equation proves that

h(x) = h(0) (2.5)

using (2.3) again.
From the above results, (1.3)may be rewritten in the followingway: f(x+y)+f(x−y) =

2f(x) for all x ⊥ y. Hence by Lemma 3.1, [6], we have f(x) − f(0) = A(x)where A : X → R
is an orthogonally additive functional. But since f(0) = 0 and from [5, Theorem 5], we deduce
that A is everywhere additive.
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Consider now f an even functional. Substituting in (1.3) (0, 0) in place of (x, y), we
obtain

g(0) + h(0) = f(0). (2.6)

Now writing (1.3) with (x, y) replaced, respectively, first by (x, 0), then by (0, y), we get

f(x) = g(x) + h(0), (2.7)

f
(
y
)
= g(0) + h

(
y
)
, (2.8)

for all x, y ∈ X, since f is even. From (1.3), using (2.7), (2.8), and (2.6), we obtain

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
) − 2f(0). (2.9)

Hence, settingQ(t) = f(t)−f(0), we inferQ(x+y)+Q(x−y) = 2Q(x)+2Q(y) for x ⊥ y, that is,
Q is an orthogonally quadratic functional. So, f(x) = Q(x) + f(0), and from (2.7), using (2.6),
g(x) = Q(x)+f(0)−h(0) = Q(x)+g(0), and from (2.8), h(x) = Q(x)+f(0)−g(0)=Q(x)+h(0).

The theorem is so proved.

Lemma 2.2. Let f, g, h : (X,⊥) → R be real functionals satisfying (1.3).
Then both the even parts and the odd parts of f, g, h, namely, fe, ge, he and fo, go, ho, satisfy

(1.3).

Proof. Denoting by fe, ge, he and fo, go, ho the even and odd parts, respectively, of f, g, h, we
have from (1.3)

fe
(
x + y

)
+ fo

(
x + y

)
+ fe

(
x − y) + fo

(
x − y) = 2ge(x) + 2go(x) + 2he

(
y
)
+ 2ho

(
y
)
, for x ⊥ y.

(2.10)

From the homogeneity of the orthogonality relation (property (iii)), we have x ⊥ y ⇒ −x ⊥
−y, so that, by (1.3), choosing −x,−y, we get

fe
(
x + y

) − fo
(
x + y

)
+ fe

(
x − y) − fo

(
x − y) = 2ge(x) − 2go(x) + 2he

(
y
) − 2ho

(
y
)
, for x ⊥ y.

(2.11)

Adding and then subtracting (2.10) and (2.11), we easily prove the lemma.
From Lemma 2.2 and Theorem 2.1, we may easily prove the following theorem.

Theorem 2.3. The general solution f, g, h : (X,⊥) → R of the functional equation (1.3) is given by

f(x) = A(x) +Q(x) + f(0),

g(x) = A(x) +Q(x) + g(0),

h(x) = Q(x) + h(0),

(2.12)
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where A : (X,⊥) → R is an additive function and Q : (X,⊥) → R is an orthogonally quadratic
function.

In the case of an inner product space (H, (·, ·)) (dimH > 2) which is a particular
orthogonality space in the sense of Rätz, with the ordinary orthogonality given by ⊥ y ⇔
(x, y) = 0, we have the characterization of the orthogonally quadratic mappings from [11,
Theorem 2]. Hence we have the following corollary.

Corollary 2.4. Let H be an inner product space with dim H > 2 andf, g, h : (H, (·, ·)) → R. The
general solution of the functional equation (1.3) is given by

f(x) = A(x) +Q(x) + f(0),

g(x) = A(x) +Q(x) + g(0),

h(x) = Q(x) + h(0),

(2.13)

where A : (H, (·, ·)) → R is an additive function and Q : (H, (·, ·)) → R is a quadratic function.

3. The Conditional Equation x ⊥ y ⇒ f(x + y) + g(x − y) = h(x) + k(y) in
Inner Product Spaces

Consider now H an inner product space with dimH > 2 and the usual orthogonality given
by ⊥ y ⇔ (x, y) = 0. In the class of real functionals f, g, h, k defined on H, we consider the
conditional equation (1.5).

First prove the following lemma.

Lemma 3.1. Let f, g, h, k : H → R be solutions of (1.5); then

h(x) = A(x) +Q(x) + h(0), (3.1)

where A : H → R is an additive function and Q : H → R is a quadratic function.

Proof. Replacing in (1.5) (x, y) by (0, 0), then by (x, 0) and finally by (0, y), we obtain

(i) f(0) + g(0) = h(0) + k(0),

(ii) f(x) + g(x) = h(x) + k(0),

(iii) f(y) + g(−y) = h(0) + k(y).

Hence (1.5) may be rewritten as

f
(
x + y

)
+ g

(
x − y) = f(x) + f

(
y
)
+ g(x) + g

(−y) − f(0) − g(0). (3.2)

So that, setting F(t) = f(t) − f(0) and G(t) = g(t) − g(0), we infer

F
(
x + y

)
+G

(
x − y) = F(x) + F

(
y
)
+G(x) +G

(−y). (3.3)
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Now, substituting −y in (3.3) in place of y, we have

F
(
x − y) +G(x + y

)
= F(x) + F

(−y) +G(x) +G(y). (3.4)

Adding (3.3) and (3.4), we get

F
(
x + y

)
+ F

(
x − y) +G(x + y

)
+G

(
x − y) = 2F(x) + F

(
y
)
+ F

(−y) + 2G(x) +G
(
y
)
+G

(−y).
(3.5)

So, defining the functional S : H → R by

S(t) = F(t) +G(t), (3.6)

the above equation becomes

x ⊥ y =⇒ S
(
x + y

)
+ S

(
x − y) = 2S(x) + S

(
y
)
+ S

(−y). (3.7)

From [11, Theorem 3], we have

S(x) = A(x) +Q(x), (3.8)

where A : H → R is an additive function and Q : H → R is a quadratic function. From
(3.6), we have, F(x) + G(x) = A(x) +Q(x), that is, f(x) − f(0) + g(x) − g(0) = A(x) +Q(x).
Using (ii) and (i), the left-hand side of the above equation may be written in the following
way: h(x) + k(0) − f(0) − g(0) = h(x) + k(0) − h(0) − k(0) = h(x) − h(0); hence we get h(x) =
A(x) +Q(x) + h(0). The theorem is so proved.

Our aim is now to characterize the general solutions of (1.5): this is obtained using
the decomposition of the functionals f, g, h, k into their even and odd parts. Using the same
approach of Lemma 2.2, we easily prove the following lemma.

Lemma 3.2. Let f, g, h, k : H → R be real functionals satisfying (1.5).
Then both the even parts and the odd parts of f, g, h, k, namely, fe, ge, he, ke and fo, go, ho, ko,

satisfy (1.5), that is,

x ⊥ y =⇒ fo
(
x + y

)
+ go

(
x − y) = ho(x) + ko

(
y
)
, (3.9)

x ⊥ y =⇒ fe
(
x + y

)
+ ge

(
x − y) = he(x) + ke

(
y
)
. (3.10)

Now consider (3.9): the characterization of its solutions is given by the following
theorem.
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Theorem 3.3. Let fo, go, ho, ko : H → R be real odd functionals satisfying (3.9); then the solutions
of (3.9) are given by

fo(x) =
A(x) + B(x)

2
,

go(x) =
A(x) − B(x)

2
,

ho(x) = A(x),

ko(x) = B(x),

(3.11)

where A : H → R and B : H → R are additive functions.

Proof. Substituting in (3.9) first (0, x), then (x, 0) in place of (x, y), and by ho(0) = 0 and
ko(0) = 0 by the oddness of the functions, we obtain

fo(x) − go(x) = ko(x),
fo(x) + go(x) = ho(x).

(3.12)

Adding and then subtracting the above equations, we get

2fo(x) = ho(x) + ko(x),

2go(x) = ho(x) − ko(x).
(3.13)

By (3.1), ho(x) = A(x), hence from the above equations,

2fo(x) = A(x) + ko(x), (3.14)

2go(x) = A(x) − ko(x). (3.15)

Consider now x, y ∈ H with x ⊥ y. Writing (3.14)with x+y instead of x and (3.15)with x−y
instead of x, we get

2fo
(
x + y

)
= A

(
x + y

)
+ ko

(
x + y

)
,

2go
(
x − y) = A

(
x − y) − ko

(
x − y).

(3.16)

Adding the above equations, from (3.9), the additivity of A and ho(x) = A(x), we obtain

k0
(
x + y

) − k0
(
x − y) = 2k0

(
y
)

(3.17)

for x ⊥ y. By the symmetry of the orthogonality relation, we get, changing x and y and from
the oddness of the function,

k0
(
x + y

)
+ k0

(
x − y) = 2k0(x), (3.18)
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hence k0(x + y) = k0(x) + k0(y) for x ⊥ y. By [5, Theorem 5], k0 is an additive function;
consequently, there exists an additive function B : H → R such that k0(x) = B(x) for all
x ∈ H. Now (3.14) and (3.15) give fo(x) = (A(x) + B(x))/2 and go(x) = (A(x) − B(x))/2, so
the theorem is proved.

Finally, consider equation (3.10): the characterization of its solutions is given by the
following theorem.

Theorem 3.4. Let fe, ge, he, ke : H → R be real even functionals satisfying (3.10); then there exist
a quadratic function Q : H → R and a function ϕ : [0,∞) → R such that

fe(x) =
Q(x) + ϕ(‖x‖) + he(0) + ke(0)

2
,

ge(x) =
Q(x) − ϕ(‖x‖) + he(0) + ke(0)

2
,

he(x) = Q(x) + he(0),

ke(x) = Q(x) + ke(0).

(3.19)

Proof. From Lemma 3.1, we first notice that

he(x) = Q(x) + he(0). (3.20)

Substituting now in (3.10) first (x, 0) then (0, x) instead of (x, y), we obtain, respectively

fe(x) + ge(x) = he(x) + ke(0),

fe(x) + ge(x) = he(0) + ke(x).
(3.21)

Consequently, by subtraction and from (3.20), we have

ke(x) = Q(x) + ke(0). (3.22)

Substitution of (3.20) and (3.22) in (3.10) gives

fe
(
x + y

)
+ ge

(
x − y) = Q(x) +Q

(
y
)
+ he(0) + ke(0). (3.23)

Then, we substitute −y in place of y in (3.23) and have

fe
(
x − y) + ge

(
x + y

)
= Q(x) +Q

(
y
)
+ he(0) + ke(0) (3.24)

for all x ⊥ y. Hence, for y = 0 in (3.24), we obtain

fe(x) + ge(x) = Q(x) + he(0) + ke(0). (3.25)
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Subtracting now (3.23) and (3.24), we get fe(x + y) + ge(x − y) − fe(x − y) − ge(x + y) = 0
for all x ⊥ y. Consider u, v ∈ H with ‖u‖ = ‖v‖: it follows that (u + v)/2 ⊥ (u − v)/2,
hence in the above equation we may replace x, y with (u + v)/2, (u − v)/2, respectively. We
obtain fe(u) + ge(v) − fe(v) − ge(u) = 0, that is, fe(u) − ge(u) = fe(v) − ge(v) for all u, v ∈ H
with ‖u‖ = ‖v‖. Thus the function fe(t) − ge(t) is constant on each sphere with center 0, and
ϕ : [0,∞) → R is well defined by

ϕ(‖x‖) = fe(x) − ge(x). (3.26)

Hence (3.25) and (3.26) lead to

fe(x) =
Q(x) + ϕ(‖x‖) + he(0) + ke(0)

2
,

ge(x) =
Q(x) − ϕ(‖x‖) + he(0) + ke(0)

2
,

(3.27)

which finishes the proof.

Finally, the general solution of (1.5) is characterized by the following theorem.

Theorem 3.5. Let f, g, h, k : H → R be real functionals satisfying (1.5); then there exist additive
functions, B : H → R, a quadratic function Q : H → R, and a function ϕ : [0,∞) → R such that

f(x) =
A(x) + B(x) +Q(x) + ϕ(‖x‖) + h(0) + k(0)

2
,

g(x) =
A(x) − B(x) +Q(x) − ϕ(‖x‖) + h(0) + k(0)

2
,

h(x) = A(x) +Q(x) + h(0),

k(x) = B(x) +Q(x) + k(0).

(3.28)

Conversely, the above functionals satisfy (1.5).
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Babeş-Bolyai. Studia, vol. 43, no. 3, pp. 89–124, 1998.

[5] J. Rätz, “On orthogonally additive mappings,” Aequationes Mathematicae, vol. 28, no. 1-2, pp. 35–49,
1985.

[6] M. S. Moslehian, “On the orthogonal stability of the Pexiderized quadratic equation,” Journal of
Difference Equations and Applications, vol. 11, no. 11, pp. 999–1004, 2005.



10 Abstract and Applied Analysis

[7] B. R. Ebanks, Pl. Kannappan, and P. K. Sahoo, “A common generalization of functional equations
characterizing normed and quasi-inner-product spaces,” Canadian Mathematical Bulletin, vol. 35, no.
3, pp. 321–327, 1992.

[8] S.-M. Jung and P. K. Sahoo, “Hyers-Ulam stability of the quadratic equation of Pexider type,” Journal
of the Korean Mathematical Society, vol. 38, no. 3, pp. 645–656, 2001.

[9] D. Yang, “Remarks on the stability of Drygas’ equation and the Pexider-quadratic equation,”
Aequationes Mathematicae, vol. 68, no. 1-2, pp. 108–116, 2004.

[10] M. Mirzavaziri and M. S. Moslehian, “A fixed point approach to stability of a quadratic equation,”
Bulletin of the Brazilian Mathematical Society, vol. 37, no. 3, pp. 361–376, 2006.

[11] M. Fochi, “Alcune equazioni funzionali condizionate sui vettori ortogonali,” Rendiconti del Seminario
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In this paper we prove a fixed-point theorem for a class of operators with suitable properties,
in very general conditions. Also, we show that some recent fixed-points results in Brzdȩk et al.,
(2011) and Brzdȩk and Ciepliński (2011) can be obtained directly from our theorem. Moreover,
an affirmative answer to the open problem of Brzdȩk and Ciepliński (2011) is given. Several
corollaries, obtained directly from our main result, show that this is a useful tool for proving
properties of generalized Hyers-Ulam stability for some functional equations in a single variable.

1. Introduction

The study of functional equations stability originated from a question of Ulam [1], concerning
the stability of group homomorphisms. In 1941 Hyers [2] gave an affirmative answer to the
question of Ulam for Cauchy equation in Banach spaces. The Hyers result was generalized
by Aoki [3] for additive mappings and independently by Rassias [4] for linear mappings,
by considering the unbounded Cauchy differences. A further generalization was obtained by
Găvruţa [5] in 1994, by replacing the Cauchy differences by a control mapping ϕ, in the spirit
of Rassias approach. See also [6] for more generalizations. We mention that the proofs of the
results in the above mentioned papers used the direct method (of Hyers): the exact solution
of the functional equation is explicitly constructed as a limit of a sequence, starting from the
given approximate solution. We refer the reader to the expository papers [7, 8] and to the
books [9–11] (see also the papers [12–17], for supplementary details).

On the other hand, in 1991 Baker [18] used the Banach fixed-point theorem to give
Hyers-Ulam stability results for a nonlinear functional equation. In 2003, Radu [19] proposed
a new method, successively developed in [20], to obtaining the existence of the exact
solutions and the error estimations, based on the fixed-point alternative. Concerning the
stability of some functionals equations in a single variable, wemention the articles of Cădariu
and Radu [21], of Miheţ [22], which applied the Luxemburg-Jung fixed-point theorem in
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generalized metric spaces, as well as the paper of Găvruţa [23] which used the Matkowski’s
fixed-point theorem. Also, Găvruţa introduced a newmethod in [24], called theweighted space
method, for the generalized Hyers-Ulam stability (see, also [25]). It is worth noting that two
fixed-point alternatives together with the error estimations for generalized contractions of
type Bianchini-Grandolfi and Matkowski are pointed out by Cădariu and Radu, and then
used as fundamental tools for proving stability of Cauchy functional equation in β-normed
spaces [26], as well as of the monomial functional equation [27]. We also mention the new
survey of Ciepliński [28], where some applications of different fixed-point theorems to the
theory of the Hyers-Ulam stability of functional equations are presented.

Very recently, Brzdȩk et al. proved in [29] a fixed-point theorem for (not necessarily)
linear operators and they used it to obtain Hyers-Ulam stability results for a class of
functional equations in a single variable. A fixed-point result of the same type was proved
by Brzdȩk and Ciepliński [30], in complete non-Archimedean metric spaces as well as in
complete metric spaces. Also, they formulated an open problem concerning the uniqueness
of the fixed point of the operator T, which will be defined in the next section.

Our principal purpose is to obtain a fixed point theorem for a class of operators with
suitable properties, in very general conditions. After that, we will show that some recent
results in [29, 30] can be obtained as particular cases of our theorem. Moreover, by using our
outcome, we will give an affirmative answer to the open problem of Brzdȩk and Ciepliński,
posed in the end of the paper [30]. Finally, we will show that main Theorem 2.2 is an efficient
tool for proving generalized Hyers-Ulam stability results of several functional equations in a
single variable.

2. Results

We consider a nonempty set X, a complete metric space (Y, d), and the mappings Λ : R
X
+ →

R
X
+ and T : YX → YX . We recall that YX is the space of all mappings from X into Y.

Definition 2.1. One says that T is Λ-contractive if for u, v : X → Y and δ ∈ R
X
+ with

d(u(t), v(t)) ≤ δ(t), ∀t ∈ X, (2.1)

it follows

d((Tu)(t), (Tv)(t)) ≤ (Λδ)(t), ∀t ∈ X. (2.2)

In the following, we assume that Λ satisfies the condition:

(C1) for every sequence (δn)n∈N
of elements of R

X
+ and every t ∈ X,

lim
n→∞

δn(t) = 0 =⇒ lim
n→∞

(Λδn)(t) = 0. (2.3)

Also, we suppose that ε ∈ R
X
+ is a given function such that
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(C2)

ε∗(t) :=
∞∑

k=0

(
Λkε

)
(t) <∞, t ∈ X. (2.4)

Theorem 2.2. One supposes that the operator T is Λ-contractive and the conditions (C1) and (C2)
hold. One considers a mapping f ∈ YX such that

d
((Tf)(t), f(t)) ≤ ε(t), ∀t ∈ X. (2.5)

Then, for every t ∈ X, the limit

g(t) := lim
n→∞

(Tnf
)
(t) (2.6)

exists and the mapping g is the unique fixed point of T with the property

d
((Tmf

)
(t), g(t)

) ≤
∞∑

k=m

(
Λkε

)
(t), t ∈ X, m ∈ N = {0, 1, 2, . . .}. (2.7)

Moreover, if one has

(C3)

lim
n→∞

(Λnε∗)(t) = 0, ∀t ∈ X, (2.8)

then g is the unique fixed point of T with the property

d
(
f(t), g(t)

) ≤ ε∗(t), ∀t ∈ X. (2.9)

Proof. We have

d
((

Tn+1f
)
(t),

(Tnf
)
(t)

)
≤ (Λnε)(t), t ∈ X. (2.10)

Indeed, for n = 0, the relation (2.10) is (2.5).
We suppose that (2.10) holds. Since T is Λ-contractive, we have

d
((

Tn+2f
)
(t),

(
Tn+1f

)
(t)

)
≤ (Λ(Λnε))(t), t ∈ X. (2.11)

By using the triangle inequality and (2.10), we obtain, for n > m

d
((Tnf

)
(t),

(Tmf
)
(t)

) ≤
n−1∑

k=m

(
Λkε

)
(t), t ∈ X. (2.12)
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Hence the sequence {Tnf(t)}n∈N
is a Cauchy sequence. Since (Y, d) is complete, it results that

there exists g ∈ YX defined by

g(t) := lim
n→∞

(Tnf
)
(t). (2.13)

Then, in view of (2.12), we get (2.7).
Now, we prove that g is a fixed point for the operator T. To this end, we show that T

is a pointwise continuous. Indeed, if hm(t) −−−−→
m→∞

h(t), t ∈ X, then

|hm, h|(t) := d(hm(t), h(t)) −−−−→
m→∞

0, t ∈ X. (2.14)

By using condition (C1)we have (Λ|hm, h|)(t) −−−−→
m→∞

0, t ∈ X. But

d((Thm)(t), (Th)(t)) ≤ (Λ|hm, h|)(t), (2.15)

so it follows that d((Thm)(t), (Th)(t)) −−−−→
m→∞

0.

Since T is a pointwise continuous, we obtain (T(Tnf))(t) −−−−→
n→∞

(Tg)(t). Hence g(t) =

(Tg)(t) for t ∈ X.
It is easy to prove that g is the unique point of T, which satisfies (2.7): for n → ∞ in

(2.12), it results

d
(
g(t),

(Tmf
)
(t)

) ≤
∞∑

k=m

(
Λkε

)
(t), t ∈ X. (2.16)

If g1 is another fixed point of T such that (2.7) holds, then we have

d
(
g1(t),

(Tmf
)
(t)

) ≤
∞∑

k=m

(
Λkε

)
(t), t ∈ X. (2.17)

Hence

d
(
g1(t), g(t)

) ≤ 2
∞∑

k=m

(
Λkε

)
(t), t ∈ X, (2.18)

so lettingm → ∞ we obtain d(g1(t), g(t)) = 0 for t ∈ X. Thus g1 = g.
To prove the last part of the theorem, we take m = 0 in (2.7) and we obtain (2.9).

Moreover, if (C3) holds and g2 is another fixed point of T such that (2.9) is satisfied, then we
have

d
((Tng2

)
(t),

(Tnf
)
(t)

) ≤ (Λnε∗)(t), t ∈ X, (2.19)
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hence

d
(
g2(t),

(Tnf
)
(t)

) ≤ (Λnε∗)(t), t ∈ X. (2.20)

Letting n → ∞, we obtain d(g2(t), g(t)) = 0, for t ∈ X, so g = g2.

Corollary 2.3. Let X be a nonempty set, (Y, d) a complete metric space, and let Λ : R
X
+ → R

X
+ be a

nondecreasing operator satisfying the hypothesis (C1).
If T : YX → YX is an operator satisfying the inequality

d
(
(Tξ)(x), (Tμ)(x)) ≤ Λ

(
d
(
ξ(x), μ(x)

))
, ξ, μ ∈ YX, x ∈ X, (2.21)

and the functions ε : X → R+ and ϕ : X → Y are such that

d
((Tϕ)(x), ϕ(x)) ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑

k=0

(
Λkε

)
(x) <∞, x ∈ X,

(2.22)

then, for every x ∈ X, the limit

ψ(x) := lim
n→∞

(Tnϕ
)
(x) (2.23)

exists and the function ψ ∈ YX , defined in this way, is a fixed point of T, with

d
(
ϕ(x), ψ(x)

) ≤ ε∗(x), x ∈ X. (2.24)

Moreover, if the condition (C3) holds, then the mapping ψ is the unique fixed point of T with
the property

d
(
ϕ(x), ψ(x)

) ≤ ε∗(x), x ∈ X. (2.25)

Proof. To apply Theorem 2.2 it is sufficient to show that the operator T from the above
corollary is Λ-contractive, in the sense of the Definition 2.1. To this end, let us suppose that
ξ, μ ∈ YX, δ ∈ R

X
+ and

d
(
ξ(x), μ(x)

) ≤ δ(x), x ∈ X. (2.26)

By using (2.21) and the non-decreasing property of Λ, we obtain that

d
(
(Tξ)(x), (Tμ)(x)) ≤ Λ

(
d
(
ξ(x), μ(x)

)) ≤ Λ(δ(x)), x ∈ X. (2.27)

Hence T is Λ-contractive. The uniqueness follows from Theorem 2.2.
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The results of Corollary 2.3 (except for the uniqueness of ψ) have been proved recently
by Brzdȩk and Ciepliński [30]. Actually, the authors have stated there an open question
concerning the uniqueness of ψ.

Another recent result proved in [29], by Brzdȩk et al., can be obtained from
Theorem 2.2.

Corollary 2.4 (Corollary [see [29], Theorem 1]). LetX be a nonempty set, (Y, d) a complete metric
space, f1, . . . , fs : X → X, and let L1, . . . , Ls : X → R+ be given maps. Let Λ : R

X
+ → R

X
+ be a

linear operator defined by

(Λδ)(x) :=
s∑

i=1

Li(x)δ
(
fi(x)

)
(2.28)

for δ : X → R+ and x ∈ X. If T : YX → YX is an operator satisfying the inequality

d
(
(Tξ)(x), (Tμ)(x)) ≤

s∑

i=1

Li(x)d
(
ξ
(
fi(x)

)
, μ

(
fi(x)

))
, ξ, μ ∈ YX, x ∈ X, (2.29)

and the functions ε : X → R+ and ϕ : X → Y are such that

d
((Tϕ)(x), ϕ(x)) ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑

k=0

(
Λkε

)
(x) <∞, x ∈ X,

(2.30)

then, for every x ∈ X, the limit

ψ(x) := lim
n→∞

(Tnϕ
)
(x) (2.31)

exists and the function ψ ∈ YX so defined is a unique fixed point of T, with

d
(
ϕ(x), ψ(x)

) ≤ ε∗(x), x ∈ X. (2.32)

Proof. We apply Theorem 2.2. Therefore, it is necessary to prove that the operator T, defined
in (2.28), is Λ-contractive. To this end, let us suppose that ξ, μ ∈ YX, δ ∈ R

X
+ and

d
(
ξ(x), μ(x)

) ≤ δ(x), ∀x ∈ X. (2.33)
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By using (2.28) and (2.29), we obtain that

d
(
(Tξ)(x), (Tμ)(x)) ≤

s∑

i=1

Li(x)d
(
ξ
(
fi(x)

)
, μ

(
fi(x)

))

≤
s∑

i=1

Li(x)δ
(
fi(x)

)

= Λ(δ(x)), x ∈ X,

(2.34)

so T is Λ-contractive.
On the other hand, from definition of Λ, it results immediately that the relation (C1)

holds.
The uniqueness of ψ results also from Theorem 2.2. To this end, we prove that the

linear operator Λ satisfy the hypotheses (C3):

Λn(ε∗(x)) = Λn

( ∞∑

k=0

(
Λkε

)
(x)

)

=
∞∑

k=0

(
Λn+kε

)
(x) =

∞∑

m=n
(Λmε)(x).

(2.35)

Thus

lim
n→∞

Λn(ε∗(x)) = 0, x ∈ X. (2.36)

The following result of generalized Hyers-Ulam stability for the functional equation:

Θ
(
x, ϕ

(
f1(x)

)
, . . . , ϕ

(
fs(x)

))
= ϕ(x), x ∈ X, (2.37)

can be also derived from Theorem 2.2. (The unknown mapping is ϕ; the others are given
functions.)

Corollary 2.5. Let X be a nonempty set, let (Y, d) be a complete metric space, and let the operators
Θ : X × Ys → Y and Λ : R

X
+ → R

X
+ . We suppose that Θ is Λ-contractive, the conditions (C1) and

(C2) hold, and let one consider a function ϕ ∈ YX such that

d
(
ϕ(x),Θ

(
x, ϕ

(
f1(x)

)
, . . . , ϕ

(
fs(x)

))) ≤ ε(x), x ∈ X, (2.38)

for the given mappings f1, . . . , fs : X → X. Then, for every x ∈ X, the limit

ψ(x) := lim
n→∞

(Tnϕ
)
(x), (2.39)



8 Abstract and Applied Analysis

where (Tϕ)(x) = Θ(x, ϕ(f1(x)), . . . , ϕ(fs(x))), exists and the function ψ ∈ YX , above defined, is the
unique solution of the functional equation (2.37) with property

d
((Tmϕ

)
(x), ψ(x)

) ≤
∞∑

k=m

(
Λkε

)
(x), x ∈ X, m ∈ N = {0, 1, 2, . . .}. (2.40)

Moreover, if one has

lim
n→∞

(Λnε∗)(x) = 0, ∀x ∈ X, (2.41)

then ψ is the unique solution of (2.37), with the property

d
(
ψ(x), ϕ(x)

) ≤ ε∗(x), ∀x ∈ X. (2.42)

Remark 2.6. It is easy to see that if we take in the above result

(Λδ)(x) :=
s∑

i=1

Li(x)δ
(
fi(x)

)
, ∀x ∈ X (2.43)

for the given mappings L1, . . . , Ls : X → R+ and δ : X → R+, we obtain the Corollary 3 in
[29].

From Theorem 2.2 we obtain the following fixed-point result.

Corollary 2.7. Let (Y, d) be a metric space and let c : [0,∞) → [0,∞) be a function, with the
property: for every sequence εn ∈ [0,∞), with limn→∞εn = 0 ⇒ limn→∞c(εn) = 0. Let one consider
an operator T : Y → Y such that, for u, v ∈ Y and λ ≥ 0, with d(u, v) ≤ λ, it follows d(Tu, Tv) ≤
c(λ). Moreover, let ε > 0 and f ∈ Y be such that

ε∗ =
∞∑

n=0

cn(ε) <∞ (2.44)

and d(Tf, f) ≤ ε. Then there exists

g := lim
n→∞

Tnf, (2.45)

which is the unique fixed point of T , with

d
(
Tmf, g

) ≤
∞∑

k=m

ck(ε), ∀m ∈ N = {0, 1, 2, . . .}. (2.46)
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Moreover, if

lim
n→∞

cn(ε∗) = 0
(2.47)

holds, then g is the unique fixed point of T , with the property d(f, g) ≤ ε∗.

Proof. The result follows immediately from Theorem 2.2 by takingX to be the set with a single
element.
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We study the stability of cubic ∗-derivations on Banach ∗-algebras. We also prove the superstability
of cubic ∗-derivations on a Banach ∗-algebra A, which is left approximately unital.

1. Introduction

In [1], Ulam proposed the stability problems for functional equations concerning the stability
of group homomorphisms. In fact, a functional equation is called stable if any approximately
solution to the functional equation is near a true solution of that functional equation and is
superstable if every approximate solution is an exact solution to it. In [2], Hyers considered the
case of approximate additivemappings in Banach spaces and satisfying thewell-knownweak
Hyers inequality controlled by a positive constant. Bourgin [3]was the second author to treat
this problem for additive mappings (see also [4]). In [5], Rassias provided a generalization
of Hyers Theorem, which allows the Cauchy difference to be unbounded. Găvruţa then
generalized the Rassias’ result in [6] for the unbounded Cauchy difference. Subsequently,
various approaches to the problem have been studied by a number of authors (see, e.g., [7–
11]).

