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To estimate the compressive strength of cement-based materials with mining waste, the dataset based on a series of experimental
studies was constructed. (e support vector machine (SVM), decision tree (DT), and random forest (RF) models were developed
and compared.(e beetle antennae search (BAS) algorithm was employed to tune the hyperparameters of the developed machine
learning models. (e predictive performances of the three models were compared by the evaluation of the values of correlation
coefficient (R) and root mean square error (RMSE). (e results showed that the BAS algorithm can effectively tune these artificial
intelligence models.(e SVMmodel can obtain the minimumRMSE, while the BAS algorithm is inefficient in DTand RFmodels.
(e SVM, DT, and RFmodels can be used to predict the compressive strength of cement-basedmaterials using solid mining waste
as aggregate effectively and accurately, with high R values and lower RMSE values. (e RF algorithm can obtain the highest value
of R and the lowest value of RMSE, demonstrating the highest accuracy. (e solid mining waste to cement ratio is the most
important variable to affect the compressive strength. Curing time was also an important parameter in the compressive strength of
cemented materials, followed by the water-solid ratio of mining waste and fine sand ratio.

1. Introduction

(e mining waste includes the stripping and waste rock
(including coal gangue) produced in the process of mining,
as well as the tailings discarded in the process of mineral
dressing [1–6]. A large amount of mining solid waste as well
as the complicated treatment has become one of the issues
that should be addressed for environmental protection
[4, 7–12]. (e massive accumulation of mining waste can
cause pollution of the land, causing disasters such as
landslides and mudslides. (e debris and tailings formed by
the weathering of waste rock are either washed by water into
the water body, dissolved and penetrated into the
groundwater, or blown into the atmosphere by the wind,
polluting the environment with water and gas as themedium
[13–16]. (ese mining waste materials not only take up a lot
of land but also directly pollute the environment and

threaten the safety of people’s lives, since some of these
wastes contain highly toxic elements, such as arsenic and
cadmium, and radioactive elements, which are harmful to
human health [1, 2, 4, 7–9]. Tailings have the characteristics
of fine particles, small weight, large surface area, being easy
to run away in contact with water, and being easy to fly when
exposed to wind. (erefore, those solid mining wastes are a
potential hazard to the air, water bodies, farmland, and
villages [4, 13, 17–20].

To address such issue of solid mining waste, researchers
have started various approaches to recycling and repro-
duction of those construction materials using the mining
waste, and one of the most representative cases is the widely
used cement-based materials which can be produced en-
vironmentally friendly if the main aggregates can be replaced
by the mining waste [21–31]. In general, cement and water
should be added to cement-based composites to increase
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strength and fluidity. After mixing with water, the slurry can
be hardened in the water, and the sand, stone, and other
materials can be firmly cemented together [32–40]. Due to
its important role as a building material, it has received more
and more attention in recent years, especially in the research
objectives of strength and durability [41–49].

As mentioned above, compressive strength is a key index
for evaluating the construction process and workability of
cement-based composites, so most studies focus on exper-
iments and revealing mechanisms [50–57]. Typically, the
strength of cement-basedmaterials is tested in the laboratory
and the practical civil engineer finds the optimized pro-
portion of the constituent materials in the composition
[58–66]. However, experimental research is time-consuming
and expensive and is not suitable for a large number of
laboratory tests [41, 42, 67–72]. Some researchers have
applied empirical formulas to predict the strength of ce-
ment-based materials using the so-called mathematical re-
gression, in which some of the empirical formulas are useful,
but most of them are limited by the input and output dataset.
Because of the low accuracy of the empirical formula, its
scope of application has barely been realized. Hence, to
accurately predict the compressive strength of cement-based
materials, simpler and more reliable models should be
proposed.

Using artificial intelligence methods to evaluate and
predict the mechanical properties of cement-based materials
is a hot spot in the research field of cement-based composites
[35, 39, 63]. Besides, some researchers have applied machine
learning methods to evaluate the performance of cement-
based composites. For example, artificial neural networks
(ANN) and other evolutionary optimization algorithms have
been used to predict the compressive strength of cement-
based materials. Jamal et al. analyzed the potential to use
multiple linear regression and adaptive neurofuzzy rea-
soning systems for the estimation of the strength of recycled
aggregate concrete [73]. Khademi and Jamal used the same
method in a follow-up study to predict the compressive
strength of the recycled aggregate concrete after curing for
28 days [74]. (e measured results of the above-mentioned
method were consistent with the predicted ones, indicating
that the machine learning techniques are feasible for the
performance prediction of the cemented-based materials.
However, limited studies can support accurate and efficient
artificial intelligence techniques that specifically target the
compressive strength of the cemented-based materials that
use the mining waste as the aggregates. Also, it should be
noted that the above machine learning techniques have been
successfully adapted to the prediction of the concrete ma-
terials, but these studies still have the limitations of un-
certainty, being time-consuming, and low efficiency.
(erefore, it is necessary to propose more efficient and
simple machine learning techniques to evaluate the com-
pressive strength of the cemented-based materials that use
the mining waste as the aggregates. Besides, more intelligent
algorithms such as random forest, support vector machine,
and decision tree are also applied in this field. It should be
noted that most machine learning models can make pre-
dictions accurately, but there is limited research on the

impact of different models on the accuracy of predictions.
(e above algorithms have different sensitivities to datasets
with different attributes. (erefore, it is necessary to use
different models for predictive compression and to find the
optimal model for future applications.

In this study, various experimental tests were conducted
to construct the dataset considering four key factors, that is,
solid mining waste to cement ratio, fine sand ratio, solid
mining waste to water ratio, and curing time. (en three
machine learning models, that is, SVM, DT, and RF, were
used for the prediction of the strength of cement-based
materials using the mining waste as the aggregates, and the
hyperparameters of these models were tuned by beetle
antennae search (BAS) algorithm. Last, the prediction results
were compared and analyzed, which give the best models in
compressive strength prediction of the cement-based ma-
terials. Also, the importance of influencing variables was
conducted and the most sensitive factor was found. (e
study provides the best models for strength prediction of
cement-based materials, which is an important guideline in
this research field.

2. Methodology

2.1.DatasetCollection. In the present study, the compressive
strength dataset used for the prediction of cement-based
materials was collected from the previous studies by the
authors. (e tailings were employed as the solid mining
waste for the replacement of the aggregates. Four parameters
confirmed to be the influenced variables for the compressive
strength of the cement-based materials were determined as
the input: the ratio of the solid mining waste to the cement,
fine sand ratio, the ratio of the solid mining waste to water,
and the curing time. Table 1 presents the composition of the
dataset.

(e solid mining waste to the cement ratio was deter-
mined as 4, 6, 8, and 10, respectively. (e fine sand ratio
concerning the total mixture was selected as 0, 0.1, 0.15, and
0.2. (e solid mining waste to water ratio was determined as
0.68, 0.7, and 0.72, respectively. (e concrete samples were
cured for 7, 28, and 60 days. Table 2 shows the statistical
analysis of these variables in the dataset.

(e Pearson correlation coefficient was employed in this
study to evaluate the relationship between the input pa-
rameters. (e Pearson correlation coefficient between two
input variables is defined as the quotient of covariance and
standard deviation between two variables, as shown in the
following equation:

ρXY �
cov(X, Y)

σXσY

�
E X − μX( 􏼁 Y − μY( 􏼁􏼂 􏼃

σXσY

. (1)

Correspondingly, the correlation of the collected dataset
was analyzed by SPSS software in the present study. Figure 1
gives the correlation matrix between the input variables (the
solid mining waste to cement ratio, fine sand ratio, solid
mining waste to water ratio, and curing time).

It can be found from Figure 1 that the correlation between
the two same variables is 1 on the diagonal from the bottom left
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to the top right and the correlation coefficient of the part above
the diagonal is symmetric with the correlation coefficient of the
part below the diagonal. (e correlation coefficients between
the different variables are relatively low (most values are close
to 0.1).(is indicates that these input variables are independent
of each other, so they can be used as input variables for in-
telligent prediction of compressive strength of the concrete
samples without causing multicollinearity issues.

2.2. Artificial Intelligence Algorithms. In the present study,
three artificial intelligence algorithms, SVM, DT, and RF,
were employed to predict the compressive strength of
concrete samples with tailings as aggregate.

Support vector regression (SVR) seeks an estimation
indicator function, which can be used to classify test samples
[60]. By extending the problem from seeking indication
function estimation to seeking real-valued function esti-
mation, a support vector machine (SVM) for function es-
timation (regression) can be obtained [75–77]. SVM
effectively solves the problems of a small number of samples,
high dimension, and nonlinearity [78, 79]. However, as a
newmachine learning algorithm, there are still some areas to
be improved, and the selection of its parameters (including
error ε, error penalty factor C, and kernel function pa-
rameters y) is one of the problems to be improved
[60, 80, 81]. (e kernel function parameter Y affects the
complexity of the distribution of sample data in the high-

Table 1: Composition of the dataset.

Solid mining waste to cement ratio Fine sand ratio Solid mining waste to water ratio Curing time
4, 6, 8, and 10 0, 0.1, 0.15, 0.2 0.68, 0.70, 0.72 7, 28, 60 days

Table 2: Statistical analysis of these variables in the dataset.

Dataset Variables Mean Std

Training dataset (the number of data points is 100)

Solid mining waste to cement ratio (%) 70.14 1.61
Fine sand ratio (%) 11.15 7.24

Solid mining waste to water ratio (%) 6.92 2.16
Curing time (d) 33.53 21.14

Testing dataset (the number of data points is 44)

Solid mining waste to cement ratio 69.68 1.65
Fine sand ratio 11.48 7.73

Solid mining waste to water ratio 7.18 2.39
Curing time 27.43 22.64

Curing time (d)
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Figure 1: Correlation matrix of the input matrix.
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dimensional feature space. (e change of kernel parameters
implicitly changes the mapping function, thus changing the
dimension of the sample space. For an indicator function set,
if there are H samples that can be separated by all possible
forms of two toH of the function set, then the function set is
said to be able to shatter H samples. (e Vapnik-Chervo-
nenkis (VC) dimension of a set of functions is the maximum
number of samples it can shatter. If there are functions that
can shatter any number of samples, then the VC dimension
of the set of functions is infinite, and the VC dimension of a
bounded real function can be defined by converting it to an
indicator function with a certain threshold.

(e DTmodel is a decision analysis method that obtains
the probability that the expected value of net present value is
greater than or equal to zero, evaluates the project risk, and
judges its feasibility based on the known probability of
occurrence of various situations by forming a decision tree.
(e DT model is a graphical method that directly uses
probability analysis. In machine learning, the DT algorithm
can be used as a prediction model, which represents a
mapping relationship between object attributes and object
values.

RF is an algorithm that integrates multiple trees through
the idea of ensemble learning. Its basic unit is the decision
tree, and its essence belongs to the ensemble learning
method of machine learning. In fact, from an intuitive point
of view, each decision tree is a classifier. (erefore, for input
with n samples, n trees will have n classification results. (e
RF algorithm integrates all the classification voting results
and designates the category with the most votes as the final
output. In the RF algorithm, k feature columns are randomly
selected from the dataset with a total of m features (where k
is less than or equal to m), and then a decision tree is
established based on these k features. (is process should be
repeated n times, and n decision trees can be built from the k
properties through different random combinations. Finally,
the random variables are passed to each decision tree to
predict the outcome.

In this study, the input variables of the model are the
ratio of solid waste to cement, the ratio of fine sand, the ratio
of solid waste to water, and the curing time, and the output is
the compressive strength of concrete samples. (ese ma-
chine learning algorithms are widely used to address the
regression problems in the engineering area such as the
prediction of the concrete performance, rock performance,
and rockburst. However, these models have not been
compared to find the optimized one, especially regarding the
concrete samples with tailings as aggregate. (erefore, it is
necessary to compare them and find out the best model to
predict the compressive strength of concrete specimens with
mining waste as aggregate.

2.3. Evaluation of the Predictive Performance. (e evaluation
method is crucial for the performance of machine learning
models because it can help researchers find the optimal
algorithm for application. In this study, the dataset is divided
into two parts: the training set (70%, including 100 data
points) and the testing set (30%, including 44 data points).

Each dataset was then validated using a 10-fold cross-vali-
dation method. According to the literature, the correlation
coefficient (R) and root mean square error (RMSE) were
used in this study to evaluate the performance of the applied
model. (e two parameters can be described as follows:

R �
􏽐

N
i�1 y
∗
i − y
∗

􏼐 􏼑 yi − y( 􏼁
�������������

􏽐
N
i�1 y
∗
i − y∗( 􏼁

2
􏽱 ������������

􏽐
N
i�1 y

i
− y􏼐 􏼑

2
􏽱 ,

RMSE �

��������������

1
N

􏽘

N

i�1
y
∗
i − yi( 􏼁

2

􏽶
􏽴

,

(2)

whereN represents the number of datum, which is 144 in the
present study; y∗ i and yi represent the expected and
measured compressive strengths of the concrete samples,
respectively; y and y∗ are the average values of the predicted
and measured compressive strengths of the concrete sam-
ples, respectively.

3. Results and Discussion

3.1. Experimental Results of the Compressive Strength.
Figure 2 gives the experimental results of the compressive
strength of the concrete samples using the tailings as the
aggregate and all the datasets, the solid mining waste to
cement ratio, fine sand ratio, solid mining waste to water
ratio, and curing time, are summarized in it.

As can be seen from Figure 2, the influence of fine sand
ratio on the compressive strength of concrete specimens is
generally negative, that is, with the decrease of fine tailings,
the compressive strength of concrete specimens increases.
However, it should be noted that, in some cases, the effect of
fine tailings is not clear. In addition, with the increase of
curing time, the compressive strength of concrete specimens
increases rapidly. (e solid mining waste to water ratio also
has a similar influencing effect, and the compressive strength
of concrete samples increases with the increase of the solid
mining waste to water ratio. However, with the increase of
solid mining waste to cement ratio, its strength decreases.
(e experimental results are consistent with the results of the
previous literature, indicating that the dataset is reliable and
accurate.

3.2.Hyperparameters Tuning. Figure 3 gives the relationship
between iterations and RMSE values.

For different artificial intelligence algorithms, BAS is
used to find the optimized hyperparameters. As can be seen
from Figure 3, RMSE drops rapidly after several iterations
and then remains stable, indicating that BAS can effectively
tune these artificial intelligence models. (e reduction rates
of RMSE values of the three models are similar, indicating
the lower difference in computational efficiency. Also, it can
be clearly seen from Figure 3 that, due to the hyper-
parameters tuning of the BAS algorithm, the SVMmodel can
obtain the minimum RMSE, while BAS algorithm is inef-
ficient in DT and RF models. In summary, the BAS algo-
rithm is efficient and accurate in the hyperparameter tuning
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process of the three models and the following model eval-
uation process can be conducted.

(e 10-fold cross-validation (CV) was employed for the
hyperparameter tuning in the three machine learning
models. Figures 4–6 give the RMSE values of different folds
using the SVM, DT, and RF models, respectively.

It can be seen from the figures that the SVM model can
obtain the minimum value of RMSE at the 4th fold with a
value of 0.065 during the 10-fold CV process. (e minimum
value of RMSE in the DTmodel can be obtained at the 4th
fold as well, with a value of 0.095. RF model can obtain the
minimum value of RMSE at the 7th fold with a value of 0.08.

3.3. Model Evaluation. (e predictive results of the three
machine learning models employed in this study were
systematically compared. Figures 7–9 give the results of the
comparison between the actual compressive strength and
predicted compressive strength using the SVM model, DT
model, and RF model, respectively.

It can be observed that the RMSE values (test set) of the
SVMmodel, DTmodel, and RFmodel were 0.2332, 0.24, and
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0.2286, respectively. R values (test set) of the SVM model,
DT model, and RF model were 0.9699, 0.9619, and 0.9731,
respectively. It is indicated that the RF model is the

optimized machine learning algorithm to predict the
compressive strength of the cement-based materials using
the tailings as the aggregates. However, it should be noted
that the predictive performances of the three models are
quite similar (less than 5%).

3.4. Variable Importance Evaluation. (e model can effec-
tively predict the compressive strength of the cementing
material of tailings as aggregate, and the relative importance
of each variable can be determined by the machine learning
model. To achieve optimal prediction performance, the RF
model was used to calculate the importance of variables in
this study, and the results are shown in Figure 10.
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Figure 7: Comparison of the actual compressive strength and
predicted compressive strength (SVM model).
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Figure 8: Comparison of the actual compressive strength and
predicted compressive strength (DT model).
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It can be seen that the solid mining waste to cement
ratio is the most important variable, and its influence
score is 4.9159. Curing time (3.1694) can also be used as an
important parameter in the compressive strength of
cemented materials relative to the total amount of mining
waste, followed by the water-solid ratio of mining waste
(0.0593) and fine sand ratio (0.0269), indicating that
engineers should pay more attention to the ratio of solid
mining waste to cement. (e above results have a certain
guiding significance for the mix design of the cemented
materials with mining waste as aggregate and field
construction.

4. Conclusions

Based on a series of experimental studies on cement-based
materials with mining waste as the aggregates, the dataset
was constructed and the model was evaluated. (ree ma-
chine learning models (SVM, DT, and RF) were used to
predict the compressive strength of cement-based materials

with mining waste as the aggregates, and the prediction
results of different models were compared. (e corre-
sponding results are as follows:

(1) (e results of compressive strength of cement-based
materials show that, with the increase of water
content and curing time of solid mine waste, the
compressive strength of cement-based materials
increases, while it decreases with the increase of fine
sand ratio and solid waste rock cement ratio.

(2) (e BAS algorithm can effectively tune these arti-
ficial intelligence models. (e reduction rates of
RMSE values of the three models are similar, indi-
cating the lower difference in computational effi-
ciency. Due to the hyperparameters tuning of the
BAS algorithm, the SVM model can obtain the
minimum RMSE, while the BAS algorithm is inef-
ficient in DT and RF models.

(3) Based on the prediction results from the developed
model, the SVM, DT, and RF models can be used to
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predict the compressive strength of cement-based
materials using solid mining waste as aggregate
effectively and accurately, with high R values
(0.9699, 0.9619, and 0.9731 for the SVM, DT, and
RF models) and lower RMSE values (SVM, DT,
and RF models were 0.2332, 0.24, 0.2286, re-
spectively). Comparing the three developed
models, the RF algorithm can obtain the highest
value of R and the lowest value of RMSE, dem-
onstrating the highest accuracy.