Recall that a Banach ∗-algebra is a Banach algebra (complete normed algebra) which
has an isometric involution. For a locally compact groupG, the algebraic group algebra L1(G)
is a Banach ∗-algebra. The bounded operators on Hilbert space H is also a Banach ∗-algebra.
In general, allC∗-algebras are Banach ∗-algebra. A left- (right-) bounded approximate identity
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for a normed algebra A is a bounded net (ej)j in A such that limjeja = a (limjaej = a) for
each a ∈ A. A bounded approximate identity for A is a bounded net (ej)j , which is both
a left- and a right-bounded approximate identity. Every group algebra and every C∗-algebra
has a bounded approximate identity.

The stability of functional equations of ∗-derivations and of quadratic ∗-derivations
with the Cauchy functional equation and the Jensen functional equation on Banach ∗-algebras
is investigated in [12]. The author also proved the superstability of ∗-derivations and of
quadratic ∗-derivations on C∗-algebras.

In 2003, Cădariu and Radu employed the fixed point method to the investigation of
the Jensen functional equation. They presented a short and a simple proof (different from the
“direct method,” initiated by Hyers in 1941) for the Cauchy functional equation [13] and for
the quadratic functional equation [14] (see also [15–18]).

The functional equation

f
(
2x + y

)
+ f

(
2x − y) = 2f

(
x + y

)
+ 2f

(
x − y) + 12f(x) (1.1)

which is called cubic functional equation. In addition, every solution of functional equation
(1.1) is said to be a cubic mapping. It is easy to check that function f(x) = ax3 is a solution of
(1.1).

In [19], Bodaghi et al. proved the generalized Hyers-Ulam stability and the super-
stability for the functional equation (1.1) by using the alternative fixed point (Theorem 3.1)
under certain conditions on Banach algebras. Also, the stability and the superstability of
homomorphisms on C∗-algebras by using the same fixed point method was proved in
[20]. The generalized Hyers-Ulam-Rassias stability of ∗-homomorphisms between unital C∗-
algebras associated with the Trif functional equation and of linear ∗-derivations on unital
C∗-algebras has earlier been proved by Park and Hou in [21].

In this paper, we prove the stability and the superstability of cubic ∗-derivations
on Banach ∗-algebras. We also show that these functional equations, under some mild
conditions, are superstable. We also establish the stability and the superstability of cubic ∗-
derivations on a Banach ∗-algebra with a left-bounded approximate identity.

2. Stability of Cubic ∗-Derivation

Throughout this paper, we assume that A is a Banach ∗-algebra. A mapping D : A → A is a
cubic derivation ifD is a cubic homogeneousmapping, that is,D is cubic andD(μa) = μ3D(a)
for all a ∈ A and μ ∈ C, andD(ab) = D(a)b3+a3D(b) for all a, b ∈ A. In addition, ifD satisfies
in condition D(a∗) = D(a)∗ for all a ∈ A, then it is called the cubic ∗-derivation. An example
of cubic derivations on Banach algebras is given in [22].

Let μ ∈ C. For the given mapping f : A → A, we consider

Dμf(a, b) := f
(
2μa + μb

)
+ f

(
2μa − μb) − 2μ3f(a + b) − 2μ3f(a − b) − 12μ3f(a),

Df(a, b) = f(ab) − f(a)b3 − a3f(b)
(2.1)

for all a, b ∈ A.
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Theorem 2.1. Suppose that f : A → A is a mapping with f(0) = 0 for which there exists a function
ϕ : A5 → [0,∞) such that

ϕ̃
(
a, b, x, y, z

)
:=

∞∑

k=0

1
8k
ϕ
(
2ka, 2kb, 2kx, 2ky, 2kz

)
<∞, (2.2)

∥
∥Dμf(a, b)

∥
∥ ≤ ϕ(a, b, 0, 0, 0), (2.3)

∥
∥Df(x, y) + f(z∗) − f(z)∗∥∥ ≤ ϕ(0, 0, x, y, z), (2.4)

for all μ ∈ T
1
1/n0

= {eiθ : 0 ≤ θ ≤ 2π/n0} and all a, b, x, y, z ∈ A in which n0 ∈ N. Also, if for
each fixed a ∈ A the mapping t �→ f(ta) from R to A is continuous, then there exists a unique cubic
∗-derivation D on A satisfying

∥∥f(a) −D(a)
∥∥ ≤ 1

16
ψ̃(a), (a ∈ A) , (2.5)

in which ψ̃(a) = ϕ̃(a, 0, 0, 0, 0).

Proof. Putting b = 0 and μ = 1 in (2.3), we have

∥∥∥∥
1
8
f(2a) − f(a)

∥∥∥∥ ≤ 1
16
ψ(a) (2.6)

for all a ∈ A in which ψ(a) = ϕ(a, 0, 0, 0, 0). We can use induction to show that

∥∥∥∥
f(2na)
8n

− f(2ma)
8m

∥∥∥∥ ≤ 1
16

n−1∑

k=m

ψ
(
2ka

)

8k
(2.7)

for all a ∈ A and n > m ≥ 0. On the other hand,

∥∥∥∥
f(2na)
8n

− f(a)
∥∥∥∥ ≤ 1

16

n−1∑

k=0

ψ
(
2ka

)

8k
(2.8)

for all a ∈ A and n > 0. It follows from (2.2) and (2.7) that the sequence {f(2na)/8n} is a
Cauchy sequence. Since A is a Banach algebra, this sequence converges to the mapD, that is,

lim
n→∞

f(2na)
8n

= D(a). (2.9)

Thus the inequalities (2.2) and (2.8) show that (2.5) holds. Substituting a, b by 2na, 2nb,
respectively, in (2.3), we get

∥∥DμD(a, b)
∥∥ = lim

n→∞
1
8n

∥∥Dμf(2na, 2nb)
∥∥ ≤ lim

n→∞
ϕ(2na, 2nb, 0, 0, 0)

8n
= 0 (2.10)
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for all a, b ∈ A and μ ∈ T
1
1/n0

. Since D1D(a, b) = 0, the mapping D is cubic. The equality
DμD(a, 0) = 0 implies that D(μa) = μ3D(a) for all a ∈ A and μ ∈ T

1
1/n0

. Now, let μ ∈ T
1 =

{λ ∈ C : |λ| = 1} such that μ = eiθ in which 0 ≤ θ < 2π . We set μ1 = eiθ/n0 , thus μ1 belongs to
T
1
1/n0

and D(μa) = D(μn01 a) = μ3n0
1 D(a) = μ3D(a) for all a ∈ A. Now, suppose that F is any

continuous linear functional on A and a is a fixed element in A. Define the mapping g : R →
R via g(μ) = F[D(μa)] for each μ ∈ R. Obviously, g is a cubic function. Under the hypothesis
that f(ta) is continuous in t ∈ R for each fixed a ∈ A, the function g is the pointwise limit
of the sequence of measurable functions {gn} in which gn(μ) = F(2nμa)/8n, n ∈ N, μ ∈ R.
Hence, g is a continuous function and has the form g(μ) = μ3g(1) for all μ ∈ R. Therefore,

F[D(
μa

)]
= g

(
μ
)
= μ3g(1) = μ3F[D(a)] = F

[
μ3D(a)

]
. (2.11)

Since F is an arbitrary continuous linear functional on A, D(μa) = μ3D(a) for all μ ∈ R and
a ∈ A. Thus

D
(
μa

)
= D

(
μ
∣∣μ
∣∣
∣∣μ
∣∣a

)

=
μ3

∣∣μ
∣∣3
D
(∣∣μ

∣∣a
)
=

μ3

∣∣μ
∣∣3
∣∣μ
∣∣3D(a) = μ3D(a) (2.12)

for all a ∈ A and μ ∈ C (μ/= 0). Therefore, D is a cubic homogeneous. If we replace x, y by
2nx, 2ny, respectively, and put z = 0 in (2.4), we have

1
82n

∥∥Df(2nx, 2ny)∥∥ ≤ ϕ
(
0, 0, 2nx, 2ny, 0

)

82n
≤ ϕ

(
0, 0, 2nx, 2ny, 0

)

8n
(2.13)

for all x, y ∈ A. Taking the limit as n tends to infinity, we get DD(x, y) = 0, for all x, y ∈ A.
Putting x = y = 0 and substituting z by 2nz in (2.4) and then dividing the both sides of the
obtained inequality by 8n, then we get

∥∥∥∥
f(2nz∗)

8n
− f(2nz)∗

8n

∥∥∥∥ ≤ ϕ(0, 0, 0, 0, 2nz)
8n

(2.14)

for all z ∈ A. Passing to the limit as n → ∞ in (2.14), we getD(z∗) = D(z)∗ for all z ∈ A. This
shows that D is a cubic ∗-derivation.

Now, let D′ : A → A be another cubic ∗-derivation satisfying (2.5). Then we have

∥∥D(a) −D′(a)
∥∥ =

1
8n

∥∥D(2na) −D′(2na)
∥∥

≤ 1
8n

(∥∥D(2na) − f(2na)∥∥ +
∥∥f(2na) −D′(2na)

∥∥)

≤ 1
8n+1

ψ̃(2na) =
1
8

∞∑

k=n

1
8k
ψ
(
2ka

)
,

(2.15)

which tends to zero as n → ∞ for all a ∈ A. So we can conclude that D(a) = D′(a) for all
a ∈ A. This proves the uniqueness of D.



Abstract and Applied Analysis 5

We have the following theorem, which is analogous to Theorem 2.1. Since the proof is
similar, it is omitted.

Theorem 2.2. Suppose that f : A → A is a mapping with f(0) = 0 for which there exists a function
ϕ : A5 → [0,∞) satisfying (2.3), (2.4), and

ϕ̃
(
a, b, x, y, z

)
:=

∞∑

k=1

8kϕ
(
2−ka, 2−kb, 2−kx, 2−ky, 2−kz

)
<∞ (2.16)

for all a, b, x, y, z ∈ A. Also, if for each fixed a ∈ A the mappings t �→ f(ta) from R to A is
continuous, then there exists a unique cubic ∗-derivation D on A satisfying

∥∥f(a) −D(a)
∥∥ ≤ 1

16
ψ̃(a), (a ∈ A), (2.17)

where ψ̃(a) = ϕ̃(a, 0, 0, 0, 0).

Corollary 2.3. Let θ, r be positive real numbers with r /= 3, and let f : A → A be a mapping with
f(0) = 0 such that

∥∥Dμf(a, b)
∥∥ ≤ θ(‖a‖r + ‖b‖r),

∥∥Df(x, y) + f(z∗) − f(z)∗∥∥ ≤ θ(‖x‖r + ∥∥y
∥∥r + ‖z‖r),

(2.18)

for all μ ∈ T
1
1/n0

and all a, b, x, y, z ∈ A. Then there exists a unique cubic ∗-derivation D on A
satisfying

∥∥f(a) −D(a)
∥∥ ≤ θ‖a‖r

|16 − 2r+1| , (2.19)

for all a ∈ A.

Proof. We can obtain the result from Theorem 2.1 and Theorem 2.2 by taking

ϕ
(
a, b, x, y, z

)
= θ

(‖a‖r + ‖b‖r + ‖x‖r + ∥∥y
∥∥r + ‖z‖r) (2.20)

for all a, b, x, y, z ∈ A.

In the next theorem, we investigate the superstability of cubic ∗-derivations of Banach
∗-algebras with a left-bounded approximate identity.
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Theorem 2.4. Suppose that A is a Banach ∗-algebra with a left-bounded approximate identity and
s ∈ {−1, 1}. Let f : A → A be a mapping for which there exists a function ψ : A×A → [0,∞) such
that

lim
n→∞

n−3sψ(nsa, b) = lim
n→∞

n−3sψ(a, nsb) = 0, (2.21)
∥
∥
∥a3f(b) − f(a)b3

∥
∥
∥ ≤ ψ(a, b), (2.22)

∥
∥
∥f(c)(ab)3 − c3

[
f(a)b3 + a3f(b)

]∥∥
∥ ≤ ψ(c, ab), (2.23)

∥
∥
∥a3f(b∗) − f(a)

(
b3
)∗∥∥
∥ ≤ ψ(a, b) (2.24)

for all a, b, c ∈ A. Then f is a cubic ∗-derivation on A.

Proof. First, we show that f is cubic. For each a, b, c ∈ A, we have

∥∥∥c3
[
f(2a + b) + f(2a − b) − 2f(a + b) − 2f(a − b) − 12f(a)

]∥∥∥

= n−3s
∥∥∥n3sc3f(2a + b) + n3sc3f(2a − b) − 2n3sc3f(a + b) − 2n3sc3f(a − b) − 12n3sc3f(a)

∥∥∥

≤ n−3s
[∥∥∥n3sc3f(2a + b) − f

(
n3sc3

)
(2a + b)3

∥∥∥ +
∥∥∥n3sc3f(2a − b) − f

(
n3sc3

)
(2a − b)3

∥∥∥

+ 2
∥∥∥n3sc3f(a + b) − f

(
n3sc3

)
(a + b)3

∥∥∥

+ 2
∥∥∥n3sc3f(a − b) − f

(
n3sc3

)
(a − b)3

∥∥∥

+12
∥∥∥n3sc3f(a) − f

(
n3sc3

)
a3
∥∥∥
]

≤ n−3s[ψ(nsc, 2a + b) + ψ(nsc, 2a − b) + 2ψ(nsc, a + b) + 2ψ(nsc, a − b) + 12ψ(nsc, a)
]
.

(2.25)

Taking the limit from the right side as n tends to infinity and using (2.21), we get

c3
[
f(2a + b) + f(2a − b) − 2f(a + b) − 2f(a − b) − 12f(a)

]
= 0 (2.26)

for all a, b, c ∈ A. If (ej) is a left-bounded approximate identity for A, then so is (e3j ). Now, it
follows from (2.26) that f is cubic. For being cubic homogeneous of f , we have

∥∥∥n3sb3
[
f
(
μa

) − μ3f(a)
]∥∥∥ ≤

∥∥∥n3sb3f
(
μa

) − f(nsb)(μa)3
∥∥∥

+
∥∥∥
(
μa

)3
f(nsb) − n3s(μb)3f(a)

∥∥∥

≤ ψ(nsb, μa) + ∣∣μ
∣∣3ψ(nsb, a).

(2.27)
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Thus ‖b3[f(μa) − μ3f(a)]‖ ≤ n−3sψ(nsb, μa) + n−3s|μ|3ψ(nsb, a). By the same reasoning as in
the above, f is cubic homogeneous. For each a, b, c ∈ A, we have

∥
∥
∥c3

[
f(ab) − f(a)b3 − a3f(b)

]∥∥
∥ = n−3s

∥
∥
∥n3sc3

[
f(ab) − f(a)b3 − a3f(b)

]∥∥
∥

≤ n−3s
∥
∥
∥n3sc3f(ab) − f(nsc)(ab)3

∥
∥
∥

+ n−3s
∥
∥
∥f(nsc)(ab)3 − n3sc3f(a)b3 − n3sc3a3f(b)

∥
∥
∥

≤ 2n−3sψ(nsc, ab).

(2.28)

The above inequality and (2.21), (2.22), and (2.23) show that f(ab) = f(a)b3 + a3f(b) for all
a, b ∈ A. Finally, we have

∥∥∥b3
[
f(a∗) − f(a)∗]

∥∥∥ = n−3s
∥∥∥n3sb3f(a∗) − n3sb3f(a)∗

∥∥∥

≤ n−3s
∥∥∥n3sb3f(a∗) − f(nsb)

(
a3
)∗∥∥∥

+ n−3s
∥∥∥f(nsb)

(
a3
)∗ − n3sb3f(a)∗

∥∥∥

≤ n−3sψ(nsb, a∗) + n−3sψ(nsb, a)

(2.29)

for all a, b ∈ A. Note that in the last inequality we have used (2.22) and (2.24). This completes
the proof.

Corollary 2.5. Let r, δ be the nonnegative real numbers with r /= 3, and let A be a Banach ∗-algebra
with a left bounded approximate identity. Suppose that f : A → A is a mapping satisfying

∥∥∥a3f(b) − f(a)b3
∥∥∥ ≤ δ(‖a‖r‖b‖r),

∥∥∥f(c)(ab)3 − c3
[
f(a)b3 + a3f(b)

]∥∥∥ ≤ δ(‖ab‖r‖c‖r),
∥∥∥a3f(b∗) − f(a)

(
b3
)∗∥∥∥ ≤ δ(‖a‖r‖b‖r)

(2.30)

for all all a, b, c ∈ A. Then f is a cubic ∗-derivation on A.

Proof. Using Theorem 2.4 with ψ(a, b) = δ(‖a‖r‖b‖r), we get the desired result.

3. A Fixed Point Approach

Before proceeding to the main results in this section, we bring the upcoming theorem, which
is useful to our purpose (For an extension of the result see [23]).

Theorem 3.1 (The fixed point alternative [24]). Let (Ω, d) be a complete generalized metric space
and T : Ω → Ω a mapping with Lipschitz constant L < 1. Then, for each element α ∈ Ω, either
d(Tnα,Tn+1α) = ∞ for all n ≥ 0, or there exists a natural number n0 such that:

(i) d(Tnα,Tn+1α) <∞ for all n ≥ n0;
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(ii) the sequence {Tnα} is convergent to a fixed point β∗ of T;

(iii) β∗ is the unique fixed point of T in the set Λ = {β ∈ Ω : d(Tn0α, β) <∞};
(iv) d(β, β∗) ≤ 1/(1 − L)d(β,Tβ) for all β ∈ Λ.

Theorem 3.2. Let f : A → A be a continuous mapping with f(0) = 0, and let ϕ : A4 → [0,∞) be
a continuous function such that

∥
∥Dμf(a, b) +Df(c, d)∥∥ ≤ ϕ(a, b, c, d), (3.1)

∥
∥f(a∗) − f(a)∗∥∥ ≤ ϕ(a, a, a, a) (3.2)

for all μ ∈ T
1
1/n0

and all a, b, c, d ∈ A. If there exists a constant k ∈ (0, 1) such that

ϕ(2a, 2b, 2c, 2d) ≤ 8kϕ(a, b, c, d) (3.3)

for all a, b, c, d ∈ A, then there exists a unique cubic ∗-derivation D on A satisfying

∥∥f(a) −D(a)
∥∥ ≤ 1

16(1 − k) ϕ̃(a) (a ∈ A), (3.4)

in which ϕ̃(a) = ϕ(a, 0, 0, 0).

Proof. First, we wish to provide the conditions of Theorem 3.1. We consider the set

Ω =
{
g : A −→ A | g(0) = 0

}
(3.5)

and define the mapping d on Ω ×Ω as follows:

d
(
g1, g2

)
:= inf

{
C ∈ (0,∞) :

∥∥g1(a) − g2(a)
∥∥ ≤ Cϕ̃(a), (∀a ∈ A)

}
(3.6)

if there exist such constant C and d(g1, g2) = ∞, otherwise. It is easy to check that d(g, g) = 0
and d(g1, g2) = d(g2, g1), for all g, g1, g2 ∈ Ω. For each g1, g2, g3 ∈ Ω, we have

inf
{
C ∈ (0,∞) :

∥∥g1(a) − g2(a)
∥∥ ≤ Cϕ̃(a) ∀a ∈ A}

≤ inf
{
C ∈ (0,∞) :

∥∥g1(a) − g3(a)
∥∥ ≤ Cϕ̃(a) ∀a ∈ A}

+ inf
{
C ∈ (0,∞) :

∥∥g3(a) − g2(a)
∥∥ ≤ Cϕ̃(a) ∀a ∈ A}

.

(3.7)

Hence d(g1, g2) ≤ d(g1, g3) + d(g3, g2). If d(g1, g2) = 0, then for every fixed a0 ∈ A, we
have ‖g1(a0) − g2(a0)‖ ≤ Cϕ̃(a0) for all C > 0. This implies g1 = g2. Let {gn} be a d-Cauchy
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sequence in Ω. Then d(gm, gn) → 0, and thus ‖gm(a) − gn(a)‖ → 0 for all a ∈ A. Since A is

complete, then there exists g ∈ Ω such that gn
d→ g in Ω. Therefore, d is a generalized metric

on Ω and the metric space (Ω, d) is complete. Now, we define the mapping T : Ω → Ω by

Tg(a) = 1
8
g(2a), (a ∈ A). (3.8)

If g1, g2 ∈ Ω such that d(g1, g2) < C, by definition of d and T, we have

∥
∥
∥
∥
1
8
g1(2a) − 1

8
g2(2a)

∥
∥
∥
∥ ≤ 1

8
Cϕ(2a, 0, 0, 0) (3.9)

for all a ∈ A. By using (3.3), we get

∥∥∥∥
1
8
g1(2a) − 1

8
g2(2a)

∥∥∥∥ ≤ Ckϕ(a, 0, 0, 0) (3.10)

for all a ∈ A. The above inequality shows that d(Tg1,Tg2) ≤ kd(g1, g2) for all g1, g2 ∈ Ω.
Hence, T is a strictly contractive mapping on Ω with a Lipschitz constant k. To achieve
inequality (3.4), we prove that d(Tf, f) < ∞. Putting b = c = d = 0 and μ = 1 in (3.1),
we obtain

∥∥2f(2a) − 16f(a)
∥∥ ≤ ϕ̃(a) (3.11)

for all a ∈ A. Hence

∥∥∥∥
1
8
f(2a) − f(a)

∥∥∥∥ ≤ 1
16
ϕ̃(a) (3.12)

for all a ∈ A. We conclude from (3.12) that d(Tf, f) ≤ 1/16. It follows from Theorem 3.1 that
d(Tng,Tn+1g) < ∞ for all n ≥ 0, and thus in this theorem we have n0 = 0. Therefore, the
parts (iii) and (iv) of Theorem 3.1 hold on the wholeΩ. Hence there exists a unique mapping
D : A → A such that D is a fixed point of T and that Tnf → D as n → ∞. Thus

lim
n→∞

f(2na)
8n

= D(a) (3.13)

for all a ∈ A, hence

d
(
f,D

) ≤ 1
1 − kd

(Tf, f) ≤ 1
16(1 − k) . (3.14)

The above equalities show that (3.4) is true for all a ∈ A. It follows from (3.3) that

lim
n→∞

ϕ(2na, 2nb, 2nc, 2nd)
8n

= 0. (3.15)
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Putting c = d = 0 and substituting a, b by 2na, 2nb, respectively, in (3.1), we get

1
8n

∥
∥Dμf(2na, 2nb)

∥
∥ ≤ ϕ(2na, 2nb, 0, 0)

8n
. (3.16)

Taking the limit as n tend to infinity, we obtainDμD(a, b) = 0 for all a, b ∈ A and all μ ∈ T
1
1/n0

.
Similar to the proof of Theorem 2.1, we have D(μa) = μ3D(a) for all a ∈ A and μ ∈ T

1. Since
D1D(a, b) = 0, we can show that D(ra) = r3D(a) for any rational number r. The continuity
of f and ϕ imply that D(μa) = μ3D(a), for all a ∈ A and μ ∈ R. Hence D(μa) = μ3D(a), for
all a ∈ A and μ ∈ C (μ/= 0). Therefore, D is a cubic homogeneous. If we put a = b = 0 and
replace c, d by 2nc, 2nd, respectively, in (3.1), we have

1
82n

∥
∥Df(2nc, 2nd)∥∥ ≤ ϕ(0, 0, 2nc, 2nd)

82n
≤ ϕ(0, 0, 2nc, 2nd)

8n
(3.17)

for all c, d ∈ A. By letting n → ∞ in the preceding inequality, we find DD(c, d) = 0 for all
c, d ∈ A. Substituting a by 2na in (3.2) and then dividing the both sides of the obtained
inequality by 8n, we get

∥∥∥∥
f(2na∗)

8n
− f(2na)∗

8n

∥∥∥∥ ≤ ϕ(2na, 2na, 2na, 2na)
8n

(3.18)

for all a ∈ A. Passing to the limit as n → ∞ in (3.18) and applying (3.13), we conclude that
D(a∗) = D(a)∗ for all a ∈ A. This shows that D is a unique cubic ∗-derivation.

Corollary 3.3. Let θ, r be positive real numbers with r < 3, and let f : A → A be a mapping with
f(0) = 0 such that

∥∥Dμf(a, b) +Df(c, d)∥∥ ≤ θ(‖a‖r + ‖b‖r + ‖c‖r + ‖d‖r),
∥∥f(a∗) − f(a)∗∥∥ ≤ 4θ‖a‖r

(3.19)

for all μ ∈ T
1
1/n0

and all a, b, c, d ∈ A. Then there exists a unique cubic ∗-derivationD onA satisfying

∥∥f(a) −D(a)
∥∥ ≤ θ

2(8 − 2r)
‖a‖r (3.20)

for all a ∈ A.

Proof. The result follows from Theorem 3.2 by letting

ϕ(a, b, c, d) = θ(‖a‖r + ‖b‖r + ‖c‖r + ‖d‖r). (3.21)

In the following corollary, we show the superstability for cubic ∗-derivations.
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Corollary 3.4. Let rj (1 ≤ j ≤ 4) θ be nonnegative real numbers with 0 <
∑4

j=1 rj /= 3, and let
f : A → A be a mapping such that

∥
∥Dμf(a, b) +Df(c, d)∥∥ ≤ θ(‖a‖r1‖b‖r2‖c‖r3‖d‖r4), (3.22)

∥
∥f(a∗) − f(a)∗∥∥ ≤ θ‖a‖

∑4
j=1 rj (3.23)

for all μ ∈ T
1
1/n0

and all a, b, c, d ∈ A. Then f is a cubic ∗-derivation on A.

Proof. Putting a = b = c = d = 0 in (3.22), we get f(0) = 0. Now, if we put b = c = d = 0,
μ = 1 in (3.22), then we have f(2a) = 8f(a) for all a ∈ A. It is easy to see by induction
that f(2na) = 8nf(a), and thus f(a) = f(2na)/8n for all a ∈ A and n ∈ N. It follows from
Theorem 3.2 that f is a cubic mapping. Now, by putting ϕ(a, b, c, d) = θ(‖a‖r1‖b‖r2‖c‖r3‖d‖r4)
in Theorem 3.2, we can obtain the desired result.
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We take account of the stability of higher ring derivation in intuitionistic fuzzy Banach algebra
associated to the Jensen type functional equation. In addition, we deal with the superstability of
higher ring derivation in intuitionistic fuzzy Banach algebra with unit.

1. Introduction and Preliminaries

The stability problem of functional equations has originally been formulated by Ulam
[1]: under what condition does there exist a homomorphism near an approximate homomorphism?
Hyers [2] answered the problem of Ulam under the assumption that the groups are
Banach spaces. A generalized version of the theorem of Hyers for approximately additive
mappings was given by Aoki [3] and for approximately linear mappings was presented by
Rassias [4] by considering an unbounded Cauchy difference. The paper work of Rassias
[4] has had a lot of influence in the development of what is called the generalized Hyers-
Ulam stability of functional equations. Since then, more generalizations and applications of
the generalized Hyers-Ulam stability to a number of functional equations and mappings
have been investigated (e.g., [5–7]). In particular, Badora [8] gave a generalization of the
Bourgin’s result [9], and he also dealt with the stability and the Bourgin-type superstability
of derivations in [10]. Recently, fuzzy version is discussed in [11, 12]. Quite recently, the
intuitionistic fuzzy stability problem for Jensen functional equation and cubic functional
equation is considered in [13–15], respectively, while the idea of intuitionistic fuzzy normed
space was introduced in [16], and there are some recent and important results which are
directly related to the central theme of this paper, that is, intuitionistic fuzziness (see e.g.,
[17–20]).
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In this paper, we establish the stability of higher ring derivation in intuitionistic fuzzy
Banach algebra associated to the Jensen type functional equation lf(x + y/l) = f(x) + f(y).
Moreover, we consider the superstability of higher ring derivation in intuitionistic fuzzy
Banach algebra with unit.

We now recall some notations and basic definitions used in this paper.

Definition 1.1 (see [5]). Let A and B be algebras over the real or complex field F. Let N be
the set of the natural numbers. From m ∈ N ∪ {0}, a sequence H = {h0, h1, . . . , hm} (resp.,
H = {h0, h1, . . . , hk, . . .}) of additive operators from A into B is called a higher ring derivation
of rankm (resp., infinite rank) if the functional equation hk(xy) =

∑k
i=0 hi(x)hk−i(y) holds for

each k = 0, 1, . . . , m (resp., k = 0, 1, . . .) and for all x, y ∈ A. A higher ring derivation H of
additive operators on A, particularly, is called strong if h0 is an identity operator.

Of course, a higher ring derivation of rank 0 from A into B (resp., a strong higher
ring derivation of rank 1 on A) is a ring homomorphism (resp., a ring derivation). Note
that a higher ring derivation is a generalization of both a ring homomorphism and a ring
derivation.

Definition 1.2. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-norm if
it satisfies the following conditions:

(1) ∗ is associative and commutative, (2) ∗ is continuous, (3) a ∗ 1 = a for all a ∈
[0, 1], and (4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Definition 1.3. A binary operation � : [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-conorm
if it satisfies the following conditions:

(1) � is associative and commutative, (2) � is continuous, (3) a � 0 = a for all a ∈
[0, 1], and (4) a � b ≤ c � d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Using the notions of continuous t-norm and t-conorm, Saadati and Park [16] have
recently introduced the concept of intuitionistic fuzzy normed space as follows.

Definition 1.4. The five-tuple (X, μ, ν, ∗, �) is said to be an intuitionistic fuzzy normed space ifX
is a vector space, ∗ is a continuous t-norm, � is a continuous t-conorm, and μ, ν are fuzzy sets
onX× (0,∞) satisfying the following conditions. For every x, y ∈ X and s, t > 0, (1) μ(x, t) +
ν(x, t) ≤ 1, (2) μ(x, t) > 0, (3) μ(x, t) = 1 if and only if x = 0, (4) μ(αx, t) = μ(x, t/|α|) for
each α/= 0, (5) μ(x, t) ∗ μ(y, s) ≤ μ(x + y, t + s), (6) μ(x, ·) : (0,∞) → [0, 1] is continuous,
(7) limt→∞μ(x, t) = 1 and limt→ 0μ(x, t) = 0, (8) ν(x, t) < 1, (9) ν(x, t) = 0 if and only if
x = 0, (10) ν(αx, t) = ν(x, t/|α|) for each α/= 0, (11) ν(x, t)�μ(y, s) ≥ ν(x+y, t+s), (12) ν(x, ·) :
(0,∞) → [0, 1] is continuous, (13) limt→∞ν(x, t) = 0 and limt→ 0ν(x, t) = 1.

In this case, (μ, ν) is called an intuitionistic fuzzy norm.

Example 1.5. Let (X, ‖ · ‖) be a normed space, a ∗ b = ab, and a � b = min{a + b, 1} for all
a, b ∈ [0, 1]. For all x ∈ X and every t > 0, consider

μ(x, t) =

{
1, if t > ‖x‖,
0, if t ≤ ‖x‖, ν(x, t) =

{
0, if t > ‖x‖,
1, if t ≤ ‖x‖. (1.1)

Then (X, μ, ν, ∗, �) is an intuitionistic fuzzy normed space.
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Example 1.6. Let (X, ‖ · ‖) be a normed space, a ∗ b = ab, and a � b = min{a + b, 1} for all
a, b ∈ [0, 1]. For all x ∈ X and every t > 0 and k = 1, 2, consider

μ(x, t) =

⎧
⎨

⎩

t

t + ‖x‖ , if t > 0,

0, if t ≤ 0,
ν(x, t) =

⎧
⎨

⎩

k‖x‖
t + k‖x‖ , if t > 0,

0, if t ≤ 0.
(1.2)

Then (X, μ, ν, ∗, �) is an intuitionistic fuzzy normed space.

Definition 1.7 (see [21]). The five-tuple (X, μ, ν, ∗, �) is said to be an intuitionistic fuzzy
normed algebra if X is an algebra, ∗ is a continuous t-norm, � is a continuous t-conorm,
and μ, ν are fuzzy sets on X × (0,∞) satisfying the conditions (1)–(13) of the Definition 1.4.
Furthermore, for every x, y ∈ X and s, t > 0, (14) max{μ(x, t), μ(y, s)} ≤ μ(xy, t +
s), (15) min{ν(x, t), ν(y, s)} ≥ ν(xy, t + s).

For an intuitionistic fuzzy normed algebra (X, μ, ν, ∗, �), we further assume that (16)
a ∗ a = a and a � a = a for all a ∈ [0, 1].

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed
space are studied in [16]. Let (X, μ, ν, ∗, �) be an intuitionistic fuzzy normed space or
intuitionistic fuzzy normed algebra. A sequence x = {xk} is said to be intuitionistic fuzzy
convergent to L ∈ X if limk→∞μ(xk − L, t) = 1 and limk→∞ν(xk − L, t) = 0 for all t > 0. In

this case, we write (μ, ν) − limk→∞xk = L or xk
IF→ L as k → ∞. A sequence x = {xk}

in (X, μ, ν, ∗, �) is said to be intuitionistic fuzzy Cauchy sequence if limk→∞μ(xk+p − xk, t) = 1
and limk→∞ν(xk+p − xk, t) = 0 for all t > 0 and p = 1, 2, . . .. An intuitionistic fuzzy normed
space (resp., intuitionistic fuzzy normed algebra) (X, μ, ν, ∗, �) is said to be complete if
every intuitionistic fuzzy Cauchy sequence in (X, μ, ν, ∗, �) is intuitionistic fuzzy convergent
in (X, μ, ν, ∗, �). A complete intuitionistic fuzzy normed space (resp., intuitionistic fuzzy
normed algebra) is also called an intuitionistic fuzzy Banach space (resp., intuitionistic fuzzy
Banach algebra).

2. Stability of Higher Ring Derivation in
Intuitionistic Fuzzy Banach Algebra

As a matter of convenience in this paper, we use the following abbreviation:

n∏

j=0

aj := a1 ∗ a2 ∗ · · · ∗ an,
∞∏

j=0

aj := a1 ∗ a2 ∗ · · · . (2.1)

In addition,

n∐

j=0

aj := a1 � a2 � · · · � an,
∞∐

j=0

aj := a1 � a2 � · · · . (2.2)

We begin with a generalized Hyers-Ulam theorem in intuitionistic fuzzy Banach space
for the Jensen type functional equation. The following result is also the generalization of the
theorem introduced in [13].
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Theorem 2.1. Let A be a vector space, and let f be a mapping from A to an intuitionistic fuzzy
Banach space (B, μ, ν, ∗, �) with f(0) = 0. Suppose that ϕ is a function from A to an intuitionistic
fuzzy normed space (C, μ′, ν′, ∗, �) such that

μ

(
lf

(
x + y
l

)
− f(x) − f(y), t + s

)
≥ μ′(ϕ(x), t

) ∗ μ′(ϕ
(
y
)
, s
)
, (2.3)

ν

(
lf

(
x + y
l

)
− f(x) − f(y), t + s

)
≤ ν′(ϕ(x), t) � ν′(ϕ(y), s) (2.4)

for all x, y ∈ A \ {0}, t > 0 and s > 0. If l > 1 is a fixed integer, and ϕ((l + 1)x) = αϕ(x) for some
real number α with 0 < |α| < l + 1, then there exists a unique additive mapping L : A → B such that
L(x) := (μ, ν) − limn→∞(f((l + 1)nx)/(l + 1)n),

μ
(L(x) − f(x), t) ≥

∞∏

j=0

M

(
x,

((l + 1) − α)t
2(l + 1)

)
,

ν
(L(x) − f(x), t) ≤

∞∐

j=0

N

(
x,

((l + 1) − α)t
2(l + 1)

) (2.5)

for all x ∈ A and t > 0, where

M(x, t) := μ′
(
ϕ(x),

l + 1
4

t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)
∗ μ′

(
ϕ((l + 1)x),

l + 1
4

t

)
,

N(x, t) := ν′
(
ϕ(x),

l + 1
4

t

)
� ν′

(
ϕ(−x), l + 1

4
t

)
� ν′

(
ϕ(−x), l + 1

4
t

)
� ν′

(
ϕ((l + 1)x),

l + 1
4

t

)
.

(2.6)

Proof. Without loss of generality, we assume that 0 < α < l + 1. From (2.3) and (2.4), we get

μ
(
f(x) + f(−x), lt) ≥ μ′

(
ϕ(x),

l

2
t

)
∗ μ′

(
ϕ(−x), l

2
t

)
,

ν
(
f(x) + f(−x), lt) ≤ ν′

(
ϕ(x),

l

2
t

)
�
(
ϕ(−x), l

2
t

) (2.7)

for all x ∈ A and t > 0. Again, by (2.3) and (2.4), we obtain

μ
(
lf(x) − f(−x) − f((l + 1)x), lt

) ≥ μ′
(
ϕ(−x), l

2
t

)
∗ μ′

(
ϕ((l + 1)x),

l

2
t

)
,

ν
(
lf(x) − f(−x) − f((l + 1)x), lt

) ≤ ν′
(
ϕ(−x), l

2
t

)
� ν′

(
ϕ((l + 1)x),

l

2
t

) (2.8)
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for all x ∈ A and t > 0. Combining (2.7) and (2.8), we arrive at

μ
(
(l + 1)f(x) − f((l + 1)x), 2lt

) ≥ μ′
(
ϕ(x),

l

2
t

)
∗ μ′

(
ϕ(−x), l

2
t

)
∗ μ′

(
ϕ(−x), l

2
t

)

∗ μ′
(
ϕ((l + 1)x),

l

2
t

)
,

ν
(
(l + 1)f(x) − f((l + 1)x), 2lt

) ≤ ν′
(
ϕ(x),

l

2
t

)
� ν′

(
ϕ(−x), l

2
t

)
� ν′

(
ϕ(−x), l

2
t

)

� ν′
(
ϕ((l + 1)x),

l

2
t

)
,

(2.9)

for all x ∈ A and t > 0. This implies that

μ

(
f(x) − f((l + 1)x)

(l + 1)
, t

)
≥ μ′

(
ϕ(x),

l + 1
4

t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)

∗ μ′
(
ϕ((l + 1)x),

l + 1
4

t

)
,

ν

(
f(x) − f((l + 1)x)

(l + 1)
, t

)
≤ ν′

(
ϕ(x),

l + 1
4

t

)
� ν′

(
ϕ(−x), l + 1

4
t

)
� ν′

(
ϕ(−x), l + 1

4
t

)

� ν′
(
ϕ((l + 1)x),

l + 1
4

t

)
,

(2.10)

for all x ∈ A and t > 0. Now we define

M(x, t) := μ′
(
ϕ(x),

l + 1
4

t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)
∗ μ′

(
ϕ((l + 1)x),

l + 1
4

t

)
,

N(x, t) := ν′
(
ϕ(x),

l + 1
4

t

)
� ν′

(
ϕ(−x), l + 1

4
t

)
� ν′

(
ϕ(−x), l + 1

4
t

)
� ν′

(
ϕ((l + 1)x),

l + 1
4

t

)
,

(2.11)

for all x ∈ A and t > 0. Then we have by assumption

M((l + 1)x, t) =M
(
x,

t

α

)
, N((l + 1)x, t) =N

(
x,

t

α

)
, (2.12)

for all x ∈ A and t > 0. Using (2.10) and (2.12), we get

μ

⎛

⎜
⎝
f
(
(l + 1)nx

)

(l + 1)n
−
f
(
(l + 1)n+1x

)

(l + 1)n+1
,

αnt

(l + 1)n

⎞

⎟
⎠ = μ

⎛

⎜
⎝f

(
(l + 1)nx

) −
f
(
(l + 1)n+1x

)

l + 1
, αnt

⎞

⎟
⎠

≥M(
(l + 1)nx, αnt

)
=M(x, t),
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ν

⎛

⎜
⎝
f
(
(l + 1)nx

)

(l + 1)n
−
f
(
(l + 1)n+1x

)

(l + 1)n+1
,

αnt

(l + 1)n

⎞

⎟
⎠ = ν

⎛

⎜
⎝f

(
(l + 1)nx

) −
f
(
(l + 1)n+1x

)

l + 1
, αnt

⎞

⎟
⎠

≤N(
(l + 1)nx, αnt

)
=N(x, t),

(2.13)

for all x ∈ A and t > 0. Therefore, for all n > m, we have

μ

⎛

⎝f
(
(l + 1)mx

)

(l + 1)m
− f

(
(l + 1)nx

)

(l + 1)n
,
n−1∑

j=m

αjt

(l + 1)j

⎞

⎠

= μ

⎛

⎜
⎝

n−1∑

j=m

⎡

⎢
⎣
f
(
(l + 1)jx

)

(l + 1)j
−
f
(
(l + 1)j+1x

)

(l + 1)j+1

⎤

⎥
⎦,

n−1∑

j=m

αjt

(l + 1)j

⎞

⎟
⎠

≥
n−1∏

j=m

μ

⎛

⎜
⎝
f
(
(l + 1)jx

)

(l + 1)j
−
f
(
(l + 1)j+1x

)

(l + 1)j+1
,

αj t

(l + 1)j

⎞

⎟
⎠ ≥

n−1∏

j=m

M(x, t),

ν

⎛

⎝f
(
(l + 1)mx

)

(l + 1)m
− f

(
(l + 1)nx

)

(l + 1)n
,
n−1∑

j=m

αjt

(l + 1)j

⎞

⎠

= ν

⎛

⎜
⎝

n−1∑

j=m

⎡

⎢
⎣
f
(
(l + 1)jx

)

(l + 1)j
−
f
(
(l + 1)j+1x

)

(l + 1)j+1

⎤

⎥
⎦,

n−1∑

j=m

αjt

(l + 1)j

⎞

⎟
⎠

≤
n−1∐

j=m

ν

⎛

⎜
⎝
f
(
(l + 1)jx

)

(l + 1)j
−
f
(
(l + 1)j+1x

)

(l + 1)j+1
,

αj t

(l + 1)j

⎞

⎟
⎠ ≤

n−1∐

j=m

N(x, t),

(2.14)

for all x ∈ A and t > 0. Let ε > 0 and δ > 0 be given. Since limt→∞
∏n−1

j=mM(x, t) = 1 and
limt→∞

∐n−1
j=mN(x, t) = 0, there exists some t0 such that

∏n−1
j=mM(x, t0) > 1− ε, ∐n−1

j=mN(x, t0) <
ε. Since

∑∞
j=0(α

jt/(l+1)j) <∞, there exists a positive integer n0 such that
∑n−1

j=m(α
jt/(l+1)j) < δ

for all n > m ≥ n0.
Then

μ

(
f
(
(l + 1)mx

)

(l + 1)m
− f

(
(l + 1)nx

)

(l + 1)n
, δ

)

≥ μ
⎛

⎝f
(
(l + 1)mx

)

(l + 1)m
− f

(
(l + 1)nx

)

(l + 1)n
,
n−1∑

j=m

αjt0

(l + 1)j

⎞

⎠

≥
n−1∏

j=m

M(x, t0) > 1 − ε,
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ν

(
f
(
(l + 1)mx

)

(l + 1)m
− f

(
(l + 1)nx

)

(l + 1)n
, δ

)

≤ ν
⎛

⎝f
(
(l + 1)mx

)

(l + 1)m
− f

(
(l + 1)nx

)

(l + 1)n
,
n−1∑

j=m

αjt0

(l + 1)j

⎞

⎠

≤
n−1∐

j=m

N(x, t0) < ε.

(2.15)

This shows that {(f((l + 1)nx))/((l + 1)n)} is a Cauchy sequence in (B, μ′, ν′, ∗, �). Since B is
complete, we can define a mapping L by L(x) := (μ, ν)− limn→∞(f((l + 1)nx)/(l + 1)n) for all
x ∈ A. Moreover, if we letm = 0 in (2.14), then we get

μ

⎛

⎝f
(
(l + 1)nx

)

(l + 1)n
− f(x),

n−1∑

j=0

αjt

(l + 1)j

⎞

⎠ ≥
n−1∏

j=0

M(x, t),

ν

⎛

⎝f
(
(l + 1)nx

)

(l + 1)n
− f(x),

n−1∑

j=0

αjt

(l + 1)j

⎞

⎠ ≤
n−1∐

j=0

N(x, t),

(2.16)

for all x ∈ A and t > 0. Therefore, we find that

μ

(
f
(
(l + 1)nx

)

(l + 1)n
− f(x), t

)

≥
n−1∏

j=0

M

⎛

⎜
⎝x,

t
∑n−1

j=0

(
αj/(l + 1)j

)

⎞

⎟
⎠,

ν

(
f
(
(l + 1)nx

)

(l + 1)n
− f(x), t

)

≤
n−1∐

j=0

N

⎛

⎜
⎝x,

t
∑n−1

j=0

(
αj/(l + 1)j

)

⎞

⎟
⎠.

(2.17)

Next, we will show that L is additive mapping. Note that

μ

(
lL

(
x + y
l

)
− L(x) − L(

y
)
, t

)
≥ μ

(

lL
(
x + y
l

)
− lf

((
(l + 1)n

(
x + y

))
/l
)

(l + 1)n
,
t

4

)

∗ μ
(
f
(
(l + 1)nx

)

(l + 1)n
− L(x),

t

4

)

∗ μ
(
f
(
(l + 1)ny

)

(l + 1)n
− L(

y
)
,
t

4

)

∗ μ
(
lf
((
(l + 1)n

(
x + y

))
/(l)

)

(l + 1)n
− f

(
(l + 1)nx

)

(l + 1)n
− f

(
(l + 1)ny

)

(l + 1)n
,
t

4

)

,
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ν

(
lL

(
x + y
l

)
− L(x) − L(

y
)
, t

)
≤ ν

(

lL
(
x + y
l

)
− lf

((
(l + 1)n

(
x + y

))
/l
)

(l + 1)n
,
t

4

)

� ν
(
f
(
(l + 1)nx

)

(l + 1)n
− L(x),

t

4

)

� ν
(
f
(
(l + 1)ny

)

(l + 1)n
− L(

y
)
,
t

4

)

� ν
(
lf
((
(l + 1)n

(
x + y

))
/(l)

)

(l + 1)n
− f

(
(l + 1)nx

)

(l + 1)n
− f

(
(l + 1)ny

)

(l + 1)n
,
t

4

)

.

(2.18)

On the other hand, (2.3) and (2.4) give the following:

μ

(
lf
((
(l + 1)n

(
x + y

))
/l
)

(l + 1)n
− f

(
(l + 1)nx

)

(l + 1)n
− f

(
(l + 1)ny

)

(l + 1)n
,
t

4

)

≥ μ′
(
ϕ(x),

(
l + 1
α

)n t

8

)
∗ μ′

(
ϕ
(
y
)
,

(
l + 1
α

)n t

8

)
,

ν

(
lf
((
(l + 1)n

(
x + y

))
/l
)

(l + 1)n
− f

(
(l + 1)nx

)

(l + 1)n
− f

(
(l + 1)ny

)

(l + 1)n
,
t

4

)

≤ ν′
(
ϕ(x),

(
l + 1
α

)n t

8

)
� ν′

(
ϕ
(
y
)
,

(
l + 1
α

)n t

8

)
.

(2.19)

Letting n → ∞ in (2.18) and (2.19), we yield

μ

(
lL

(
x + y
l

)
− L(x) − L(

y
)
, t

)
= 1, ν

(
lL

(
x + y
l

)
− L(x) − L(

y
)
, t

)
= 0. (2.20)

So we see that L is additive mapping.
Now, we approximate the difference between f and L in an intuitionistic fuzzy sense.

By (2.17), we get

μ
(L(x) − f(x), t) ≥ μ

(

L(x) − f
(
(l + 1)nx

)

(l + 1)n
,
t

2

)

∗ μ
(
f
(
(l + 1)nx

)

(l + 1)n
− f(x), t

2

)

≥
∞∏

j=0

M

(
x,

((l + 1) − α)t
2(l + 1)

)
,

ν
(L(x) − f(x), t) ≤ ν

(

L(x) − f
(
(l + 1)nx

)

(l + 1)n
,
t

2

)

� ν
(
f
(
(l + 1)nx

)

(l + 1)n
− f(x), t

2

)

≤
∞∐

j=0

N

(
x,

((l + 1) − α)t
2(l + 1)

)
,

(2.21)

for all x ∈ A and t > 0 and sufficiently large n.
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In order to prove the uniqueness of L, we assume that T is another additive mapping
from A to B, which satisfies the inequality (2.5). Then

μ(L(x) − T(x), t) ≥ μ
(
L(x) − f(x), t

2

)
∗ μ

(
T(x) − f(x), t

2

)

≥
∞∏

j=0

M

(
x,

((l + 1) − α)t
4(l + 1)

)
,

ν(L(x) − T(x), t) ≤ ν
(
L(x) − f(x), t

2

)
� ν

(
T(x) − f(x), t

2

)

≤
∞∐

j=0

N

(
x,

((l + 1) − α)t
4(l + 1)

)
,

(2.22)

for all x ∈ A and t > 0. Therefore, due to the additivity of L and T , we obtain that

μ(L(x) − T(x), t) = μ(L(
(l + 1)nx

) − T((l + 1)nx
)
, (l + 1)nt

)

≥
∞∏

j=0

M

(
x,

(
l + 1
α

)n ((l + 1) − α)t
4(l + 1)

)
,

ν(L(x) − T(x), t) = ν(L(
(l + 1)nx

) − T((l + 1)nx
)
, (l + 1)nt

)

≤
∞∐

j=0

M

(
x,

(
l + 1
α

)n ((l + 1) − α)t
4(l + 1)

)
.

(2.23)

Since 0 < α < l + 1, limn→∞((l + 1)/α)n = ∞, and we get

lim
n→∞

M

(
x,

(
l + 1
α

)n ((l + 1) − α)t
4(l + 1)

)
= 1, lim

n→∞
N

(
x,

(
l + 1
α

)n ((l + 1) − α)t
4(l + 1)

)
= 0,

(2.24)

that is, μ(L(x) − T(x), t) = 1 and ν(L(x) − T(x), t) = 0 for all x ∈ A, t > 0. So L = T , which
completes the proof.

In particular, we can prove the preceding result for the case when α > l+1. In this case,
the mapping L(x) := (μ, ν) − limn→∞(l + 1)nf((l + 1)−nx). We now establish a generalized
Hyers-Ulam stability in intuitionistic fuzzy Banach algebra for the higher ring derivation.

Theorem 2.2. LetA be an algebra, and let F = {f0, f1, . . . , fk, . . .} be a sequence of mappings fromA
to an intuitionistic fuzzy Banach algebra (B, μ, ν, ∗, �) with fk(0) = 0 for each k = 0, 1, . . .. Suppose
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that ϕ is a function fromA to an intuitionistic fuzzy normed algebra (C, μ′, ν′, ∗, �) such that for each
k = 0, 1, . . .,

μ

(
lfk

(
x + y
l

)
− fk(x) − fk

(
y
)
, t + s

)
≥ μ′(ϕ(x), t

) ∗ μ′(ϕ
(
y
)
, s
)
,

ν

(
lfk

(
x + y
l

)
− fk(x) − fk

(
y
)
, t + s

)
≤ ν′(ϕ(x), t) � ν′(ϕ(y), s)

(2.25)

for all x, y ∈ A \ {0}, t > 0 and s > 0, and that Φ is a function from A to an intuitionistic fuzzy
normed space (D,μ′′, ν′′, ∗, �) such that for each k = 0, 1, . . .,

μ

(

fk
(
xy

) −
k∑

i=0

fi(x)fk−i
(
y
)
, t + s

)

≥ max
{
μ′′(Φ(x), t), μ′′(Φ

(
y
)
, s
)}
,

ν

(

fk
(
xy

) −
k∑

i=0

fi(x)fk−i
(
y
)
, t + s

)

≤ min
{
ν′′(Φ(x), t), ν′′

(
Φ
(
y
)
, s
)}

(2.26)

for all x, y ∈ A, t > 0, and s > 0. If l > 1 is a fixed integer, ϕ((l + 1)x) = αϕ(x), and Φ((l + 1)x) =
βΦ(x) for some real numbers α and β with 0 < |α| < l + 1 and 0 < |β| < l + 1, then there exists a
unique higher ring derivationH = {L0,L1, . . . ,Lk, . . .} of any rank such that for each k = 0, 1, . . .,

μ
(Lk(x) − fk(x), t

) ≥M
(
x,

((l + 1) − α)t
2(l + 1)

)
,

ν
(Lk(x) − fk(x), t

) ≤N
(
x,

((l + 1) − α)t
2(l + 1)

)
,

(2.27)

for all x ∈ A and t > 0. In this case,

M(x, t) := μ′
(
ϕ(x),

l + 1
4

t

)
∗ μ′

(
ϕ(−x), l + 1

4
t

)
∗ μ′

(
ϕ((l + 1)x),

l + 1
4

t

)
,

N(x, t) := ν′
(
ϕ(x),

l + 1
4

t

)
� ν′

(
ϕ(−x), l + 1

4
t

)
� ν′

(
ϕ((l + 1)x),

l + 1
4

t

)
.

(2.28)

Moreover, the identity

k∑

i=0

Li

(
y
){Lk−i

(
y
) − fk−i

(
y
)}

= 0 (2.29)

holds for each k = 0, 1, . . . and all x, y ∈ A.
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Proof. It follows by Theorem 2.1 that for each k = 0, 1, . . . and all x ∈ A, there exists a unique
additive mapping Lk : A → B given by

Lk(x) :=
(
μ, ν

) − lim
n→∞

fk
(
(l + 1)nx

)

(l + 1)n
, (2.30)

satisfying (2.27) since (C, μ′, ν′, ∗, �) is an intuitionistic fuzzy normed algebra.
Without loss of generality, we suppose that 0 < β < l + 1. Now, we need to prove that

the sequence H = {L0,L1, . . . ,Lk, . . .} satisfies the identity Lk(xy) =
∑k

i=0 Li(x)Lk−i(y) for
each k = 0, 1, . . . and all x ∈ A. It is observed that for each k = 0, 1, . . .,

μ

(

Lk

(
xy

) −
k∑

i=0

Li(x)fk−i
(
y
)
, t

)

≥ μ
(

Lk

(
xy

) − fk
(
(l + 1)nxy

)

(l + 1)n
,
t

3

)

∗ μ
(
fk
(
(l + 1)nxy

)

(l + 1)n
−

k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
)
,
t

3

)

∗ μ
(

k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
,
t

3

)

,

ν

(

Lk

(
xy

) −
k∑

i=0

Li(x)fk−i
(
y
)
, t

)

≤ ν
(

Lk

(
xy

) − fk
(
(l + 1)nxy

)

(l + 1)n
,
t

3

)

� ν
(
fk
(
(l + 1)nxy

)

(l + 1)n
−

k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
)
,
t

3

)

� ν
(

k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
,
t

3

)

(2.31)

for all x, y ∈ A and t > 0. On account of (2.26), we see that for each k = 0, 1, . . .,

μ

(
fk
(
(l + 1)nx · y)

(l + 1)n
−

k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
)
,
t

3

)

= μ

(

fk
(
(l + 1)nx · y) −

k∑

i=0

fi
(
(l + 1)nx

)
fk−i

(
y
)
,
(l + 1)nt

3

)

≥ max
{
μ′′
(
Φ(x),

(
l + 1
β

)n t

6

)
, μ′′

(
Φ
(
y
)
,
(l + 1)nt

6

)}
,
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ν

(
fk
(
(l + 1)nx · y)

(l + 1)n
−

k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
)
,
(l + 1)nt

3

)

= ν

(

fk
(
(l + 1)nx · y) −

k∑

i=0

fi
(
(l + 1)nx

)
fk−i

(
y
)
,
(l + 1)nt

3

)

≤ min
{
μ′′
(
Φ(x),

(
l + 1
β

)n t

6

)
, ν′′

(
Φ
(
y
)
,
(l + 1)nt

6

)}
,

(2.32)

for all x, y ∈ A and t > 0. Due to additivity of Lk, for each k = 0, 1, . . .,

μ

(
k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
,
t

3

)

≥
k∏

i=0

μ

(
fi
(
(l + 1)nx

)
fk−i

(
y
) − (l + 1)nLi(x)fk−i

(
y
)
,
(l + 1)nt
3(k + 1)

)
,

ν

(
k∑

i=0

fi
(
(l + 1)nx

)

(l + 1)n
fk−i

(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
,
t

3

)

≤
k∐

i=0

ν

(
fi
(
(l + 1)nx

)
fk−i

(
y
) − (l + 1)nLi(x)fk−i

(
y
)
,
(l + 1)nt
3(k + 1)

)

(2.33)

for all x, y ∈ A and t > 0. In addition, we feel that

μ

(
fi
(
(l + 1)nx

)
fk−i

(
y
) − (l + 1)nLi(x)fk−i

(
y
)
,
(l + 1)nt
3(k + 1)

)

≥ max
{
μ

(
fi
(
(l + 1)nx

) − (l + 1)nLi(x),
(l + 1)nt
6(k + 1)

)
, μ

(
fk−i

(
y
)
,
(l + 1)nt
6(k + 1)

)}
,

ν

(
fi
(
(l + 1)nx

)
fk−i

(
y
) − (l + 1)nLi(x)fk−i

(
y
)
,
(l + 1)nt
3(k + 1)

)

≤ min
{
ν

(
fi
(
(l + 1)nx

) − (l + 1)nLi(x),
(l + 1)nt
6(k + 1)

)
, ν

(
fk−i

(
y
)
,
(l + 1)nt
6(k + 1)

)}
.

(2.34)

Letting n → ∞ in (2.31), (2.32), (2.33), and (2.34), we get μ(Lk(xy)−
∑k

i=0 Li(x)fk−i(y), t) = 1
and ν(Lk(xy) −

∑k
i=0 Li(x)fk−i(y), t) = 0. This implies that

Lk

(
xy

)
=

k∑

i=0

Li(x)fk−i
(
y
)
, (2.35)

for each k = 0, 1, . . . and all x, y ∈ A.
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Using additivity of Lk and (2.35), we find that

(l + 1)n
k∑

i=0

Li(x)fk−i
(
y
)
= Lk

(
(l + 1)nx · y) = Lk

(
x · (l + 1)ny

)
=

k∑

i=0

L(x)f
(
(l + 1)ny

)
.

(2.36)

So we obtain
∑k

i=0 Li(x)fk−i(y) =
∑k

i=0 Li(x)(fk−i((l + 1)ny)/(l + 1)n). Hence for each k = 0,
1, . . .,

μ

(
k∑

i=0

Li(x)fk−i
(
y
) −

k∑

i=0

Li(x)
fk−i

(
(l + 1)ny

)

(l + 1)n
, t

)

= 1,

ν

(
k∑

i=0

Li(x)fk−i
(
y
) −

k∑

i=0

Li(x)
fk−i

(
(l + 1)ny

)

(l + 1)n
, t

)

= 0,

(2.37)

for all x, y ∈ A and t > 0. This relation yields that for each k = 0, 1, . . .,

μ

(
k∑

i=0

Li(x)Lk−i
(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
, t

)

≥ μ
(

k∑

i=0

Li(x)Lk−i
(
y
) −

k∑

i=0

Li(x)
fk−i

(
(l + 1)ny

)

(l + 1)n
,
t

2

)

∗ μ
(

k∑

i=0

Li(x)
fk−i

(
(l + 1)ny

)

(l + 1)n
−

k∑

i=0

Li(x)fk−i
(
y
)
,
t

2

)

≥
k∏

i=0

μ

(

Li(x)Lk−i
(
y
) − Li(x)

fk−i
(
(l + 1)ny

)

(l + 1)n
,

t

2(k + 1)

)

,

(2.38)

ν

(
k∑

i=0

Li(x)Lk−i
(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
, t

)

≤ ν
(

k∑

i=0

Li(x)Lk−i
(
y
) −

k∑

i=0

Li(x)
fk−i

(
(l + 1)ny

)

(l + 1)n
,
t

2

)

� ν
(

k∑

i=0

Li(x)
fk−i

(
(l + 1)ny

)

(l + 1)n
−

k∑

i=0

Li(x)fk−i
(
y
)
,
t

2

)

≤
k∐

i=0

ν

(

Li(x)Lk−i
(
y
) − Li(x)

fk−i
(
(l + 1)ny

)

(l + 1)n
,

t

2(k + 1)

)

,

(2.39)
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for all x, y ∈ A and t > 0. On the other hand, we see that

μ

(

Li(x)Lk−i
(
y
) − Li(x)

fk−i
(
(l + 1)ny

)

(l + 1)n
,

t

2(k + 1)

)

≥ max

{

μ

(
Li(x),

(l + 1)nt
4(k + 1)

)
, μ

(

Lk−i
(
y
) − fk−i

(
(l + 1)ny

)

(l + 1)n
,

t

4(k + 1)

)}

,

μ

(

Li(x)Lk−i
(
y
) − Li(x)

fk−i
(
(l + 1)ny

)

(l + 1)n
,

t

2(k + 1)

)

≤ min

{

ν

(
Li(x),

(l + 1)nt
4(k + 1)

)
, ν

(

Lk−i
(
y
) − fk−i

(
(l + 1)ny

)

(l + 1)n
,

t

4(k + 1)

)}

.