(4) (e solid mining waste to cement ratio is the most
important variable to affect the compressive strength
of the cement-based materials using the mining
waste as the aggregates. Curing time was also an
important parameter in the compressive strength of
cemented materials relative to the total amount of
mining waste, followed by the water-solid ratio of
mining waste and fine sand ratio.(ese results have a
certain guiding significance for the mix design of the
cemented materials with mining waste as aggregate
and field construction in the future.

It should be pointed out that the accuracy and reliability
of these developed machine learning models depend on the
dataset, that is, the number and type of samples. (erefore,
in the future, more samples will need to be obtained and
more efficient models should be proposed.
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(e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

(ere are no conflicts of interest.

References

[1] X. Zhang, Q. Jiang, N. Chen, W. Wei, and X. Feng, “Labo-
ratory investigation on shear behavior of rock joints and a new
peak shear strength criterion,” Rock Mechanics and Rock
Engineering, vol. 49, no. 9, pp. 3495–3512, 2016.

[2] G. You, M. A. Mandalawi, A. Soliman, K. Dowling, and
P. Dahlhaus, “Finite element analysis of rock slope stability
using shear strength reduction method,” in Proceedings of the
International Congress and Exhibition “Sustainable Civil In-
frastructures: Innovative Infrastructure Geotechnology,
pp. 227–235, Springer, Sharm El Sheikh, Egypt, July 2017.

[3] C. Xu, M. N. Amar, M. A. Ghriga, H. Ouaer, X. Zhang, and
M. Hasanipanah, “Evolving support vector regression using
grey wolf optimization; forecasting the geomechanical
properties of rock,” Engineering with Computers, pp. 1–15,
2020.

[4] H. Xie, J.-A. Wang, and W.-H. Xie, “Fractal effects of surface
roughness on the mechanical behavior of rock joints,” Chaos,
Solitons & Fractals, vol. 8, no. 2, pp. 221–252, 1997.

[5] Z. Sun, J. Shi, K. Wu, T. Zhang, D. Feng, and X. Li, “Effect of
pressure-propagation behavior on production perfor-
mance: implication for advancing low-permeability coal-
bed-methane recovery,” SPE Journal, vol. 24, no. 2,
pp. 681–697, 2019.

[6] Z. Sun, X. Li, W. Liu, T. Zhang, M. He, and H. Nasrabadi,
“Molecular dynamics of methane flow behavior through re-
alistic organic nanopores under geologic shale condition: pore
size and kerogen types,” Chemical Engineering Journal,
vol. 398, Article ID 124341, 2020.

[7] R. Wu, P. Kulatilake, H. Luo, and K. Zhao, “Design of the key
bearing layer and secondary mining technology for previously
mined areas of small coal mines,” Rock Mechanics and Rock
Engineering, vol. 53, pp. 1–15, 2019.

[8] G. Tiwari and G. M. Latha, “Shear velocity-based uncertainty
quantification for rock joint shear strength,” Bulletin of En-
gineering Geology and the Environment, vol. 78, no. 8,
pp. 5937–5949, 2019.

[9] D. Tarchi, G. Antonello, N. Casagli et al., “On the use of
ground-based sar interferometry for slope failure early
warning: the cortenova rock slide (Italy),” in Landslides,
pp. 337–342, Springer, Berlin, Germany, 2005.

[10] F. Xiao, T. Wang, X. Hou, J. Yuan, C. Jiang, and Y. Luo,
“Waterproof and antiscour properties of asphalt-based
composite seals for airfield base layer,” Journal of Materials in
Civil Engineering, vol. 32, no. 1, Article ID 04019328, 2020.

[11] T. Wang, J. Wang, X. Hou, and F. Xiao, “Effects of sara
fractions on low temperature properties of asphalt binders,”
Road Materials and Pavement Design, vol. 22, no. 3,
pp. 539–556, 2021.

[12] X. Hou, F. Xiao, R. Guo, Q. Xiang, T. Wang, and J. Wang,
“Application of spectrophotometry on detecting asphalt
content of emulsified asphalt,” Journal of Cleaner Production,
vol. 215, pp. 626–633, 2019.

[13] Z. C. Tang and L. N. Y. Wong, “New criterion for evaluating
the peak shear strength of rock joints under different contact
states,” Rock Mechanics and Rock Engineering, vol. 49, no. 4,
pp. 1191–1199, 2016.

[14] D. Sow, C. Carvajal, P. Breul et al., “Modeling the spatial
variability of the shear strength of discontinuities of rock
masses: application to a dam rock mass,” Engineering Geology,
vol. 220, pp. 133–143, 2017.

[15] M. Souley, F. Homand, and B. Amadei, “An extension to the
saeb and amadei constitutive model for rock joints to include
cyclic loading paths,” International Journal of Rock Mechanics
and Mining Science & Geomechanics Abstracts, pp. 101–109,
Elsevier, 1995.

[16] K. Senthil, A. Arockiarajan, R. Palaninathan, B. Santhosh, and
K. M. Usha, “Defects in composite structures: its effects and
prediction methods - a comprehensive review,” Composite
Structures, vol. 106, pp. 139–149, 2013.

[17] R. Resende, J. Muralha, A. L. Ramos, and E. Fortunato, “Rock
joint topography: three-dimensional scanning and numerical
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Improvement of compressive strength prediction accuracy for concrete is crucial and is considered a challenging task to reduce
costly experiments and time. Particularly, the determination of compressive strength of concrete using ground granulated blast
furnace slag (GGBFS) is more difficult due to the complexity of the composition mix design. In this paper, an approach using
random forest (RF), which is one of the powerful machine learning algorithms, is proposed for predicting the compressive
strength of concrete using GGBFS. ,e RF model is first evaluated to determine the best architecture, which constitutes 500
growth trees and leaf size of 1. In the next step, the evaluation of the model is conducted over 500 simulations considering the
effect of random sampling. Finally, the best prediction results are given in function of statistical measures such as the correlation
coefficient (R), root mean square error (RMSE), and mean absolute error (MAE), respectively, which are 0.9729, 4.9585, and
3.9423 for the testing dataset. ,e results show that the RF algorithm is an excellent predictor and practically used for engineers to
reduce experimental cost.

1. Introduction

Nowadays, ground granulated blast furnace slag (GGBFS)
has been used as supplementary cementitious material in
Portland concretes. GGBFS is a product of the glassy
granular material formed when molten blast furnace slag is
quickly cooled by water. GGBFS can replace 35–65%
Portland cement in concrete. Using GGBFS as a partial
replacement of Portland cement enhances concrete strength
and durability through a denser matrix formation. It could
also increase the performance of concrete structures.
Moreover, GGBFS as a partial replacement requires ap-
proximately only 25% of the energy needed to produce
Portland cement [1–4]. ,anks to these numerous advan-
tages, the determination of GGBFS content in the design
phase of concrete is essential and meaningful, especially in
improving the concrete compressive strength.

Numerous investigations were performed to calculate
GGBFS concrete mix design, including the experimental and
statistical methods. Some experimental investigations have

been carried out to estimate the compressive strength of
GGBFS concrete [5–9]. However, the experimental methods
are, in general, time consuming and relatively costly. Be-
sides, several mathematical models and empirical equations
have been proposed to estimate the compressive strength of
concrete. In fact, the mathematical equations are regression
equations based on the experimental results. As an example,
with four cement dosages, including 175, 210, 245, and
280 kg/m3, Oner and Akyuz [5] have proposed two equa-
tions and obtained a correlation coefficient of 0.99. However,
this value is validated only in the range of cement dosage of
the authors. ,e accuracy of regression equations is strongly
dependent on the number of experimental tests and the
range of cement content.,erefore, a new approach needs to
be developed for reducing the time consumed and experi-
mental cost due to a high number of experimental tests. Also,
a universal prediction approach with high prediction ac-
curacy needs to be constructed.

In recent years, artificial intelligence (AI) or machine
learning (ML) is gradually becoming popular and applied in
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numerous scientific fields [10–13].,e random forest (RF) is
one of the most powerful algorithms of ML for data science,
which has been widely used in the construction field [14].
,e RF model is successfully applied to solve numerous
technical issues of civil engineering [15–18], geotechnical
engineering [19–22], earth sciences [23–25], and envi-
ronmental protection [26, 27]. For example, Mohana [17]
has used the RF model and 268 experimental data to
predict the compressive strength of concrete containing
GGBFS. ,e author has also mentioned that the prediction
accuracy is evaluated through the correlation coefficient
(R), equal to 0.94, for the best RF architecture. Such a value
is considered low due to the number of simulations per-
formed by the author. Moreover, the number of experi-
mental data is limited, which reduces the prediction
accuracy of concrete compressive strength using the RF
model.

,erefore, the primary purpose of this study is to pro-
pose an efficient RF model to increase the compressive
strength prediction accuracy of concrete containing
GGBFS, thanks to the higher data samples collected from
the literature. Moreover, efficient RF architecture will be
performed by performing numerous simulations for in-
creasing the RF model’s reliability. Precisely, the perfor-
mance of MLmodel is strongly affected by the parameter or
architecture selections of the corresponding ML algo-
rithms. ,erefore, this study performs firstly the deter-
mination of RF architecture for better predicting the
compressive strength of concrete containing GGBFS. To
acquire the purpose, numerous experimental samples from
the literature are gathered and randomly split up into two
parts, namely, the training part (70% of data) and the
testing part (30% of data). ,e best RF architecture is
obtained and used to predict the compressive strength of
concrete containing GGBFS with the evaluation of three
statistical measurements, consisting of the correlation
coefficient (R), mean absolute error (MAE), and root mean
square error (RMSE). ,e sensitivity of concrete com-
pressive strength on different input parameters is finally
performed.

2. Significance of the Research Study

Accurate prediction of the concrete compressive strength
using supplementary cementitious materials, such as
GGBFS, is crucial thanks to many further advantages and
contributions to construction design. Although many ma-
chine learning models have been proposed to predict the
compressive strength of concrete in the available literature
(i.e., [28–32]), the reliability assessment of the models still
needs to be quantified.,erefore, the present investigation is
proposed in order to

(1) introduce the variability in the sampling process to
construct the training and testing datasets

(2) assess the prediction reliability of the RFmodel using
Monte Carlo simulations

(3) finely tune the hyperparameters to obtain the best RF
model

(4) show that the performance of the best model is
compared with 7 investigations published in the
literature, confirming its simplicity and effectiveness

(5) show a reliable variable importance analysis by
taking the average results of 500 simulations

3. Database Construction

,e experimental database used in this study is collected from
published articles [5, 6, 31, 33, 34] (Table 1). ,ere are 453
samples, divided into two parts, 70% training data (317
samples) and 30% testing data (136 samples). Two shapes of
samples include 327 cubic samples and 36 cylindrical samples,
about 8% of all samples; therefore, the shape variable is not
considered in this investigation. ,e total databases include 8
input variables from X1 to X8: cement content, kg/m3 (X1);
water content, kg/m3 (X2); coarse aggregate, kg/m3 (X3); fine
aggregate or sand, kg/m3 (X4); GGFBS content, kg/m3 (X5);
hyperplasticizing, kg/m3 (X6); superplasticizer, % (X7); and age
of samples, day (X8).,e output variable of the present study is
the compressive strength, MPa (denoted as Y). ,e corre-
sponding correlation analysis of data is shown in Figure 1.

,e input variables from X1 to X5 are distributed in a
wide range, while the variables X6 to X8 are in a narrow
range. Precisely, the cement content (X1) ranges from 70 to
360 (kg/m3), but it is mainly in the range of 180 to 270 (kg/
m3). ,e highest sample number is about 79, which cor-
responds to 180 kg/m3 of cement content. Similarly, the
water content (X2) ranges from 70 to 295 kg/m3. As shown in
Figure 1, the coarse aggregate content (X3) is varied from
about 400 to 1200 (kg/m3), but no sample has coarse ag-
gregate content in the range of 500 to 700 (kg/m3). ,e fine
aggregate or sand content (X4) is mainly in two ranges from
500 to 950 (kg/m3) and 1150 to 1550 (kg/m3). ,e highest
sample number (X4) corresponds to 680 kg/m3 of fine ag-
gregate (or sand content). ,e GGBFS content (X5) varies
from 40 to 460 kg/m3, but the values are mostly in the range
of 70 to 270 (kg/m3). ,e carboxylic-type hyperplasticizing
content (X6) ranges from 2 to 14 kg/m3. However, hyper-
plasticizing is not used in almost all cases, accounting for
about 330 samples (on a total of 453). Besides, almost all
samples have zero superplasticizer content (X7) except for six
samples, representing only a proportion of 1%.With the age of
samples, there are ten values; the minimum age of the sample
is one day, and the maximum age of the sample is 365 days.

,e correlations between the inputs and compressive
strength are plotted in Figure 2. ,e correlation values are
shown in different colors. As clearly shown, some of the
variables are slightly correlated, such as X4 and X6 for aggregate
content and carboxylic-type hyperplasticizing content, respec-
tively. Overall, the correlation between the inputs and com-
pressive strength is relatively low. ,erefore, all variables are
included to increase the accuracy of the final model developed.

4. Simulation Using Random Forest

4.1. RandomForest. Random forest (RF) [35] is an ensemble
for classification and regression developed by Leo Breiman
at the University of California, Berkeley. Breiman is also a
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Table 1: Detail of database collection.

No. Reference Data number Shape of sample Percentage (%)
1 Oner and Akyuz [5] 168 Cubic 37.09
2 Shariq et al. [6] 63 Cubic 13.91
3 Chidiac and Panesar [34] 36 Cylindrical 7.95
4 Boga et al. [31] 6 Cubic 1.32
5 Bilim et al. [33] 180 Cubic 39.73
Total 453 100%
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Figure 1: Continued.
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coauthor of the classification and regression tree (CART)
method [36]. Random forest (RF) is an innovative method of
bootstrap aggregating (bagging). RF uses 2 random steps, in
which the first one is sample randomization using the
bootstrap method with a return and the second one is to
randomly extract a number of attributes from the original
attribute set. ,ese 2 randomized subdatasets are highly
diverse and unrelated, helping to reduce variance. CARTs
constructed from this subset of data form the forest. When
aggregating results, RF uses a voting method for the clas-
sification problem and takes the average value for the re-
gression problem.

In recent years, RF is used quite commonly because of its
superiority compared with other algorithms; it can handle
data with a large number of properties and able to estimate
the importance of the attributes, often with high accuracy in
classification (or regression) and fast learning process. In RF,

each tree selects only a small set of attributes during con-
struction (2nd random step); this mechanism makes the RF
execute with the dataset with a large number of attributes in
an acceptable time when calculating. ,e user can default to
the number of properties to construct trees in the forest;
normally the optimal default is ��

p
√ for the classification

problem and p/3 for regression problems (p is the number of
all properties of the original dataset). ,e number of trees in
the forest should be set large enough to ensure that all at-
tributes are used a number of times usually 500 trees for the
classification problem and 1000 trees for the regression
problem. Due to the use of the bootstrap method of random
return sampling, the subdatasets have about 2/3 of the
samples that do not overlap for tree construction. About 1/3
of the remaining samples are called out-of-bag because they
do not participate in the construction of trees, so RF uses
these out-of-bag samples to test and calculate the CART’s
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Figure 1: Histograms of the input variables used in this study: (a) cement content; (b) water content; (c) coarse aggregate content; (d) fine
aggregate (or sand) content; (e) ground granulated blast furnace slag content; (f ) carboxylic-type hyperplasticizing content; (g) super-
plasticizer content; and (h) testing age of samples.
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Figure 2: Multicorrelation graph of input and output variables used in this study.
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attribute importance in the forest. To summarize, the ran-
dom forest algorithm is built according to the following steps
(Figure 3):

Step 1. From dataset D, we generate random data
(bootstrap sample)
Step 2. Using random sampling data subsets D1, D2,. . .,
Dk to build trees T1, T2,. . ., Tk

Step 3. Combine trees: use the majority voting strategy
with the classification problem or average the predicted
values from trees with the regression problem

Overall, the RF model is selected in this study because of
many advantages, such as the prediction accuracy, fast
simulation speed, robustness to noise, and overfitting [37],
and easily parallelized, especially useful for Monte Carlo
simulations and useful for error estimation and determi-
nation of variable importance.

4.2. Validation of Models. In this study, three statistical
criteria are used to evaluate the error between the actual
value and the predicted value of the compressive strength of
concrete, namely, correlation coefficient (R), root mean
square error (RMSE), and mean absolute error (MAE). ,e
R-value is used to examine the linear correlation between the
actual value and the predicted value in the range [−1; 1].
Both the RMSE and MAE measure the average error be-
tween the actual and predicted outputs, in which RMSE is
used to evaluate the difference in value between actual and
predicted, and MAE displays the average error between
actual and prediction values. For these two indicators, the
smaller value denotes the better performance of the model.
,e closer the absolute value of R is to 1, the more accurate
the RF model is in predicting the compressive strength of
concrete. R, RMSE, and MAE are determined by the fol-
lowing equations:

R �
􏽐

N
j�1 Q0,j − Q0􏼐 􏼑 Qt,j − Qt􏼐 􏼑

􏽐
N
j�1 Q0,j − Q0􏼐 􏼑

2
􏽐

N
j�1 Qt,j − Qt􏼐 􏼑

2,

RMSE �

����������������

1
N

􏽘

N

j�1
Q0,j − Qt,j􏼐 􏼑

2

􏽶
􏽴

,

MAE �
1
N

􏽘

N

j�1
Q0,j − Qt,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(1)

where N is the number of database, Q0 and Q0 are the actual
experimental value and the average real experimental value,
and Qt and Qt are the predicted value and the average
predicted value, calculated according to the model output.

5. Methodology Flow Chart

,e methodology of constructing the RF model to predict
the compressive strength of concrete containing GGBFS is
described in Figure 4 including the primary steps as follows:

Step 1. Preparation of the database: In this step, the
database including 453 experimental results deter-
mining compressive strength of concrete is collected to
build RF models. ,e basic parameters to predict the
compressive strength of concrete containing GGBFS
include 8 input variables. ,e dataset is randomly
divided into two parts, where 70% of the data are used
to train the RF model and the remaining 30% is used to
validate the built model.
Step 2. Determination of the optimal of the RF ar-
chitecture model: In this second step, the number of
trees and the leaf size of the RF model are determined
based on the results obtained by the dataset. ,e cri-
terion used to validate an optimal RF model archi-
tecture is mean square error (MSE).
Step 3. Training the optimal model: In this step, the
training dataset is used to train the RF model with the
optimal architecture.
Step 4. Validating the model: In this final step, the
testing dataset is used to test and validate the RF model.
,e performance of the RF model is evaluated by
statistical criteria, including R, RMSE, and MAE.