(2.40)

Sending n → ∞ in (2.38) and (2.40), we have that for each k = 0, 1, . . .,

μ

(
k∑

i=0

Li(x)Lk−i
(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
, t

)

= 1,

ν

(
k∑

i=0

Li(x)Lk−i
(
y
) −

k∑

i=0

Li(x)fk−i
(
y
)
, t

)

= 0,

(2.41)

for all x, y ∈ A and t > 0. Thus, we conclude that

k∑

i=0

Li(x)Lk−i
(
y
)
=

k∑

i=0

Li(x)fk−i
(
y
)
, (2.42)

for each k = 0, 1, . . . and all x, y ∈ A.
Therefore, by combining (2.35) and (2.42), we get the required result, which completes

the proof.

As a consequence of Theorem 2.2, we get the following superstability.

Corollary 2.3. Let (B, μ, ν, ∗, �) be an intuitionistic fuzzy Banach algebra with unit, and let a
sequence of operators F = {f0, f1, . . . , fk, . . .} on A satisfy fk(0) = 0 for each k = 0, 1, . . ., where f0
is an identity operator. Suppose that ϕ is a function from A to an intuitionistic fuzzy normed algebra
(C, μ′, ν′, ∗, �) satisfying (2.25) and (2.14) and that Φ is a function from A to an intuitionistic fuzzy
normed space (D,μ′′, ν′′, ∗, �) satisfying (2.26). If l > 1 is a fixed integer, ϕ((l + 1)x) = αϕ(x), and
Φ((l + 1)x) = βΦ(x) for some real numbers α and β with 0 < |α| < l + 1 and 0 < |β| < l + 1, then F is
a strong higher ring derivation on A.

Proof. According to (2.30), we have L0(x) = x for all x ∈ A, and so L0(=f0) is an identity
operator on A. By induction, we get the conclusion. If k = 1, then it follows from (2.29)
that f1(x) = L1(x) holds for all x ∈ A since A contains the unit element. Let us assume that
fm(x) = Lm(x) is valid for all x ∈ A andm < k. Then (2.29) implies that x{Lm(y)−fm(y)} = 0
for all x, y ∈ A. SinceA has the unit element, fk(y) = Lk(y) for all x ∈ A. Hence we conclude
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that fk(y) = Lk(y) for each k = 0, 1, 2, . . . and all x ∈ A. So this tells us that F is a higher ring
derivation of any rank fromA and B. The proof of the corollary is complete.

We remark that we can prove the preceding result for the case when α > l + 1 and
β > l + 1.
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Copyright q 2012 Ajda Fošner. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study the Hyers-Ulam-Rassias stability of (m,n)(σ,τ)-derivations on normed algebras.

1. Introduction

A classical question in the theory of functional equations is as follows. Under what conditions
is it true that a mapping which approximately satisfies a functional equation E must be somehow
close to an exact solution of E? This problem was formulated by Ulam in 1940 (see [1, 2]). He
investigated the stability of group homomorphisms. Let (G1, ◦) be a group, and let (G2, ∗, δ) be
a metric group with a metric δ(·, ·). Suppose that f : G1 → G2 is a map and ε > 0 a fixed scalar.
Does there exists λ > 0such that if f satisfies the inequality

δ
(
f
(
x ◦ y), f(x) ∗ f(y)) ≤ λ (1.1)

for all x, y ∈ G1, then there exists a group homomorphism F : G1 → G2 with the property

δ
(
f(x), F(x)

) ≤ ε (1.2)

for all x ∈ G1?
One year later, Ulam’s problem was affirmatively solved by Hyers [3] for the

Cauchy functional equation f(x + y) = f(x) + f(y).: Let X1 be a normed space, X2 a Banach
space, and ε > 0 a fixed scalar. Suppose that f :X1 → X2 is a map with the property

∥∥f
(
x + y

) − f(x) − f(y)∥∥ < ε (1.3)
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for all x, y ∈ X1. Then there exists a unique additive mapping F : X1 → X2 such that

∥
∥f(x) − F(x)∥∥ < ε (1.4)

for all x ∈ X1. This gave rise to the stability theory of functional equations.
The famous Hyers stability result has been generalized in the stability of additive map-

pings involving a sum of powers of norms by Aoki [4] which allowed the Cauchy difference
to be unbounded. In 1978, Rassias [5] proved the stability of linear mappings in the following
way. Let X1 be a real normed space and X2 a real Banach space. If there exist scalars ε ≥ 0 and
0 ≤ p < 1 such that

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥
∥y

∥
∥p) (1.5)

for all x, y ∈ X1, then there exists a unique additive mapping F : X1 → X2 with the property

∥∥f(x) − F(y)∥∥ ≤ 2ε
2 − 2p

‖x‖p (1.6)

for all x ∈ X1. Moreover, if the map r 	→ f(rx) is continuous on R for each x ∈ X1, then F is
linear. This result has provided a lot of influence in the development of what we now call the
Hyers-Ulam-Rassias stability of functional equations.

Later, Găvruţa [6] generalized the Rassias’ theorem as follows: Let (G,+) be an Abelian
group and X a Banach space. Suppose that the so-called admissible control function ϕ : G × G →
[0,∞) satisfies

∞∑

k=0

ϕ
(
2kx, 2ky

)

2k+1
<∞ (1.7)

for all x, y ∈ G. If f : G → X is a mapping with the property

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ϕ(x, y) (1.8)

for all x, y ∈ G, then there exists a unique additive mapping F : G → X such that

∥∥f(x) − F(x)∥∥ ≤
∞∑

k=0

ϕ
(
2kx, 2ky

)

2k+1
(1.9)

for all x ∈ G.
In the last few decades, various approaches to the problem have been introduced

by several authors. Moreover, it is surprising that in some cases the approximate mapping is
actually a true mapping. In such cases we call the equation E superstable. For the history and
various aspects of this theory we refer the reader to monographs [7–9].

As we are aware, the stability of derivations was first investigated by Jun and Park
[10]. During the past few years, approximate derivations were studied by a number of
mathematicians (see [11–18] and references therein).
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Moslehian [19] studied the stability of (σ, τ)-derivations and generalized some results
obtained in [18]. He also established the generalized Hyers-Ulam-Rassias stability of (σ, τ)-
derivations on normed algebras into Banach bimodules. This motivated us to investigate
approximate (m,n)(σ,τ)-derivations on normed algebras. The aim of this paper is to study
the stability of (m,n)(σ,τ)-derivations and to generalize some results given in [19].

2. Preliminaries

Throughout, A will be a normed algebra and M a Banach A-bimodule. Let σ and τ be two
linear operators on A. An additive mapping d : A → M is called an (σ, τ)-derivation if

d
(
xy

)
= d(x)σ

(
y
)
+ τ(x)d

(
y
)

(2.1)

holds for all x, y ∈ A. Ordinary derivations from A to M and maps defined by x 	→
aσ(x) − τ(x)a, where a ∈ A is a fixed element and σ, τ are endomorphisms onA, are natural
examples of (σ, τ)-derivations on A. Moreover, if ψ is an endomorphism on A, then ψ is
a ((1/2)ψ, (1/2)ψ)-derivation on A. We refer the reader to [20], where further information
about (σ, τ)-derivations can be found.

In [19] Moslehian studied stability of (σ, τ)-derivations. The natural question here is,
whether the analogue results hold true for (m,n)(σ,τ)-derivations. Theorem 3.1 answers this
question in the affirmative.

Letm and n be nonnegative integers withm+n/= 0. An additive mapping d : A → M
is called a (m,n)(σ,τ)-derivation if

(m + n)d
(
xy

)
= 2md(x)σ

(
y
)
+ 2nτ(x)d

(
y
)

(2.2)

holds for all x, y ∈ A. Clearly, (m,n)(σ,τ)-derivations are one of the natural generalizations of
(σ, τ)-derivations (the case m = n). If σ, τ = id, where id denotes the identity map on A, and
an additive mapping d : A → M satisfies (2.2), then d is called a (m,n)-derivation. In the
last few decades a lot of work has been done on the field of (m,n)-derivations on rings and
algebras (see, e.g, [21–25]). This motivated us to study the Hyers-Ulam-Rassias stability of
functional inequalities associated with (m,n)(σ,τ)-derivations.

In the following, we will assume thatm and n are nonnegative integers withm+n/= 0.
We will use the same symbol ‖ · ‖ in order to represent the norms on a normed algebraA and
a Banach A-bimodule M. For a given (admissible control) function ϕ : A ×A → [0,∞) we
will use the following abbreviation:

φ
(
x, y

)
:=

∞∑

k=0

ϕ
(
2kx, 2ky

)

2k+1
, x, y ∈ A. (2.3)

Let us start with one well-known lemma.

Lemma 2.1 (see [6]). Suppose that a function ϕ : A×A → [0,∞) satisfies φ(x, y) <∞, x, y ∈ A.
If f : A → M is a mapping with

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ϕ(x, y) (2.4)
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for all x, y ∈ A, then there exists a unique additive mapping F : A → M such that

∥
∥f(x) − F(x)∥∥ ≤ φ(x, x) (2.5)

for all x ∈ A.

We say that an additive mapping f : A → M is C-linear if f(λx) = λf(x) for all x ∈ A
and all scalars λ ∈ C. In the following, Λ will denote the set of all complex units, that is,

Λ = {λ ∈ C : |λ| = 1}. (2.6)

For a given additive mapping f : A → M, Park [26] obtained the next result.

Lemma 2.2. If f(λx) = λf(x) for all x ∈ A and all λ ∈ Λ, then f is C-linear.

3. The Results

Our first result is a generalization of [19, Theorem 2.1] (the case m = n). We use the direct
method to construct a unique C-linear mapping from an approximate one and prove that
this mapping is an appropriate (m,n)(σ,τ)-derivation on A. This method was first devised by
Hyers [3]. The idea is taken from [19].

Theorem 3.1. Let d : A → M and f, g : A → A be mappings with d(0) = f(0) = g(0) = 0.
Suppose that there exists a function ϕ : A×A → [0,∞) such that φ(x, y) <∞ for all x, y ∈ A and

∥∥d
(
λx + λy

) − λd(x) − λd(y)∥∥ ≤ ϕ(x, y), (3.1)
∥∥f

(
λx + λy

) − λf(x) − λf(y)∥∥ ≤ ϕ(x, y), (3.2)
∥∥g

(
λx + λy

) − λg(x) − λg(y)∥∥ ≤ ϕ(x, y), (3.3)
∥∥(m + n)d

(
xy

) − 2md(x)f
(
y
) − 2ng(x)d

(
y
)∥∥ ≤ ϕ(x, y) (3.4)

for all x, y ∈ A and λ ∈ Λ. Then there exist unique C-linear mappings σ, τ : A → A satisfying

∥∥f(x) − σ(x)∥∥ ≤ φ(x, x), ∥∥g(x) − τ(x)∥∥ ≤ φ(x, x) (3.5)

for all x ∈ A, and a unique C-linear (m,n)(σ,τ)-derivation D : A → M such that

‖d(x) −D(x)‖ ≤ φ(x, x) (3.6)

for all x ∈ A.
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Proof. Taking λ = 1 in (3.1) and using Lemma 2.1, it follows that there exists a unique additive
mapping D : A → M such that ‖d(x) −D(x)‖ ≤ φ(x, x) holds for all x ∈ A. More precisely,
using the induction, it is easy to see that

∥
∥
∥
∥
∥
d
(
2lx

)

2l
− d(x)

∥
∥
∥
∥
∥
≤

l−1∑

k=0

ϕ
(
2kx, 2kx

)

2k+1
, (3.7)

∥
∥
∥
∥
d(2px)

2p
− d(2qx)

2q

∥
∥
∥
∥ ≤

p−1∑

k=q

ϕ
(
2kx, 2kx

)

2k+1
(3.8)

for all x ∈ A, all positive integers l, and all 0 ≤ q < p. According to the assumptions on
φ(x, y), it follows that the sequence {d(2kx)/2k}∞k=0 is Cauchy. Thus, by the completeness of
M, this sequence is convergent and we can define a map D : A → M as

D(x) := lim
k→∞

d
(
2kx

)

2k
, x ∈ A. (3.9)

Using (3.1), we get

∥∥D
(
λx + λy

) − λD(x) − λD(
y
)∥∥

= lim
k→∞

2−k
∥∥∥d

(
λ2kx + λ2ky

)
− λd

(
2kx

)
− λd

(
2ky

)∥∥∥

≤ lim
k→∞

2−kϕ
(
2kx, 2ky

)
= 0.

(3.10)

This yields that

D
(
λx + λy

)
= λD(x) + λD

(
y
)

(3.11)

for all x, y ∈ A and λ ∈ Λ. Using Lemma 2.2, it follows that the map D is C-linear. Moreover,
according to inequality (3.7), we have

‖d(x) −D(x)‖ = lim
k→∞

∥∥∥∥∥
d(x) − d

(
2kx

)

2k

∥∥∥∥∥
≤ φ(x, x) (3.12)

for all x ∈ A.
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Next, we have to show the uniqueness of D. So, suppose that there exists another C-
linear mapping D̃ : A → M such that ‖d(x) − D̃(x)‖ ≤ φ(x, x) for all x ∈ A. Then

∥
∥
∥D(x) − D̃(x)

∥
∥
∥ = lim

k→∞
2−k

∥
∥
∥d

(
2kx

)
− D̃

(
2kx

)∥∥
∥

≤ lim
k→∞

2−kφ
(
2kx, 2kx

)

= lim
k→∞

2−k
∞∑

j=0

ϕ
(
2j+kx, 2j+kx

)

2j+1

= lim
k→∞

∞∑

j=k

ϕ
(
2jx, 2jx

)

2j+1
= 0.

(3.13)

Therefore, D(x) = D̃(x) for all x ∈ A, as desired.
Similarly we can show that there exist unique C-linear mappings σ, τ : A → A

defined by

σ(x) := lim
k→∞

f
(
2kx

)

2k
, x ∈ A,

τ(x) := lim
k→∞

g
(
2kx

)

2k
, x ∈ A.

(3.14)

Furthermore,

∥∥f(x) − σ(x)∥∥ ≤ φ(x, x), ∥∥g(x) − τ(x)∥∥ ≤ φ(x, x) (3.15)

for all x ∈ A.
It remains to prove thatD is an (m,n)(σ,τ)-derivation. Writing 2kx in the place of x and

2ky in the place of y in (3.4), we obtain

∥∥∥(m + n)d
(
4kxy

)
− 2md

(
2kx

)
f
(
2ky

)
− 2ng

(
2kx

)
d
(
2ky

)∥∥∥ ≤ ϕ
(
2kx, 2ky

)
. (3.16)

This yields that

∥∥( (m + n)D
(
xy

) − 2mD(x)σ
(
y
) − 2nτ(x)D

(
y
)∥∥

= lim
k→∞

4−k
∥∥∥(m + n)d

(
4kxy

)
− 2md

(
2kx

)
f
(
2ky

)
− 2ng

(
2kx

)
d
(
2ky

)∥∥∥

≤ lim
k→∞

4−kϕ
(
2kx, 2ky

)
= 0

(3.17)

for all x, y ∈ A. Thus, mappings D and σ, τ satisfy (2.2). The proof is completed.
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Remark 3.2. If there exists x0 ∈ A such that d and the map x 	→ φ(x, x) are continuous at point
x0, then D is continuous on A. Namely, if D was not continuous, then there would exist an
integer C and a sequence {xk}∞k=0 such that limk→∞xk = 0 and ‖D(xk)‖ > 1/C, k ≥ 0. Let
t > C(2φ(x0, x0) + 1). Then

lim
k→∞

d(txk + x0) = d(x0) (3.18)

since d is continuous at point x0. Thus, there exists an integer k0 such that for every k > k0
we have

‖d(txk + x0) − d(x0)‖ < 1. (3.19)

Therefore,

2φ(x0, x0) + 1 <
t

C
< ‖D(txk)‖ = ‖D(txk + x0) −D(x0)‖

≤ ‖D(txk + x0) − d(txk + x0)‖ + ‖d(txk + x0) − d(x0)‖ + ‖d(x0) −D(x0)‖
< φ(txk + x0, txk + x0) + 1 + φ(x0, x0)

(3.20)

for every k > k0. Letting k → ∞ and using the continuity of the map x 	→ φ(x, x) at point x0,
we get a contradiction.

Let ε ≥ 0 and 0 ≤ p < 1. Applying Theorem 3.1 for the case

ϕ
(
x, y

)
:= ε

(‖x‖p + ∥∥y
∥∥p), x, y ∈ A. (3.21)

Corollary 3.3. Let d : A → M and f, g : A → A be mappings with d(0) = f(0) = g(0) = 0.
Suppose that (3.1), (3.2), (3.3), and (3.4) hold true for all x, y ∈ A and λ ∈ Λ, where a function
ϕ : A ×A → [0,∞) is defined as above. Then there exist unique C-linear mappings σ, τ : A → A
satisfying

∥∥f(x) − σ(x)∥∥ ≤ 2ε
2 − 2p

‖x‖p, ∥∥g(x) − τ(x)∥∥ ≤ 2ε
2 − 2p

‖x‖p (3.22)

for all x ∈ A and a unique C-linear (m,n)(σ,τ)-derivation D : A → M such that

‖d(x) −D(x)‖ ≤ 2ε
2 − 2p

‖x‖p (3.23)

Proof. Note that φ(x, y) <∞ for all x, y ∈ A and

φ
(
x, y

)
=

ε

2 − 2p
(‖x‖p + ∥∥y

∥∥p), x, y ∈ A. (3.24)
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Remark 3.4. Recall that we can actually take any map ϕ : A ×A → [0,∞) in the form

ϕ
(
x, y

)
:= ν + ε

(‖x‖p + ∥
∥y

∥
∥p), x, y ∈ A, (3.25)

where ν ≥ 0. In this case we have

φ
(
x, y

)
= ν +

ε
(‖x‖p + ∥

∥y
∥
∥p)

(2 − 2p)
, x, y ∈ A. (3.26)

Before stating our next result, let us write one well-known lemma about the continuity
of measurable functions (see, e.g., [27]).

Lemma 3.5. If a measurable function ψ : R → R satisfies ψ(r1+r2) = ψ(r1)+ψ(r2) for all r1, r2 ∈ R,
then ψ is continuous.

Now we are in the position to state a result for normed algebrasA which are spanned
by a subset S of A. For example, A can be a C∗-algebra spanned by the unitary group of A
or the positive part of A

Theorem 3.6. Let A be a normed algebra which is spanned by a subset S of A and d : A → M,
f, g : A → A mappings with d(0) = f(0) = g(0) = 0. Suppose that there exists a function
ϕ : A × A → [0,∞) such that φ(x, y) < ∞ for all x, y ∈ A and (3.1), (3.2), (3.3) holds true for
all x, y ∈ A and λ = 1, i. Moreover, suppose that (3.4) holds true for all x, y ∈ S. If for all x ∈ A
the functions r 	→ d(rx), r 	→ f(rx), and r 	→ g(rx) are continuous on R, then there exist unique
C-linear mappings σ, τ : A → A satisfying

∥∥f(x) − σ(x)∥∥ ≤ φ(x, x), ∥∥g(x) − τ(x)∥∥ ≤ φ(x, x) (3.27)

for all x ∈ A and a unique C-linear (m,n)(σ,τ)-derivation D : A → M such that

‖d(x) −D(x)‖ ≤ φ(x, x) (3.28)

for all x ∈ A.

We will give just a sketch of the proof since most of the steps are the same as in the
proof of Theorem 3.1.

Proof. As in the proof of Theorem 3.1, we can show that there exists a unique additive
mapping D : A → M defined by D(x) := limk→∞(d(2kx)/2k), x ∈ A. Moreover,
‖d(x) −D(x)‖ ≤ φ(x, x) for all x ∈ A.

Writing y = 0, λ = i in (3.1), we get

‖d(ix) − id(x)‖ ≤ ϕ(x, 0). (3.29)

Therefore,

‖D(ix) − iD(x)‖ = lim
k→∞

2−k
∥∥∥d

(
2kix

)
− id

(
2kx

)∥∥∥ ≤ lim
k→∞

2−kϕ
(
2kx, 0

)
= 0. (3.30)
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This yields that

D(ix) = iD(x) (3.31)

for all x ∈ A. In the next step we will show that D is R-linear, that is,

D(rx) = rD(x) (3.32)

for all x ∈ A and all r ∈ R.
Since D is additive, we have D(qx) = qx for every x ∈ A and all rational numbers q.

Let us fix elements x0 ∈ A and ρ ∈ M∗, where M∗ denotes the dual space of M. Then we can
define a function ψ : R → R by

ψ(r) = ρ(D(rx0)), r ∈ R. (3.33)

Firstly, we would like to prove that ψ is continuous. Recall that

ψ(r1 + r2) = ρ(D((r1 + r2)x0)) = ρ(D(r1x0)) + ρ(D(r2x0)) = ψ(r1) + ψ(r2) (3.34)

for all r1, r2 ∈ R. Furthermore,

ψ(r) = lim
k→∞

ρ

(
d
(
2krx0

)

2k

)

(3.35)

for all r ∈ R. Set

ψk(r) = ρ

(
d
(
2krx0

)

2k

)

, k ≥ 0. (3.36)

Obviously, {ψk}∞k=0 is a sequence of continuous functions and ψ is its pointwise limit. This
yields that ψ is a Borel function and, by Lemma 3.5 it is continuous. Therefore, we have
ψ(r) = rψ(1) for all r ∈ R. This implies D(rx0) = rD(x0). Since x0 was an arbitrary element
from A, we proved that D is R-linear.

Now, let λ ∈ C. Then λ = r1 + ir2 for some real numbers r1, r2. Using (3.31), we have

D(λx) = D((r1 + ir2)x) = D(r1x) +D(ir2x) = r1D(x) + ir2D(x) = λD(x) (3.37)

for all x ∈ A. This means that D is C-linear.
Similarly we can show that there exist unique C-linear mappings σ, τ : A → A

satisfying

∥∥f(x) − σ(x)∥∥ ≤ φ(x, x), ∥∥g(x) − τ(x)∥∥ ≤ φ(x, x) (3.38)
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for all x ∈ A. Moreover, (2.2) holds true for all x, y ∈ S. Since A is linearly generated by S,
we conclude that D is an (m,n)(σ,τ)-derivation on A. The proof is completed.

Remark 3.7. As above, we can apply Theorem 3.6 for the case

ϕ
(
x, y

)
:= ν + ε

(‖x‖p + ∥
∥y

∥
∥p), x, y ∈ A, (3.39)

where ν, ε ≥ 0 and 0 ≤ p < 1.

Remark 3.8. If ε ≥ 0 and 0 ≤ p < 1/2, then we can use in Theorem 3.1 as well as in Theorem 3.6
a function ϕ : A ×A → [0,∞) given by

ϕ
(
x, y

)
:= ε‖x‖p∥∥y∥∥p, x, y ∈ A. (3.40)

In this case

φ
(
x, y

)
=

ε

2 − 4p
‖x‖p∥∥y∥∥p, x, y ∈ A. (3.41)
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[21] S. Ali and A. Fošner, “On generalized (m,n)-derivations and generalized (m,n)-Jordan derivations
in rings,” Algebra Colloquium. In press.
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We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk
for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa
operators.

1. Introduction

A classical problem in the theory of functional equations is that if a function f approximately
satisfies functional equation E, when does there exists an exact solution of Ewhich f approxi-
mates. In 1940, Ulam [1, 2] imposed the question of the stability of the Cauchy equation, and
in 1941, Hyers solved it [3]. In 1978, Rassias [4] provided a generalization of Hyers, theorem
by proving the existence of unique linear mappings near approximate additive mappings.
The problem has been considered for many different types of spaces (see [5–7]). The Ulam-
Hyers stability of differential equations has been investigated by Alsina and Ger [8] and
generalized by Jung [9–11]. Recently, Li and Shen [12] have investigated the Ulam-Hyers
stability of the linear differential equations of second order, Abdollahpour and Najati [13]
have studied the Ulam-Hyers stability of the linear differential equations of third order, and
Lungu and Popa have imposed the Ulam-Hyers stability of a first-order partial differential
equation [14].

The analysis on stability of fractional differential equations is more complicated than
the classical differential equations, since fractional derivatives are nonlocal and have weakly
singular kernels. Recently, Li and Zhang [15] provided an overview on the stability results
of the fractional differential equations. Particularly, Li et al. [16] devoted to study the Mittag-
Leffler stability and the Lyapunov’s methods, Deng [17] derived sufficient conditions for
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the local asymptotical stability of nonlinear fractional differential equations, and Li et al.
studied the stability of fractional-order nonlinear dynamic systems using the Lyapunov direct
method and generalized Mittag-Leffler stability [18]. Furthermore, there are few works on
the Ulam stability of fractional differential equations, which maybe provide a new way for
the researchers to investigate the stability of fractional differential equations from different
perspectives. First the Ulam stability and data dependence for fractional differential equa-
tions with Caputo derivative have been posed by Wang et al. [19] and Ibrahim [20] with
Riemann-Liouville derivative in complex domain. Moreover, Wang et al. [21–24] considered
and established the Ulam stability for various types of fractional differential equation. Finally,
the author generalized the Ulam-Hyers stability for fractional differential equation including
infinite power series [25, 26].

In this work, we continue our study by imposing the Ulam-Hyers stability for the
Cauchy fractional differential equations in complex domain. The operators are taken in sense
of the Srivastava-Owa fractional derivative and integral.

2. Fractional Calculus

The theory of fractional calculus has found interesting applications in the theory of analytic
functions. The classical definitions of fractional operators and their generalizations have fruit-
fully been applied in obtaining, for example, the characterization properties, coefficient esti-
mates [27], distortion inequalities [28], and convolution structures for various subclasses of
analytic functions and the works in the research monographs. In [29], Srivastava and Owa
gave definitions for fractional operators (derivative and integral) in the complex z-plane C

as follows.

Definition 2.1. The fractional derivative of order α is defined, for a function f(z), by

Dα
zf(z) :=

1
Γ(1 − α)

d

dz

∫z

0

f(ζ)
(z − ζ)α dζ, 0 ≤ α < 1, (2.1)

where the function f(z) is analytic in simply connected region of the complex z-plane C

containing the origin and the multiplicity of (z− ζ)−α is removed by requiring log(z− ζ) to be
real when (z − ζ) > 0.

Definition 2.2. The fractional integral of order α is defined, for a function f(z), by

Iαz f(z) :=
1

Γ(α)

∫z

0
f(ζ)(z − ζ)α−1dζ, α > 0, (2.2)

where the function f(z) is analytic in simply connected region of the complex z-plane (C)
containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.
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Remark 2.3. From Definitions 2.1 and 2.2, we have

Dα
zz

μ =
Γ
(
μ + 1

)

Γ
(
μ − α + 1

)zμ−α, μ > −1, 0 ≤ α < 1,

Iαz z
μ =

Γ
(
μ + 1

)

Γ
(
μ + α + 1

)zμ+α, μ > −1, α > 0.

(2.3)

We need the following preliminaries in the sequel.
Let U := {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H denote

the space of all analytic functions onU. Also for a ∈ C andm ∈ N, letH[a,m] be the subspace
ofH consisting of functions of the form

f(z) = a + amzm + am+1z
m+1 + · · · , z ∈ U. (2.4)

Let A be the class of functions f , analytic in U and normalized by the conditions f(0) =
f ′(0) − 1 = 0. A function f ∈ A is called univalent (S) if it is one-one inU.

Lemma 2.4 (see [28]). Let the function f(z) be in the class S. Then

∣∣Dα
zf(z)

∣∣ ≤ r1−α

Γ(1 − α)
∫1

0

1 + rt

(1 − t)α(1 − rt)3
dt (r = |z|, z ∈ U, 0 < α < 1). (2.5)

Lemma 2.5 (see [28]). Let the function f(z) be in the class S. Then
∣∣∣Dα+1

z f(z)
∣∣∣ ≤ r−α

Γ(1 − α) (rF(2, 1; 1 − α; r))
′ (r = |z|, z ∈ U \ {0}, 0 < α < 1). (2.6)

3. Ulam-Hyers Stability for Fractional Problems

In this section, we will study the Ulam-Hyers stability for two different types of fractional
Cauchy problems involving the differential operator in Definition 2.1. The first initial value
problem is

Dα
zu(z) = ρ(z)u(z), (u(0) = 0, z ∈ U, 0 < α < 1), (3.1)

where u(z), ρ(z) ∈ H[U,C] (the space of analytic function on the unit disk). While the second
problem is

Dα
zu(z) = f(z, u(z)), (u(0) = 0, z ∈ U, 0 < α < 1), (3.2)

where f : U × C → C is analytic in z ∈ U. Finally, we consider the problem

D1+α
z u(z) = f(z, u(z)), (u(z0) = c, z0 ∈ U \ {0}, 0 < α < 1), (3.3)

where u(z) ∈ H[U,C] and f : U × C → C is analytic in z ∈ U.



4 Abstract and Applied Analysis

Definition 3.1. Problem (3.1) has the Ulam-Hyers stability if there exists a positive constantK
with the following property: for every ε > 0, u ∈ H[U,C], if

∣
∣Dα

zu(z) − ρ(z)u(z)
∣
∣ < ε, (3.4)

then there exists some v ∈ H[U,C] satisfying

Dα
zv(z) = ρ(z)v(z) (3.5)

with v(0) = 0 such that

|u(z) − v(z)| < Kε. (3.6)

Definition 3.2. Problem (3.2) has the Ulam-Hyers stability if there exists a positive constantK
with the following property: for every ε > 0, u ∈ H[U,C], if

∣∣Dα
zu(z) − f(z, u(z))

∣∣ < ε, (3.7)

then there exists some v ∈ H[U,C] satisfying

Dα
zv(z) = f(z, v(z)) (3.8)

with v(0) = 0 such that

|u(z) − v(z)| < Kε. (3.9)

Definition 3.3. Problem (3.3) has the Ulam-Hyers stability if there exists a positive constantK
with the following property: for every ε > 0, u ∈ H[U,C], if

∣∣∣D1+α
z u(z) − f(z, u(z))

∣∣∣ < ε, (3.10)

then there exists some v ∈ H[U,C] satisfying

D1+α
z v(z) = f(z, v(z)) (3.11)

with v(z0) = c, z0 ∈ U \ {0} such that

|u(z) − v(z)| < Kε. (3.12)

We start with the following result.
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Theorem 3.4. Let u ∈ S, such that

max|u(z)| ≤ hα
2
, ∀z ∈ U, (3.13)

where

hα =
r1−α

Γ(1 − α)
∫1

0

1 + rt

(1 − t)α(1 − rt)3
dt. (3.14)

Ifmax |ρ(z)| < 1, then problem (3.1) has the Ulam-Hyers stability.

Proof. For every ε > 0, u ∈ S, we let

∣∣Dα
zu(z) − ρ(z)u(z)

∣∣ < ε (3.15)

with u(0) = 0. In view of Lemma 2.4, we obtain

max|Dα
zu(z)| = hα

(
sharp case

)
, (3.16)

consequently, we have

max|u(z)| ≤ max
∣∣Dα

zu(z) − ρ(z)u(z)
∣∣ +max

∣∣ρ(z)
∣∣max|u(z)|

≤ ε +max
∣∣ρ(z)

∣∣max|u(z)|;
(3.17)

hence we impose that

max|u(z)| ≤ ε

1 −max
∣∣ρ(z)

∣∣ := Kε. (3.18)

Obviously, v(z) = 0 is a solution of the problem (3.1) and yields

|u(z)| ≤ Kε. (3.19)

Hence (3.1) has the Ulam-Hyers stability.

Corollary 3.5. Let u ∈ H[D,C], where D ⊂ C is a convex domain, satisfying one of the following
conditions:

(1) �{u′(z)} > 0, z ∈ U,

(2) �{zu′(z)/u(z)} > 0, z ∈ U,

(3) �{1 + zu′′(z)/u′(z)} > 0, z ∈ U.

Ifmax |u(z)| ≤ hα/2 and max |ρ(z)| < 1, then problem (3.1) has the Ulam-Hyers stability.
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Proof. Assume that u ∈ H[D,C] satisfying one of the conditions (1)–(3), then u is a uni-
valent function in the unit disk; that is, u ∈ A (see [30]). Thus, in view of Theorem 3.4, prob-
lem (3.1) has the Ulam-Hyers stability.

Remark 3.6. A function f ∈ A is called bounded turning function if it satisfies the following
inequality:

�{
f ′(z)

}
> 0 (z ∈ U). (3.20)

A function f ∈ A is called star-like if it satisfies the following inequality:

�
{
zf ′(z)
f(z)

}
> 0 (z ∈ U). (3.21)

A function f ∈ A is called convex if it satisfies the following inequality

�
{
zf ′′(z)
f ′(z)

+ 1
}
> 0 (z ∈ U). (3.22)

These subclasses of analytic functions in the unit disk play an important role in the theory of
geometric function (see [30]).

Next, we consider the Ulam-Hyers stability for the nonlinear problems (3.2) and (3.3).

Theorem 3.7. Let u ∈ S, such that max |u(z)| ≤ hα/2, where

hα =
r1−α

Γ(1 − α)
∫1

0

1 + rt

(1 − t)α(1 − rt)3
dt. (3.23)

If

max
∣∣f(z, u(z))

∣∣ ≤Mmax|u(z)|, M ∈ (0, 1), (3.24)

then problem (3.2) has the Ulam-Hyers stability.

Proof. For every ε > 0, u ∈ S, we let

∣∣Dα
zu(z) − f(z, u(z))

∣∣ < ε (3.25)

with u(0) = 0. In view of Lemma 2.4, it implies that

max|Dα
zu(z)| = hα

(
sharp case

)
; (3.26)
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therefore, we pose

max|u(z)| ≤ max
∣
∣Dα

zu(z) − f(z, u(z))
∣
∣ +max

∣
∣f(z, u(z))

∣
∣

≤ ε +max
∣
∣f(z, u(z))

∣
∣

≤ ε +Mmax|u(z)|;
(3.27)

that is,

max|u(z)| ≤ ε

1 −M := Kε. (3.28)

It is clear that

v(0) = Iαz f(z, v(z))
∣∣
z=0 = 0 (3.29)

yields

|u(z)| ≤ Kε. (3.30)

Hence (3.2) has the Ulam-Hyers stability.

Now by applying Lemma 2.5, we study the Ulam-Hyers stability for the nonlinear
problems (3.3).

Theorem 3.8. Let u ∈ S, such that max |u(z)| ≤ gα/2, where

gα =
r−α

Γ(1 − α) (rF(2, 1; 1 − α; r))′,
∣∣f(z, u(z)) − f(z, v(z))∣∣ ≤ L|u(z) − v(z)|.

(3.31)

If L ∈ (0, 1), then problem (3.3) has the Ulam-Hyers stability.

Proof. Since f is a contraction mapping, then the Banach fixed-point theorem implies that
problem (3.3) has a unique solution. For every ε > 0, u ∈ S, we let

∣∣∣D1+α
z u(z) − f(z, u(z))

∣∣∣ < ε (3.32)

with u(z0) = c, z0 ∈ U \ {0}. In view of Lemma 2.5, we impose

max
∣∣∣D1+α

z u(z)
∣∣∣ = gα

(
sharp case

)
, (3.33)
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and consequently we have

max|u(z) − v(z)|
≤ max|Dα

z(u(z) − v(z))|
≤ ∣
∣Dα

zu(z) −Dα
zv(z) − f(z, u(z)) + f(z, v(z))

∣
∣ +max

∣
∣f(z, u(z)) − f(z, v(z))∣∣

≤ ε + Lmax|u(z) − v(z)|;

(3.34)

hence we receive

max|u(z) − v(z)| ≤ ε

1 − L := Kε. (3.35)

It is clear that v(z0) = c for some z0 ∈ U \ {0} yields

|u(z) − v(z)| ≤ Kε. (3.36)

Thus (3.3) has the Ulam-Hyers stability.

4. Conclusion

From above, the Ulam-Hyers stability is considered for different types of fractional Cauchy
problems in the unit disk and in the puncture unit disk. We have observed that the problems
(3.1) and (3.2) have the Ulam-Hyers stability when α ∈ (0, 1) and u ∈ S (univalent solution).
While the Ulam-Hyers stability for higher-order fractional Cauchy problem of the form (3.3)
is studied in Theorem 3.8, for z ∈ U \ {0} and u ∈ S. This leads to a set of questions:

(1) Is the fractional Cauchy problem (linear and nonlinear) has the Ulam-Hyers stabi-
lity for all u ∈ H[U,C]? (under what conditions).

(2) Is the higher-order fractional Cauchy problem has the Ulam-Hyers stability for all
u ∈ H[U,C]? (under what conditions). More specific,

(3) does the higher-order fractional Cauchy problem of the form

Dm+α
z u(z) = f(z, u(z)) (u ∈ H[U,C], m = 2, 3, . . .) (4.1)

have the Ulam-Hyers stability?

(4) If we extend our study to complex Banach space, does the last problem have the
Ulam-Hyers stability?

(5) If the study in complex Banach space, does the problem

Dmu(z) = f(z, u(z)), D :=
d

dz
(4.2)

have the Ulam-Hyers stability?
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More generalization

(6) If the study in complex Banach space, does the problem

Dmu(z) = f
(
z, u(z), Dm−1u(z)

)
, m = 2, 3, . . . , (4.3)

have the Ulam-Hyers stability?

Another special case

(7) If the study in complex Banach space, does the problem

Dmu(z) = f
(
z, zDm−1u(z)

)
, m = 2, 3, . . . , (4.4)

have the Ulam-Hyers stability?
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We investigate the generalized Ulam-Hyers stability of the Cauchy functional equation and pose
two open problems in fuzzy Banach space.

1. Introduction and Preliminaries

In 1940, Ulam [1] asked the first question on the stability problem. In 1941, Hyers [2] solved
the problem of Ulam. This result was generalized by Aoki [3] for additive mappings and by
Th. M. Rassias [4] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality:

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y
∥∥p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1. Then, the limit L(x) =
limn→∞(1/2n)f(2nx) exists for all x ∈ E and L : E → E′ is the unique additive mapping which
satisfies

∥∥f(x) − L(x)∥∥ ≤ 2ε
2 − 2p

‖x‖p (1.2)

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L is linear.
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In 1990, Th. M. Rassias [5] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for p ≥ 1. In 1991,
Gajda [6] gave an affirmative solution to this question for p > 1. It was shown by Gajda [6], as
well as by Th. M. Rassias and Šemrl [7], that one cannot prove a Th. M. Rassias type theorem
when p = 1. Găvruţa [8] proved that the function f(x) = x ln |x|, if x /= 0 and f(0) = 0 satisfies
(1.1) with ε = p = 1 but

sup
x /= 0

∣
∣f(x) −A(x)

∣
∣

|x| ≥ sup
n∈N

|n ln n −A(n)|
n

= sup
n∈N

|ln n −A(1)| = ∞ (1.3)

for any additive function A : R → R. J. M. Rassias [9] replaced the factor ‖x‖p + ‖y‖p by
‖x‖p1‖y‖p2 for p1, p2 ∈ R with p1 + p2 /= 1 (see also [10, 11]) and has obtained the following
theorem.

Theorem 1.2. LetX be a real normed linear space and Y a real complete normed linear space. Assume
that f : X → Y is an approximately additive mapping for which there exist constants θ ≥ 0 and
p = p1 + p2 /= 1 such that f satisfies the inequality:

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ θ‖x‖p1∥∥y∥∥p2 (1.4)

for all x, y ∈ X. Then, there exists a unique additive mapping L : X → Y satisfying

∥∥f(x) − L(x)∥∥ ≤ θ

|2p − 2| ‖x‖
p (1.5)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t → f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

In the case p = 1, we do not have stability [12]. In 1994, a further generalization of
Th. M. Rassias’ Theorem was obtained by Găvruţa [13], in which he replaced the bound
ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y). Isac and Th. M. Rassias [14] replaced
the factor ‖x‖p + ‖y‖p by ‖x‖p1 + ‖y‖p2 in Theorem 1.1 and solved stability problem when
p2 ≤ p1 < 1 or 1 < p2 ≤ p1, also they asked the question whether such a theorem can be proved
for p2 < 1 < p1. Găvruţa [8] gave a negative answer to this question. Isac and Th. M. Rassias
[15] applied the Ulam-Hyers-Rassias stability theory to prove fixed point theorems and study
some new applications in nonlinear analysis. During the last two decades, a number of papers
and research monographs have been published on various generalizations and applications
of the generalized Ulam-Hyers stability to a number of functional equations and mappings
(see [16–40]). We also refer the readers to the books of Czerwik [41] and Hyers et al. [42].

Th. M. Rassias [43] has obtained the following theorem and posed a problem.

Theorem 1.3. Let E1 and E2 be two Banach spaces, and let f : E1 → E2 be a mapping such that
f(tx) is continuous in t for each fixed x. Assume that there exist θ ≥ 0 and p ∈ [0, 1) such that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ θ(‖x‖p + ∥∥y
∥∥p) (1.6)
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for all x, y ∈ X. Let k be a positive integer k > 2. Then, there exists a unique linear mapping T :
E1 → E2 such that

∥
∥f(x) − T(x)∥∥ ≤ kθ

k − kp ‖x‖
ps
(
k, p

)
(1.7)

for all x ∈ X, where

s
(
k, p

)
= 1 +

1
k

k−1∑

m=2

mp. (1.8)

Th. M. Rassias Problem

What is the best possible value of k in Theorem 1.3?
Găvruţa et al. have given a generalization of [13] and have answered to Th. M. Rassias

problem [44].
In [45], J. M. Rassias et al. have investigated the generalized Ulam-Hyers “product-

sum” stability of functional equations and have obtained the following theorem.

Theorem 1.4 (see [45]). Let f : E → F be a mapping which satisfies the inequality

∥∥∥f
(
mx + y

)
+ f

(
mx − y) − 2f

(
x + y

) − 2f
(
x − y) − 2

(
m2 − 2

)
f(x) + 2f

(
y
)∥∥∥

F

≤ ε
(
‖x‖pE

∥∥y
∥∥p
E + ‖x‖2pE +

∥∥y
∥∥2p
E

) (1.9)

for all x, y ∈ Ewith x ⊥ y, where ε and p are constants with ε, p > 0 and eitherm > 1, p < 1 orm < 1,
p > 1 with m/= 0, m/= ± 1,m/=

√±2, and −1/= |m|p−1 < 1. Then, the limit limn→∞m−2nf(mnx)
exists for all x ∈ E and Q : E → F is the unique orthogonally Euler-Lagrange quadratic mapping
such that

∥∥f(x) −Q(x)
∥∥
F ≤ ε

2
∣∣m2 −m2p

∣∣‖x‖
2p
E (1.10)

for all x ∈ E.

Note that the mixed “product-sum” function was introduced by J. M. Rassias in 2008-
2009 [46–48].

We recall some basic facts concerning fuzzy normed space.
Let X be a real linear space. A functionN : X × R → [0, 1] (so-called fuzzy subset) is

said to be a fuzzy norm on X if for all x, y ∈ X and all c, t ∈ R,
(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only ifN(x, c) = 1 for all c > 0;
(N3) N(cx, t) =N(x, t/|c|) if c /= 0;
(N4) N(x + y, t) ≥ min{N(x, t),N(y, t)};
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(N5) N(x, ·) is a nondecreasing function of R and

lim
t→∞

N(x, t) = 1. (1.11)

The pair (X,N) is called a fuzzy normed linear space. The properties of fuzzy normed vector
spaces and examples of fuzzy norms are given in [49–51].

Let (X,N) be a fuzzy normed space and let {xn} be a sequence inX. Then, {xn} is said
to be convergent if there exists x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In that
case, x is called the limit of the sequence {xn} and we denote it by limn→∞xn = x.

A sequence {xn} in a fuzzy normed space (X,N) is called Cauchy if, for each ε > 0
and δ > 0, one can find some n0 such that

N(xm − xn, δ) > 1 − ε (1.12)

for all n,m ≥ n0.
It is known that every convergent sequence in a fuzzy normed space is Cauchy. If, in a

fuzzy-normed space, each Cauchy sequence is convergent, then the fuzzy-norm is said to be
complete and the fuzzy normed space is called a fuzzy Banach space.

Stability of Cauchy, Jensen, quadratic, and cubic function equation in fuzzy normed
spaces have first been investigated in [50–53].

In this paper, we give a generalization of the results from [13] and pose two open
problems in fuzzy Banach space. For convenience, we use the following abbreviation for a
given mapping f :

Df
(
x, y

)
=: f

(
x + y

) − f(x) − f(y). (1.13)

2. Stability of the Cauchy Functional Equation

Hereafter, unless otherwise stated, we will assume that X is real vector space, (Y,N) is a
complete fuzzy norm space and k is a fixed integer greater than 1.

Theorem 2.1. Let (Z,N ′) be a fuzzy normed space and ϕ : X × X → Z be a mapping such that,
ϕ(kx, ky) = αϕ(x, y) for some α with 0 < α < k. Suppose that f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′(ϕ

(
x, y

)
, t
)

(2.1)

for all x, y ∈ X and all positive real number t. Then, there is a unique additive mapping Tk : X → Y
such that Tk(x) = limn→∞f(knx)/kn and

N
(
Tk(x) − f(x), t

) ≥Mk(x, (k − α)t), (2.2)

whereMk(x, t) := min{N ′(ϕ(x, ix), t) : 1 ≤ i < k}.

Proof. By induction on k, we show that

N
(
f(kx) − kf(x), t) ≥Mk(x, t) := min

{
N ′(ϕ(x, ix), t

)
: 1 ≤ i < k} (2.3)
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for all x ∈ X and all positive real number t. Letting y = x in (2.1), we get

N
(
f(2x) − 2f(x), t

) ≥N ′(ϕ(x, x), t
)
. (2.4)

So we get (2.3) for k = 2.
Assume that (2.3) holds for k with k > 2. Letting y = kx in (2.1), we get

N
(
f((k + 1)x) − f(x) − f(kx), t) ≥N ′(ϕ(x, kx), t

)
. (2.5)

for all x ∈ X. By using (2.3) and (2.5), we get (2.3) for k + 1 and this completes the induction
argument. Replacing x by knx in (2.3), we get

N
(
f
(
kn+1x

)
− kf(knx), t

)
≥Mk(knx, t). (2.6)

Thus

N

(
f
(
kn+1x

)

kn+1
− f(knx)

kn
,

t

kn+1

)

≥Mk

(
x,

t

αn

)
(2.7)

for all x ∈ X and all positive real number t. Hence,

N

(
1

kn+1
f
(
kn+1x

)
− 1
km

f(kmx),
n∑

i=m

αi

ki+1
t

)

≥N
(

n∑

i=m

1
ki+1

f
(
ki+1x

)
− 1
ki
f
(
kix

)
,
n∑

i=m

αi

ki+1
t

)

≥ min
n⋃

i=m

{

N

(
1
ki+1

f
(
ki+1x

)
− 1
ki
f
(
kix

)
,
αi

ki+1
t

)}

≥Mk(x, t).

(2.8)

Let ε > 0 and δ > 0 be given. Since limt→∞Mk(x, t) = 1, there is some t0 > 0 such that
Mk(x, t0) > 1−ε. Since∑∞

n=0(α
n/kn)t0 <∞, there is some n0 ∈N such that

∑n
i=m(α

i/ki)t0 < kδ
for all n > m ≥ n0. It follows that

N

(
1

kn+1
f
(
kn+1x

)
− 1
km

f(kmx), δ
)

≥N
(

1
kn+1

f
(
kn+1x

)
− 1
km

f(kmx),
n∑

i=m

αi

ki+1
t0

)

≥Mk(x, t0) > 1 − ε

(2.9)

for all x ∈ X and all nonnegative integers n and m with n > m ≥ n0. Therefore, the sequence
{(1/kn)f(knx)} is a Cauchy sequence in (Y,N) for all x ∈ X. Since (Y,N) is complete, the
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sequence {(1/kn)f(knx)} converges in Y for all x ∈ X. So one can define the mapping Tk :
X → Y by

Tk(x) := lim
n→∞

1
kn
f(knx) (2.10)

for all x ∈ X. Now, we show that Tk is an additive mapping. It follows from (2.1) and (2.10)
that

N
(
DTk

(
x, y

)
, t
)
= lim

n→∞
N

(
Df

(
knx, kny

)

kn
, t

)

≥ lim
n→∞

N ′
(
ϕ
(
knx, kny

)

kn
, t

)

= lim
n→∞

N ′
(
ϕ
(
x, y

)
,
kn

αn
t

)

= 1

(2.11)

for all x, y ∈ X and all positive real number t. Therefore, the mapping Tk is additive.
Moreover, if we putm = 0 in (2.8), we observe that

N

(
1

kn+1
f
(
kn+1x

)
− f(x),

n∑

i=0

αi

ki+1
t

)

≥Mk(x, t). (2.12)

Therefore,

N

(
1

kn+1
f
(
kn+1x

)
− f(x), t

)
≥Mk

(

x,
t

∑n
i=0

(
αi/ki+1

)

)

. (2.13)

It follows from (2.13), for large enough n, that

N
(
Tk(x) − f(x), t

) ≥ min

{

N

(
f
(
kn+1x

)

kn+1
− f(x), t

)

,N

(

Tk(x) −
f
(
kn+1x

)

kn+1
, t

)}

≥Mk

(

x,
t

∑n
i=0

(
αi/ki+1

)

)

≥Mk(x, (k − α)t).

(2.14)

Now, we show that Tk is unique. Let T ′ be another additive mapping from X into Y , which
satisfies the required inequality. Then, for each x ∈ X and t > 0, we have

N
(
Tk(x) − T ′(x), t

) ≥ min
{
N
(
Tk(x) − f(x), t

)
,N

(
f(x) − T ′(x), t

)}

≥Mk(x, (k − α)t).
(2.15)
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So,

N
(
Tk(x) − T ′(x), t

)
=N

(
Tk(knx)
kn

− T ′(knx)
kn

, t

)

=N
(
Tk(knx) − T ′(knx), knt

)

≥Mk(knx, (k − α)knt)

≥Mk

(
x, (k − α)k

n

αn
t

)
.

(2.16)

Hence, the right-hand side of the above inequality tends to 1 as n → ∞. It follows that
Tk(x) = T ′(x) for all x ∈ X.

Theorem 2.2. Let (Z,N ′) be a fuzzy normed space and, Φ : X × X → Z be a mapping such that
Φ(k−1x, k−1y) = α−1Φ(x, y) for some α with α > k. Suppose that f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′(Φ

(
x, y

)
, t
)

(2.17)

for all x, y ∈ X and all positive real number t. Then, there is a unique additive mapping Tk : X → Y
such that Tk(x) = limn→∞knf(x/kn) and

N
(
Tk(x) − f(x), t

) ≥Mk(x, (α − k)t), (2.18)

whereMk(x, t) := min{N ′(Φ(x, ix), t) : 1 ≤ i < k}.

Proof. Similarly to the proof of Theorem 2.1, we have

N
(
f(kx) − kf(x), t) ≥Mk(x, t) (2.19)

for all x ∈ X and all positive real number t. Replacing x by x/kn+1 in (2.19), we get

N

(
f

(
x

kn

)
− kf

(
x

kn+1

)
, t

)
≥Mk

(
x

kn+1
, t

)
. (2.20)

Thus,

N

(
knf

(
x

kn

)
− kn+1f

(
x

kn+1

)
, knt

)
≥Mk

(
x, αn+1t

)
(2.21)
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for all x ∈ X and all positive real number t. Hence,

N

(

kn+1f

(
x

kn+1

)
− kmf

(
x

km

)
,
n∑

i=m

ki

αi+1
t

)

≥N
(

n∑

i=m

ki+1f

(
x

ki+1

)
− kif

(
x

ki

)
,
n∑

i=m

ki

αi+1
t

)

≥ min
n⋃

i=m

{

N

(

ki+1f

(
x

ki+1

)
− kif

(
x

ki

)
,
ki

αi+1
t

)}

≥Mk(x, t).
(2.22)

Let ε > 0 and δ > 0 be given. Since limt→∞Mk(x, t) = 1, there is some t0 > 0 such that
Mk(x, t0) > 1−ε. Since∑∞

n=0(k
n/αn)t0 <∞, there is some n0 ∈N such that

∑n
i=m(k

i/αi)t0 < αδ
for all n > m ≥ n0. It follows from (2.22) that

N

(
kn+1f

(
x

kn+1

)
− kmf

(
x

km

)
, δ

)
≥N

(

kn+1f

(
x

kn+1

)
− kmf

(
x

km

)
,
n∑

i=m

ki

αi+1
t0

)

≥Mk(x, t0) > 1 − ε
(2.23)

for all x ∈ X and all nonnegative integers n and m with n > m ≥ n0. Therefore, the sequence
{knf(x/kn)} is a Cauchy sequence in (Y,N) for all x ∈ X. Since (Y,N) is complete, the
sequence {knf(x/kn)} converges in Y for all x ∈ X. So one can define the mapping Tk : X →
Y by

Tk(x) := lim
n→∞

knf

(
x

kn

)
(2.24)

for all x ∈ X. The rest of the proof is similar to the proof of Theorem 2.1

Theorem 2.3. Let X be a normed space, let (Z,N ′) be a fuzzy normed space, and let ψ : [0,∞) →
[0,∞) be a function such that

(1) ψ(ts) = ψ(t)ψ(s),
(2) ψ(t) < t for all t > 1.

Suppose that a mapping f : X → Y satisfies the inequality:

N
(
Df

(
x, y

)
, t
) ≥N ′((ψ(‖x‖) + ψ(∥∥y∥∥))z0, t

)
(2.25)

for all x, y ∈ X and all positive real number t, where z0 is a fixed vector of Z. Then, there exists a
unique additive mapping Tk : X → Y satisfying Tk(x) := limn→∞(f(knx)/kn) and

N
(
Tk(x) − f(x), t

) ≥N ′
(

ψ(‖x‖)z0,
k − ψ(k)
σk

(
ψ
) t

)

(2.26)

for all x ∈ X, where σk(ψ) = max{1 + ψ(i) : 1 ≤ i < k}. Moreover, Tk = T2 for all k ≥ 2.
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Proof. Let

ϕ
(
x, y

)
=
(
ψ(‖x‖) + ψ(‖y‖))z0 (2.27)

for all x, y ∈ X. So,

ϕ
(
kx, ky

)
= ψ(k)ϕ

(
x, y

)
. (2.28)

where ψ(k) < k. By using Theorem 2.1, we can get (2.26). Now, we show that Tk = T2. It
follows from (1) that ψ(kn) = (ψ(k))n. Replacing x by 2nx in (2.26), we get

N
(
Tk(2nx) − f(2nx), t

) ≥N ′
(

ψ(‖2nx‖)z0,
k − ψ(k)
σk

(
ψ
) t

)

(2.29)

for all x ∈ X. So we have

N

(
Tk(x) −

f(2nx)
2n

, t

)
≥N ′

(

ψ(‖x‖)z0,
k − ψ(k)

σk
(
ψ
)
ψ(2n)

2nt

)

(2.30)

Using (2) and passing the limit n → ∞ in (2.30), we get Tk = T2.

Theorem 2.4. Let X be a normed space, let (Z,N ′) be a fuzzy normed space, and let ψ : [0,∞) →
[0,∞) be a function such that

(1) ψ(ts) = ψ(t)ψ(s),
(2) ψ(t) > t for all t > 1.

Suppose that a mapping f : X → Y satisfies the inequality:

N
(
Df

(
x, y

)
, t
) ≥N ′((ψ(‖x‖) + ψ(∥∥y∥∥))z0, t

)
(2.31)

for all x, y ∈ X and all positive real number t, where z0 is a fixed vector of Z. Then, there exists a
unique additive mapping Tk : X → Y satisfying Tk(x) := limn→∞knf(x/kn) and

N
(
Tk(x) − f(x), t

) ≥N ′
(

ψ(‖x‖)z0,
ψ(k) − k
σk

(
ψ
) t

)

(2.32)

for all x ∈ X, where

σk
(
ψ
)
= max

{
1 + ψ(i) : 1 ≤ i < k}. (2.33)

Moreover, Tk = T2 for all k ≥ 2.

Proof. Let

Φ
(
x, y

)
=
(
ψ(‖x‖) + ψ(∥∥y∥∥))z0 (2.34)
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for all x, y ∈ X. So, we have

Φ
(
k−1x, k−1y

)
= ψ

(
k−1

)
Φ
(
x, y

)
, (2.35)

where ψ(k−1) = ψ(k)−1 < k−1. It follows from (1) that ψ(k−n) = (ψ(k))−n. By using
Theorem 2.2, we can get (2.32). Now, we show that Tk = T2. Replacing x by x/2n in (2.32), we
get

N
(
Tk

( x
2n

)
− f

( x
2n

)
, t
)
≥N ′

(

ψ
(∥∥
∥
( x
2n

)∥∥
∥
)
z0,

ψ(k) − k
σk

(
ψ
) t

)

. (2.36)

for all x ∈ X. So we have

N
(
Tk(x) − 2nf

( x
2n

)
, t
)
≥N ′

(

ψ(‖x‖)z0,
ψ(k) − k

2nσk
(
ψ
)
ψ(2−n)

t

)

. (2.37)

Using (2) and passing the limit n → ∞ in (2.37), we get Tk = T2.

Theorem 2.5. Let X be a normed space, let p be a nonnegative real number such that p /= 1, and let
H : [0,∞) × [0,∞) → [0,∞) be a homogeneous function of degree p. Suppose that (Z,N ′) be a
fuzzy normed space and let f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′(H

(‖x‖,∥∥y∥∥)z0, t
)

(2.38)

for all x, y ∈ X and all positive real number t, where z0 is a fixed vector of Z. Then, there exists a
unique additive mapping Tk : X → Y such that

N
(
Tk(x) − f(x), t

) ≥Mk(x, |kp − k|t), (2.39)

whereMk(x, t) := min{N ′(‖x‖pH(1, i)z0, t) : 1 ≤ i < k}.

Proof. The proof follows from Theorems 2.1 and 2.2.

For the particular casesH(x, y) = θ(xp+yp),H(x, y) = xrys,H(x, y) = xrys+xr+s+yr+s(r+s =
p), andH(x, y) = min{xp, yp}, we have the following corollaries.

Corollary 2.6. Let X be a normed space, let p be a nonnegative real number such that p /= 1. Suppose
that (Z,N ′) be a fuzzy normed space and f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′((‖x‖p + ∥∥y

∥∥p)θ, t
)

(2.40)

for all x, y ∈ X and all positive real number t, where θ is a fixed vector of Z. Then, there exists a
unique additive mapping Tk : X → Y such that

N
(
Tk(x) − f(x), t

) ≥N ′
(
‖x‖pθ, |kp − k|

1 + (k − 1)p
t

)
. (2.41)
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Corollary 2.7. Let X be a normed space, r, s be non-negative real numbers such that p := r + s /= 1.
Suppose that (Z,N ′) be a fuzzy normed space and f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′(‖x‖r∥∥y∥∥sθ, t) (2.42)

for all x, y ∈ X and all positive real number t, where θ is a fixed vector ofZ. Then there exists a unique
additive mapping Tk : X → Y such that

N
(
Tk(x) − f(x), t

) ≥N ′
(
‖x‖pθ, |k

p − k|
(k − 1)s

t

)
. (2.43)

Corollary 2.8. Let X be a normed space, and let r, s be nonnegative real numbers such that p :=
r + s /= 1. Suppose that (Z,N ′) be a fuzzy normed space and let f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′

(
θ‖x‖r∥∥y∥∥s + θ‖x‖r+s + θ∥∥y∥∥r+s, t

)
(2.44)

for all x, y ∈ X and all positive real number t, where θ is a fixed vector of Z. Then, there exists a
unique additive mapping Tk : X → Y such that

N
(
Tk(x) − f(x), t

) ≥N ′
(
‖x‖pθ, |kp − k|

(k − 1)s + (k − 1)p + 1
t

)
. (2.45)

Corollary 2.9. Let X be a normed space, let p be a nonnegative real number such that p /= 1. Suppose
that (Z,N ′) be a fuzzy normed space and let f : X → Y be mapping such that

N
(
Df

(
x, y

)
, t
) ≥N ′(min

{‖x‖p,∥∥y∥∥p}θ, t) (2.46)

for all x, y ∈ X and all positive real number t, where θ is a fixed vector of Z. Then, there exists a
unique additive mapping Tk : X → Y such that

N
(
Tk(x) − f(x), t

) ≥N ′(‖x‖pθ, |kp − k|t). (2.47)

Problem 1. Whether Theorem 2.5 and/or such Corollaries can be proved for p = 1?