6. Results and Discussion

6.1. Investigation on Random Forest Architecture. In this
section, the RF architecture is determined through the mean
square error (MSE), as shown in Figure 5. ,e MSE value is
strongly affected by the grown trees and leaf size number.
,e number of grown trees ranges from 0 to 2000, and seven
leaf size values are introduced in this investigation, including
1, 3, 5, 10, 20, 50, and 100. In all leaf size numbers, the RF
model is stable after about 500 grown trees. It is observed
that the higher the leaf size number, the lower theMSE value.
Overall, the MSE value of RF is the lowest in the case of
simulation with 1 leaf size and about 500 grown trees
[500–1]. ,erefore, the best architecture of the RF model
constitutes one leaf size and 500 grown trees. ,is archi-
tecture is used for the subsequent investigation.

6.2. Prediction Performance. In this section, the RF model
performance is assessed by three criteria such as R, RMSE,
and MAE. However, due to the sampling technique in which
the training database and testing database are randomly
constructed, the results of the RFmodel need to be evaluated
after a sufficient number of simulations. In this paper, 500
simulations seem to be appropriate for obtaining reliable
results. After 500 simulations, RMSE, MAE, and R values of
the training and testing parts are shown in Figures 6(a)–6(c),
respectively, including the average and Std values. For the
training part, the average value of RMSE is about 5.22, and
the average value of MAE is 3.84, and the average value of R
is 0.97. For testing, the average value of RMSE is about 7.26,
and the average value of MAE is 5.36, and the average value
of R is 0.95. It is observed that the Std value is relatively
small, which indicates the RF architecture is relatively stable.
,is result shows that RF architecture is suitable for de-
termining the compressive strength of concrete containing
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GGBFS. Besides, the Std value for training is smaller than Std
value for the testing part, which means the model’s per-
formance for training is higher than that for testing. ,is
could be useful to prevent overfitting problems. ,e exact
values are given in Table 2.

6.3. Prediction Accuracy. Once the best architecture is
found, this section is dedicated to the presentation of the best
simulation using the RF algorithm. Figures 7(a) and 7(b)
show the correlation between the experimental and the
predicted values for the training and testing datasets under
regression graphs, respectively. A linear fit is plotted in each
case, in black color. It is worth noting that the correlation
lines are very close to a perfect linear fit, which confirms an
excellent agreement between the actual and predicted
compressive strength of concrete using GGBFS.

,e comparison shows that the predicted value is very
close to the experimental value. ,e model error is plotted
between the predicted value and the experimental value for
the training database (Figure 8(a)) and the testing database
(Figure 8(b)). ,e error values corresponding to the training
and testing databases are small. Based on the cumulative
distribution (black line), the percentage error of samples
within a range can be easily determined. For example, with
the training database, the percentage of samples with errors
in the range [−5; 5] kN is about 70%. Similarly, the 60% error
between the experimental value and the RF simulation of the
testing database is about [−5; 5] kN. ,e results of the
performance criteria show that the RF model with 500
grown trees and 1 leaf size architecture can quite accurately
predict the compressive strength of concrete containing
GGBFS.

Table 3 presents the different quality assessment criteria
for the best RF predictor.,e best value of R is 0.9759 for the

training part and for the testing part is 0.9729. ,e values of
RMSE, MAE, Err. mean, and Err. Std for the training dataset
are 5.4480, 4.1365, −0.0563, and 5.4563 and for the testing
dataset are 4.9585, 3.9423, 0.6252, and 4.9647, respectively.
Overall, these results show that RF could accurately predict
the compressive strength of concrete containing GGBFS.

Table 4 shows the comparison of different machine
learning models proposed in the literature with the proposed
RF model. ,e comparisons are presented in the form of the
machine learning algorithm, input number, number of data,
and performance measure. ,e results show that the RF
model of this investigation, containing 500 growth trees and
1 leaf size, could predict the compressive strength of con-
crete with higher reliability, higher accuracy, and low time
consuming than that of almost all investigations. Based on a
large number of simulations performed, this paper shows the
simple architecture of the RFmodel for the higher prediction
of concrete compressive strength. Overall, these results
indicate that if the architecture of an ANNmodel is carefully
selected, it could be used as an alternative prediction tool for
material engineers.

Finally, Figure 9 shows the feature importance analysis
of compressive strength with respect to each input variable
using the RF model. ,ere are 8 input databases, including
cement content (X1), water content (X2), coarse aggregate
(X3), fine aggregate or sand (X4), GGFBS content (X5),
hyperplasticizing (X6), superplasticizer (X7), and age of
samples (X8). After 500 simulations, the average value of X7
is the smallest, whereas the average value of X8 is the highest.
,e results show that the superplasticizer content exhibits
the most negligible effect on the compressive strength of
GGBFS concrete, whichmainly depends on the testing age of
samples. More importantly, different from most of the
previously published results, the analysis shown in Figure 9
is conducted by taking the average feature importance re-
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Figure 6: Analysis of the results over 500 simulations (presented in average values with standard deviation) using different RF architectures:
(a) R; (b) RMSE; (c) MAE.

Table 2: Summary of different quality assessment criteria over 500 simulations with the best RF architecture.

Criteria
R RMSE MAE

Training set Testing set Training set Testing set Training set Testing set
Min 0.9700 0.9054 4.6951 4.9858 3.5261 3.9423
Average 0.9744 0.9461 5.2203 7.2602 3.8367 5.3628
Max 0.9805 0.9729 5.5260 9.6108 4.1365 6.8476
Std 0.0016 0.0127 0.1251 0.7264 0.0992 0.4900
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Figure 7: Regression graphs of the best predictor RF between experimental and predicted compressive strength: (a) training dataset and (b)
testing dataset.
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Figure 8: Error between target and output value plots for the case of the best RF architecture: (a) training dataset and (b) testing dataset.

Table 3: Summary of different quality assessment criteria for the best RF predictor.

RMSE MAE Err. mean Err. std R
Training set 5.4480 4.1365 −0.0563 5.4563 0.9759
Testing set 4.9585 3.9423 0.6252 4.9647 0.9729
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sults over 500 simulations. By doing so, the variability of the
input space while constructing the RF model is minimized,
and the reliability of the analysis is clearly shown (i.e., low
Std values).

7. Conclusion

In this investigation, the RF algorithm is presented to
predict the compressive strength of concrete containing
GGBFS. A number of 453 experimental samples are
gathered to develop the RF model. ,e database is ran-
domly divided into two parts 70% of training data and 30%
of testing data for the validation phase of the constructed
RF model. To fully assess the RF model performance, a
number of 500 simulations are performed using random

sampling technique. ,e results show that the RF archi-
tecture containing 500 growth trees and 1 leaf size is an
excellent architecture to predict the compressive strength
of concrete using GGBFS, in which the mean values of R,
RMSE, and MAE are, respectively, 0.9461, 7.2602, and
5.3628 for the testing part. ,e highest accurate RF model
shows an excellent prediction performance with R � 0.9729.
,e results can be used in developing a reliable model to
predict accurately and quickly the compressive strength of
concrete using GGBFS. Once the model is built, the pre-
diction process would take a short time to estimate the
compressive strength of a mix design.

Several short-term research directions of the present
work could be mentioned. First, although the effective-
ness of the RF model is clearly shown in this study, the

Table 4: Comparison of different machine learning models for predicting compressive strength of concrete.

Reference Machine learning algorithm Input Number of
data Performance measure

Saridemir et al.
[38] ANN and fuzzy logic models ANFIS 5 inputs: TA, C, GGBFS, W, and

Agg. 284 R� 0.9904

Bilim et al. [33] ANN model 6 inputs: C, GGBFS, W, SP, Agg.,
and TA 225 R� 0.9798

Kandiri et al.
[30]

Hybridized multiobjective ANN and a
multiobjective slap swarm algorithm

(MOSSA)/the M5P model tree algorithm

7 inputs: C, GGBFS, GGBFS grade
(SG), W, fine Agg., coarse Agg., and

TA
624 R� 0.9700

Han et al. [28] ANN model
7 inputs: curing temperature, W/

binder, GGBFS/total binder, W, fine
Agg., coarse Agg., SP

269 R� 0.9803

Boukhatem
et al. [29] ANN model 5 inputs: C, W/C, GGBFS,

temperature, TA 726 R� 0.9600

Boğa et al. [31] ANN model and the adaptive neuro-fuzzy
inference system (ANFIS)

4 inputs: cure type, curing period,
BFS ratio, CNI ratio 162 R� 0.9854

,is work RF model
8 inputs: C, W, coarse Agg. or gravel,
fine Agg. or sand, GGBFS, FA, SP,

TA
453

R� 0.9729,
MSE� 4.9585,
MAE� 3.9423

C: cement; GGBFS: ground granulated blast furnace slag; W: water; SP: superplasticizer; TA: age of samples; FA: fly ash; Agg.: aggregate.
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Figure 9: Feature importance over 500 simulations.
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model’s applicability can be improved by collecting more
data samples with a broader range of input and output
variables. ,is could be conducted based on the inves-
tigations of Golafshani and Behnood [39], as well as
Behnood et al. [32]. ,e updated database is expected to
be the most significant number of samples with the
broadest range of values. Moreover, the accuracy of the
RF model could be further improved by using optimi-
zation algorithms such as particle swarm optimization,
genetic algorithm, and artificial bee colony algorithm in
determining the best RF hyperparameters. Last but not
least, the specimen type of compressive strength could
also be considered as an input parameter. Overall, within
the range of input and output variables of the present
study, a numerical tool is developed in Matlab, which
could be an alternative prediction tool for engineers to
quickly estimate the compressive strength of concrete
containing GGBFS.
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*e prediction of concrete strength is an interesting point of investigation and could be realized well, especially for the concrete
with the complex system, with the development of machine learning and artificial intelligence. *erefore, an excellent algorithm
should put emphasis to receiving increased attention from researchers. *is study presents a novel predictive system as follows:
extreme gradient boosting (XGBoost) based on grey relation analysis (GRA) for predicting the compressive strength of concrete
containing slag and metakaolin. One of its highlights is a feature selection methodology, i.e., GRA, which was used to determine
the main input variables. Another highlight is that its performance was compared with the frequently used artificial neural
network (ANN) and genetic algorithm-artificial neural network (GA-ANN) by using random dataset and the same testing
datasets. For three same testing datasets, the average R2 values of ANN, GA-ANN, and XGBoost are 0.674, 0.829, and 0.880,
respectively, indicating that XGBoost has the highest absolute fraction of variance (R2). XGBoost can provide best result by testing
the root mean squared error (RMSE) and mean absolute percentage error (MAPE).*e average RMSE values of ANN, GA-ANN,
and XGBoost are 15.569MPa, 10.530MPa, and 9.532MPa, respectively, and those of MAPE of ANN, GA-ANN, and XGBoost are
11.224%, 9.140%, and 8.718%, respectively.*us, the XGBoost definitely performed better than the ANN and GA-ANN. Finally, a
type of application software based on XGBoost was developed for practical applications. *is vivid software interfaces could help
users in prediction and easy and efficient analysis.

1. Introduction

A series of dilemmas including waste emission and over-
consumption of energy and natural resources have been
currently pressing worldwide concerns because of global
population explosion and rapid urbanization. According to
the International Energy Agency report, 4.8 billion tons of
cement will be produced worldwide by 2050, resulting in the
emission of 3.8 billion tons of CO2 [1]. *erefore, it is
beneficial to find and utilize active admixtures with high-
quality and low-energy consumption as alternatives of
cement, partly or totally [1, 2]. In addition, those active
admixtures can even enhance the properties of concrete such
as compressive strength, antipermeability, and corrosion
resistance [3]. *erefore, mix proportion of concrete, es-
pecially the high-performance concrete, has been in

increasing demand. Mix design of concrete is difficult to
achieve for researchers, as it must reach a specific strength
level, which is the most important property of concrete.

Currently, combining with machine learning, some re-
searchers utilize various basic prediction models, such as
logistic regression (LR), random forest model (BRF), sup-
port vector machine (SVM), and artificial neural network
(ANN) [4–6]. *ese models are commonly used for pre-
dicting compressive strength of concrete, irrespective of
costly and time-consuming nature. *e artificial neural
network, inspired by biological systems of the human brain,
can learn and generalize from experience without prior
knowledge. It has powerful pattern classification and pattern
recognition capabilities [7]. Bilim et al. [8] conducted var-
ious ANNs and indicated their strong potential for pre-
dicting the compressive strength of granulated blast furnace
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slag concrete. Saridemir et al. [9] investigated ANNs for
predicting the compressive strength of concrete including
metakaolin and silica fume, exhibiting good performance.
However, the determination of weights and biases of ANN is
a complicated process, and the standard ANN algorithm has
a slow convergence rate and is easy to fall into the local
minimum. As a matter of course, there are many kinds of
intelligent algorithms used to optimize the superparameter
parameters of the basic model such as conjugate simulated
annealing [10], gradient algorithm [11], and genetic algo-
rithm (GA) [12]. Among those algorithms, the performance
of GA is excellent, attributing to its advantages such as
scalability, adaptation, speed, fault tolerance, modularity,
autonomy, and parallelism. Firouzi et al. [13] proposed an
integrated GA-ANN approach, appropriate for finding
optimum reliability-based inspection plans based on min-
imum life cycle costs.

*e ANN model needs a lot of parameters, and the
learning process is like a black box. Hence, it is difficult to
carry out the actual derivation step by step, affecting the
credibility. In addition, in the learning process, it is easy to
appear overfitting state; therefore, some researchers used GA
to optimize the internal structure parameters of the neural
network. Although GA is a solution for optimizing the
neural network, its programming process is complex and the
search speed is slow. *erefore, another new model,
XGBoost, will be introduced later.

*e extreme gradient boosting (XGBoost) is a novel ma-
chine learning algorithm mainly used for supporting classifi-
cation, regression, and ranking. In recent years, it has gradually
attracted attention owing to its excellent performance of strong
learning ability and fast convergence during parallel learning
computations shown in many AI competitions. In KDDCup
competition including commercial sales forecast, the team of
Top 10 used the XGBoost algorithm for web page text clas-
sification, customer behavior prediction, ad click rate predic-
tion, and hazard risk prediction and other fields [14]. In
consideration of those outstanding achievements, in this study,
XGBoost was applied for predicting the compressive strength
of concrete containing slag and metakaolin. In addition, the
performance of the model was compared with the commonly
used ANN and superior GA-ANN in order to reflect the
advantages or disadvantages of XGBoost.

Before predicting the compressive strength of concrete
based on ANN, GA-ANN, and XGBoost, the determination
of main influencing factors of concrete strength (i.e., the
input variables of prediction models) is a primary thing
because it is beneficial to reduce the dimensions of themodel
and improve prediction accuracy [15]. In this study, there is
a highlight that a feature selection methodology, grey re-
lation analysis (GRA), was used to determine the main input
variables. Figure 1 shows the overall process of predicting
compressive strength of concrete containing slag and
metakaolin. To train and test those prediction models, 600
groups of data selected from 18 research papers (Table 1)
were utilized, after a necessary pretreatment process, i.e.,
unifying the compressive strength of concrete under dif-
ferent dimensions to avoid the influence of dimension effect.
*ose data were divided into training dataset and testing

dataset. *e quantitative analysis of prediction performance
of ANN, GA-ANN, and XGBoost was obtained by testing
the value of absolute fraction of variance (R2), mean absolute
percentage error (MAPE), and root mean squared error
(RMSE).

2. Preprocessing and Preanalysis of
Selected Data

2.1. Preprocessing of Data

2.1.1. Unifying the Compressive Strength of Concrete.
Because of the dimension effect, the values of compressive
strength will be valid just when they are compared under a
uniform dimension. A cube with a length of 100mm was
frequently used in 600 groups of collected data. *erefore, it
acts as the uniform dimension in this study. For other values
of compressive strength of concrete under different di-
mensions, they would be first transformed by the formula of
Neville [32], as shown in the following equation:

P

Po

� 0.56 +
0.697

(V/6h d) +(h/d)
, (1)

where P is the compressive strength of concrete under other
dimensions; P0 is the compressive strength of cube
(length� 150mm, approximately 5.9 inches);V is the specimen
volume; h is the height; and d is the maximum transverse
dimension of specimen. Notably, all the numerical values must
be calculated with a unit of inch. By the formula of Neville and
another simple conversion (cube with 150mm length to cube
with 100mm length), the scaling factor (the value of P/P0)
based on the uniform dimension of cube with a length of
100mm was calculated, as listed in Table 2.

2.1.2. Normalization of Data. In the system of data-driven
modelling, in order to eliminate the influences of outliers,
missed values, and bad data, all raw data should be nor-
malized to fit the range of [0, 1]. It ensures that the raw data
collected by major journals are more suitable for modelling,
and it also helps to achieve better results and significantly
speeds up the calculation [32]. *e linear mapping function
is as follows:

Xm �
X − Xmin

Xmax − Xmin
, (2)

where X represents the original value; Xmin and Xmax are the
minimum value andmaximum value of dataset, respectively;
and Xm is the value after mapping, noting that the outputs
will be remapped to their corresponding real values by the
inverse mapping function before calculating any perfor-
mance criterion [31].

3. Preanalysis of Data: Feature
Selection Methodology

Generally speaking, the compressive strength of traditional
concrete was determined by various factors, including ce-
ment type, water-binder ratio (W/B), sand ratio, dosage of
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water-reducing agent, and curing age. For concrete con-
taining slag and metakaolin, the content of slag, MK, and the
Si/Al of metakaolin (Si/Al of MK) should also be included in
consideration of some samples; therefore, the Fly ash con-
tent should be considered as an important factor. *e se-
lection of main influencing factors among various factors is
significant in order to improve the efficiency and accuracy of
the prediction models. In this study, GRA, a feature selection
methodology, was used to address the abovementioned
problem for obtaining the most influential and significant
factors.

3.1. Determination of the Analysis Sequence. First, we con-
struct the reference matrix (compressive strength of con-
crete) X0 (k) (where k� 1, 2, . . ., 600, i.e., the number of
sample datasets) and comparative matrix (cement type,

water-binder ratio (W/B), sand ratio, dosage of water-re-
ducing agent, curing age, slag content, fly ash content, MK
content, and Si/Al of MK)Xi (k) (where i� 1, 2, . . ., 9, i.e., the
number of factors and k� 1, 2, . . ., 600). *e equations in
Table 3 are the mathematical forms for the construction of
the reference matrix and the comparative matrix [33].