Problem 2. What is the best possible value of k in Corollaries 2.6 and 2.7?
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Universitătii “Politehnica” din Timişoara. Seria Matematica-Fizica, vol. 47(61), no. 1, pp. 59–70, 2002.

[24] K. W. Jun and Y. H. Lee, “On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality,”
Mathematical Inequalities & Applications, vol. 4, no. 1, pp. 93–118, 2001.

[25] K. Jun, H. Kim, and J. Rassias, “Extended Hyers-Ulam stability for Cauchy-Jensen mappings,” Journal
of Difference Equations and Applications, pp. 1–15, 2007.

[26] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic
Press, Palm Harbor, Fla, USA, 2001.



Abstract and Applied Analysis 13

[27] S. M. Jung, “Asymptotic properties of isometries,” Journal of Mathematical Analysis and Applications,
vol. 276, no. 2, pp. 642–653, 2002.

[28] Pl. Kannappan, “Quadratic functional equation and inner product spaces,” Results in Mathematics,
vol. 27, no. 3-4, pp. 368–372, 1995.

[29] H. M. Kim, J. M. Rassias, and Y. S. Cho, “Stability problem of Ulam for Euler-Lagrange quadratic
mappings,” Journal of Inequalities and Applications, vol. 2007, Article ID 10725, 15 pages, 2007.

[30] Y. S. Lee and S. Y. Chung, “Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized
functions,” Applied Mathematics Letters of Rapid Publication, vol. 21, no. 7, pp. 694–700, 2008.
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We find out the general solution of a generalized Cauchy-Jensen functional equation and prove
its stability. In fact, we investigate the existence of a Cauchy-Jensen mapping related to the
generalized Cauchy-Jensen functional equation and prove its uniqueness. In the last section of this
paper, we treat a fixed point approach to the stability of the Cauchy-Jensen functional equation.

1. Introduction

In 1940, Ulam [1] gave a wide-range talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of important unsolved problems. Among those
was the question concerning the stability of homomorphisms.

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 → G2

with d(h(x),H(x)) < ε for all x ∈ G1?
The case of approximately additive mappings was solved by Hyers [2] under the

assumption that G1 and G2 are Banach spaces. In 1978, Rassias [3] gave a generalization
of Hyers’s result. Many authors investigated solutions or stability of various functional
equations (see [4–7]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Note that the only substantial difference of the generalized metric from the metric is
that the range of generalized metric includes the infinity.

In this paper, let X and Y be two real vector spaces.

Definition 1.1. A mapping f : X × X → Y is called a Cauchy-Jensen mapping if f satisfies the
system of equations:

f
(
x + y, z

)
= f(x, z) + f

(
y, z
)
,

2f
(
x,
y + z
2

)
= f
(
x, y
)
+ f(x, z).

(1.1)

WhenX = Y = R, the function f : R×R → R given by f(x, y) := axy+bx is a solution
of (1.1).

For a mappings f : X ×X → Y , consider the functional equation:

nf

⎛

⎝
n∑

i=1

xi,
1
n

n∑

j=1

yj

⎞

⎠ =
n∑

i=1

n∑

j=1

f
(
xi, yj

)
, (1.2)

where n is a fixed integer greater than 1. In 2006, the authors [8] solved the functional
equation:

2f
(
x + y,

z +w
2

)
= f(x, z) + f(x,w) + f

(
y, z
)
+ f
(
y,w

)
, (1.3)

which is a special case of (1.2) for n = 2.

In this paper, we find out the general solution and we prove the generalized Hyers-
Ulam stability of the functional equation (1.2).

2. General Solution of (1.2)

The following lemma ia a well-known fact (see, e.g., [6]).

Lemma 2.1. A mapping g : X → Y satisfies Jensen’s functional equation:

2g
(
y + z
2

)
= g
(
y
)
+ g(z) (2.1)

for all y, z ∈ X if and only if it satisfies the generalized Jensen’s functional equation:

ng

(
y1 + · · · + yn

n

)
= g
(
y1
)
+ · · · + g(yn

)
(2.2)

for all y1, . . . , yn ∈ X.
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Theorem 2.2. A mapping f : X ×X → Y satisfies (1.1) if and only if it satisfies (1.2).

Proof. If f satisfies (1.1), then we get

nf

⎛

⎝
n∑

i=1

xi,
1
n

n∑

j=1

yj

⎞

⎠ = n
n∑

i=1

f

⎛

⎝xi,
1
n

n∑

j=1

yj

⎞

⎠, (2.3)

for all x1, . . . , xn, y1, . . . , yn ∈ X. Hence, we obtain that f satisfies (1.2) by Lemma 2.1.
Conversely, assume that f satisfies (1.2). Letting x1 = · · · = xn = 0 and y1 = · · · = yn = z

in (1.2), we get f(0, z) = 0 for all z ∈ X. Putting x1 = x, x2 = y, x3 = · · · = xn = 0, and
y1 = · · · = yn = z in (1.2), we have

f
(
x + y, z

)
= f(x, z) + f

(
y, z
)

(2.4)

for all x, y, z ∈ X. Setting x1 = x and x2 = · · · = xn = 0 in (1.2), we obtain that

nf

⎛

⎝x,
1
n

n∑

j=1

yj

⎞

⎠ =
n∑

j=1

f
(
x, yj

)
(2.5)

for all x, y1, . . . , yn ∈ X. By Lemma 2.1, we see that

2f
(
x,
y + z
2

)
= f
(
x, y
)
+ f(x, z), (2.6)

for all x, y, z ∈ X.

3. Stability of (1.3) Using the Alternative of Fixed Point

In this section, let Y be a real Banach space. We investigate the stability of functional equation
(1.3) using the alternative of fixed point. Before proceeding the proof, we will state the
theorem which is the alternative of fixed point.

Theorem 3.1 (The alternative of fixed point [9]). Suppose that one is given a complete generalized
metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with Lipschitz constant L. Then,
for each given x ∈ Ω, either

d
(
Tnx, Tn+1x

)
= ∞ ∀n ≥ 0, (3.1)

Or there exists a positive integer n0 such that

(i) d(Tnx, Tn+1x) <∞ for all n ≥ n0;
(ii) the sequence (Tnx) is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in the set Δ = {y ∈ Ω | d(Tn0x, y) <∞};
(iv) d(y, y∗) ≤ 1/(1 − L)d(y, Ty) for all y ∈ Δ.

From now on, let Ω be the set of all mappings g : X ×X → Y satisfying g(0, 0) = 0.
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Lemma 3.2. Let ψ : X × X → [0,∞) be a function. Consider the generalized metric d on Ω given
by

d
(
g, h
)
= dψ

(
g, h
)
:= infSψ

(
g, h
)
, (3.2)

where Sψ(g, h) := {K ∈ [0,∞] | ‖g(x, y) − h(x, y)‖ ≤ Kψ(x, y) forall x, y ∈ X} for all g, h ∈ Ω.
Then, (Ω, d) is complete.

Proof. Let {gn} be a Cauchy sequence in (Ω, d). Then, given ε > 0, there exists N such that
d(gn, gk) < ε if n, k ≥ N. Let n, k ≥ N. Since d(gn, gk) = infSψ(gn, gk) < ε, there exists
K ∈ [0, ε) such that

∥
∥gn
(
x, y
) − gk

(
x, y
)∥∥ ≤ Kψ(x, y) ≤ εψ(x, y) (3.3)

for all x, y ∈ X. So, for each x, y ∈ X, {gn(x, y)} is a Cauchy sequence in Y . Since Y is
complete, for each x, y ∈ X, there exists g(x, y) ∈ Y such that gn(x, y) → g(x, y) as n → ∞.
So g(0, 0) = limn→∞gn(0, 0) = 0. Thus, we have g ∈ Ω. Taking the limit as k → ∞ in (3.3), we
obtain that

n ≥N =⇒ ∥∥gn
(
x, y
) − g(x, y)∥∥ ≤ εψ(x, y), ∀x, y ∈ X

=⇒ ε ∈ Sψ
(
gn, g

)

=⇒ d
(
gn, g

)
= inf Sψ

(
gn, g

) ≤ ε.
(3.4)

Hence, gn → g ∈ Ω as n → ∞.

Using an idea of Cădariu and Radu (see [10] and also [4] where applications of
different fixed point theorems to the theory of the Hyers-Ulam stability can be found), we
will prove the generalized Hyers-Ulam stability of (1.3).

Theorem 3.3. Let L ∈ (0, 1) and ϕ satisfy

ϕ
(
x, y, z,w

) ≤ 6Lϕ
(
x

2
,
y

2
,
z

3
,
w

3

)
(3.5)

for all x, y, z,w ∈ X. Suppose that a mapping f : X × X → Y fulfils f(0, 0) = 0 and the functional
inequality:

∥∥∥2f
(
x + y,

z +w
2

)
− f(x, z) − f(x,w) − f(y, z) − f(y,w)

∥∥∥ ≤ ϕ(x, y, z,w) (3.6)

for all x, y, z,w ∈ X. Then, there exists a unique mapping F : X ×X → Y satisfying (1.3) such that

∥∥f
(
x, y
) − F(x, y)∥∥ ≤ L

1 − Lψ
(
x, y
)
, (3.7)
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where ψ : X ×X → [0,∞) is a function given by

ψ
(
x, y
)

:= ϕ
(
x, x, y,−y) + 2ϕ

(
x, x,−y, y) + ϕ(x, x, y, y) + ϕ(x, x,−y, 3y) + 1

2
ϕ
(
x, x, 3y, 3y

)

(3.8)

for all x, y ∈ X.

Proof. By a similar method to the proof of Theorem 2.3 in [11], we have the inequality:

(∥∥6f
(
x, y
) − f(2x, 3y)∥∥) ≤ ϕ

(
x, x, y,−y) + 2ϕ

(
x, x,−y, y)

+ ϕ
(
x, x, y, y

)
+ ϕ
(
x, x,−y, 3y) + 1

2
ϕ
(
x, x, 3y, 3y

) (3.9)

for all x, y ∈ X. By (3.5), we get

∥∥6f
(
x, y
) − f(2x, 3y)∥∥ ≤ ψ(x, y) ≤ 6Lψ

(
x

2
,
y

3

)
(3.10)

for all x, y ∈ X. Consider the generalized metric d on Ω given by

d
(
g, h
)
= dψ

(
g, h
)
:= infSψ

(
g, h
)

(3.11)

for all g, h ∈ Ω. Then, we obtain

d
(
f, Tf

) ≤ L <∞. (3.12)

By Lemma 3.2, the generalized metric space (Ω, d) is complete. Now, we define a mapping
T : Ω → Ω by

Tg
(
x, y
)
:=

1
6
g
(
2x, 3y

)
(3.13)

for all g ∈ Ω and all x, y ∈ X. Observe that, for all g, h ∈ Ω,

K′ ∈ Sψ
(
g, h
)
, K′ < K

=⇒ ∥∥g(x, y) − h(x, y)∥∥ ≤ K′ψ
(
x, y
) ≤ Kψ(x, y) ∀x, y ∈ X

=⇒ K ∈ Sψ
(
g, h
)
.

(3.14)
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Let g, h ∈ Ω, K ∈ [0,∞] and d(g, h) < K. Then, there is a K′ ∈ Sψ(g, h) such that K′ < K. By
the above observation, we gainK ∈ Sψ(g, h). So, we get ‖g(x, y) − h(x, y)‖ ≤ Kψ(x, y) for all
x, y ∈ X. Thus, we have

∥
∥
∥
∥
1
6
g
(
2x, 3y

) − 1
6
h
(
2x, 3y

)
∥
∥
∥
∥ ≤ 1

6
Kψ
(
2x, 3y

)
(3.15)

for all x, y ∈ X. By (3.5), we obtain that

∥∥
∥
∥
1
6
g
(
2x, 3y

) − 1
6
h
(
2x, 3y

)
∥∥
∥
∥ ≤ LKψ(x, y) (3.16)

for all x, y ∈ X. Hence, d(Tg, Th) ≤ LK. Therefore, we obtain that

d
(
Tg, Th

) ≤ Ld(g, h) (3.17)

for all g, h ∈ Ω, that is, T is a strictly contractive mapping of Ω with Lipschitz constant L.
Applying the alternative of fixed point, we see that there exists a fixed point F of T in Ω such
that

F
(
x, y
)
= lim

n→∞
1
6n
f
(
2nx, 3ny

)
(3.18)

for all x, y ∈ X. Replacing x, y, z,w by 2nx, 2ny, 3nz, 3nw in (3.6), respectively, and dividing
by 4n, we have

∥∥F
(
x + y, z −w) + F(x − y, z +w) − 2F(x, z) − 2F

(
y,w

)∥∥

= lim
n→∞

1
6n
∥∥f
(
2n
(
x + y

)
, 3n(z −w)

)
+ f
(
2n
(
x − y), 3n(z +w)

)

−2f(2nx, 3nz) − 2f
(
2ny, 3nw

)∥∥

≤ lim
n→∞

1
6n
ϕ
(
2nx, 2ny, 3nz, 3nw

)

(3.19)

for all x, y, z,w ∈ X. By (3.5), the mapping F satisfies (1.3). By (3.5) and (3.10), we obtain that

∥∥∥Tnf
(
x, y
) − Tn+1f(x, y)

∥∥∥ =
1
6n

∥∥∥∥f
(
2nx, 3ny

) − 1
6
f
(
2n+1x, 3n+1y

)∥∥∥∥

≤ L

6n
ψ
(
2n−1x, 3n−1y

)
≤ · · · ≤ L

6n
(6L)n−1ψ

(
x, y
)

=
Ln

6
ψ
(
x, y
)

(3.20)
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for all x, y ∈ X and all n ∈ N, that is, d(Tnf, Tn+1f) ≤ Ln/6 < ∞ for all n ∈ N. By the fixed
point alternative, there exists a natural number n0 such that the mapping F is the unique fixed
point of T in the set Δ = {g ∈ Ω | d(Tn0f, g) <∞}. So, we have d(Tn0f, F) <∞. Since

d
(
f, Tn0f

) ≤ d(f, Tf) + d
(
Tf, T2f

)
+ · · · + d

(
Tn0−1f, Tn0f

)
<∞, (3.21)

we get f ∈ Δ. Thus, we have d(f, F) ≤ d(f, Tm0f) + d(Tm0f, F) <∞. Hence, we obtain

∥
∥f
(
x, y
) − F(x, y)∥∥ ≤ Kψ(x, y) (3.22)

for all x, y ∈ X and a K ∈ [0,∞). Again, using the fixed point alternative, we have

d
(
f, F
) ≤ 1

1 − Ld
(
f, Tf

)
. (3.23)

By (3.12), we may conclude that

d
(
f, F
) ≤ L

1 − L, (3.24)

which implies inequality (3.7).

Theorem 3.4. L ∈ (0, 1) and ϕ satisfy

ϕ
(
x, y, z,w

) ≤ L

6
ϕ
(
2x, 2y, 3z, 3w

)
(3.25)

for all x, y, z,w ∈ X. Suppose that a mapping f : X × X → Y fulfils f(0, 0) = 0 and the functional
inequality (3.6). Then, there exists a unique mapping F : X ×X → Y satisfying (1.3) such that

∥∥f
(
x, y
) − F(x, y)∥∥ ≤ 1

1 − Lψ
(
x, y
)
, (3.26)

where ψ : X ×X → [0,∞) is a function given by

ψ
(
x, y
)
:= ϕ

(
x

2
,
x

2
,
y

3
,−y

3

)
+ 2ϕ

(
x

2
,
x

2
,−y

3
,
y

3

)
+ ϕ
(
x

2
,
x

2
,
y

3
,
y

3

)

+ ϕ
(
x

2
,
x

2
,−y

3
, y

)
+
1
2
ϕ
(x
2
,
x

2
, y, y

) (3.27)

for all x, y ∈ X.
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Proof. By a similar method to the proof of Theorem 2.3 in [11], we have the inequality

∥∥6f
(
x, y
) − f(2x, 3y)∥∥ ≤ ϕ

(
x, x, y,−y)

+ 2ϕ
(
x, x,−y, y) + ϕ(x, x, y, y) + ϕ(x, x,−y, 3y) + 1

2
ϕ
(
x, x, 3y, 3y

)

(3.28)

for all x, y ∈ X. So, we get

∥
∥
∥
∥f
(
x, y
) − 6f

(
x

2
,
y

3

)∥∥
∥
∥ ≤ ψ(x, y) (3.29)

for all x, y ∈ X. Consider the generalized metric d on Ω given by

d
(
g, h
)
= dψ

(
g, h
)
:= infSψ

(
g, h
)

(3.30)

for all g, h ∈ Ω. Then, we obtain

d
(
f, Tf

) ≤ 1 <∞. (3.31)

By Lemma 3.2, the generalized metric space (Ω, d) is complete. Now, we define a mapping
T : Ω → Ω by

Tg
(
x, y
)
:= 6g

(
x

2
,
y

3

)
(3.32)

for all g ∈ Ω and all x, y ∈ X. By the same argument as in the proof of Theorem 2.3 in [11], T
is a strictly contractive mapping of Ω with Lipschitz constant L. Applying the alternative of
fixed point, we see that there exists a fixed point F of T in Ω such that

F
(
x, y
)
= lim

n→∞
6nf
(
x

2n
,
y

3n

)
(3.33)

for all x, y ∈ X. Replacing x, y, z,w by x/2n, y/2n, z/3n,w/3n in (3.6), respectively, and
multiplying by 6n, we have

∥∥F
(
x + y, z −w) + F(x − y, z +w) − 2F(x, z) − 2F

(
y,w

)∥∥

= lim
n→∞

6n
∥∥∥∥f
(
x + y
2n

,
z −w
3n

)
+ f
(
x − y
2n

,
z +w
3n

)
− 2f

(
x

2n
,
z

3n

)
− 2f

(
y

2n
,
w

3n

)∥∥∥∥

≤ lim
n→∞

6nϕ
(
x

2n
,
y

2n
,
z

3n
,
w

3n

)
(3.34)
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for all x, y, z,w ∈ X. By (3.25), the mapping F satisfies (1.3). By (3.25), we obtain that

‖Tnf(x, y) − Tn+1f(x, y)

= 6n
∥
∥
∥
∥f
(
x

2n
,
y

3n

)
− 6f

(
x

2n+1
,
y

3n+1

)∥∥
∥
∥

≤ 6nψ
(
x

2n
,
y

3n

)
≤ 6n−1Lψ

(
x

2n−1
,
y

3n−1

)
≤ 6n−2L2ψ

(
x

2n−2
,
y

3n−2

)
≤ · · · ≤ Lnψ(x, y)

(3.35)

for all x, y ∈ X and all n ∈ N, that is, d(Tnf, Tn+1f) ≤ Ln < ∞ for all n ∈ N. By the same
reasoning as in the proof of Theorem 2.3 in [11], we have

d
(
f, F
) ≤ 1

1 − Ld
(
f, Tf

)
. (3.36)

By (3.31), we may conclude that

d
(
f, F
) ≤ 1

1 − L, (3.37)

which implies inequality (3.26).
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The objective of the present paper is to determine the generalized Hyers-Ulam stability of the
mixed additive-cubic functional equation in n-Banach spaces by the direct method. In addition,
we show under some suitable conditions that an approximately mixed additive-cubic function can
be approximated by a mixed additive and cubic mapping.

1. Introduction and Preliminaries

A basic question in the theory of functional equations is as follows: when is it true that
a function, which approximately satisfies a functional equation, must be close to an exact
solution of the equation?

If the problem accepts a unique solution, we say the equation is stable (see [1]). The
study of stability problems for functional equations is related to a question of Ulam [2]
concerning the stability of group homomorphisms and affirmatively answered for Banach
spaces by Hyers [3]. The result of Hyers was generalized by Aoki [4] for approximate
additive mappings and by Rassias [5] for approximate linear mappings by allowing the
Cauchy difference operator CDf(x, y) = f(x + y) − [f(x) + f(y)] to be controlled by
ε(‖x‖p + ‖y‖p). In 1994, a generalization of Rassias’ theorem was obtained by Găvruţa [6],
who replaced ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y). On the other hand, several
further interesting discussions, modifications, extensions, and generalizations of the original
problem of Ulam have been proposed (see, e.g. [7–12] and the references therein).

Recently, Park [9] investigated the approximate additive mappings, approximate
Jensen mappings, and approximate quadratic mappings in 2-Banach spaces and proved the
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generalized Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional
equation, and the quadratic functional equation in 2-Banach spaces. This is the first result for
the stability problem of functional equations in 2-Banach spaces.

In [11, 12], we introduced the following mixed additive-cubic functional equation for
fixed integers k with k /= 0, ±1:

f
(
kx + y

)
+ f
(
kx − y) = kf(x + y

)
+ kf

(
x − y) + 2f(kx) − 2kf(x), (1.1)

with f(0) = 0, and investigated the generalized Hyers-Ulam stability of (1.1) in quasi-Banach
spaces and non-Archimedean fuzzy normed spaces, respectively.

In this paper, we investigate, approximatemixed additive-cubicmappings in n-Banach
spaces. That is, we prove the generalized Hyers-Ulam stability of a general mixed additive-
cubic equation (1.1) in n-Banach spaces by the direct method.

The concept of 2-normed spaces was initially developed by Gähler [13, 14] in the
middle of 1960s, while that of n-normed spaces can be found in [15, 16]. Since then, many
others have studied this concept and obtained various results; see for instance [15, 17–19].

We recall some basic facts concerning n-normed spaces and some preliminary results.

Definition 1.1. Let n ∈ N, and let X be a real linear space with dim X ≥ n and ‖·, . . . , ·‖ : Xn →
R a function satisfying the following properties:

(N1) ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent,

(N2) ‖x1, x2, . . . , xn‖ is invariant under permutation,

(N3) ‖αx1, x2, . . . , xn‖ = |α|‖x1, x2, . . . , xn‖,
(N4) ‖x + y, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖ + ‖y, x2, . . . , xn‖

for all α ∈ R and x, y, x1, x2, . . . , xn ∈ X. Then the function ‖·, . . . , ·‖ is called an n-norm on X
and the pair (X, ‖·, . . . , ·‖) is called an n-normed space.

Example 1.2. For x1, x2, . . . , xn ∈ R
n, the Euclidean n-norm ‖x1, x2, . . . , xn‖E is defined by

‖x1, x2, . . . , xn‖E =
∣∣det
(
xij
)∣∣ = abs

⎛

⎜⎜⎜
⎝

∣∣∣∣∣∣∣∣∣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

∣∣∣∣∣∣∣∣∣

⎞

⎟⎟⎟
⎠
, (1.2)

where xi = (xi1, . . . , xin) ∈ R
n for each i = 1, 2, . . . , n.

Example 1.3. The standard n-norm on X, a real inner product space of dimension dim X ≥ n,
is as follows:

‖x1, x2, . . . , xn‖S =

∣∣∣∣∣∣∣∣∣

〈x1, x1〉 · · · 〈x1, xn〉
...

. . .
...

〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣∣∣∣∣∣∣

1/2

, (1.3)

where 〈·, ·〉 denotes the inner product on X. IfX = R
n, then this n-norm is exactly the same as

the Euclidean n-norm ‖x1, x2, . . . , xn‖E mentioned earlier. For n = 1, this n-norm is the usual
norm ‖x1‖ = 〈x1, x1〉1/2.
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Definition 1.4. A sequence {xk} in an n-normed space X is said to converge to some x ∈ X in
the n-norm if

lim
k→∞

∥
∥xk − x, y2, . . . , yn

∥
∥ = 0, (1.4)

for every y2, . . . , yn ∈ X.

Definition 1.5. A sequence {xk} in an n-normed space X is said to be a Cauchy sequence with
respect to the n-norm if

lim
k,l→∞

∥
∥xk − xl, y2, . . . , yn

∥
∥ = 0, (1.5)

for every y2, . . . , yn ∈ X. If every Cauchy sequence in X converges to some x ∈ X, then X is
said to be complete with respect to the n-norm. Any complete n-normed space is said to be
an n-Banach space.

Now we state the following results as lemma (see [9] for the details).

Lemma 1.6. Let X be an n-normed space. Then,

(1) For xi ∈ X(i = 1, . . . , n) and γ , a real number,

∥∥x1, . . . , xi, . . . , xj , . . . , xn
∥∥ =
∥∥x1, . . . , xi, . . . , xj + γxi, . . . , xn

∥∥ (1.6)

for all 1 ≤ i /= j ≤ n,
(2) |‖x, y2, . . . , yn‖ − ‖y, y2, . . . , yn‖| ≤ ‖x − y, y2, . . . , yn‖ for all x, y, y2, . . . , yn ∈ X,

(3) if ‖x, y2, . . . , yn‖ = 0 for all y2, . . . , yn ∈ X, then x = 0,

(4) for a convergent sequence {xj} in X,

lim
j→∞

∥∥xj , y2, . . . , yn
∥∥ =
∥∥∥∥ limj→∞

xj , y2, . . . , yn

∥∥∥∥ (1.7)

for all y2, . . . , yn ∈ X.

2. Approximate Mixed Additive-Cubic Mappings

In this section, we investigate the generalized Hyers-Ulam stability of the generalized mixed
additive-cubic functional equation in n-Banach spaces. Let X be a linear space and Y an n-
Banach space. For convenience, we use the following abbreviation for a given mapping f :
X → Y :

Df
(
x, y
)
:= f
(
kx + y

)
+ f
(
kx − y) − kf(x + y

) − kf(x − y) − 2f(kx) + 2kf(x) (2.1)

for all x, y ∈ X.



4 Abstract and Applied Analysis

Theorem 2.1. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=0

1
2j
ϕ
(
2jx, 2jy, u2, . . . , un

)
<∞, (2.2)

∥
∥Df(x, y), u2, . . . , un

∥
∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.3)

for all x, y, u2, . . . , un ∈ X. Then, there is a unique additive mapping A : X → Y such that

∥
∥f(2x) − 8f(x) −A(x), u2, . . . , un

∥
∥
Y ≤

∞∑

j=0

1
2j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.4)

for all x, u2, . . . , un ∈ X, where

ϕ̃(x, u2, . . . , un)

:=
1

|k3 − k|
{
(|k| + 1)

[
ϕ(x, (2k + 1)x, u2, . . . , un) + ϕ(x, (2k − 1)x, u2, . . . , un)

]

+ ϕ(3x, x, u2, . . . , un) +
(
8k2 + 1

)
ϕ(x, x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un)

+ ϕ(x, kx, u2, . . . , un) + k2ϕ(2x, 2x, u2, . . . , un) + ϕ(2x, 2kx, u2, . . . , un)

+ 2ϕ(x, (k + 1)x, u2, . . . , un) + 2ϕ(x, (k − 1)x, u2, . . . , un) + 2ϕ(2x, x, u2, . . . , un)

+ 2ϕ(2x, kx, u2, . . . , un) + 8ϕ
(
x

2
,
kx

2
, u2, . . . , un

)

+ 8|k|ϕ
(
x

2
,
(2k − 1)x

2
, u2, . . . , un

)
+ 8|k|ϕ

(
x

2
,
(2k + 1)x

2
, u2, . . . , un

)

+ 8ϕ
(
x

2
,
3kx
2
, u2, . . . , un

)
+
|k| + 1
|k − 1|ϕ(0, (k + 1)x, u2, . . . , un)

+
8k2 + 1
|k − 1| ϕ(0, (k − 1)x, u2, . . . , un) +

2
|k − 1|ϕ(0, x, u2, . . . , un)

+
|k|

|k − 1|ϕ(0, (3k − 1)x, u2, . . . , un) +
k2

|k − 1|ϕ(0, 2(k − 1)x, u2, . . . , un)

+
k2 + |k| − 1

|k − 1| ϕ(0, 2kx, u2, . . . , un)

+
8|k|

|k − 1|ϕ
(
0,

(3k − 1)x
2

, u2, . . . , un

)
+

8|k|
|k − 1|ϕ

(
0,

(k + 1)x
2

, u2, . . . , un

)

+
8k2 + 2|k| − 8

|k − 1| ϕ(0, kx, u2, . . . , un)

}

.