3.2. Dimensionless Treatment. For the purpose of reducing
the numerical fluctuation, the normalization process can be
determined as follows:

xi(k) �
Xi(k)

(1/n) 􏽐
n
k�1 Xi(k)

, n � 600, i � 1, 2, 3, . . . , 9. (3)

3.3. Calculation of Grey Relational Coefficient. Subsequently,
the grey relational coefficient ζ i can be calculated, according
to the following equation [33]:

ζ i(k) �

min
i

min
k

x0(k) − xi(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ρ · max
i

max
k

x0(k) − xi(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

x0(k) − xi(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ρ · max
i

max
k

x0(k) − xi(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(4)

where |x0(k) − xi(k)| represents the absolute difference
between the two sequences; ρ, the distinguishing coefficient,
is usually 0.5, and it represents the significance of
max

i
max

k
|x0(k) − xi(k)|. *e smaller the ρ is, the higher its

distinguishability is. *erefore, ρ� 0.5 was considered, as it
can offer more moderate distinguishing effects and better
stability [34].

3.4. Calculation of Grey Relational Grade (ci) and Rank of
Results. As shown in equation (5), it is worth noting that the
grey relational grade (ci) can be used for measuring the
degree of correlation between the comparative matrix and
the reference matrix. *e ci being close to 1 indicates the
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Figure 1: *e overall process of GA-ANN and XGBoost for predicting the compressive strength of concrete.

Table 1: Data source and number of data.

Author of data source Year Number of data
Liu et al. [16] 2018 12
Duan et al. [17] 2013 16
Sujjavanich et al. [18] 2017 55
Mermerdaş et al. [19] 2012 84
Güneyisi et al. [20] 2008 36
Yunfeng et al. [21] 2017 90
Ramezanianpour et al. [22] 2012 48
Shekarchi et al. [23] 2010 20
Shi et al. [24] 2015 18
Shannag et al. [25] 1995 32
Shafiq et al. [26] 2015 21
Khatib et al. [27] 2008 30
El-diadamony et al. [28] 2016 20
Güneyisi et al. [29] 2012 30
Perez-cortes et al. [30] 2019 14
Dinakar et al. [31] 2013 16
Poon et al. [1] 2001 28
Bilim et al. [8] 2009 30
Total 600
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strong correlation, whereas ci being close to 0 depicts the
weak correlation.

ci �
1
n

􏽘

n

k�1
ζ i(k), k � 1, 2, . . . , 600. (5)

*e size of the grey correlation grade ci objectively
reflects the influencing degree of each factor on the com-
pressive strength of concrete; therefore, choosing the in-
fluential and significant factors is important. In this study,
MATLAB 7.0 was used to calculate ci of nine factors.
According to the results of grey relational grade, the rank
(cement type> sand ratio>W/B>MK content> slag con-
tent> curing age> dosage of water-reducing agent> Si/Al of
MK> fly ash content) was obtained, as shown in Figure 2.
However, too many input factors will decrease the calcu-
lation efficiency of the models and complicate the model
architecture of the input layer and output layer pattern and
thus will be unfavorable for the building models. *us, the
factors such as Si/Al of MK and fly ash content, considered
as the weak factors, were not taken into account to optimize
the model structure because of its low grey correlation grade
(ci < 0.9).

After the abovementioned three steps of preprocessing
and preanalysis of data source, i.e., unifying the compressive
strength of concrete, normalization of data, and selection of
main influencing factors, the datasets are ready for training
and testing the prediction models. *e characteristics of the
prepared dataset are listed in Table 4.

4. Main Theories and Parameters of ANN, GA-
ANN, and XGBoost

4.1. Artificial Neural Network (ANN)

4.1.1. Artificial Neuron. ANN is inspired by understanding
of the biological nervous system [35] and is a mathematical
model that imitates the behavioral feature of the human
neural network for distributed and parallel processing of
information. *ese are massively parallel complex systems
made up of many processing neurons connected by con-
nection weights (wi), as shown in Figure 3.

A single neuron’s structure is simple. However, a
complete network system containing amass of basic neurons
can be skilled in processing nonlinear problems. Figure 3
shows the notational convention where the orange graphics
represents a computational unit and Xi is an input variable
and multiplied by the respective weight Wi. After that, the

results combined with bias term bwill be transferred to every
neuron in the next layer of the network. *e summed values
(one per neuron in the layer) are then forwarded to the next
layer of the network usually via an activation function such
as sigmoid function, as shown in equation (6) [36]. *e
output from the activation function Y can be determined by
equation (7), and it will act as the final result or the input
variable of the next layer.

f(x) �
1

1 + e
−x, (6)

Y � f 􏽘
n

i�1
WiXi + b⎛⎝ ⎞⎠. (7)

4.1.2. Feed-Forward Neural Network and Backpropagation
Algorithm. *e feed-forward neural network is one of the
simplest neural networks. Each neuron is only connected to
the one in the previous layer. Take the output of the
previous layer and output it to the next layer. *ere is no
feedback between the layers. It is one of the most widely
used and rapidly developed ANNs [37]. Commonly, the
feed-forward neural network consists of one input layer,
several hidden layers, and one output layer of neurons [38].
*e original data are considered as the input information
accepted by the first layer (input layer) and then is
transmitted to the corresponding neurons of the second
layer (hidden layer); at last, it will pass forward to the
output layer. Besides, the number of input nodes can be
regarded as the input parameters (main influencing factors
mentioned previously), and the output node is the target
prediction result. Figure 4 shows the framework of the
ANN with 7 input nodes and 1 output node used in this
study. Notably, in terms of empirical and experimental data
types, the number of neurons of the hidden layer needs to
be debugged multiple times for creating an optimal pre-
dictive neural network model.

*ere is no feedback process between the layers in the
abovementioned ANN model. In order to get a better
prediction model, some algorithms such as the frequently
used backpropagation (BP) algorithm were added to the
ANN for adjusting parameters. *e essence of the BP al-
gorithm is decreasing the difference between the actual
result and the desirable result in each output layer by the
fine adjustment of the weights in the back-propagated
process. When the BP algorithm is injected into the for-
ward-feeding neural network, the feed-forward neural
network shows excellent performance such as strong
generalization ability, fast convergence, and simple
structure [39].

During the process of back-propagation, all of the
weights should be updated by the BP algorithm in the neural
network according to the following formula [40]:

Wji(n + 1) � Wji(n) + η · δj · Xi + ·ΔWji(n). (8)

In equation (8), n is the number of times, η is the learning
rate, δj means the error signal, and α is the expression of

Table 2: Scaling factor of compressive strength of concrete under
different dimensions.

Shape Size (mm) Scaling factor (P/P0)
Cylinder d� 100, h� 200 0.72
Cube 1� 40 1.16
Cube 1� 50 1.13
Cube 1� 70 1.07
Cube 1� 75 1.06
Cube 1� 100 1.00
Cube 1� 150 0.91
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momentum factor. *e difference between the target value
and the true value can be evaluated by the error signal δj for
an output unit j [41]:

δj � tj − Xj􏼐 􏼑 · Xj · 1 − Xj􏼐 􏼑. (9)

*e error signal δj is a function of the error signals of
those units in the next higher layer, connected to unit j and
the weights of those connections [9]:

δj � Xj · 1 − Xj􏼐 􏼑 · 􏽘
k

δkWkj. (10)

As shown in equation (10), it is worth noting that the kth
layer means the layer in front of the jth layer. *e training
procedure should be working until the iterative process
converges. *e updated connection weights are captured
from the final trained network [42].

Although the BP algorithm has been widely used, it still
has some shortcomings, such as long training time and easy
to fall into local minimum. *erefore, some optimized
algorithms were developed by researchers for combining
with the ANN model to get a better prediction
performance.

Table 3: Mathematical forms for the construction of the reference matrix and the comparative matrix.

Compressive strength: X0 (k)�X0 (1), X0 (2), X0 (3), . . ., X0 (600) Reference matrix
Cement type: X1 (k)�X1 (1), X1 (2), X1 (3), . . ., X1 (600)

Comparative matrix

W/B : X2 (k)�X2 (1), X2 (2), X2 (3), . . ., X2 (600)
Sand ratio: X3 (k)�X3 (1), X3 (2), X3 (3), . . ., X3 (600)
Dosage of water-reducing agent: X4 (k)�X4 (1), X4 (2), X4 (3), . . ., X4 (600)
Curing age: X5 (k)�X5 (1), X5 (2), X5 (3), . . ., X5 (600)
Slag content: X6 (k)�X6 (1), X6 (2), X6 (3), . . ., X6 (600)
Fly ash content: X7 (k)�X7 (1), X7 (2), X7 (3), . . ., X7 (600)
MK content: X8 (k)�X8 (1), X8 (2), X8 (3), . . ., X8 (600)
Si/Al of MK :X9 (k)�X9 (1), X9 (2), X9 (3), . . ., X9 (600)
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Analysis of data based on GRA

Cement type 0.977
W/B 0.959

Curing age 0.933

Sand ratio 0.964

Dosage of water-reducing agent 0.926

Si/Al of MK 0.892

Slag content 0.935
MK content 0.939

Fly ash content 0.885

Figure 2: *e grey correlation grade values of nine factors.

Table 4: *e characteristics of dataset (600 groups of data selected from 18 research articles).

Factors Minimum values Maximum values Average Standard deviation
W/B 0.18 0.60 0.35 0.10
Sand ratio (%) 0.33 1 0.45 0.09
Cement type (four types) 1 4 — —
Slag content (%) 0 20 0.83 0.83
MK content (%) 0 20 9.01 6.90
Dosage of water-reducing agent (%) 0 3.5 0.83 0.84
Curing age (days) 1 180 37.37 43.48
Compressive strength (MPa) 8.93 130.85 68.55 22.68

xn
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Figure 3: A simple artificial neuron model.
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5. Parameters Optimized by Genetic Algorithm

5.1. Genetic Algorithm. *e training process of ANN is a
procedure of optimization of model parameters, and it starts
from a random initial solution and iteratively finds out the
optimal parameter values. During each iteration, the error
function is first calculated at the current gradient, and then
the search direction is determined based on the gradient.
However, on this occasion, the optimization of parameters is
likely to sink into local minimum (e.g., using the BP al-
gorithm). At this point, the genetic algorithm (GA) was
chosen for training the networks to better approximate the
global minimum [43].

As one of the most commonly used intelligent optimi-
zation algorithms, GA is a mathematical computation model
simulating the natural selection of Darwin’s biological
evolution theory and the process of biological evolution of
genetic variation. Moreover, it is a characteristic method-
ology inspired by the physical phenomenon of biological
evolution (selection, crossover, and mutation) to seek the
global optimal solutions in space. In the field of artificial
intelligence, it produces significant influence on optimiza-
tion main parameters of the artificial neural network (ANN)
[44]. *us, for creating a powerful model with a higher
prediction accuracy, it is necessary to utilize the genetic
algorithm to optimize initial weights and thresholds of the
ANN model.

5.2.AeOperating Procedure ofGA. Figure 5 shows the main
operation procedure of GA used for the optimization of
ANN. GA’s key elements such as population size, numbers
of generation, and fitness function and key operation pro-
cedure including selection, evolution, and mutation directly
affect the final optimization result, making them definitely
important in the operating procedure.

In this study, GA was combined with ANN to get its
desired weights and thresholds. During the optimization

process, the initial weights and thresholds of the network
could be construed as individuals with prediction errors of
the initial ANN as its genetic information. *en, the genetic
operation of selection, crossover, and mutation is repeated,
to search the optimal individual, namely, the optimal
weights and thresholds of ANN (GA-ANN).

6. The Extreme Gradient Boosting
Methodology (XGBoost)

XGBoost is a machine learning algorithm based on decision
tree with a process of gradient promotion [45]. It is one of
the most successful machine learning algorithms at present
and has been extensively used by researchers in some
competitions of machine learning attributing to its excellent
learning performance and fast calculation speed, even more
used than the popular deep neural network method. In
addition, the XGBoost algorithm is generally considered to
be superior to ANNs in processing small- and medium-sized
structured data although ANNs show excellent performance
in analyzing unstructured model data such as pictures, text,
audio, and video.

In a word, the main calculation process of XGBoost is an
accumulation of iterative results after T times, as shown in
equation (11) [46], where i is the number of samples; T is the
number of decision trees, and 􏽢y(T)

i is the final predicted value
of the ith sample in the Decision tree with number
T. Function ft(xi) represents the calculation formula of the
ith sample in the T decision tree equation (12)), ω is the
weight vector corresponding to the leaf node, and q(xi) is a
function of the feature vector xi mapped to the leaf node of
the decision tree.

􏽢y(T)
i � 􏽢y(0)

i + 􏽘
T

t�1
ft xi( 􏼁, where f0 xi( 􏼁 � 􏽢y(0)

i � 0, (11)

ft xi( 􏼁 � ωq xi( ). (12)

To better understand the running process of the
XGBoost model, the training process of a traditional deci-
sion tree was first introduced, as shown in Figure 6, indi-
cating W/B, curing age, and sand ratio (not all the main
factors for simple example), as the decision items for pro-
cessing the data of four samples. *e training process steps
are as follows: (i) sample 1 is screened out when the limit is
W/B> 0.4; (ii) sample 3 is separated from other samples for
curing age≤3; (iii) samples 2 and 4 are divided by the sand
ratio of 0.3; and (iv) a traditional decision tree completes an
accurate prediction model with some potential problems.

Figures 7–9 show the training process of the XGBoost
model. Figure 7 represents the Tree 1 with W/B as the
discriminant condition, similar to the first branch of Fig-
ure 6. *e difference is that the output results of the leaf
nodes are averaged to represent the training output values of
the four samples (i.e., ω1(xi), where i� 1, 2, 3, 4), and then the
training error of each sample is obtained by calculating the
deviation of the predicted value from the true value. *e
obtained errors in Tree 1 will be used as the input values of
Tree 2 (Figure 8) and the curing age (≤3 or >3) will act as the

Input layer Hidden layer Output layer

CS

W/B

Cement type

Sand ratio

Slag content

Curing age

Dosage of water
-reducing agent

N = 2

N = 3

N = 1

N = k

Feed-forward Back-propagation

MK content

Figure 4: Feed-forward and backpropagation of ANN.
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discrimination standard. *en, the value of ω2(xi) will be
obtained based on the average value of decided errors. *e
predictive values of samples were obtained by the sum-
mation of ω1 and ω2. *e calculated training errors in Tree 2
will be used as input into Tree 3. Similarly, a decision tree
based on sand ratio was established, as shown in Figure 9,
and the average values are all 0, i.e., ω3(xi) � 0, where i� 1, 2,
3, 4. *en, the final predicted values of samples 1, 2, 3, and 4
were calculated by equation ω1(xi) + ω2(xi) + ω3(xi) and found
as 69.5, 80.5, 79.5, and 80.5MPa, respectively. At this point,
the model training is finished. You can find that the output
values in XGBoost are different than those in the traditional
decision tree. To be more specific, the predictive values of
four samples are not equal to their true values in XGBoost

and thus seem to be worse than the traditional decision tree;
however, it can solve a big problem of traditional decision
tree, i.e., overfitting.

For instance, the traditional decision tree and the
XGBoost were used, respectively, to predict the strength
value of sample 5, indicating that the traditional decision
tree will output the strength value of 81MPa and that by the
XGBoost model is 80.5MPa. *e following analysis can
prove the competitive prediction ability of XGBoost.
Compared with sample 2, except that the slag content of
sample 5 is less than sample 2, other variables have exactly
the same values. In combination with the general con-
clusion of the influence of slag content on the concrete
strength, the compressive strength of sample 5 was

Key elements

(i) Population size
(ii) Times of generations

(iii) Fitness function selectionEncoding the initial weights threshold (W,b)

Genetic algorithm (GA)

Establish original population

Evaluation population

(i) Decoding 
(ii) Calculation fitness values

(iii) Adjustment target value 

Achieve target

Output: W, b

Genetic operation

(i) Selection
(ii) Crossover

(iii) Mutation

No

Yes

New generation group

Figure 5: *e working principle of GA in the optimal procedure.

Compressive strength
(70① 81② 79③ 80④)

W/B≤0.4

(81② 79③ 80④)

W/B>0.4

(70①)

Curing age ≤ 3

(79③) (81② 80④)

Curing age > 3

Sand ratio ≤ 0.3 Sand ratio > 0.3

(81②) (80④)

Factors

Training set Testing set

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

W/B 0.45 0.4 0.4 0.4 0.4
Sand ratio 0.4 0.21 0.21 0.35 0.21

Cement type
(four types) 3 3 3 3 3

Slag content (%) 10 20 10 0 10
MK content (%) 0 0 0 0 0
Dosage of water-
reducing agent (%) 2 2 2 1 2

Curing age (days) 3 7 3 28 7
Compressive
strength (MPa) 70① 81② 79③ 80④ Unknown

Note: 701 812 793 804 in the decision tree on the left
represents the compressive strength of the first,
second, third and fourth samples respectively

Figure 6: *e training process of a traditional decision tree.
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obtained as predicted to be less than 81MPa. In the same
way, it was easy to know that the strength value of sample
5 will be more than that of sample 3 (i.e., 79MPa) on
account of the increasing curing age of samples under the
same mix proportion. Hence, the approximate range of
the strength of sample 5 will be in the range 79–81MPa,
indicating that the predictive result of XGBoost
(80.5MPa) is more reasonable and the predictive per-
formance of XGBoost is superior than that of the tradi-
tional decision tree. *is phenomenon is caused by the
overfitting training process of the traditional decision
tree. It is sometimes inclined to focus on the character-
istics of the training data and summarizes the internal
rules of the training set (four samples). However, for the
new test dataset (sample 5), it cannot reveal its internal
change rule. *erefore, a single decision tree model is not
generalizable.

7. Setting Structural Parameters and Learning
Rate of ANN, GA-ANN, and XGBoost

In this study, the prediction performances of ANN, GA-
ANN, and XGBoost were tested and compared. In order to
avoid the influence of network structures on the ability of
prediction models, the structural parameters of ANN and
GA-ANNs were fixed, namely, with the same hidden layers
and nodes, as listed in Table 5. Because XGBoost is a
definitely different model with a tree structure compared
with ANN and GA-ANN, it has different parameters, but
some parameters similar to those in ANN and GA-ANN
were set.

*e programming of ANN, GA-ANN, and XGBoost was
performed on theMATLAB 7.0 platform, combined with the
dataset (600 groups of data selected from 18 research papers)
prepared for the training and testing prediction models.