(2.5)



Abstract and Applied Analysis 5

Proof. Letting x = 0 in (2.3), we get

∥
∥f(y) + f(−y), u2, . . . , un

∥
∥
Y ≤ 1

|k − 1|ϕ
(
0, y, u2, . . . , un

)
(2.6)

for all y, u2, . . . , un ∈ X. Putting y = x in (2.3), we have

∥
∥f((k + 1)x) + f((k − 1)x) − kf(2x) − 2f(kx) + 2kf(x), u2, . . . , un

∥
∥
Y ≤ ϕ(x, x, u2, . . . , un)

(2.7)

for all x, u2, . . . , un ∈ X. Thus

∥
∥f(2(k + 1)x) + f(2(k − 1)x) − kf(4x) − 2f(2kx) + 2kf(2x), u2, . . . , un

∥
∥
Y

≤ ϕ(2x, 2x, u2, . . . , un)
(2.8)

for all x, u2, . . . , un ∈ X. Letting y = kx in (2.3), we get

∥∥f(2kx) − kf((k + 1)x) − kf(−(k − 1)x) − 2f(kx) + 2kf(x), u2, . . . , un
∥∥
Y ≤ ϕ(x, kx, u2, . . . , un)

(2.9)

for all x, u2, . . . , un ∈ X. Letting y = (k + 1)x in (2.3), we have

∥∥f((2k + 1)x) + f(−x) − kf((k + 2)x) − kf(−kx) − 2f(kx) + 2kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, (k + 1)x, u2, . . . , un)
(2.10)

for all x, u2, . . . , un ∈ X. Letting y = (k − 1)x in (2.3), we have

∥∥f((2k − 1)x) − (k + 2)f(kx) − kf(−(k − 2)x) + (2k + 1)f(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, (k − 1)x, u2, . . . , un)
(2.11)

for all x, u2, . . . , un ∈ X. Replacing x and y by 2x and x in (2.3), respectively, we get

∥∥f((2k + 1)x) + f((2k − 1)x) − 2f(2kx) − kf(3x) + 2kf(2x) − kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(2x, x, u2, . . . , un)
(2.12)

for all x, u2, . . . , un ∈ X. Replacing x and y by 3x and x in (2.3), respectively, we get

∥∥f((3k + 1)x) + f((3k − 1)x) − 2f(3kx) − kf(4x) − kf(2x) + 2kf(3x), u2, . . . , un
∥∥
Y

≤ ϕ(3x, x, u2, . . . , un)
(2.13)
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for all x, u2, . . . , un ∈ X. Replacing x and y by 2x and kx in (2.3), respectively, we have

∥
∥f(3kx) + f(kx) − kf((k + 2)x) − kf(−(k − 2)x) − 2f(2kx) + 2kf(2x), u2, . . . , un

∥
∥
Y

≤ ϕ(2x, kx, u2, . . . , un)
(2.14)

for all x, u2, . . . , un ∈ X. Setting y = (2k + 1)x in (2.3), we have

∥
∥f((3k + 1)x) + f(−(k + 1)x) − kf(2(k + 1)x) − kf(−2kx) − 2f(kx) + 2kf(x), u2, . . . , un

∥
∥
Y

≤ ϕ(x, (2k + 1)x, u2, . . . , un)
(2.15)

for all x, u2, . . . , un ∈ X. Letting y = (2k − 1)x in (2.3), we have

∥∥f((3k − 1)x) + f(−(k − 1)x) − kf(−2(k − 1)x) − kf(2kx) − 2f(kx) + 2kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, (2k − 1)x, u2, . . . , un)
(2.16)

for all x, u2, . . . , un ∈ X. Letting y = 3kx in (2.3), we have

∥∥f(4kx) + f(−2kx) − kf((3k + 1)x) − kf(−(3k − 1)x) − 2f(kx) + 2kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, 3kx, u2, . . . , un)
(2.17)

for all x, u2, . . . , un ∈ X. By (2.6), (2.7), (2.13), (2.15), and (2.16), we get

∥∥kf(2(k + 1)x)+kf(−2(k − 1)x)+6f(kx) − 2f(3kx) − kf(4x)+2kf(3x) − 6kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, (2k + 1)x, u2, . . . , un) + ϕ(x, (2k − 1)x, u2, . . . , un) + ϕ(3x, x, u2, . . . , un)

+ ϕ(x, x, u2, . . . , un) +
1

|k − 1|ϕ(0, (k + 1)x, u2, . . . , un)

+
1

|k − 1|ϕ(0, (k − 1)x, u2, . . . , un) +
|k|

|k − 1|ϕ(0, 2kx, u2, . . . , un)
(2.18)

for all x, u2, . . . , un ∈ X. By (2.6), (2.10), and (2.11), we have

∥∥f((2k + 1)x) + f((2k − 1)x) − kf((k + 2)x) − kf(−(k − 2)x) − 4f(kx) + 4kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, (k + 1)x, u2, . . . , un) + ϕ(x, (k − 1)x, u2, . . . , un) +
1

|k − 1|ϕ(0, x, u2, . . . , un)

+
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, kx, u2, . . . , un)

(2.19)
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for all x, u2, . . . , un ∈ X. It follows from (2.12) and (2.19) that

∥
∥kf((k + 2)x) + kf(−(k − 2)x) − 2f(2kx) + 4f(kx) − kf(3x) + 2kf(2x) − 5kf(x), u2, . . . , un

∥
∥
Y

≤ ϕ(x, (k + 1)x, u2, . . . , un) + ϕ(x, (k − 1)x, u2, . . . , un) + ϕ(2x, x, u2, . . . , un)

+
1

|k − 1|ϕ(0, x, u2, . . . , un) +
∣
∣
∣
∣

k

k − 1

∣
∣
∣
∣ϕ(0, kx, u2, . . . , un)

(2.20)

for all x, u2, . . . , un ∈ X. By (2.14) and (2.20), we have

∥∥f(3kx) − 4f(2kx) + 5f(kx) − kf(3x) + 4kf(2x) − 5kf(x), u2, . . . , un
∥∥
Y

≤ ϕ(x, (k + 1)x, u2, . . . , un) + ϕ(x, (k − 1)x, u2, . . . , un) + ϕ(2x, x, u2, . . . , un)

+ ϕ(2x, kx, u2, . . . , un) +
1

|k − 1|ϕ(0, x, u2, . . . , un) +
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, kx, u2, . . . , un)

(2.21)

for all x, u2, . . . , un ∈ X. By (2.6), (2.15), (2.16), and (2.17), we have

∥∥∥kf(−(k + 1)x) − kf(−(k − 1)x) − k2f(2(k + 1)x) + k2f(−2(k − 1)x)

+k2f(2kx) −
(
k2 − 1

)
f(−2kx) + f(4kx) − 2f(kx) + 2kf(x), u2, . . . , un

∥∥∥
Y

≤ |k|ϕ(x, (2k + 1)x, u2, . . . , un) + |k|ϕ(x, (2k − 1)x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un)

+
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, (3k − 1)x, u2, . . . , un)

(2.22)

for all x, u2, . . . , un ∈ X. It follows from (2.6), (2.8), (2.9), and (2.22) that

∥∥∥f(4kx) − 2f(2kx) − k3f(4x) + 2k3f(2x), u2, . . . , un
∥∥∥
Y

≤ |k|ϕ(x, (2k + 1)x, u2, . . . , un) + |k|ϕ(x, (2k − 1)x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un)

+ ϕ(x, kx, u2, . . . , un) + k2ϕ(2x, 2x, u2, . . . , un) +
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, (3k − 1)x, u2, . . . , un)

+
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, (k + 1)x, u2, . . . , un) +
k2

|k − 1|ϕ(0, 2(k − 1)x, u2, . . . , un)

+
k2 − 1
|k − 1|ϕ(0, 2kx, u2, . . . , un)

(2.23)
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for all x, u2, . . . , un ∈ X. Hence,

∥
∥
∥f(2kx) − 2f(kx) − k3f(2x) + 2k3f(x), u2, . . . , un

∥
∥
∥
Y

≤ |k|ϕ
(
x

2
,
(2k + 1)x

2
, u2, . . . , un

)
+|k|ϕ

(
x

2
,
(2k − 1)x

2
, u2, . . . , un

)
+ϕ
(
x

2
,
3kx
2
, u2, . . . , un

)

+ ϕ
(
x

2
,
kx

2
, u2, . . . , un

)
+ k2ϕ(x, x, u2, . . . , un) +

∣
∣
∣
∣

k

k − 1

∣
∣
∣
∣ϕ
(
0,

(3k − 1)x
2

, u2, . . . , un

)

+
∣
∣
∣
∣

k

k − 1

∣
∣
∣
∣ϕ
(
0,

(k + 1)x
2

, u2, . . . , un

)
+

k2

|k − 1|ϕ(0, (k − 1)x, u2, . . . , un)

+
k2 − 1
|k − 1|ϕ(0, kx, u2, . . . , un)

(2.24)

for all x, u2, . . . , un ∈ X. By (2.9), we have

∥∥f(4kx) − kf(2(k + 1)x) − kf(−2(k − 1)x) − 2f(2kx) + 2kf(2x), u2, . . . , un
∥∥
Y

≤ ϕ(2x, 2kx, u2, . . . , un)
(2.25)

for all x, u2, . . . , un ∈ X. From (2.23) and (2.25), we have

∥∥∥kf(2(k + 1)x) + kf(−2(k − 1)x) − k3f(4x) +
(
2k3 − 2k

)
f(2x)

∥∥∥
Y

≤ |k|ϕ(x, (2k + 1)x, u2, . . . , un) + |k|ϕ(x, (2k − 1)x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un)

+ ϕ(x, kx, u2, . . . , un) + k2ϕ(2x, 2x, u2, . . . , un) + ϕ(2x, 2kx, u2, . . . , un)

+
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, (3k − 1)x, u2, . . . , un) +
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, (k + 1)x, u2, . . . , un)

+
k2

|k − 1|ϕ(0, 2(k − 1)x, u2, . . . , un) +
k2 − 1
|k − 1|ϕ(0, 2kx, u2, . . . , un)

(2.26)

for all x, u2, . . . , un ∈ X. Also, from (2.18) and (2.26), we get

∥∥∥2f(3kx) − 6f(kx) +
(
k − k3

)
f(4x) − 2kf(3x) +

(
2k3 − 2k

)
f(2x) + 6kf(x), u2, . . . , un

∥∥∥
Y

≤ (|k| + 1)
[
ϕ(x, (2k + 1)x, u2, . . . , un) + ϕ(x, (2k − 1)x, u2, . . . , un)

]
+ ϕ(3x, x, u2, . . . , un)

+ ϕ(x, x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un) + ϕ(x, kx, u2, . . . , un)

+ k2ϕ(2x, 2x, u2, . . . , un) + ϕ(2x, 2kx, u2, . . . , un) +
|k| + 1
|k − 1|ϕ(0, (k + 1)x, u2, . . . , un)



Abstract and Applied Analysis 9

+
1

|k − 1|ϕ(0, (k − 1)x, u2, . . . , un) +
k2 + |k| − 1

|k − 1| ϕ(0, 2kx, u2, . . . , un)

+
∣
∣
∣
∣

k

k − 1

∣
∣
∣
∣ϕ(0, (3k − 1)x, u2, . . . , un) +

k2

|k − 1|ϕ(0, 2(k − 1)x, u2, . . . , un)

(2.27)

for all x, u2, . . . , un ∈ X.
On the other hand, it follows from (2.21) and (2.27) that

∥
∥
∥8f(2kx) − 16f(kx) +

(
k − k3

)
f(4x) +

(
2k3 − 10k

)
f(2x) + 16kf(x), u2, . . . , un

∥
∥
∥
Y

≤ (|k| + 1)
[
ϕ(x, (2k + 1)x, u2, . . . , un) + ϕ(x, (2k − 1)x, u2, . . . , un)

]
+ ϕ(3x, x, u2, . . . , un)

+ ϕ(x, x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un) + ϕ(x, kx, u2, . . . , un)

+ k2ϕ(2x, 2x, u2, . . . , un) + ϕ(2x, 2kx, u2, . . . , un) + 2ϕ(x, (k + 1)x, u2, . . . , un)

+ 2ϕ(x, (k − 1)x, u2, . . . , un) + 2ϕ(2x, x, u2, . . . , un) + 2ϕ(2x, kx, u2, . . . , un)

+
2

|k − 1|ϕ(0, x, u2, . . . , un) +
2|k|

|k − 1|ϕ(0, kx, u2, . . . , un) +
|k| + 1
|k − 1|ϕ(0, (k + 1)x, u2, . . . , un)

+
1

|k − 1|ϕ(0, (k − 1)x, u2, . . . , un) +
k2 + |k| − 1

|k − 1| ϕ(0, 2kx, u2, . . . , un)

+
∣∣∣∣

k

k − 1

∣∣∣∣ϕ(0, (3k − 1)x, u2, . . . , un) +
k2

|k − 1|ϕ(0, 2(k − 1)x, u2, . . . , un)

(2.28)

for all x, u2, . . . , un ∈ X. Therefore by (2.24) and (2.28), we get

∥∥f(4x) − 10f(2x) + 16f(x), u2, . . . , un
∥∥
Y

≤ 1
|k3 − k|

×
{
(|k| + 1)

[
ϕ(x, (2k + 1)x, u2, . . . , un) + ϕ(x, (2k − 1)x, u2, . . . , un)

]

+ ϕ(3x, x, u2, . . . , un) +
(
8k2 + 1

)
ϕ(x, x, u2, . . . , un) + ϕ(x, 3kx, u2, . . . , un)

+ ϕ(x, kx, u2, . . . , un) + k2ϕ(2x, 2x, u2, . . . , un) + ϕ(2x, 2kx, u2, . . . , un)

+ 2ϕ(x, (k + 1)x, u2, . . . , un) + 2ϕ(x, (k − 1)x, u2, . . . , un) + 2ϕ(2x, x, u2, . . . , un)

+ 2ϕ(2x, kx, u2, . . . , un) + 8ϕ
(
x

2
,
kx

2
, u2, . . . , un

)
+ 8|k|ϕ

(
x

2
,
(2k − 1)x

2
, u2, . . . , un

)

+ 8|k|ϕ
(
x

2
,
(2k + 1)x

2
, u2, . . . , un

)
+ 8ϕ

(
x

2
,
3kx
2
, u2, . . . , un

)
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+
|k| + 1
|k − 1|ϕ(0, (k + 1)x, u2, . . . , un) +

8k2 + 1
|k − 1| ϕ(0, (k − 1)x, u2, . . . , un)

+
2

|k − 1|ϕ(0, x, u2, . . . , un) +
∣
∣
∣
∣

k

k − 1

∣
∣
∣
∣ϕ(0, (3k − 1)x, u2, . . . , un)

+
k2

|k − 1|ϕ(0, 2(k − 1)x, u2, . . . , un) +
k2 + |k| − 1

|k − 1| ϕ(0, 2kx, u2, . . . , un)

+
8|k|

|k − 1|ϕ
(
0,

(3k − 1)x
2

, u2, . . . , un

)

+
8|k|

|k − 1|ϕ
(
0,

(k + 1)x
2

, u2, . . . , un

)
+
8k2 + 2|k| − 8

|k − 1| ϕ(0, kx, u2, . . . , un)

}

:= ϕ̃(x, u2, . . . , un)

(2.29)

for all x, u2, . . . , un ∈ X.
Now, let g : X → Y be the mapping defined by g(x) := f(2x) − 8f(x) for all

x, u2, . . . , un ∈ X. Then, (2.29)means that

∥∥f(4x) − 10f(2x) + 16f(x), u2, . . . , un
∥∥
Y ≤ ϕ̃(x, u2, . . . , un) (2.30)

for all x, u2, . . . , un ∈ X. Also, we get

∥∥g(2x) − 2g(x), u2, . . . , un
∥∥
Y ≤ ϕ̃(x, u2, . . . , un) (2.31)

for all x ∈ X. Replacing x by 2jx in (2.31) and dividing both sides of (2.31) by 2j+1, we get

∥∥∥∥
1
2j
g(2jx) − 1

2j+1
g(2j+1x), u2, . . . , un

∥∥∥∥
Y

≤ 1
2j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.32)

for all x, u2, . . . , un ∈ X and all integers j ≥ 0. For all integers l,m with 0 ≤ l < m, we have

∥∥∥∥
1
2l
g
(
2lx
)
− 1
2m

g(2mx), u2, . . . , un

∥∥∥∥
Y

≤
m−1∑

j=l

∥∥∥∥
1
2j
g
(
2jx
)
− 1
2j+1

g
(
2j+1x

)
, u2, . . . , un

∥∥∥∥
Y

≤
m−1∑

j=l

1
2j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.33)

for all x, u2, . . . , un ∈ X. So, we get

lim
l,m→∞

∥∥∥∥
1
2l
g(2lx) − 1

2m
g(2mx), u2, . . . , un

∥∥∥∥
Y

= 0 (2.34)
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for all x, u2, . . . , un ∈ X. This shows that the sequence {(1/2j)g(2jx)} is a Cauchy sequence in
Y . Since Y is an n-Banach space, the sequence {(1/2j)g(2jx)} converges. So, we can define a
mapping A : X → Y by

A(x) := lim
j→∞

1
2j
g
(
2jx
)

(2.35)

for all x ∈ X. Putting l = 0, then passing the limitm → ∞ in (2.33), and using Lemma 1.6(4),
we get

∥
∥g(x) −A(x), u2, . . . , un

∥
∥
Y ≤

∞∑

j=0

1
2j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.36)

for all x, u2, . . . , un ∈ X.
Now we show that A is additive. By Lemma 1.6, (2.2), (2.32), and (2.35), we have

‖A(2x) − 2A(x), u2, . . . , un‖Y = lim
j→∞

∥∥∥∥
1
2j
g
(
2j+1x

)
− 1
2j−1

g
(
2jx
)
, u2, . . . , un

∥∥∥∥
Y

= 2 lim
j→∞

∥∥∥∥
1

2j+1
g
(
2j+1x

)
− 1
2j
g
(
2jx
)
, u2, . . . , un

∥∥∥∥
Y

≤ lim
j→∞

1
2j
ϕ̃
(
2jx, u2, . . . , un

)
= 0

(2.37)

for all x, u2, . . . , un ∈ X. By Lemma 1.6(3), A(2x) = 2A(x) for all x ∈ X. Also, by
Lemma 1.6(4), (2.2), (2.3), and (2.35), we get

∥∥DA(x, y), u2, . . . , un
∥∥
Y

= lim
j→∞

1
2j

∥∥∥Dg
(
2jx, 2jy

)
, u2, . . . , un

∥∥∥
Y

= lim
j→∞

1
2j

∥∥∥Df
(
2j+1x, 2j+1y

)
− 8Df

(
2jx, 2jy

)
, u2, . . . , un

∥∥∥
Y

≤ lim
j→∞

1
2j
[∥∥∥Df

(
2j+1x, 2j+1y

)
, u2, . . . , un

∥∥∥
Y
+ 8
∥∥∥Df

(
2jx, 2jy

)
, u2, . . . , un

∥∥∥
Y

]

≤ lim
j→∞

1
2j
[
ϕ
(
2j+1x, 2j+1y, u2, . . . , un

)
+ 8ϕ

(
2jx, 2jy, u2, . . . , un

)]
= 0

(2.38)

for all x, y, u2, . . . , un ∈ X. By Lemma 1.6(3), DA(x, y) = 0 for all x, y ∈ X. Hence, the
mapping A satisfies (1.1). By [11, Lemma 2.3], the mapping x → A(2x) − 8A(x) is additive.
Therefore, A(2x) = 2A(x) implies that the mapping A is additive.
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To prove the uniqueness of A, let B : X → Y be another additive mapping satisfying
(2.4). Fix x ∈ X. Clearly, A(2lx) = 2lA(x) and B(2lx) = 2lB(x) for all l ∈ N. It follows from
(2.4) that

‖A(x) − B(x), u2, . . . , un‖Y =

∥
∥
∥
∥
∥
A
(
2lx
)

2l
− B
(
2lx
)

2l
, u2, . . . , un

∥
∥
∥
∥
∥
Y

≤ 1
2l
[∥∥
∥f
(
2l+1x

)
− 8f

(
2lx
)
−A
(
2lx
)
, u2, . . . , un

∥
∥
∥
Y

+
∥
∥
∥B
(
2lx
)
− f
(
2l+1x

)
+ 8f

(
2lx
)
, u2, . . . , un

∥
∥
∥
Y

]

≤ 1
2l

∞∑

j=0

1
2j
ϕ̃
(
2j+lx, u2, . . . , un

)

≤
∞∑

j=0

1
2j+l

ϕ̃
(
2j+lx, u2, . . . , un

)
=

∞∑

j=l

1
2j
ϕ̃
(
2jx, u2, . . . , un

)

(2.39)

for all x, u2, . . . , un ∈ X, and l ∈ N. By (2.2), we see that the right-hand side of the above
inequality tends to 0 as l → ∞. Therefore, ‖A(x)−B(x), u2, . . . , un‖Y = 0 for all u2, . . . , un ∈ X.
By Lemma 1.6, we can conclude that A(x) = B(x) for all x ∈ X. So, A = B. This proves the
uniqueness of A.

Theorem 2.2. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=1

2jϕ
(
x

2j
,
y

2j
, u2, . . . , un

)
<∞,

∥∥Df(x, y), u2, . . . , un
∥∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.40)

for all x, y, u2, . . . , un ∈ X. Then, there is a unique additive mapping A : X → Y such that

∥∥f(2x) − 8f(x) −A(x), u2, . . . , un
∥∥
Y ≤

∞∑

j=1

2j−1ϕ̃
(
x

2j
, u2, . . . , un

)

(2.41)

for all x, u2, . . . , un ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 2.3. Let X be a normed space and Y an n-Banach space. Let θ ∈ [0,∞), p, r2, . . . , rn ∈
(0,∞) such that p /= 1, and let f : X → Y be a mapping with f(0) = 0 such that

∥∥Df(x, y), u2, . . . , un
∥∥
Y ≤ θ

(
‖x‖pX +

∥∥y
∥∥p
X

)
‖u2‖r2X · · · ‖un‖rnX (2.42)
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for all x, y, u2, . . . , un ∈ X. Then, there exists a unique additive mapping A : X → Y such that

∥
∥f(2x) − 8f(x) −A(x), u2, . . . , un

∥
∥
Y ≤ θε‖x‖pX‖u2‖r2X · · · ‖un‖rnX

|(2 − 2p)(k3 − k)|
(2.43)

for all x, u2, . . . , un ∈ X, where

ε =
(
1 + |k| + 23−p|k|

)[
(2k + 1)p + (2k − 1)p

]
+ 2|k| + 13 + 3p + 3|k|p + 16k2 + 3p|k|p + 2p+1k2

+ 2p
(
5 + |k|p) + 2|k + 1|p + 2|k − 1|p + 23−p

(
2 + |k| + |k|p + 3p|k|p) + (|k| + 1)|k + 1|p

|k − 1|

+
23−p|k|
|k − 1| |k + 1|p +

(
1 + 8k2 + 2pk2

)
|k − 1|p−1 + 2p|k|p(k2 + |k| − 1

)

|k − 1|

+
2

|k − 1| +
|k|(23−p + 1

)

|k − 1| |3k − 1|p + 8k2 + 2|k| − 8
|k − 1| |k|p.

(2.44)

Proof. Define ϕ(x, y) = θ(‖x‖pX + ‖y‖pX)‖u2‖r2X · · · ‖un‖rnX for all x, y, u2, . . . , un ∈ X, and apply
Theorems 2.1 and 2.2.

The following example shows that the assumption p /= 1 cannot be omitted in
Corollary 2.3.

Example 2.4. Let X = C be a linear space over R. Define ‖·, ·‖ : X × X → R by ‖x1, x2‖ =
|a1b2 − a2b1|, where xj = aj + bji ∈ C, aj , bj ∈ R, j = 1, 2 (i =

√−1 is the imaginary unit). Then,
(X, ‖·, ·‖) is a 2-normed linear space.

Let φ : C → C defined by

φ(x) =

⎧
⎨

⎩

x, for |x| < 1,

1, for |x| ≥ 1.
(2.45)

Consider the function f : C → C defined by

f(x) =
∞∑

m=0

α−mφ(αmx) (2.46)

for all x ∈ C, where α > |k|. Then, f satisfies the functional inequality

∥∥Df
(
x, y
)
, u
∥∥ ≤ 4α2(|k| + 1)

α − 1
(|x| + ∣∣y∣∣)|u| (2.47)

for all x, y, u ∈ C, but there do not exist an additive mappingA : C → C and a constant d > 0
such that ‖f(x) −A(x), u‖ ≤ d |x||u| for all x, u ∈ C.
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It is clear that |f(x)| ≤ α/(α − 1) for all x ∈ C. If |x| + |y| = 0 or |x| + |y| ≥ 1/α for all
x, y ∈ C, then the inequality (2.47) holds. Now suppose that 0 < |x| + |y| < 1/α. Then, there
exists an integer n ≥ 1 such that

1
αn+1

≤ |x| + ∣∣y∣∣ < 1
αn
. (2.48)

Hence, αm|kx ± y| < 1, αm|x ± y| < 1, αm|x| < 1 for allm = 0, 1, . . . , n − 1. From the definition of
f and (2.48), we obtain that

∥
∥Df

(
x, y
)
, u
∥
∥

=

∥
∥
∥
∥
∥

∞∑

m=n
α−mφ

(
αm
(
kx + y

))
+

∞∑

m=n
α−mφ

(
αm
(
kx − y)) − k

∞∑

m=n
α−mφ

(
αm
(
x + y

))

−k
∞∑

m=n
α−mφ

(
αm
(
x − y)) − 2

∞∑

m=n
α−mφ(αmkx) + 2k

∞∑

m=n
α−mφ(αmx), u

∥∥∥∥∥

≤ 4α2(|k| + 1)
α − 1

(|x| + ∣∣y∣∣)|u|.

(2.49)

Therefore, f satisfies (2.47). Now, we claim that the functional equation (1.1) is not stable
for p = 1 in Corollary 2.3. Suppose on the contrary that there exist an additive mapping
A : C → C and a constant d > 0 such that ‖f(x) − A(x), u‖ ≤ d |x||u| for all x, u ∈ C. Then,
there exists a constant c ∈ C such thatA(x) = cx for all rational numbers x. So, we obtain that

∥∥f(x), u
∥∥ ≤ (d + |c|) |x||u| (2.50)

for all rational numbers x and all u ∈ C. Let s ∈ N with s+ 1 > d+ |c|. If x is a rational number
in (0, α−s) and u = bi (b ∈ R), then αmx ∈ (0, 1) for allm = 0, 1, . . . , s, and we get

∥∥f(x), u
∥∥ =

∥∥∥∥∥

∞∑

m=0

φ(αmx)
αm

, u

∥∥∥∥∥
≥

s∑

m=0

φ(αmx)
αm

|b| = (s + 1)x|b| > (d + |c|)x|b| = (d + |c|)|x||u|,

(2.51)

which contradicts (2.50).

Theorem 2.5. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=0

1
8j
ϕ
(
2jx, 2jy, u2, . . . , un

)
<∞, (2.52)

∥∥Df(x, y), u2, . . . , un
∥∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.53)
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for all x, y, u2, . . . , un ∈ X. Then, there is a unique cubic mapping C : X → Y such that

∥
∥f(2x) − 2f(x) − C(x), u2, . . . , un

∥
∥
Y ≤

∞∑

j=0

1
8j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.54)

for all x, u2, . . . , un ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.

Proof. As in the proof of Theorem 2.1, we have

∥
∥f(4x) − 10f(2x) + 16f(x), u2, . . . , un

∥
∥
Y ≤ ϕ̃(x, u2, . . . , un) (2.55)

for all x ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.
Now, let h : X → Y be the mapping defined by h(x) := f(2x) − 2f(x). By (2.55), we

have

‖h(2x) − 8h(x), u2, . . . , un‖Y ≤ ϕ̃(x, u2, . . . , un) (2.56)

for all x ∈ X. Replacing x by 2jx in (2.56) and dividing both sides of (2.56) by 8j+1, we get

∥∥∥∥
1
8j
h(2jx) − 1

8j+1
h(2j+1x), u2, . . . , un

∥∥∥∥
Y

≤ 1
8j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.57)

for all x, u2, . . . , un ∈ X and all integers j ≥ 0. For all integers l,m with 0 ≤ l < m, we have

∥∥∥∥
1
8l
h(2lx) − 1

8m
h(2mx), u2, . . . , un

∥∥∥∥
Y

≤
m−1∑

j=l

∥∥∥∥
1
8j
h(2jx) − 1

8j+1
h(2j+1x), u2, . . . , un

∥∥∥∥
Y

≤
m−1∑

j=l

1
8j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.58)

for all x, u2, . . . , un ∈ X. So, we get

lim
l,m→∞

∥∥∥∥
1
8l
h(2lx) − 1

8m
h(2mx), u2, . . . , un

∥∥∥∥
Y

= 0 (2.59)

for all x, u2, . . . , un ∈ X. This shows that the sequence {(1/8j)h(2jx)} is a Cauchy sequence in
Y . Since Y is an n-Banach space, the sequence {(1/8j)h(2jx)} converges. So, we can define a
mapping C : X → Y by

C(x) := lim
j→∞

1
8j
h
(
2jx
)

(2.60)



16 Abstract and Applied Analysis

for all x ∈ X. Putting l = 0, then passing the limitm → ∞ in (2.58), and using Lemma 1.6(4),
we get

‖h(x) − C(x), u2, . . . , un‖Y ≤
∞∑

j=0

1
8j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.61)

for all x, u2, . . . , un ∈ X.
Now we show that C is cubic. By Lemma 1.6, (2.52), (2.58), and (2.60), we have

‖C(2x) − 8C(x), u2, . . . , un‖Y = lim
j→∞

∥∥∥∥
1
8j
h(2j+1x) − 1

8j−1
h(2jx), u2, . . . , un

∥∥∥∥
Y

= 8 lim
j→∞

∥∥∥∥
1

8j+1
h(2j+1x) − 1

8j
h(2jx), u2, . . . , un

∥∥∥∥
Y

≤ lim
j→∞

1
8j
ϕ̃
(
2jx, u2, . . . , un

)
= 0

(2.62)

for all x, u2, . . . , un ∈ X. By Lemma 1.6(3),C(2x) = 8C(x) for all x ∈ X. Also, by Lemma 1.6(4),
(2.52), (2.53), and (2.60), we get

∥∥DC(x, y), u2, . . . , un
∥∥
Y

= lim
j→∞

1
8j

∥∥∥Dh(2jx, 2jy), u2, . . . , un
∥∥∥
Y

= lim
j→∞

1
8j

∥∥∥Df(2j+1x, 2j+1y) − 2Df(2jx, 2jy), u2, . . . , un
∥∥∥
Y

≤ lim
j→∞

1
8j
[∥∥∥Df(2j+1x, 2j+1y), u2, . . . , un

∥∥∥
Y
+ 2
∥∥∥Df(2jx, 2jy), u2, . . . , un

∥∥∥
Y

]

≤ lim
j→∞

1
8j
[
ϕ
(
2j+1x, 2j+1y, u2, . . . , un

)
+ 2ϕ

(
2jx, 2jy, u2, . . . , un

)]
= 0

(2.63)

for all x, y, u2, . . . , un ∈ X. By Lemma 1.6(3),DC(x, y) = 0 for all x, y ∈ X. Hence the mapping
C satisfies (1.1). By [11, Lemma 2.3], the mapping x → C(2x) − 2C(x) is cubic. Therefore,
C(2x) = 8C(x) implies that the mapping C is cubic.
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To prove the uniqueness of C, let S : X → Y be another cubic mapping satisfying
(2.54). Fix x ∈ X. Clearly, C(2lx) = 8lA(x) and S(2lx) = 8lS(x) for all l ∈ N. It follows from
(2.54) that

‖C(x) − S(x), u2, . . . , un‖Y =

∥
∥
∥
∥
∥
C
(
2lx
)

8l
− S
(
2lx
)

8l
, u2, . . . , un

∥
∥
∥
∥
∥
Y

≤ 1
8l
[∥∥
∥f(2l+1x) − 2f(2lx) − C(2lx), u2, . . . , un

∥
∥
∥
Y

+
∥
∥
∥S(2lx) − f(2l+1x) + 2f(2lx), u2, . . . , un

∥
∥
∥
Y

]

≤ 1
8l

∞∑

j=0

1
8j
ϕ̃
(
2j+lx, u2, . . . , un

)

≤
∞∑

j=0

1
8j+l

ϕ̃
(
2j+lx, u2, . . . , un

)
=

∞∑

j=l

1
8j
ϕ̃
(
2jx, u2, . . . , un

)

(2.64)

for all x, u2, . . . , un ∈ X, and l ∈ N. By (2.52), we see that the right-hand side of the above
inequality tends to 0 as l → ∞. Therefore, ‖C(x) − S(x), u2, . . . , un‖Y = 0 for all u2, . . . , un ∈ X.
By Lemma 1.6, we can conclude that C(x) = S(x) for all x ∈ X. So C = S. This proves the
uniqueness of C.