Tree 1

W/B ≤ 0.4

Average values = 80
(81② 79③ 80④)

W/B > 0.4

Average values = 70
(70①)

Serialnumber 1 2 3 4

0.45 0.4 0.4 0.4

70① 80② 80③ 80④

70① 80② 80③ 80④

70① 81② 79③ 80④

Training error (Tree 1) 0① 1② –1③ 0④

f1(xi) = ω1

ytrue

ŷ(1)

ft(x) = ωq(x), t = 3

Training error = ytrue – ŷ(t)

x–sample

W/B

Compressive strength
(70① 81② 79③ 80④) predict(ω1)

predict

Figure 7: *e training process of an XGBoost model (Tree 1).

Average value = –0.5
(0① –1③)

Average value = 0.5
(0④ 1②)

Tree 2

Curing age ≤ 3 Curing age > 3

Serial number 1 2 3 4

Curing age 3 7 3 28

70① 80② 80③ 80④

–0.5① 0.5② –0.5③ 0.5④

69.5① 80.5② 79.5③ 80.5④

70① 81② 79③ 80④

Training error (Tree 2) 0.5 0.5 –0.5 –0.5

f1(xi) = ω1

f2(xi) = ω2

ytrue

ft(x) = ωq(x), t = 3 x–sample

Compressive strength
(0① 1② –1③ 0④)

ŷ(2)
predict(ω1 + ω2)

Figure 8: *e training process of an XGBoost model (Tree 2).

ft(x) = ωq(x), t = 3 x–sample

Serial number 1 2 3 4

Sand ratio 0.4 0.21 0.21 0.35

70① 80① 80① 80①

–0.5① 0.5① –0.5① 0.5①

0① 0① 0① 0①

69.5① 80.5① 79.5① 80.5①

70① 81① 79① 80①

f1(xi) = ω1

f2(xi) = ω2

f3(xi) = ω3

Average value = 0
(0.5② –0.5③)

Average value = 0
(–0.5① 0.5④)

Sand ratio ≤ 0.3 Sand ratio > 0.3

Tree 3

ytrue

Compressive strength
(0.5① 0.5② –0.5③ –0.5④)

ŷ(3)
predict(ω1 + ω2 + ω3)

Figure 9: *e training process of an XGBoost model (Tree 3).
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*e prediction ability of those models was tested by
comparing the value of absolute fraction of variance (R2),
root mean squared error (RMSE), and mean absolute per-
centage error (MAPE). *e detailed results are as follows.

8. Results and Discussion

8.1. Comparison of R2, RMSE, and MAPE of ANN, GA-ANN,
andXGBoost with RandomTestingDataset. To train and test
those prediction models, 600 groups of data after pre-
processing were randomly divided into a training dataset
(containing 480 groups of data, i.e., 80% of the total dataset)
and a testing dataset (containing 120 groups of data, i.e., 20%
of total dataset). *e values of the absolute fraction of
variance (R2), root mean squared error (RMSE), and mean
absolute percentage error (MAPE) were adopted to com-
prehensively evaluate the prediction performances of these
models. *e detailed equations are as follows:
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(13)

where ti is the true value, Oi is the predictive value, and n is
the total number [41, 47].

Figure 10 shows the values of R2, RMSE, and MAPE of
the three prediction models by using the test dataset. It is
easy to find that the values of R2, RMSE, and MAPE of ANN
are 0.708, 13.38MPa, and 9.72%, respectively. With the
parameters optimized by the genetic algorithm (GA), the
prediction performance is better attributing to the better
values of R2 (0.837), RMSE (11.74MPa), and MAPE (8.26%)
of GA-ANN.*e third image shows the prediction results of
XGBoost. As we know, XGBoost is often known to deal with
the classifying problems owing to its excellent performance,
but surprisingly, it has also achieved good performance for
dealing with regression prediction problems. As shown in
Figure 10 (the third), the data points are more concentrated
on the line y� x and nearly without the deviation
beyond± 25MPa (the red dotted lines) of predictive values

compared with target values.*e results of R2 (0.872), RMSE
(8.62MPa), and MAPE (8.25%) are also good, better than
those obtained by GA-ANN.

*e above analysis and discussion indicate superior
prediction performance of XGBoost than those by ANN and
GA-ANN; however, the results were obtained based on the
random testing dataset, indicating that the dataset applied to
XGBoost is different with those of ANN and GA-ANN. A
special case where the dataset applied to XGBoost is easy to
predict was tested, exhibiting good result. In order to
eliminate the possibility of that special case and get a more
persuasive conclusion, the R2, RMSE, andMAPE were tested
by using the same testing dataset as described in the fol-
lowing section.

8.2. Comparison of R2, RMSE, and MAPE of ANN, GA-ANN,
and XGBoost with the Same Testing Dataset. *e R2, RMSE,
and MAPE values were calculated thrice by using the three
datasets, i.e., dataset 1, 2, and 3 with 120 data in each dataset
generated by random selection. In order to easily compare
the deviation degree of predictive values (red hollow points)
and true values (black solid points) of ANN, GA-ANN, and
XGBoost, the diagrams of the results are presented side-by-
side (as shown in Figure 11). It is obvious that the predictive
values of XGBoost have the maximal degree of coincidence
with true values shown in Figure 11, and the degree of
coincidence of those points in the ANN is the lowest. It is a
subjective conclusion; therefore, the objective results of
ANN, GA-ANN, and XGBoost were compared. *e specific
R2 values obtained by the ANN, GA-ANN, and XGBoost are
0.708, 0.833, and 0.874, respectively. Second, for the same
120 groups of testing data, the RMSE values obtained by the
ANN, GA-ANN, and XGBoost are 13.377, 9.413, and
10.982MPa, respectively. Lastly, the MAPE values obtained
by the ANN, GA-ANN, and XGBoost are 9.733%, 9.289%,
and 9.544%, respectively.

*e values in Figure 11 indicate that only the R2 value
obtained by XGBoost is the highest, whereas the RMSE and
MAPE obtained by the GA-ANN are the lowest than those
obtained by the ANN and XGBoost, indicating better pre-
diction performance of GA-ANN than that of XGBoost.
However, the results obtained from dataset 2 and dataset 3,
as shown in Figures 12 and 13, respectively, show different
conclusions. For getting the comprehensive results of
comparison, the average R2, RMSE, and MAPE values were
calculated by the ANN, GA-ANN, and XGBoost. Table 6

Table 5: Setting parameters of ANN, GA-ANN, and XGBoost.

Structural parameters ANNs GA-ANNs Hyperparameters XGBoost
Input layer nodes 6 6 Maximum depth 6
Hidden layers 2 2 Minimum child weight 1
Hidden layer nodes 80 (first) 60 (second) 80 (first) 60 (second) Gamma 0
Output layer nodes 1 1 Subsample 1
Training parameters Colsample by tree 1
Epoch times 10 10 Regularization alpha 0
Initial learning rate 0.01 0.01 Initial learning rate 0.01
Maximum iterations 100 100 Number of iterations 30
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shows the average R2 values (i.e., R) of the ANN, GA-ANN,
and XGBoost as 0.674, 0.829, and 0.880, respectively, in-
dicating that the highest absolute fraction of variance (R2) by
the XGBoost. *e RMSE and MAPE values obtained by
XGBoost were the best. *e average RMSE value of the

ANN, GA-ANN, and XGBoost was 15.569, 10.530, and
9.532MPa, respectively, and the average MAPE value of the
ANN, GA-ANN, and XGBoost was 11.224%, 9.140%, and
8.718%, respectively, certainly verifying the superior pre-
diction performance of XGBoost.
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Figure 11: Predictive and true values of ANN, GA-ANN, and XGBoost for dataset 1.
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Figure 10: Prediction precision of three models for test datasets.
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Figure 12: Predictive and true values of ANN, GA-ANN, and XGBoost for dataset 2.
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*e above analyses and discussions of the results
obtained by using the random testing dataset and three
same testing datasets clearly indicate more stable pre-
diction performance of XGBoost with the highest

prediction accuracy. *erefore, XGBoost is a recom-
mended prediction model and could be used for pre-
dicting the compressive strength of concrete containing
slag and metakaolin.
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Figure 13: Predictive and true values of ANN, GA-ANN, and XGBoost for dataset 3.

Table 6: Individual and average values of the R2, RMSE, and MAPE of ANN, GA-ANN, and XGBoost.

R2 RMSE (MPa) MAPE (%)
Ri (i� 1, 2, 3) R Mi (i� 1, 2, 3) M Ai (i� 1, 2, 3) A

ANN
0.708

0.674
13.377

15.569
9.733

11.2240.594 19.509 14.128
0.720 13.820 9.811

GA-ANN
0.833

0.829
9.413

10.530
9.289

9.1400.837 11.739 8.257
0.818 10.437 9.875

XGBoost
0.874

0.880
10.982

9.532
9.544

8.7180.893 8.996 8.353
0.872 8.619 8.258

Figure 14: Interface for inputting parameters.
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9. Application Software for Easy Prediction
Based on XGBoost and GRA

At present, the design and development of application
software based on various prediction models is receiving
increasing attention.*is behavior can encourage to develop
software from theory to practical application. *erefore, in
this study, C# programming was utilized for integrating the
involved research results and methods into an application
software (named PSCS V1.0) with straightforward interac-
tive interfaces to help users without the knowledge of
MATLAB to predict and analyze easily and efficiently. With
the help of PSCS, users can just input the dimension of
sample (unifying the compressive strength of concrete under
different dimensions automatically) and main parameters
(the parameters obtained by GRA, i.e., type of cement, W/B
ratio, sand ratio, slag content, MK content, dosage of water-
reducing agent, and curing age), as shown in Figure 14. After
a short wait time for computing of XGBoost (Figure 15), the
final prediction results obtained are shown in Figure 16.

PSCS is a short but strong system and could be used for
predicting the compressive strength of concrete containing
slag and metakaolin. As the dataset used for the training
XGBoost model was collected from various journal articles,
it can ensure the applicability for different cases. In the
following study, relevant literature data were collected
continually for building up a complete and more compre-
hensive database.

10. Conclusions

In conclusion, the proposed novel predictive system
XGBoost was successfully applied to predict the compressive
strength of concrete containing slag and metakaolin, and its
performance was compared with the commonly used ANN
and optimized GA-ANN models. *e datasets used for the
training and testing three models were selected from 18

research articles (containing 600 groups of data), with the
treatments of unifying the compressive strength of concrete,
normalization of data, and selection of main influencing
factors. With the help of GRA, the main input parameters
such as the type of cement, W/B ratio, sand ratio, slag
content, MK content, dosage of water-reducing agent, and
curing age were determined scientifically and reasonably.
After that, the prediction models were trained and tested by
calculating the values of R2, RMSE, and MAPE. *e main
results and conclusions can be drawn as follows:

(1) For the random testing dataset, the R2, RMSE, and
MAPE obtained by the ANN are 0.708, 13.38MPa,
and 9.72%, respectively, and those obtained by the
GA-ANN are 0.837, 11.74MPa, and 8.26%, respec-
tively, and the results obtained by XGBoost are 0.872,
8.62MPa, and 8.25%, respectively, proving a supe-
rior prediction performance of XGBoost than those
of ANN and GA-ANN.

(2) XGBoost also exhibited superior prediction perfor-
mance for prediction of the models based on the
same testing dataset. *e average R2 values of ANN,
GA-ANN, and XGBoost are 0.674, 0.829, and 0.880,
respectively. For the RMSE and MAPE, the average
RMSE values of the ANN, GA-ANN, and XGBoost
are 15.569, 10.530, and 9.532MPa, respectively, and
the average MAPE values of the ANN, GA-ANN,
and XGBoost are 11.224%, 9.140%, and 8.718%,
respectively. *erefore, XGBoost was the best pre-
diction model for testing the same datasets.

(3) Based on the analyses and discussions obtained by
using the random testing dataset and the same
testing datasets, XGBoost exhibited better perfor-
mance than the ANN and GA-ANN for prediction
capability.*erefore, XGBoost is the best method for
predicting the compressive strength of concrete
containing slag and metakaolin in this study. Lastly,
in order to make XGBoost user friendly and easy to
operate, the application software (PSCS V1.0) was
encoded by C# in this study, making it a short but
strong system that could predict the compressive
strength of concrete containing slag and metakaolin
efficiently.
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In this research, multiexpression programming (MEP) has been employed to model the compressive strength, splitting tensile
strength, and flexural strength of waste sugarcane bagasse ash (SCBA) concrete. Particle swarm optimization (PSO) algorithm was
used to fine-tune the hyperparameter of the proposed MEP. ,e formulation of SCBA concrete was correlated with five input
parameters. To train and test the proposed model, a large number of data were collected from the published literature. Afterward,
waste SCBA was collected, processed, and characterized for partial replacement of cement in concrete. Concrete specimens with
varying proportion of SCBA were prepared in the laboratory, and results were used for model validation. ,e performance of the
developed models was then evaluated by statistical criteria and error assessment tests. ,e result shows that the performance of
MEP with PSO algorithm significantly enhanced its accuracy.,e essential input variables affecting the output were revealed, and
the parametric analysis confirms that the models are accurate and have captured the essential properties of SCBA. Finally, the
cross validation ensured the generalized capacity and robustness of the models. Hence, the adopted approach, i.e., MEP-based
modeling with PSO, could be an effective tool for accurate modeling of the concrete properties, thus directly contributing to the
construction sector by consuming waste and protecting the environment.

1. Introduction

,e construction industry consumes one-third of the
world’s energy and is a significant contributor of greenhouse
gas emission to the environment [1]. Concrete is the most
commonly used construction material. A single ton of
concrete releases about 0.13 ton of carbon dioxide [2, 3]. In
order to move towards sustainability, the concept of green
concrete is getting popular to reduce the adverse effects of
concrete. Green concrete is produced by replacing the

conventional cementitious material with some waste as
replacement of cement. Commonly used materials are fly
ash, waste foundry sand, blast furnace slag, glass, meta-
kaolin, rice husk ash, recycled aggregate, and bagasse ash [4].
Utilization of such materials is considered as low-carbon
substitute to conventional construction materials. Sugarcane
bagasse, which is an agricultural waste obtained after
crushing and extraction, is used as fuel in the sugarcane
industry [5]. Each ton of sugarcane generates approximately
26 percent of bagasse and 0.62 percent of residual ash [6].
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,e obtained ash is disposed by dumping in landfills and
poses serious environmental issues [7]. ,erefore, alterna-
tive and eco-friendly utilization methods of sugarcane ba-
gasse ash (SCBA) are being discovered in the construction
sector. Various research studies have concluded the viable
use of SCBA in concrete as a cement replacement with a
significant increase in mechanical properties of concrete.
Chusilp et al. [8] reported higher compressive strength and
lower permeability when concrete contained 20% SCBA by
weight of cement. Sobuz [9] reported that maximum
strength of SCBA concrete was obtained when cement was
replaced with 10% of SCBA. Jagadesh et al. [10] reported that
the strength of concrete made with 30% raw SCBA as a
cement replacement reduced by almost 50%. ,e same
authors reported about 28% increase in the strength of
concrete when cement was replaced with 10% processed
SCBA. ,e increase in strength was attributed to finer silica
which reacted with calcium hydroxide to form additional
CSH. Also, the finer SCBA particles filled voids and in-
creased the packing density, which in turn increased the
compressive strength of concrete. Bahurudeen et al. [11]
reported higher strength of SCBA concrete as compared to
normal concrete. Maximum compressive strength was
achieved when cement was replaced with 10% SCBA.
Strength reduction was linked with the dilution effect of the
matrix caused by higher percentage replacement. Several
researchers have also concluded that the utilization of SCBA
also results in improved durability properties such as
chloride penetration, chloride conductivity, water sorptivity,
and water permeability [8, 12–14]. ,e above discussion
highlights the point that SCBA concrete behaves differently
at low and high replacement levels. ,is behavior could be
attributed to several aspects, i.e., composition and dosage of
SCBA, mix proportions, and the properties and type of the
concrete constituents. ,erefore, it is essential to correlate
and figure out the factors influencing the mechanical
properties of SCBA concrete, which, in turn, will have
profound effect on the construction industry.

In order to address this issue, the unique features of
artificial intelligence (AI) techniques such as random forest
(RF), support vector machine (SVM), artificial neural net-
work (ANN), gene expression programming (GEP), M5P,
support vector regression (SVR), and convolution neural
network (CNN) have been used to develop, correlate, and
find the factors influencing the mechanical properties
[15–19]. Zhang et al. [20] developed the RF model for the
investigation of the hardened properties of synthetic-sand
concrete. From results, it was found that RF showed reduced
performance in comparison to other models. In a study
conducted by Sun et al. [21], the authors utilized RF
combined with an optimization algorithm for predicting the
uniaxial compressive strength of rubberized concrete. ,e
output of the study reported good accuracy of the model
with a high correlation. Huang et al. [22] used the RF model
along with beetle antenna search algorithm to predict the
permeability of pervious concrete. ,e result of the study
suggested improved performance of RF optimized model.
ANN algorithm was used to model the compressive strength
of lightweight concrete, foamed concrete, silica fume

concrete, and high-performance concrete and elastic
modulus of recycled aggregate concrete [17, 23–28]. A good
correlation was observed in these studies for estimating the
underlying concrete properties. However, the ANN is
considered as black box algorithm, since it does not consider
information or physical phenomena of the related problem
[29]. Moreover, due to lack of parametric studies, the ANN
models may not perform well on unseen datasets [30].
Recently, the advanced GEP technique was applied to
predict the mechanical properties of SCBA and waste
foundry sand concrete. Sensitivity and parametric analyses
were performed to assess the performance of the models
developed for mechanical properties [4, 31]. In these studies,
the results of the comparative study revealed superior
performance of GEP over regression methods. However, the
GEP was identified with certain limitations since it fails to
consider a few deviating datasets for model development,
thus reducing its range of applicability [4]. Such deviating
datasets should be removed from both training and testing
phases to improve the model performance. Furthermore, the
GEP encodes only a single chromosome and is suitable for
simple relationship of input and output variables [32].

Considering the above limitations of certain AI tech-
niques, an advanced algorithm, i.e., multiexpression pro-
gramming with particle swarm optimization (PSO-MEP),
has been adopted to model the mechanical properties of
SCBA concrete. MEP with optimization technique (PSO)
has been rarely used in civil engineering field despite its
distinguished features. ,e mechanical properties of SCBA
concrete in terms of compressive strength (CS), splitting
tensile strength (ST), and flexural strength (FS) were
modeled using PSO-MEP to solve complex relationship. A
large dataset was collected from the literature for model
training and testing. ,e validity of the developed models
was verified utilizing the results obtained from laboratory
testing. Furthermore, the variable importance, parametric
study, and cross validation were used to assess the ro-
bustness and accuracy of the developed models.

2. Methods and Datasets

2.1. Multiexpression Programming. A linear variant of
machine learning, i.e., multiexpression programming
(MEP), has been proposed recently.,e individual entities
can be represented as a variable length in MEP [32, 33].
,e linear variants permit MEP to extricate the genotype
and phenotype [34]. MEP is considered expedient over
other techniques due to linear chromosomes and
encoding multiple solutions in an individual chromo-
some.,is unique feature allows to search in a wider space
to gather the best possible solution. In comparison to
genetic programming, the MEP applies simple decoding
procedures and is given particular importance in case of
unknown complexity of targeted expression [29]. MEP
can handle exceptions such as invalid expressions, divide
by zero, etc. MEP can handle exceptions such as invalid
expressions and divide by zero and it transforms into
arbitrary terminal symbol so that the process continues.
,is produces a margin in structure of chromosome
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during evaluation process [32]. ,e various steps involved
in MEP process are shown in Figure 1. ,eMEP algorithm
is similar to C language and pascal compiler. ,e outcome
of the MEP process is a combination of mathematical
operators or variables in a linear string of instruction form
[35].

2.2. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is a computational technique mainly used for
problem optimization to enhance a solution by iterative
process given a set of quality measures. ,is technique was
developed by Kennedy and Eberhart based on motion of
bird flocking and schooling fish [36]. In PSO, a process is
initiated with a population of arbitrary solutions and the
generations are updated to search for optimal solution. ,is
technique is widely used for problem optimization such as
forecasting the compressive strength, image contrast en-
hancement, and evaluating energy performance of building
[37, 38]. In the present study, PSO was applied to fine-tune
the hyperparameter of MEP and improve the modeling
accuracy.

2.3. Modeling Database. A detailed dataset of different
properties of SCBA concrete was collected from the pub-
lished literature [8–11, 13, 14, 39–60]. ,e collected datasets
contained information about SCBA concrete at 28 days.
Some of the aforementioned research studies used concrete
cubes to determine the compressive strength of SCBA
concrete. In order to get homogenous data, the cube strength
was converted to cylinder strength according to the method
suggested by Elwell and Fu [61]. ,e collected literature data
were statistically analyzed to get the most influential pa-
rameters affecting properties of SCBA concrete. ,e sta-
tistical parameters of different variables used inmodeling are
given in Table 1 [62]. An extensive study of design codes
revealed that different models are available correlating the
mechanical properties of normal concrete with compressive
strength [63–67]. ,erefore, the water to cementitious ratio
(W/C), proportions of bagasse ash (SCBA%), fine aggregate
content (FA), cement content (CC), and quantity of coarse
aggregate (CA) are chosen as input for prediction of SCBA
concrete mechanical properties. ,e formulation of com-
pressive strength (CS), splitting tensile strength (ST), and
flexural strength (FS) of SCBA concrete is considered to be a
function of the following variables:

CS, ST, FS � f
W

C
, SCBA%,CA,CC, FA􏼒 􏼓. (1)

2.4. Modeling Parameters for MEP. For developing a gen-
eralized relationship, several fitting parameters are required
for MEP. ,e chosen parameters for MEP modeling are
presented in Table 2. Basic mathematical operators were
considered to get simple expressions. ,e trial and error
method was adopted to get the fitting parameters [68]. ,e
population size was used to specify the number of programs
required in the population. High population can lead to

complex and long convergence time and often causes
overfitting problem beyond specified limit. Moreover, an
algorithm run with a large number of generations could lead
to a model with minimum error. Several combinations of

Start

Random creation of chromosome
population 

Selection of two parents
(binary procedures)

Generation of offsprings

Estimate fitness

End

Terminate 
No?

Yes?

Recombination

Mutation

Figure 1: Schematic diagram of MEP technique.

Table 1: Statistics of the input parameters.

Parameter W/C CC SCBA% FA CA
Unit — kg/m3 % kg/m3 kg/m3

Range 0.3 444 50 614 772
Min 0.3 112 0 239 477
Max 0.6 555 50 853 1249
Mean 0.47 336.5 13.98 603.5 884.6
SD 0.074 98.5 10.46 232.1 392.3

Table 2: Optimum parameter setting for MEP.

Parameters Setting
Number of subpopulation 50
Size of subpopulation 250
Code length 40
Crossover probability 0.9
Mathematical operators +, −, ×, ÷
Mutation probability 0.01
Tournament size 4
Operators 0.5
Variables 0.5
Number of generations 1000
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parameters were initiated and the best possible grouping was
selected based on the model performance.

2.5. Performance Evaluation. ,e performance of the de-
veloped PSO-MEPmodel was assessed by measuring various
statistical indicators including correlation coefficient (R),
root mean squared error (RMSE), Nash–Sutcliffe efficiency
(NSE), mean absolute error (MAE), relative root mean
squared error (RRMSE), relative squared error (RSE), and
performance index (ρ). Moreover, another measure to re-
duce the model overfitting is to select the best model by
minimizing the objective function (OF) as suggested by
Gandomi et al. and Azim [34, 69]. ,e same approach has
been applied in this study, and OF is termed as fitness
function. ,e mathematical expressions for the statistical
indicators are shown below from equations (2) to (9). ,e
high values of R and NSE and low values of RMSE and MAE
indicate better performance. ,e indicator R quantifies the
linear relationship between input and output [27], and R
value more than 0.8 signifies excellent correlation among
predicted and actual data [70]. However, it alone cannot be
considered to judge the efficiency of a model. Despotovic
et al. [71] highlighted that a model can be considered ex-
cellent if the value of RRMSE is between 0 and 0.10 and good
if the values are between 0.11 and 0.20. ,e minimum and
maximum value of NSE is negative infinity and 1, respec-
tively, with 1 showing the best output. ,e values of ρ and
OF range from 0 to positive infinity with a value near to zero
representing a goodmodel. It can be noted that the OF taken
into account the effect of RRMSE, R, and relative percentage
of data in different sets. Hence, low OF value shows superior
performance of a model.
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OF �
nT − nTE
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􏼒 􏼓ρT + 2

nTE

n
􏼒 􏼓ρTE, (9)

where n, Pi, Mi, Pi, andMi show the number of data points,
predicted data, measured data, mean of predicted data, and
mean of measured data, respectively. T and TE represent the
training and testing datasets, respectively.

2.6. Hyperparameter Tuning and K-Fold Cross Validation.
Fine-tuning of hyperparameters is a major concern in
machine learning-based modeling. Various researchers used
different optimization techniques for hyperparameter tun-
ing such as beetle antennae search [22, 72, 73] and grid
search method [74]. In our study, particle swarm optimi-
zation (PSO) was employed for hyperparameter tuning to
improve the accuracy of the model. Firstly, the dataset was
divided into 70% and 30% for model training and testing,
respectively. ,en k-fold cross validation was applied to
assess the hyperparameter tuning process by PSO.,e k-fold
method divides the actual data to k subclasses. Moreover, the
efficiency of the 10-fold cross validation method is reported
in the literature [75, 76]. Among all the ten subsets, each
subset was used for validation and the same method was
repeated for all the remaining subsets. Consequently, the
optimized MEP model and the associated optimized
hyperparameters were obtained after 10 rounds. After get-
ting the optimum structure of MEP by PSO, the result of
training and testing dataset was evaluated employing sta-
tistical indicators. Finally, 10-fold cross validation was used
again to ensure the generalized capability of PSO-MEP and
output was expressed in terms of mean accuracy. Figure 2
shows the hyperparameter tuning process for MEP with the
help of PSO for both training and testing.

3. Experimental Investigation

3.1. SCBA Processing. ,e sugarcane bagasse ash (SCBA),
resulting from burning of bagasse (as a fuel), was collected
from a sugar industry located in Malakand, Pakistan. It has
been reported in the literature that the presence of fibrous
and unburnt content in raw bagasse ash decreases the
pozzolanic activity and also elevates the loss on ignition.
Removal of such particles, proper characterization, and
grinding up to cement fineness significantly increase its
pozzolanic activity [11, 77]. In our study, the collected SCBA
was sieved from #200 sieve to remove undesirable particles
and subsequently grinded to reduce the particle size.
Grinding was carried out in ball mill machine with ceramic
balls as grindingmedia.,e grinding media to SCBA ratio of
5 by weight was kept constant, and the machine was op-
erated at 100 rpm [78]. Different SCBA samples were ob-
tained at a grinding duration of 15, 30, 45, and 60 minutes.
Blaine fineness values were determined according to ASTM
C204 in order to obtain the effect of grinding on particle size.

,e chemical composition of grounded SCBA was
evaluated through X-ray fluorescence (XRF). ,e compo-
sition is given in Table 3. It can be inferred from XRF results
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that the quantity of silica, alumina, and iron oxide is above
70%, meeting the chemical requirement of a pozzolan
according to ASTM C618-05 standard.

Scanning electron micrographs of SCBA are shown in
Figure 3. Images were taken at different magnification
ranging from X500 to X5000. In the micrographs, the
heterogeneous nature of SCBA is prominent. ,e SCBA
exhibited various shapes such as elongated, needle, flat, oval,
and irregular. According to available literature [79], the
irregular shape particles are mainly rich in silica. ,e size of
needle and oval shape particles is about 50 μm. Furthermore,
voids over the surface ranging from 5 μm to 10 μm are visible
in the form of black spots. Overall, the observed size of
different particles ranges from 5 μm to 50 μm.

3.2. Mix Proportions and Properties of SCBA Concrete.
Experimental testing of SCBA concrete was conducted to
check the performance of the model required for validation
purpose. Concrete specimens were casted at room tem-
perature of 25°C, and comparison of fresh and hardened
properties was made between concrete made with bagasse
ash (BC) and control specimens (CM). Different dosages of
SCBA, i.e., 0–40%, were incorporated in concrete as cement
replacement. ,e desired target strength was formulated
based on published data as adamant variation was observed.
,e detailed mix design with the formulation is depicted in
Table 4.

For the validation of the PSO-MEP model, concrete
specimens, i.e., cylinders and 4”× 4”× 20″ beams, were
prepared with different proportions of SCBA and tested for
compressive strength (CS), splitting tensile strength (ST),
and flexural strength (FS), respectively, at the curing age of
28 days. ASTM standards C39, C496, and C293 were,

respectively, followed for compressive, splitting tensile, and
flexural strength of the CM and BC.

4. Results and Discussion

4.1. Mechanical Properties of SCBA Concrete. ,e results of
mechanical properties, i.e., compressive strength (CS),
splitting tensile strength (ST), and flexural strength (FS), of
SCBA concrete were determined in laboratory by casting
concrete cylinders and beams with varying proportions of
SCBA (0% to 40%), as presented in Table 5. It can be ob-
served that strength increased up to 10% SCBA and then
consistently decreased at higher SCBA level. ,e maximum
strength gained is at 10% replacement. ,e strength gain at
10% SCBA may be related to the pozzolanic reaction
resulting in additional calcium silicate hydrate (CSH). For
higher replacement level, the decrease in strength was found
to be 6.5%, 17.3%, and 30.3% for 20BC, 30BC, and 40BC,
respectively. ,is decrease in strength may be attributed to
unavailability of the adequate amount of calcium hydroxide.

Similar results were observed for splitting tensile
strength and flexural strength as illustrated in Table 5. For
10% and 20% replacement of SCBA, the increase in tensile
strength as compared to control concrete was 25.3% and
15.8%, respectively. ,is shows that the maximum tensile
strength was attained at 10% addition of SCBA as cement
replacement. For 30% and 40% SCBA replacement level, the
tensile strength decreased by 7.9% and 23.8%, respectively,
as compared to CM. For the case of flexural strength, the
maximum strength was also achieved at 10% SCBA. ,e
flexural strength at higher replacement level (20%, 30%, and
40% SCBA) reduced by 15.5%, 28.8%, and 42.5%, respec-
tively. According to available literature, the increased tensile
and flexural strength at 10% SCBA may be due to the
microfibrous nature of SCBA, which is related with CSH
formation, and also due to the formation of aluminates,
resulting in needle-like structure [80, 81].,e interlocking of
these needles takes place between hydrated paste and may
directly enhance the tensile and flexural strength. In short,
the enhanced properties may be due to formation of more
hydrated products, less porous structure of concrete made
with SCBA, and the enhanced interfacial transition zone
(ITZ) [80, 82, 83].

4.2. Formulation of Mechanical Properties with PSO-MEP.
,e results obtained from PSO-MEP for compressive
strength (CS), splitting tensile strength (ST), and flexural
strength (FS) are interpreted to get the empirical mathe-
matical expressions for the prediction of aforementioned

Dataset

PSOCross validationTraining set (70%)

Testing set (30%)

MEP

R and RMSE 

R and RMSE 

Training results

Testing results

Cross validation

Figure 2: Hyperparameter tuning by PSO.

Table 3: XRF results of SCBA.

Composition Percentage
SiO2 66.28
Al2O3 8.36
Fe2O3 1.39
CaO 9.06
MgO 5.56
P2O5 2.46
K2O 3.52
Na2O 1.30
TiO2 0.19
MnO 0.02
LOI 1.67
Moisture content 1.15
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properties based on five input variables. ,e derived
equations are shown as equations (10), (11), and (12) for CS,
ST, and FS, respectively. A comparative graph of experi-
mental and predicted CS is presented in Figure 4 for
training, testing, and validation. ,e expressions for re-
gression lines are also shown. For an ideal situation, it is

known that the slope of the line should be nearly equal to 1.
It can be deduced from Figure 4 that the developed PSO-
MEP model considered the effect of input variables and
retains a strong correlation between experimental and
predicted data as evident from the slope, i.e., 0.8951, 0.9315,
and 0.9014 for training, testing, and validation, respectively.

CS (MPa) � 1.1x1 + 1.1x2( 􏼁 +
8x

2
0 × x4

x3 − x4
􏼠 􏼡 16x

3
0 1.1x1 + 1.1x2( 􏼁 +

4 5x1 − x3( 􏼁

1.1x1 + 1.1x2
􏼠 􏼡

2

, (10)

ST(MPa) � x0 +
x
2
0

x0 − 0.375
􏼠 􏼡 −

x0 − 0.375
x0 − x1( 􏼁 + x0/x0 − 0.375( 􏼁

􏼠 􏼡 +
x0 − 0.375( 􏼁

2

x
2
0 − 0.375􏼐 􏼑

2 −
x0 × x

2
1

x2
􏼠 􏼡 +

x
2
0 × x3

x4 − 0.375
, (11)

FS(MPa) �
2x3x0

x4 + 3x2 + 0.97( 􏼁
2 2x1 − 89x0( 􏼁

⎛⎝ ⎞⎠ +
2x0

x1 − 89x0( 􏼁/ 100x0 − 48.5( 􏼁( 􏼁
􏼠 􏼡, (12)

Figure 3: SEM images of SCBA at different magnifications.

Table 4: Mix Proportions of the concrete mix.

Mix design Cement (kg/m3) Coarse aggregate (kg/m3) SCBA (kg/m3) W/C Fine aggregate (kg/m3) Water (kg/m3)
0BC (CM) 366 1013.5 0 0.5 742.3 183
10BC 329.4 1013.5 36.6 0.5 742.3 183
20BC 292.8 1013.5 73.2 0.5 742.3 183
30BC 256.2 1013.5 109.8 0.5 742.3 183
40BC 219.6 1013.5 146.4 0.5 742.3 183
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where

x0 �
w

c
,

x1 � SCBA%

x2 � CC,

x3 � FA,

x4 � CA.

(13)

A similar comparison has been drawn for the tensile
strength (ST) output as shown in Figure 5. It can be seen that
the model exhibited an excellent correlation among ex-
perimental and predicted data to estimate ST.,e respective
slopes of the regression line are close to ideal fit, i.e., 0.9351,

0.8903, and 0.9273 for training, testing, and validation.
Similar to CS, the model for ST performs exceptionally well
on training dataset revealing that the issue of overfitting by
the model has been reduced to a larger extent. Moreover, the
performance and accuracy of a model depend on the
number of data points incorporated in the model [84]. In
this study, 110 data points have been selected to model ST;
therefore, an accurate model with minimum error has been
achieved.

,e PSO-MEP model results for flexural strength (FS)
are graphically presented in Figure 6. Duringmodel training,
testing, and validation, the slope of the regression line was
observed to be 0.9494, 0.9026, and 0.9332. Compared with
the models for CS and ST, an excellent estimate is observed
for experimental and predicted data point as illustrated in
Figure 6. ,e model performs exceptionally well for training
and testing data.

4.3. Model Evaluation by Statistical Measures. ,e reliability
of a model depends on the amount of data used for model
development. ,e literature survey recommended that the
ratio of number of data points to the number of input
variables for both training and testing should be greater than
5 [85]. For model training, the aforementioned ratio is 11.8,
13.8, and 8.2 for CS, ST, and FS, respectively. For model
testing, the values are 6.2, 6.6, and 5.7 for CS, ST, and FS,
respectively. ,e performance of the developed models was
evaluated by various statistical criteria such as RMSE, NSE,
RSE, RRMSE, OF, ρ, MAE, and R. ,e values of these in-
dicators for CS, ST, and FS are given in Table 6 for training,
testing, and validation. It can be observed from Table 6 that
models exhibit a strong correlation as evident by the R value
which is 0.91, 0.90, and 0.91 for training and 0.94, 0.92, and
0.91 for testing of CS, ST, and FS, respectively. ,e maxi-
mum and minimum values of NSE are 0.89 and 0.87 for CS,
0.91 and 0.85 for ST, and 0.86 and 0.87 for FS models,
respectively. ,e values of RMSE and MAE are considerably

Table 5: Results of laboratory-derived mechanical properties of SCBA concrete.