Theorem 2.6. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=1

8jϕ
(
x

2j
,
y

2j
, u2, . . . , un

)
<∞,

∥∥Df(x, y), u2, . . . , un
∥∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.65)

for all x, y, u2, . . . , un ∈ X. Then, there is a unique cubic mapping C : X → Y such that

∥∥f(2x) − 2f(x) − C(x), u2, . . . , un
∥∥
Y ≤

∞∑

j=1

8j−1ϕ̃
(
x

2j
, u2, . . . , un

)

(2.66)

for all x, u2, . . . , un ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.

Proof. The proof is similar to the proof of Theorem 2.5.

Corollary 2.7. Let X be a normed space and Y an n-Banach space. Let θ ∈ [0,∞), p, r2, . . . , rn ∈
(0,∞) such that p /= 3, and let f : X → Y be a mapping with f(0) = 0 such that

∥∥Df(x, y), u2, . . . , un
∥∥
Y ≤ θ

(
‖x‖pX +

∥∥y
∥∥p
X

)
‖u2‖r2X · · · ‖un‖rnX (2.67)
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for all x, y, u2, . . . , un ∈ X. Then, there exists a unique cubic mapping C : X → Y such that

∥
∥f(2x) − 2f(x) − C(x), u2, . . . , un

∥
∥
Y ≤ θε‖x‖pX‖u2‖r2X · · · ‖un‖rnX

|(8 − 2p)(k3 − k)|
(2.68)

for all x, u2, . . . , un ∈ X, where ε is defined as in Corollary 2.3.

Proof. Define ϕ(x, y) = θ(‖x‖pX + ‖y‖pX)‖u2‖r2X · · · ‖un‖rnX for all x, y, u2, . . . , un ∈ X, and apply
Theorems 2.5 and 2.6.

The following example shows that the the generalized Hyers-Ulam stability problem
for the case of p = 3 was excluded in Corollary 2.7.

Example 2.8. Let X = C be a linear space over R, and let ‖·, ·‖ : X × X → R be defined as in
Example 2.4. Then, (X, ‖·, ·‖) is a 2-normed linear space.

Let φ : C → C be defined by

φ(x) =

⎧
⎨

⎩

x3, for |x| < 1,

1, for |x| ≥ 1.
(2.69)

Consider the function f : C → C defined by

f(x) =
∞∑

m=0

α−3mφ(αmx) (2.70)

for all x ∈ C, where α > |k|. Then, f satisfies the functional inequality

∥∥Df
(
x, y
)
, u
∥∥ ≤ 4α6(|k| + 1)

α3 − 1

(
|x|3 + ∣∣y∣∣3

)
|u| (2.71)

for all x, y, u ∈ C, but there do not exist a cubic mapping C : C → C and a constant d > 0
such that ‖f(x) − C(x), u‖ ≤ d |x|3|u| for all x, u ∈ C.

It is clear that |f(x)| ≤ α3/(α3 − 1) for all x ∈ C. If |x|3 + |y|3 = 0 or |x|3 + |y|3 ≥ 1/α3 for
all x, y ∈ C, then inequality (2.71) holds. Now suppose that 0 < |x|3 + |y|3 < 1/α3. Then, there
exists an integer n ≥ 1 such that

1
α3(n+1)

≤ |x|3 + ∣∣y∣∣3 < 1
α3n

. (2.72)
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Hence, αm|kx ± y| < 1, αm|x ± y| < 1, αm|x| < 1 for allm = 0, 1, . . . , n − 1. From the definition of
f and (2.72), we obtain that

∥
∥Df

(
x, y
)
, u
∥
∥ =

∥
∥
∥
∥
∥

∞∑

m=n
α−3mφ

(
αm
(
kx + y

))
+

∞∑

m=n
α−3mφ

(
αm
(
kx − y)) − k

∞∑

m=n
α−3mφ

(
αm
(
x + y

))

−k
∞∑

m=n
α−3mφ

(
αm
(
x − y)) − 2

∞∑

m=n
α−3mφ(αmkx) + 2k

∞∑

m=n
α−3mφ(αmx), u

∥
∥
∥
∥
∥

≤ 4α6(|k| + 1)
α3 − 1

(
|x|3 + ∣∣y∣∣3

)
|u|.

(2.73)

Therefore, f satisfies (2.71). Now, we claim that the functional equation (1.1) is not stable for
p = 3 in Corollary 2.7. Suppose on the contrary that there exist a cubic mapping C : C → C

and a constant d > 0 such that ‖f(x) −C(x), u‖ ≤ d |x|3|u| for all x, u ∈ C. Then, there exists a
constant β ∈ C such that C(x) = βx3 for all rational numbers x. So, we obtain that

∥∥f(x), u
∥∥ ≤ (d +

∣∣β
∣∣)|x|3|u| (2.74)

for all rational numbers x and all u ∈ C. Let s ∈ N with s+ 1 > d+ |β|. If x is a rational number
in (0, α−s) and u = bi (b ∈ R), then αmx ∈ (0, 1) for allm = 0, 1, . . . , s, and we get

∥∥f(x), u
∥∥ =

∥∥∥∥∥

∞∑

m=0

φ(αmx)
α3m

, u

∥∥∥∥∥
≥

s∑

m=0

φ(αmx)
α3m

|b|

= (s + 1)x3|b| > (d +
∣∣β
∣∣)x3|b| = (d +

∣∣β
∣∣)|x|3|u|,

(2.75)

which contradicts (2.74).

Theorem 2.9. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=0

1
2j
ϕ
(
2jx, 2jy, u2, . . . , un

)
<∞, (2.76)

∥∥Df
(
x, y
)
, u2, . . . , un

∥∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.77)

for all x, y, u2, . . . , un ∈ X. Then, there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

∥∥f(x) −A(x) − C(x), u2, . . . , un
∥∥
Y ≤ 1

6

∞∑

j=0

(
1

2j+1
+

1
8j+1

)
ϕ̃
(
2jx, u2, . . . , un

)
(2.78)

for all x, u2, . . . , un ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.
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Proof. By Theorems 2.1 and 2.5, there exist an additive mapping A′ : X → Y and a cubic
mapping C′ : X → Y such that

∥
∥f(2x) − 8f(x) −A′(x), u2, . . . , un

∥
∥
Y ≤

∞∑

j=0

1
2j+1

ϕ̃
(
2jx, u2, . . . , un

)
,

∥
∥f(2x) − 2f(x) − C′(x), u2, . . . , un

∥
∥
Y ≤

∞∑

j=0

1
8j+1

ϕ̃
(
2jx, u2, . . . , un

)
(2.79)

for all x, u2, . . . , un ∈ X. Hence,

∥
∥
∥∥f(x) +

1
6
A′(x) − 1

6
C′(x), u2, . . . , un

∥
∥
∥∥
Y

≤ 1
6

∞∑

j=0

(
1

2j+1
+

1
8j+1

)
ϕ̃
(
2jx, u2, . . . , un

)
(2.80)

for all x ∈ X. So, we obtain (2.78) by letting A(x) = −(1/6)A′(x) and C(x) = (1/6)C′(x) for
all x ∈ X.

To prove the uniqueness ofA and C, letA′′, C′′ : X → Y be another additive and cubic
mapping satisfying (2.78). Fix x ∈ X. Let A1 = A −A′′ and C1 = C − C′′. So,

‖A1(x) + C1(x), u2, . . . , un‖Y
≤ ∥∥f(x) −A(x) − C(x), u2, . . . , un

∥∥
Y +
∥∥f(x) −A′′(x) − C′′(x), u2, . . . , un

∥∥
Y

≤ 1
3

∞∑

j=0

(
1

2j+1
+

1
8j+1

)
ϕ̃
(
2jx, u2, . . . , un

)
(2.81)

for all x, u2, . . . , un ∈ X. Then (2.76) implies that

lim
n→∞

1
8n

‖A1(2nx) + C1(2nx), u2, . . . , un‖Y = 0 (2.82)

for all x, u2, . . . , un ∈ X. Thus, C1 = 0. So, it follows from (2.81) that

‖A1(x), u2, . . . , un‖Y ≤ 1
3

∞∑

j=0

(
1

2j+1
+

1
8j+1

)
ϕ̃
(
2jx, u2, . . . , un

)
(2.83)

for all u2, . . . , un ∈ X. Therefore, A1 = 0.

Similarly to Theorem 2.9, one can prove the following result.



Abstract and Applied Analysis 21

Theorem 2.10. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=0

8jϕ
(
x

2j
,
y

2j
, u2, . . . , un

)
<∞,

∥
∥Df(x, y), u2, . . . , un

∥
∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.84)

for all x, y, u2, . . . , un ∈ X. Then, there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

∥
∥f(x) −A(x) − C(x), u2, . . . , un

∥
∥
Y ≤ 1

6

∞∑

j=1

(
2j−1 + 8j−1

)
ϕ̃

(
x

2j
, u2, . . . , un

)

(2.85)

for all x, u2, . . . , un ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.

Proof. The proof is similar to the proof of Theorem 2.9 and the result follows from Theorems
2.2 and 2.6.

Theorem 2.11. Let X be a linear space and Y an n-Banach space. Let f : X → Y be a mapping with
f(0) = 0 for which there is a function ϕ : Xn+1 → [0,∞) such that

∞∑

j=1

2jϕ
(
x

2j
,
y

2j
, u2, . . . , un

)
<∞,

∞∑

j=0

1
8j
ϕ
(
2jx, 2jy, u2, . . . , un

)
<∞,

∥∥Df
(
x, y
)
, u2, . . . , un

∥∥
Y ≤ ϕ(x, y, u2, . . . , un

)
(2.86)

for all x, y, u2, . . . , un ∈ X. Then, there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

∥∥f(x) −A(x) − C(x), u2, . . . , un
∥∥
Y

≤ 1
6

⎡

⎣
∞∑

j=1

2j−1ϕ̃
(
x

2j
, u2, . . . , un

)
+

∞∑

j=0

1
8j+1

ϕ̃
(
2jx, u2, . . . , un

)
⎤

⎦
(2.87)

for all x, u2, . . . , un ∈ X, where ϕ̃(x, u2, . . . , un) is defined as in Theorem 2.1.

Proof. The proof is similar to the proof of Theorem 2.9 and the result follows from Theorems
2.2 and 2.5.

Corollary 2.12. Let X be a normed space and Y an n-Banach space. Let θ ∈ [0,∞), r2, . . . , rn ∈
(0,∞), p ∈ (0, 1) ∪ (1, 3) ∪ (3,∞), and let f : X → Y be a mapping with f(0) = 0 such that

∥∥Df
(
x, y
)
, u2, . . . , un

∥∥
Y ≤ θ

(
‖x‖pX +

∥∥y
∥∥p
X

)
‖u2‖r2X · · · ‖un‖rnX (2.88)
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for all x, y, u2, . . . , un ∈ X. Then, there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

∥
∥f(x) −A(x) − C(x), u2, . . . , un

∥
∥
Y ≤ 1

6|k3 − k|
(

1
|2 − 2p| +

1
|8 − 2p|

)
θε‖x‖pX‖u2‖r2X · · · ‖un‖rnX

(2.89)

for all x, u2, . . . , un ∈ X, where ε is defined as in Corollary 2.3.

Proof. Define ϕ(x, y) = θ(‖x‖pX + ‖y‖pX)‖u2‖r2X · · · ‖un‖rnX for all x, y, u2, . . . , un ∈ X, and apply
Theorems 2.9–2.11.

Remark 2.13. The generalized Hyers-Ulam stability problem for the cases of p = 1 and p = 3
was excluded in Corollary 2.12 (see Examples 2.4 and 2.8).
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The oldest quartic functional equation was introduced by J. M. Rassias in (1999), and then was
employed by other authors. The functional equation f(2x+y) +f(2x−y) = 4f(x+y) + 4f(x−y) +
24f(x)−6f(y) is called a quartic functional equation, all of its solution is said to be a quartic function. In
the current paper, the Hyers-Ulam stability and the superstability for quartic functional equations
are established by using the fixed-point alternative theorem.

1. Introduction

We say a functional equation F is stable if any function f satisfying the equation F ap-
proximately is near to true solution of F. Moreover, a functional equation F is superstable
if any function f satisfying the equation F approximately is a true solution of F (see [1]
for another notion of the superstability which may be called superstability modulo the bounded
functions).

The stability problem for functional equations originated from a question by Ulam
[2] in 1940, concerning the stability of group homomorphisms: let (G1, ·) be a group, and let
(G2, ∗) be a metric group with the metric d(·, ·). Given ε > 0, does there exist δ > 0 such that,
if a mapping h : G1 → G2 satisfies the inequality d(h(s · t), h(s) ∗ h(t)) < δ for all s, t ∈ G1,
then there exists a homomorphism H : G1 → G2 with d(h(s),H(s)) < ε for all s ∈ G1?
In other words, under what condition a functional equation is stable? In the following year,
Hyers [3] gave a partial affirmative answer to the question of Ulam for Banach spaces. In
1978, the generalized Hyers’ theorem was independently rediscovered by Th. M. Rassias [4]
by obtaining a unique linear mapping under certain continuity assumption.
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The functional equations

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)
,

f
(
2x + y

)
+ f

(
2x − y) = 2f

(
x + y

)
+ 2f

(
x − y) + 12f(x)

(1.1)

are called quadratic and cubic functional equations, respectively. During the last decades,
several stability problems for functional equations especially the quadratic and cubic and
their generalized have been extensively investigated by many mathematicians (for instances,
[5–9]).

In [10], Lee et al. considered the following quartic functional equation:

f
(
2x + y

)
+ f

(
2x − y) = 4f

(
x + y

)
+ 4f

(
x − y) + 24f(x) − 6f

(
y
)
. (1.2)

It is easy to check that for every a ∈ R, the function f(x) = ax4 is a solution of the above
functional equation. They solved (1.2) and in fact showed that a function f : X → Y
whenever X and Y are real vector spaces is quadratic if and only if there exists a symmetric
biquadratic function F : X ×X → Y such that f(x) = F(x, x) for all x ∈ X. They also proved
the stability of (1.2). Zhou Xu et al. in [11] used the fixed-point alternative (Theorem 2.1 of
the current paper) to establish Hyers-Ulam-Rassias stability of the general mixed additive-
cubic functional equation, where functions map a linear space into a complete quasifuzzy
p-normed space. The generalized Hyers-Ulam stability of a general mixed AQCQ-functional
in multi-Banach spaces is also proved by using the mentioned theorem in [12].

Recently, Bodaghi et al. in [13, 14] investigated the stability and the superstability of
quadratic and cubic functional equations by a fixed-point method and applied this method
to prove the stability of (quadratic, cubic) multipliers on Banach algebras.

In this paper we prove the generalized Hyers-Ulam stability and the superstability for
quartic functional equation (1.2) by using the alternative fixed point (Theorem 2.1) under
certain conditions.

2. Main Results

Throughout this paper, assume thatX is a normed vector space and Y is a Banach space. For
a given mapping f : X → Y, we consider

Df
(
x, y

)
:= f

(
2x + y

)
+ f

(
2x − y) − 4f

(
x + y

) − 4f
(
x − y) − 24f(x) + 6f

(
y
)
, (2.1)

for all x, y ∈ X.
To achieve our aim, we need the following known fixed-point theoremwhich has been

proved in [15].

Theorem 2.1. Suppose that (Δ, d) is a complete generalized metric space, and let J : Δ → Δ be
a strictly contractive mapping with Lipschitz constant L < 1, Then for each element g ∈ Δ, either
d(Jng,Jn+1g) = ∞ for all n ≥ 0, or there exists a natural number n0 such that

(i) d(Jng,Jn+1g) <∞, for all n ≥ n0,
(ii) the sequence {Jng} is convergent to a fixed-point g∗ of J,
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(iii) g∗ is the unique fixed point of J in the set

Ω =
{
g ∈ Δ : d

(Jn0g, g
)
<∞}

; (2.2)

(iv) d(g, g∗) ≤ (1/(1 − L))d(g,Jg), for all g ∈ Ω.

Theorem 2.2. Assume that φ : X ×X → [0,∞) is a function satisfying

∥
∥Df

(
x, y

)∥∥ ≤ φ(x, y), (2.3)

for all x, y ∈ X. Let a mapping f : X → Y satisfy f(0) = 0. If there existsK ∈ (0, 1) such that

φ
(
x, y

) ≤ 24Kφ
(x
2
,
y

2

)
, (2.4)

for all x, y ∈ X, then there exists a unique quartic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ 1

32(1 −K)
φ(x, 0), (2.5)

for all x ∈ X.

Proof. By recurrence method, we can conclude from (2.4) that φ(2nx, 2ny)/24n ≤ Knφ(x, y)
for all x, y ∈ X. Passing to the limit, we get

lim
n→∞

φ
(
2nx, 2ny

)

24n
= 0, (2.6)

for all x, y ∈ X. Here, we intend to build the conditions of Theorem 2.1 and so consider the
set Δ := {h : X → Y | h(0) = 0} and the mapping d defined on Δ ×Δ by

d
(
g, h

)
:= inf

{
C ∈ (0,∞) :

∥∥g(x) − h(x)∥∥ ≤ Cφ(x, 0) ∀x ∈ X}
(2.7)

if there exists such constant C, and d(g, h) = ∞ otherwise. It is easy to see that d(h, h) = 0 and
d(g, h) = d(h, g), for all g, h ∈ Δ. For each g, h, p ∈ Δ, we have

inf
{
C ∈ (0,∞) :

∥∥g(x) − h(x)∥∥ ≤ Cφ(x, 0) ∀x ∈ X}

≤ inf
{
C ∈ (0,∞) :

∥∥g(x) − p(x)∥∥ ≤ Cφ(x, 0) ∀x ∈ X}

+ inf
{
C ∈ (0,∞) :

∥∥p(x) − h(x)∥∥ ≤ Cφ(x, 0) ∀x ∈ X}
.

(2.8)

Hence, d(g, h) ≤ d(g, p) + d(p, h). Now if d(g, h) = 0, then for every fixed x0 ∈ X, we
have ‖g(x0) − h(x0)‖ ≤ Cφ(x0, 0), for all C > 0. This implies g = h. Let {hn} be a d-Cauchy
sequence in Δ, then d(hm, hn) → 0, and thus ‖hm(x) − hn(x)‖ → 0, for all x ∈ X. Since Y is
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complete, then there exists h ∈ Δ such that hn
d→ h in Δ. Therefore, d is a generalized metric

on Δ, and the metric space (Δ, d) is complete. Now, we define the mapping J : Δ → Δ by

Jg(x) = 1
24
g(2x), (x ∈ X). (2.9)

Fix a C ∈ (0,∞) and take g, h ∈ Δ such that d(g, h) < C. The definitions of d and J
show that

∥
∥
∥
∥
1
24
g(2x) − 1

24
h(2x)

∥
∥
∥
∥ ≤ 1

24
Cφ(2x, 0), (2.10)

for all x ∈ X. By using (2.4), we have

∥∥∥∥
1
24
g(2x) − 1

24
h(2x)

∥∥∥∥ ≤ CKφ(x, 0), (2.11)

for all x ∈ X. It follows from the above inequality that d(Jg,Jh) ≤ Kd(g, h), for all g, h ∈ Δ.
Hence, J is a strictly contractive mapping on Δ with a Lipschitz constant K. Putting y = 0 in
(2.3) and dividing both sides of the resulting inequality by 32, we have

∥∥∥∥f(x) −
1
16
f(2x)

∥∥∥∥ ≤ 1
32
φ(x, 0), (2.12)

for all x ∈ X. Thus, d(f,Jf) ≤ 1/32 < ∞. Note that by Theorem 2.1, d(Jng,Jn+1g) < ∞, for
all n ≥ 0. Thus, we get n0 = 0 in this theorem, so (iii) and (iv) of Theorem 2.1 are true on the
whole Δ. However, the sequence {Jnf} converges to a unique fixed-point Q : X → Y in the
set {g ∈ Δ;d(f, g) <∞}, that is,

Q(x) = lim
n→∞

f(2nx)
24n

, (2.13)

for all x ∈ X. By the part (iv) of Theorem 2.1, we have

d
(
f,Q

) ≤ d
(
f,Jf)

1 −K ≤ 1
32(1 −K)

. (2.14)

From (2.14), we observe that the inequality (2.5) holds for all x ∈ X. Substituting x, y
by 2nx, 2ny in (2.3), respectively, and applying (2.6) and (2.13), we have

∥∥DQ
(
x, y

)∥∥ = lim
n→∞

1
24n

∥∥Df
(
2nx, 2ny

)∥∥ ≤ lim
n→∞

1
24n

φ
(
2nx, 2ny

)
= 0, (2.15)

for all x ∈ X. Therefore, Q is a quartic mapping which is unique by part (iii) of Theorem 2.1.
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Corollary 2.3. Let p, θ be nonnegative real numbers such that p < 4, and let f : X → Y be a
mapping (with f(0) = 0 when p = 0) satisfying

∥
∥Df

(
x, y

)∥∥ ≤ θ(‖x‖p + ∥
∥y

∥
∥p), (2.16)

for all x, y ∈ X, then there exists a unique quartic mapping Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥ ≤ θ

32 − 2p+1
‖x‖p, (2.17)

for all x ∈ X.

Proof. The result follows from Theorem 2.2 by using φ(x, y) = θ(‖x‖p + ‖y‖p).

Now, we establish the superstability of quartic mapping on Banach spaces under some
conditions.

Corollary 2.4. Let p, q, θ be nonnegative real numbers such that p + q ∈ (0, 4). Suppose that a
mapping f : X → Y satisfies

∥∥Df
(
x, y

)∥∥ ≤ θ‖x‖p∥∥y∥∥q, (2.18)

for all x, y ∈ X, then f is a quartic mapping on X.

Proof. Letting φ(x, y) = θ‖x‖p‖y‖q in Theorem 2.2, we have

lim
n→∞

φ
(
2nx, 2ny

)

24n
= 0, (2.19)

which shows (2.6) holds for φ. Putting x = y = 0 in (2.18), we get f(0) = 0. Furthermore, if
we put y = 0 in (2.18), then we have f(2x) = 24f(x), for all x ∈ X. It is easy to see that by
induction, we have f(2nx) = 24nf(x), and so f(x) = f(2nx)/24n, for all x ∈ X and n ∈ N.
Now, it follows from Theorem 2.2 that f is a quartic mapping.

Let θ and p be positive real numbers. Suppose that a mapping f : X → Y satisfies

∥∥Df
(
x, y

)∥∥ ≤ θ∥∥y∥∥p, (2.20)

for all x, y ∈ X, then by considering φ(x, y) = θ‖y‖p in Theorem 2.2, the mapping f is again
a quartic mapping on X.

The following result is proved in [16, Theorem 1].
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Theorem 2.5. LetX be a linear space, and let Y be a Banach space. Let f : X → Y be a mapping for
which there exists a function ϕ : X ×X → [0,∞) such that

ϕ̃
(
x, y

)
:=

∞∑

k=0

2−4kϕ
(
2kx, 2ky

)
<∞,

∥
∥Df

(
x, y

)∥∥ ≤ δ + ϕ
(
x, y

)
(2.21)

for all x, y ∈ X, where δ ≥ 0, then there exists a unique quartic mapping Q : X → Y such that

∥
∥
∥
∥f(x) −Q(x) +

1
5
f(0)

∥
∥
∥
∥ ≤ 1

30
δ +

1
32
ϕ̃(x, 0) (2.22)

for all x ∈ X.

One should note that in the above theorem, f(0) is not necessarily zero, but in the
following result, we assume that f(0) = 0 and also consider the case δ = 0. By these
hypotheses and by applying Theorem 2.1, we obtain the specific result which is a way to
prove the superstability of a quartic functional equation.

Theorem 2.6. Let f : X → Y be a mapping with f(0) = 0, and let ψ : X × X → [0,∞) be a
function satisfying

lim
n→∞

24nψ
( x
2n
,
y

2n
)
= 0, (2.23)

∥∥Df
(
x, y

)∥∥ ≤ ψ(x, y), (2.24)

for all x, y ∈ X. If there exists L ∈ (0, 1) such that

ψ(x, 0) ≤ 2−4Lψ(2x, 0), (2.25)

for all x ∈ X, then there exists a unique quartic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ L

32(1 − L)ψ(x, 0), (2.26)

for all x ∈ X.

Proof. We take the set Ω := {g : X → Y | g(0) = 0} and consider the generalized metric on Ω,

d
(
g1, g2

)
:= inf

{
C ∈ (0,∞) :

∥∥g1(x) − g2(x)
∥∥ ≤ Cψ(x, 0) ∀x ∈ X}

, (2.27)

if there exists such a constant C, and d(g1, g2) = ∞ otherwise. It follows from the proof
of Theorem 2.2 that the metric space (Ω, d) is complete (see the proof of Theorem 2.2).
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We will show that the mapping J : Ω → Ω defined by Jg(x) = 24g(x/2)(x ∈ X) is strictly
contractive. Fix a C ∈ (0,∞) and take g1, g2 ∈ Ω such that d(g1, g2) < C, then we have

∥
∥
∥24g1

(x
2

)
− 24g2

(x
2

)∥∥
∥ ≤ 24Cψ

(x
2
, 0
)
, (2.28)

for all x ∈ X. By using (2.25), we obtain

∥
∥∥24g1

(x
2

)
− 24g2

(x
2

)∥∥∥ ≤ CLψ(x, 0), (2.29)

for all x ∈ X. It follows from the last inequality that d(Jg1,Jg2) ≤ Ld(g1, g2), for all g1, g2 ∈ Ω.
Hence, J is a strictly contractive mapping onΩwith a Lipschitz constant L. By putting y = 0,
replacing x by x/2 in (2.24) and using (2.25), and then dividing both sides of the resulting
inequality by 2, we have

∥∥∥24f
(x
2

)
− f(x)

∥∥∥ ≤ 1
2
ψ
(x
2
, 0
)
≤ 2−5Lψ(x, 0), (2.30)

for all x ∈ X. Hence, d(f,Jf) ≤ 2−5L < ∞. By applying the fixed-point alternative
Theorem 2.1, there exists a unique mapping Q : X → Y in the set Ω1 = {g ∈ Ω;d(f, g) < ∞}
such that

Q(x) = lim
n→∞

24nf
( x
2n

)
, (2.31)

for all x ∈ X. Again Theorem 2.1 shows that

d
(
f,Q

) ≤ d
(
f,Jf)

1 − L ≤ 2−5L
1 − L. (2.32)

Hence, inequality (2.32) implies (2.26). Replacing x, y by 2nx, 2ny in (2.24), respec-
tively, and using (2.23) and (2.31), we conclude that

∥∥DQ
(
x, y

)∥∥ = lim
n→∞

24n
∥∥∥Df

( x
2n
,
y

2n
)∥∥∥

≤ lim
n→∞

24nψ
( x
2n
,
y

2n
)
= 0,

(2.33)

for all x ∈ X. Therefore, Q is a quartic mapping.

Corollary 2.7. Let p and λ be nonnegative real numbers such that p > 4. Suppose that f : X → Y
is a mapping satisfying

∥∥Df
(
x, y

)∥∥ ≤ λ(‖x‖p + ∥∥y
∥∥p), (2.34)



8 Abstract and Applied Analysis

for all x, y ∈ X, then there exists a unique quartic mapping Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥ ≤ λ

2
(
2p − 24

)‖x‖p (2.35)

for all x ∈ X.

Proof. It is enough to let ψ(x, y) = λ(‖x‖p + ‖y‖p) in Theorem 2.6.

Corollary 2.8. Let p, q, λ be nonnegative real numbers such that p + q ∈ (4,∞). Suppose that a
mapping f : X → Y satisfies

∥
∥Df

(
x, y

)∥∥ ≤ λ‖x‖p∥∥y∥∥q (2.36)

for all x, y ∈ X. Then f is a quartic mapping on X.

Proof. Putting ψ(x, y) = θ‖x‖p‖y‖q in Theorem 2.6, we have

lim
n→∞

ψ
(
2nx, 2ny

)

24n
= 0, (2.37)

and thus, (2.6) holds. If we put x = y = 0 in (2.36), then we get f(0) = 0. Again, letting y = 0
in (2.36), we conclude that f(x) = 24f(x/2), and thus, f(x) = 24nf(x/2n), for all x ∈ X and
n ∈ N. Now, we can obtain the desired result by Theorem 2.6.

From Corollaries 2.4 and 2.8 we deduce the following result.

Corollary 2.9. Let p, q, and λ be nonnegative real numbers such that p + q > 0 and p + q /= 4.
Suppose that a mapping f : X → Y satisfies (2.36), for all x, y ∈ X then f is a quartic mapping on
X.
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