Mix
Compressive strength (MPa)

0BC 10BC 20BC 30BC 40BC
Sample 1 23.5 23.9 21.5 18.5 16.7
Sample 2 22.7 23.6 21.6 19.6 15.6
Sample 3 22.9 23.7 21.2 19.1 16.4
Sample 4 23.4 24.2 22.3 19.5 15.7
Average 23.1 23.8 21.6 19.1 16.1
Splitting tensile strength (MPa)
Sample 1 6.3 7.9 7.2 6.7 5.3
Sample 2 6.2 7.8 7.3 5.6 4.7
Sample 3 6.2 8.1 7.5 5.3 4.4
Sample 4 6.7 8.1 7.5 5.8 4.9
Average 6.3 7.9 7.3 5.8 4.8
Flexural strength (MPa)
Sample 1 4.7 5.1 3.9 3.1 2.8
Sample 2 4.3 5.1 3.8 3.3 2.6
Sample 3 4.6 5.2 3.8 3.3 2.6
Sample 4 4.6 5.3 3.7 3.2 2.5
Average 4.5 5.1 3.8 3.2 2.6
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Figure 4: Comparison of actual and predicted CS.
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low for the three datasets which highlighted the generalized
capability and high accuracy of the models. Based on RMSE,
themodel for STcan be categorized as excellent, as the values
for all the three datasets are 2.43, 2.65, and 3.25, respectively.
It can be deduced from results that for all models, MAE lies
in the good range from 1.45 to 3.98. Furthermore, the OF
values for CS, ST and FS are 0.036, 0.031, and 0.052, re-
spectively. All these values are close to zero, indicating the
accurate performance and further validating that the
overfitting problem has been suitably addressed by the
models. For all the developed models, the RRMSE ranged
from 0.04 to 0.16, thus highlighting the accuracy of the
model in predicting the mechanical properties of SCBA
concrete. In order to infer the absolute error, the data points
are plotted in Figure 7 showing the error among actual and
model simulated data. ,e mean absolute error for CS, ST,
and FS is 2.87, 0.405, and 0.675, respectively. ,e minimum
and maximum absolute errors are 0.1 and 7.76 for CS, 0.08

and 2.15 for ST, and 0.075 and 1.95 for FS, respectively. It is
worth mentioning that almost 80% of results for CS, ST, and
FS have error less than 3, 0.5, and 0.6, respectively.

,e criteria for external validation of the models are
given in Table 7. It has been suggested that regression line
slope, i.e., k and k′, passing through the origin should be
nearly equal to 1 [86]. Roy and Roy [87] reported that criteria
for external predictability of a model are satisfied when the
indicator Rm is greater than 0.5. It can be observed from
Table 7 that all the three models (CS, ST, and FS) satisfy the
conditions for external predictability.

4.4. Model Cross Validation Results. ,e 10-fold cross vali-
dation was applied to evaluate the CS, ST, and FS models, and
the results are graphically shown in Figures 8 and 9 for R and
RMSE, respectively. A variation in the results can be observed at
individual level as depicted in the figure. However, it dem-
onstrated a good mean accuracy. ,e average R value obtained
for CS, ST, and FS is 0.85, 0.89, and 0.85, respectively. In all the
10-fold cross validations, the maximum andminimum R values
of 0.72 and 0.91, respectively, were achieved by ST. Similarly, the
meanRMSE values of 4.54, 3.89, and 4.78were accomplished by
CS, ST, and FS, respectively. For individual subset, the lowest
RMSE, i.e., 1.86, was also attained by ST. Overall, the results
from 10-fold cross validation shows the accurate performance,
generalized capability, and robustness of the PSO-MEPmodels.

4.5. Variable Importance and Parametric Analysis.
Variable importance is a process to find out the most influ-
encing input variables affecting the targeted output. ,e most
sensitive input parameters and their relative contribution to
output were determined, and the results are illustrated in
Figure 10. ,e result shows that cement content is the most
important variable contributing 55% to mechanical properties
of SCBA concrete. Similarly, water-cement ratio and amount of
coarse aggregate turned out to be important variables with
17.15% and 16.97% contribution to the output. ,e result
further reveals that quantity of fine aggregate is the least im-
portant parameter affecting the mechanical properties of SCBA
concrete.

Parametric analysis was performed to assess the varia-
tion of the model output with every single input variable.
,is process is recommended in research studies to deter-
mine the effect of all the physical phenomena and inputs. In
this method, all the variables were kept constant at their
mean values and the variation of the model output is plotted
with a single input variable. ,e same procedure was applied
for the individual input parameter. Figure 11 shows the
parametric analysis results for the developed CS model only
as similar patterns were obtained for other mechanical
properties (ST and FS). ,erefore, parametric study results
are discussed in detail for CS in the following.

It is a known fact that an increase in water-cement ratio
decreases the strength of concrete [84, 88]. It can be seen
form Figure 11(a) that an increase in W/C resulted in a
consistent decrease in compressive strength. ,e effect of
SCBA% on the mechanical properties of SCBA concrete
depends on physical and chemical composition and
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Table 6: Statistics for the training, testing, and validation dataset of the models.

Models Dataset NSE R RMSE MAE RSE RRMSE ρ OF

CS
Training 0.87 0.91 3.47 2.96 0.16 0.04 0.020

0.036Testing 0.89 0.94 2.98 2.98 0.12 0.09 0.046
Validation 0.89 0.93 2.87 1.67 0.15 0.04 0.020

ST
Training 0.85 0.90 2.43 3.67 0.23 0.09 0.047

0.031Testing 0.91 0.92 2.65 3.69 0.26 0.12 0.062
Validation 0.90 0.92 3.25 3.98 0.31 0.10 0.052

FS
Training 0.86 0.91 3.92 1.87 0.29 0.13 0.068

0.052Testing 0.87 0.91 3.34 1.45 0.28 0.15 0.078
Validation 0.86 0.93 3.67 2.87 0.19 0.16 0.079
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Figure 7: Description of the error among the actual and predicted data: (a) CS; (b) ST; (c) FS.
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replacement percentage of SCBA [11]. It can observed in
Figure 11(b) that the compressive strength of SCBA concrete
increased up to a certain level and then decreased with

increase in the level SCBA%. It can be deduced from the
figure that maximum strength has been attained at 10%
SCBA replacement. A similar trend was also observed for
experimental testing of SCBA concrete as described in
Section 4.1. Hence, the results of parametric analysis are in
close agreement with laboratory testing where maximum
strength was achieved at 10% SCBA. Similar findings were
reported in [9–11] which showed that 10% SCBA replace-
ment attained higher strength.

Cement is the principal cementitious material in
concrete, and the increase in the cement content en-
hances the mechanical properties of concrete. A similar
trend can also be seen in Figure 11(c) where the com-
pressive strength linearly increased with increase in
cement content. ,e higher cement content produces
more calcium silicate hydrate (CSH) which forms a dense
structure, thereby increasing the compressive strength.
Figures 11(d) and 11(e) illustrate the variation of com-
pressive strength with fine and coarse aggregate content,
respectively. Both figures demonstrated that CS de-
creased with the increase in FA and CA content. ,e
aggregates are inert materials and are used to provide
volume stability to concrete. ,e quantity of aggregates
affects the mechanical properties of concrete. However,
keeping all the quantities constant in a mix, the strength
of concrete decreases with increase in the quantity of
aggregate. Similar results were also observed in the
current study.

Table 7: Statistical indicators of verified models for external predictability.

S.No. Equation Condition CS ST FS Suggested by
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Figure 11: Parametric analysis results for (a) W/C, (b) SCBA%, (c) CC, (d) FA, and (e) CA.
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From the aforementioned discussion, it can be con-
cluded that the developed PSO-MEP model has successfully
incorporated the effect of all input variables, specifically the
complex physical behavior of SCBA, thus making it more
suitable for estimation of complex problems.

5. Conclusion

,is study adopted the two-fold objective. Firstly, the
compressive strength, splitting tensile strength, and flexural
strength of SCBA concrete were modeled by utilizing
multiexpression programming (MEP). ,e particle swarm
optimization (PSO) was employed to tune the hyper-
parameter of the model. ,e proposed model was developed
and formulated based on extensive literature data. Secondly,
sugarcane bagasse ash (SCBA) was characterized, optimized,
and used in different proportions (10%, 20%, 30%, and 40%)
as a partial replacement with cement. SCBA concrete
specimens were prepared and tested for mechanical prop-
erties, and the results were used for model validation. ,e
performance and accuracy of the final models were evaluated
with the help of statistical indicators, i.e., RMSE, NSE, RSE,
RRMSE, OF, ρ, MAE, and R. ,e results obtained from the
developed models exhibited an excellent correlation with the
experimental data with R value above 0.9, MAE and RMSE
below 5, and OF values close to zero for CS, ST, and FS
models. ,e developed PSO-MEP models also satisfied the
criteria for external validation available in the literature. ,e
variable importance and parametric analysis revealed that
the developed model has taken into account the effect of all
the inputs. ,e final outcome of the model was also cross
verified with the 10-fold validation; the results ensured that
the models produced generalized outcome, and the over-
fitting issue has also been addressed. It is obvious from the
current study that utilization of different wastes is indis-
pensable for sustainability viewpoint and machine learning
models play a crucial role in its success.
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literature and are available from the corresponding author
upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] H. Du and S. D. Pang, “Value-added utilization of marine clay
as cement replacement for sustainable concrete production,”
Journal of Cleaner Production, vol. 198, pp. 867–873, 2018.

[2] Z. He, X. Zhu, J. Wang, M.Mu, and Y.Wang, “Comparison of
CO2 emissions from OPC and recycled cement production,”
Construction and Building Materials, vol. 211, pp. 965–973,
2019.

[3] L.-x. Mao, Z. Hu, J. Xia et al., “Multi-phase modelling of
electrochemical rehabilitation for ASR and chloride affected
concrete composites,” Composite Structures, vol. 207,
pp. 176–189, 2019.

[4] M. F. Iqbal, Q.-f. Liu, I. Azim et al., “Prediction of mechanical
properties of green concrete incorporating waste foundry
sand based on gene expression programming,” Journal of
Hazardous Materials, vol. 384, Article ID 121322, 2020.

[5] W. A. Pippo and C. A. Luengo, “Sugarcane energy use: ac-
counting of feedstock energy considering current agro-in-
dustrial trends and their feasibility,” International Journal of
Energy and Environmental Engineering, vol. 4, no. 1, p. 10,
2013.

[6] G. C. Cordeiro, D. C. T. F. Romildo, M. F. Eduardo et al.,
“Influence of mechanical grinding on the pozzolanic activity
of residual sugarcane bagasse ash,” in Proceedings of Inter-
national RILEMConference on the Use of RecycledMaterials in
Building and Structures, Barcelona, Spain, January 2004.

[7] K. Pedersen, A. Jensen, M. Skjothrasmussen, and
K. Damjohansen, “A review of the interference of carbon
containing fly ash with air entrainment in concrete,” Progress
in Energy and Combustion Science, vol. 34, no. 2, pp. 135–154,
2008.

[8] N. Chusilp, C. Jaturapitakkul, and K. Kiattikomol, “Utiliza-
tion of bagasse ash as a pozzolanic material in concrete,”
Construction and Building Materials, vol. 23, no. 11,
pp. 3352–3358, 2009.

[9] M. H. R. Sobuz, “Properties of concrete by using bagasse ash
and recycle aggregate,” Concrete Research Letters, vol. 5, 2014.

[10] P. Jagadesh, A. Ramachandramurthy, and R. Murugesan,
“Evaluation of mechanical properties of sugar cane bagasse
ash concrete,” Construction and Building Materials, vol. 176,
pp. 608–617, 2018.

[11] A. Bahurudeen, D. Kanraj, V. Gokul Dev, and M. Santhanam,
“Performance evaluation of sugarcane bagasse ash blended
cement in concrete,” Cement and Concrete Composites,
vol. 59, pp. 77–88, 2015.

[12] A. Bahurudeen and M. Santhanam, “Performance evaluation
of sugarcane bagasse ash-based cement for durable concrete,”
in Proceedings of the International Conference on the Dura-
bility of Concrete Structures, Dunbeath, Caithness, UK, July
2014.

[13] A. Bahurudeen, S. Manu, W. Kaiser et al., “Assesment of
pozzolanic performance of sugarcane bagasse ash,” Journal of
Materials in Civil Engineering, vol. 28, no. 2, Article ID
04015095, 2016.

[14] A. Rerkpiboon, W. Tangchirapat, and C. Jaturapitakkul,
“Strength, chloride resistance, and expansion of concretes
containing ground bagasse ash,” Construction and Building
Materials, vol. 101, pp. 983–989, 2015.

[15] M. I. Khan, “Predicting properties of high performance
concrete containing composite cementitious materials using
artificial neural networks,” Automation in Construction,
vol. 22, pp. 516–524, 2012.

[16] A. T. A. Dantas, M. Batista Leite, and K. de Jesus Nagahama,
“Prediction of compressive strength of concrete containing
construction and demolition waste using artificial neural
networks,” Construction and Building Materials, vol. 38,
pp. 717–722, 2013.

[17] E. M. Golafshani, A. Behnood, andM. Arashpour, “Predicting
the compressive strength of normal and high-performance
concretes using ANN and ANFIS hybridized with grey wolf
optimizer,” Construction and Building Materials, vol. 232,
Article ID 117266, 2020.

[18] R. Parichatprecha and P. Nimityongskul, “Analysis of dura-
bility of high performance concrete using artificial neural
networks,” Construction and Building Materials, vol. 23, no. 2,
pp. 910–917, 2009.

12 Advances in Civil Engineering



[19] J. Sun, J. Zhang, Y. Gu, Y. Huang, Y. Sun, and G. Ma,
“Prediction of permeability and unconfined compressive
strength of pervious concrete using evolved support vector
regression,” Construction and Building Materials, vol. 207,
pp. 440–449, 2019.

[20] J. Zhang, D. Li, and Y. Wang, “Toward intelligent con-
struction: prediction of mechanical properties of manufac-
tured-sand concrete using tree-based models,” Journal of
Cleaner Production, vol. 258, Article ID 120665, 2020.

[21] Y. Sun, G. Li, J. Zhang et al., “Prediction of the strength of
rubberized concrete by an evolved random forest model,”
Advances in Civil Engineering, Article ID 5198583, 7 pages,
2019.

[22] J. Huang, T. Duan, Z. Yi et al., “Predicting the permeability of
pervious concrete based on the beetle antennae search al-
gorithm and random forest model,” Advances in Civil Engi-
neering, vol. 2020, Article ID 8863181, 11 pages, 2020.

[23] A. Ashteyat, Y. T. Obaidat, Y. Z. Murad, and R. Haddad,
“Compressive strength prediction of lightweight short col-
umns at elevated temperature using gene expression pro-
graming and artificial neural network,” Journal of Civil
Engineering and Management, vol. 26, no. 2, pp. 189–199,
2020.

[24] A. Behnood and E. M. Golafshani, “Predicting the com-
pressive strength of silica fume concrete using hybrid artificial
neural network with multi-objective grey wolves,” Journal of
Cleaner Production, vol. 202, pp. 54–64, 2018.

[25] A. Sadrmomtazi, J. Sobhani, and M. A. Mirgozar, “Modeling
compressive strength of EPS lightweight concrete using re-
gression, neural network and ANFIS,” Construction and
Building Materials, vol. 42, pp. 205–216, 2013.
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Rangel, H. Z. López Calvo, P. L. Valdez-Tamez, and
J. Mart́ınez-Reyes, “Mechanical and durability properties of
mortars prepared with untreated sugarcane bagasse ash and
untreated fly ash,” Construction and Building Materials,
vol. 105, pp. 69–81, 2016.

[60] G. C. Cordeiro, R. D. Toledo Filho, L. M. Tavares, and
E. M. R. Fairbairn, “Experimental characterization of binary
and ternary blended-cement concretes containing ultrafine
residual rice husk and sugar cane bagasse ashes,” Construction
and Building Materials, vol. 29, pp. 641–646, 2012.

[61] D. J. Elwell and G. Fu, Compression Testing of Concrete:
Cylinders vs. Cubes, TRID, Washington, DC, USA, 1995.

[62] R. Siddique and G. Singh, “Utilization of waste foundry sand
(WFS) in concrete manufacturing,” Resources, Conservation
and Recycling, vol. 55, no. 11, pp. 885–892, 2011.

[63] A. ACI, 318-11 ACI Building Code Requirements for Structural
Concrete and Commentary, American Concrete Institute,
Farmington Hills, MI, USA, 2011.

[64] Australia, S., Australian standard for concrete structures AS
3600-2001. Australia, 175pp, 2001.

[65] Standard, B., Eurocode 2: Design of Concrete Structur-
es—Part 1-1: General rules and rules for buildings, 2004: p.
230.

[66] JSCE, Standard Specifications for Concrete Structures, Struc-
tural Performance Verification, Tokyo, Japan, 2007.

[67] New Zealand Standard, Concrete Structures Standard, NZS
3101: 2006 Fe Design of Concrete Structures, New Zealand
Standard, Wellington, NZ, Oceania, 2006.

[68] S. M. Mousavi, A. H. Gandomi, A. H. Alavi, and
M. Vesalimahmood, “Modeling of compressive strength of
HPC mixes using a combined algorithm of genetic pro-
gramming and orthogonal least squares,” Structural Engi-
neering and Mechanics, vol. 36, no. 2, pp. 225–241, 2010.

[69] I. Azim, “Prediction model for compressive arch action ca-
pacity of RC frame structures under column removal scenario
using gene expression programming,” in StructuresElsevier,
Amsterdam, Netherlands, 2020.

[70] A. H. Gandomi, A. H. Alavi, M. R. Mirzahosseini, and
F. M. Nejad, “Nonlinear genetic-based models for prediction
of flow number of asphalt mixtures,” Journal of Materials in
Civil Engineering, vol. 23, no. 3, pp. 248–263, 2011.

[71] M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic,
“Evaluation of empirical models for predicting monthly mean
horizontal diffuse solar radiation,” Renewable and Sustainable
Energy Reviews, vol. 56, pp. 246–260, 2016.

[72] J. Zhang, Y. Huang, G. Ma, J. Sun, and B. Nener, “A meta-
heuristic-optimized multi-output model for predicting mul-
tiple properties of pervious concrete,” Construction and
Building Materials, vol. 249, Article ID 118803, 2020.

[73] Y. Sun, “Development of an ensemble intelligent model for
assessing the strength of cemented paste backfill,” Advances in
Civil Engineering, vol. 2020, Article ID 1643529, 6 pages, 2020.

[74] S. Xu, X. An, X. Qiao, L. Zhu, and L. Li, “Multi-output least-
squares support vector regression machines,” Pattern Rec-
ognition Letters, vol. 34, no. 9, pp. 1078–1084, 2013.

[75] K. S. Raju, “Support Vector Machine with k-fold cross vali-
dation model for software fault prediction,” International
Journal of Pure and Applied Mathematics, vol. 118, pp. 321–
334, 2018.

[76] R. Kohavi, A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model SelectionIJCAI, Montreal,
Canada, 1995.

[77] G. C. Cordeiro, R. D. Toledo Filho, and E. M. R. Fairbairn,
“Effect of calcination temperature on the pozzolanic activity
of sugar cane bagasse ash,” Construction and Building Ma-
terials, vol. 23, no. 10, pp. 3301–3303, 2009.

[78] S. A. Memon, S. Khan, W. Israr et al., “Evaluating the effect of
calcination and grinding of corn stalk ash on pozzolanic
potential for sustainable cement-based materials,” Advances
in Materials Science and Engineering, vol. 2020, Article ID
1619480, 13 pages, 2020.

[79] A. Bahurudeen and M. Santhanam, “Influence of different
processing methods on the pozzolanic performance of sug-
arcane bagasse ash,” Cement and Concrete Composites, vol. 56,
pp. 32–45, 2015.

[80] P. Jagadesh, A. Ramachandramurthy, R. Murugesan, and
K. Sarayu, “Micro-Analytical studies on sugar cane bagasse
ash,” Sadhana, vol. 40, no. 5, pp. 1629–1638, 2015.

[81] L. M. S. Souza, “Influence of initial CaO/SiO2 ratio on the
hydration of rice husk ash-Ca (OH) 2 and sugar cane bagasse
ash-Ca (OH) 2 pastes,” Quı́mica Nova, vol. 37, no. 10,
pp. 1600–1605, 2014.

[82] G. C. Cordeiro, R. D. Toledo Filho, L. M. Tavares, and
E. M. R. Fairbairn, “Pozzolanic activity and filler effect of
sugar cane bagasse ash in Portland cement and lime mortars,”
Cement and Concrete Composites, vol. 30, no. 5, pp. 410–418,
2008.

[83] P. C. Macedo, “Performance of mortars produced with the
incorporation of sugar cane bagasse ash,” Revista Ingenieŕıa de
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Fly ash (FA) is a residual from thermal industries that has been effectively utilized in the production of FA-based geopolymer
concrete (FGPC). To avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random
forest regression (RFR) and gene expression programming (GEP), are used in this study to develop an empirical model for the
prediction of compressive strength of FGPC. A widespread, reliable, and consistent database of compressive strength of FGPC is
set up via a comprehensive literature review. +e database consists of 298 compressive strength data points. +e influential
parameters that are considered as input variables for modelling are curing temperature (T), curing time (t), age of the specimen
(A), the molarity of NaOH solution (M), percent SiO2 solids to water ratio (% S/W) in sodium silicate (Na2SiO3) solution,
percent volume of total aggregate (%AG), fine aggregate to the total aggregate ratio (F/AG), sodium oxide (Na2O) to water ratio
(N/W) in Na2SiO3 solution, alkali or activator to the FA ratio (AL/FA), Na2SiO3 to NaOH ratio (Ns/No), percent plasticizer
(%P), and extra water added as percent FA (EW%). RFR is an ensemble algorithm and gives outburst performance as compared to
GEP. However, GEP proposed an empirical expression that can be used to estimate the compressive strength of FGPC. +e
accuracy and performance of both models are evaluated via statistical error checks, and external validation is considered. +e
proposed GEP equation is used for sensitivity analysis and parametric study and then compared with nonlinear and linear
regression expressions.

1. Introduction

Fly ash (FA) is considered as waste material resulted from
thermal coal production [1]. It is carried by the gases re-
leased from the boiler and collected via electrostatic or
mechanical separator [2]. +e annual production of FA is
375 million tons, and its disposal cost per ton is $20 to $40
[3]. Dumping into landfills without prior treatment causes a
malicious effect on the environment [4]. To sustain safe

environment, effective management of waste is needed [5].
Fine particles of FA act as poisons when entering the re-
spiratory system. Furthermore, it pollutes underground
water, which is harmful to aquatic life and causes diarrhea
and skin cancer [6].

Concrete is the second most usable material after water,
as three tons of concrete is produced per person [7, 8]. In the
world, every year 25 billion tons of concrete is produced that
acquires 2.6 billion tons of cement, which will be increased
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by 25% in the next ten years [9, 10]. Cement production
causes a nasty impact on the atmosphere as one ton of
cement emits one ton of CO2 in the air, which alarms the
ecology [11]. Also, limestone is the main source of cement,
and its severe shortage may occur after 25–30 years [12, 13].
+erefore, green concrete production is needed to decline its
malignant impact on the natural environment [14]. FA is
used as supplementary cementitious material to produce
green concrete [15]. It is worthy as it reduces the cement
utilization and also its harmful effects on the ecology when
dumped into landfills.

Since last two decades, the use of FA-based geopolymer
concrete (GPC) is rising constantly as it reduces the con-
sumption of cement [16–19]. FA-based GPC has been widely
used in construction, but still no empirical model is de-
veloped to predict its compressive strength (fc

′) on the basis
of mix proportion with maximum input parameters. fc

′ of
FA-dependent GPC varies with different parameters like
specimen age (A), curing time (t), initial curing tempera-
ture (T), molarity of NaOH solution (M), percent SiO2
solids to water ratio (% S/W) in the formation of sodium
silicate (Na2SiO3) solution, ratio of alkali to FA (AL/FA),
ratio of Na2SiO3 to NaOH (Ns/No), addition of extra water
as percent FA (%EW), percentage of total aggregate by
volume (%AG), ratio of fine to total aggregate (F/AG), and
percentage of plasticizer (%P) [10, 20–27]. +is generates
lack of clarity in the prediction of fc

′ of FA-dependent GPC.
Furthermore, rapid growth of soft computing techniques for
the development of empirical equation by using experi-
mental data has been just noticed [28, 29].

Artificial intelligence (AI) techniques have been used
widely in the civil engineering field for the prediction of
different mechanical properties of concrete. Methods like
random forest (RF) [30, 31], support vector machine (SVM)
[32], artificial neural networks (ANNs) [33], adaptive neuro
fuzzy interface (ANFIS) [34], decision tree (DT) [35],
multivariate adaptive regression spline (MARS) [36], genetic
programming (GP) [37], and gene programming (GEP) [38]
were used vastly by different researchers [39–41]. Recently,
ANN was used to accurately predict the mechanical prop-
erties of rice husk ash concrete [33] and workability of self-
compacting concrete [42]. No empirical equation was
provided in these models, which can be used practically,
although these models show a strong correlation. +is is due
to the complex model of ANN structure which limits the
wide scale adoption of ANN techniques [43]. +e multi-
collinearity is the main issue in these models [44]. Likewise,
an updated ANN technique was used to predict the com-
pressive strength of silica fume concrete and elastic moduli
of recycled aggregate concrete. Due to the complications in
the proposed relationship, just a graphical interface was
developed to make the model functional [45]. +e com-
parative study of ANN and ANFIS was carried out for the
prediction of compressive strength of concrete which
revealed that ANFIS provides better and strong correlation
than ANN [46]. RF is an ensemble machine learning
technique which has been effectively used in the prediction
of uniaxial compressive strength of rubberized concrete [30].
+e RF gives outburst performance in modelling strength of

coal grout material [31]. +e adamant results were obtained
in the prediction of compressive strength of self-compacting
concrete with antenna search-based RF algorithm [47].

Genetic programming (GP), one of the strong soft
computing techniques, is worthy as it develops a model
without considering the previously established relation-
ships [48, 49]. Recently, GP is extended to gene expression
programming (GEP), which uses linear chromosomes of
fixed length and encodes a small program [50]. GEP is
advantageous as it gives a simple and reliable mathematical
equation that can be used practically. In civil engineering, it
is used as a substitute for ordinary prediction techniques
[39, 51–57]. GEP is employed to predict the influence of the
strength class of cement on the compressive strength of
mortar, the split tensile strength of concrete, and the fresh
and hardened properties of the self-compacting mix
[39, 51–57]. Farooq et al. [58] predicted the compressive
strength of high-strength concrete using RF, ANN, DT, and
GEP, providing coefficient of determination equal to 0.96,
0.89, 0.90, and 0.90, respectively. In RF, weak learners are
used as base learners. +is bagging mechanism of RF
provides obstinate results. GEP leads RF as it is an indi-
vidual model that provides an empirical relation between
input and output parameters that can be used in field
calculation.

Compressive strength is the major factor to be con-
sidered in the design and analysis of concrete [59]. In-
tensive research is carried out to find the compressive
strength of FA-dependent GPC [60, 61]. For the sustain-
ability of FA and to save cost and time, it is needed to
develop a reliable and accurate equation that would relate
mix proportion and compressive strength of FA-dependent
GPC. +e comprehensive revision of literature reveals few
empirical equations for the prediction of compressive
strength of FA-dependent GPC [39, 54, 57]. However, the
prediction from these empirical equations are limited to a
specified experimental study and is not practicable and
reliable beyond the specified dataset. Alkaroosh et al. [62]
established a model to predict the compressive strength of
FA-dependent GPC using 56 datasets extracted from a
particular research paper [63]. +e suggested equation uses
no variable to counter the formation of sodium silicate
solution. Also, the model illustrates a linear relation in the
molarity of NaOH and compressive strength. However,
other studies reported an inverse relationship between the
compressive strength and molarity of NaOH solution [64].
To cover this lack of correspondence, RF and GEP tech-
niques are used to develop a more accurate, effective, and
generalized model that predicts the compressive strength of
FA-dependent GPC with acceptable error. A comprehen-
sive and detailed dataset file is established from the liter-
ature that includes cube samples of size 150mm and
100mm and cylindrical samples having size
(200 × 100)mm (height × diameter). +e ample number of
data points guarantees the reliability of the model for data
points outside the dataset file. +e performance of the RF
and GEP model is tested through statistical checks, para-
metric study, and sensitivity analysis and compared with
nonlinear and linear regression models.
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2. Research Methodology

+is section covers the methodology to develop GEP and RF
models for the compressive strength (fc

′) of FA-dependent
GPC.

2.1. Brief Overview of Gene Expression Programming.
Koza recommended the GP technique as an alternative to
genetic algorithm (GA) which uses fixed length binary
strings [65]. +e use of nonlinear parse tree structure marks
the GP as an acceptable technique. It considers the initial
nonlinearity of the data. +e same nonlinearity has been
exercised before [62, 65]. GP is inadequate as it ignores the
independent genome. +e nonlinear structure of GP works
as both the phenotype and genotype. It fails in the devel-
opment of basic and simple model. To overcome incon-
sistencies in the GP algorithm, Ferreira suggested its
modified version known as GEP technique [65]. It is based
on the evolutionary theorem of population. +e major
change in GEP is the transmission of the genome towards
successive generations. Another notable feature is the cre-
ation of entities using chromosome which is comprised of
different genes [66]. In GEP, each gene originates from
terminal set of constants, fixed length parameters, and
arithmetic operations used as a function.+ere is a stabilized
and smooth interface between chromosome level and allied
functions. Chromosomes record the essential information
needed for the establishment of model, and for the de-
duction of this information, a new language, i.e., Karva, is
developed.

+e flow diagram of the GEP algorithm is shown in Fig-
ure 1. +e algorithm begins with the random creation of fixed
length chromosomes for each individual.+en, these are similar
to the expression trees (ETs). Afterward, the fitness of each
individual is evaluated. For many generations, the reiteration
begins with different individuals till the development of the
finest outcome. For the reiteration of the population, genetic
function asmutation, reproduction, and crossover are executed.

2.2. Brief Review of Random Forest Regression. In 2001,
Breiman proposed an improved regression technique known
as random forest regression (RFR) [67]. +e key charac-
teristics of RFR are flexibility and speediness in the devel-
opment of the relation between output and input
parameters. Also, random forest handles large datasets more
effectively than other machine learning algorithms. It has
been used in different fields like in banking for the prediction
of response of customer [68], prices direction in stock ex-
change [69], in pharmaceutical and medicine production
[70], and so on. It has also been used in various engineering
fields like potential mapping of ground water using geo-
informatics system- (GIS-) based data [71], compressive
strength prediction of high-performance concrete [35], self-
compacting light-weight concrete [48], high-strength con-
crete [58], and so on.

+e RF technique is comprised of three main steps that
include the assembling of trained regression trees via
training dataset, calculation of the mean value of single

regression tree outcome, and the validation of predicted
results via validation dataset. +e original trained set is used
to calculate a new trained dataset comprising of boot-strap
data. In this step, some of the data points are removed and
swapped with the present data points. +e removed data
points assembled in other dataset are called out-of-bag data
points. +en, the regression function is estimated using 2/
3rd of the data points, and the out-of-bag data points are
used in validating the model. +is process is continued till
the achievement of the required accuracy.

RFR is a built-in process that deletes the data points from
out-of-bag data points and uses them for validation. +is is
the distinctive characteristic of RFR. Finally, for each ex-
pression tree, the total error is computed showing the ef-
ficiency and accuracy of each expression tree.

2.3. Data Collection. Compressive strength (fc
′) is the key

factor to design and analyze concrete. For the sustainability
of FA and to save cost and time, it is needed to develop a
reliable and accurate model that would relate mix propor-
tion and fc

′ of FA-based GPC.
Comprehensive dataset file was compiled from the lit-

erature [62, 63, 72–105]. +e whole dataset is comprised of
298 experimental results of fc

′ of FA-based GPC, which
includes 31 and 166 cube samples having 100mm and
150mm size respectively and 101 cylindrical samples having
size (200 × 100)mm (height × diameter). fc

′ of cylindrical
and cube samples is dependent on length to diameter (L/D)

ratio [106, 107]. Also, fc
′ of 150mm cubes is 5% lesser than

100mm cubes. +e normalization of cube samples with
cylindrical samples is shown in Table 1.+e accomplishment

Start

Construct initial 
population’s chromosomes

Display of chromosomes as 
expression trees (ETs)

Execute or run ETs

Measure fitness

Iterate or
terminate?

End

Best tree selection

Replication

Genetic alteration

Next generation new 
chromosome preparation

Iterate

Terminate

Figure 1: Flow diagram of gene expression programming [29].
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of detailed dataset file guarantees the accessibility and re-
liability of the GEP model to the data which are not utilized
for the establishment of the model.

+e dataset file contains data of fc
′ as a response against

input parameters, i.e., samples age (A) in days, initial curing
temperature (T) of samples in degree Celsius, molarity of
NaOH solution (M), percent SiO2 solids to water ratio
(% S/W) in the formation of sodium silicate (Na2SiO3) so-
lution, ratio of alkali to FA (AL/FA), ratio of Na2SiO3 to
NaOH (Ns/No), addition of extra water as percent FA
(%EW), percentage of total aggregate by volume (%AG),
ratio of fine to total aggregate (F/AG), and percentage of
plasticizer (%P). +e collected samples are all heat cured for
24-hour duration at various curing temperatures as the in-
crease in fc

′ after 24-hour curing time is insignificant [63].
Due to the geo-polymerization, GPC shows higher early
strength; therefore, less research is found in the literature for
prolonged curing time. Also, Van Jaarsveld et al. [108] re-
ported no increment infc

′ for prolonged curing duration after
24 hours. +e distribution of explanatory variables on wide
range guarantees the best performance of themodel [109]. For
all the selected explanatory parameters, the frequency dis-
tribution and cumulative percent are shown in Figure 2.

To develop a more generalized model, both cylindrical and
cube samples are considered. +e range, mean values, and
standard deviation of response and explanatory parameter are
presented in Table 2. To achieve a reliable prediction of fc

′, it is
recommended to use the model within the specified range.

To evaluate the reliability and validity of the data points,
several trials were performed. +e divergence of data points
greater than 20% was excluded in the development of the
model and performance evaluation phase. A total of 298 data
points were used to establish a reliable model for fc

′ of FA-
dependent GPC.+e data points were randomly divided into
two statistically consistent datasets, i.e., training set (30%–
90% data points) and a validation set (70%–208% data
points) [29]. Training data points are used to train themodel,
that is, genetic evolution and validation data points are
utilized to verify and calibrate the generalization capability
of the developed model as described in the literature [56].

2.4. GEP Model Development. In the first step, the most
effective parameters for compressive strength (fc

′) of FA-
dependent GPC were chosen to establish a simplified model.
+e performance evaluation via multiple initial runs indi-
cates to calculate fc

′ of FA based GPC as a function of the
following equation.

fc
′ � f T, A, M,%

S

W
,
AL

FA

,
NS

NO

AG,
F

AG

,%P,%EW􏼠 􏼡. (1)

+e number of genes, chromosomes, and expression trees
(ETs) are distinguished to develop the GEP expression. +e
execution time of the program is controlled using population
size (number of chromosomes). +e combination of genes
leads to chromosomes that are used in coding the sub-
expression trees (sub-ETs). +e complexity of the predictive
GEP model reflects to use population size of 150. +e con-
figuration of the model in the program relies on the head size,
the number of genes that decide the complexity of each term,
and the sum of sub-ETs of the model. Hence, the genes and
head size which are 3 and 10, respectively, are used for the
establishment of the reliable model. +e genetic operators are
used for the genetic variation of chromosomes. During mu-
tation, the random selection of tail or head of genes is executed
and substituted with component of function or terminal sets
randomly. +e transposition performs the substitution of in-
sertion sequence (IS) and the root insertion sequence (RIS)
inside the chromosome. +en, in recombination, chromo-
somes are combined and divided into two to replace their
components. To obtain good algorithm, the suggested setting in
the previous study has been exercised [39]. GeneXproTool is
used for the execution of the GEP algorithm. Table 3 presents
the settings of the parameters used in the execution of the GEP
algorithm, to develop a good model.

2.5. Criteria for Evaluation of Model Performance. To verify
the performance of the developed models, the coefficient of
correlation (R) is usually used. Because of its insensitivity to
division and multiplication of output to a constant, it cannot
be merely utilized for studying the performance of the model
[110]. +erefore, root mean squared error (RMSE), relative
square error (RSE), mean absolute error (MAE), and relative
root mean square error (RRMSE) are also checked. +e
performance index (ρ) covers the function of both RRMSE
and R, so the performance evaluation of the predictive
models using ρ is highly recommended [109]. +e error
checks equations are given as equations (2)–(7).

RMSE �
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􏽳
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􏼌􏼌􏼌􏼌
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, (3)

RSE �
􏽐
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2 , (4)
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􏽐
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2

n

􏽳

, (5)

Table 1: Collection of data and normalization of compressive strength.

Type of sample Number of data points Normalization factor
Cylindrical (200 × 100)mm) 101 1
Cube (150mm) 166 1 × 0.8
Cube (100mm) 31 0.95 × 0.8
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Figure 2: Frequency and cumulative percent of selected explanatory variables.
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ρ �
RRMSE
1 + R

, (7)

where expi, predi, expi, and predi are the ith experimental
outcome, predicted model outcome, experimental average
value, and average predicted model outcome, respectively
while n indicates the total number of data samples.+e higher
R value and lower MAE, RMSE, RRMSE, and RSE values
replicate the fineness ofmodels. For a strong correlation, theR
values should be higher than 0.8 (1 for the ideal model) [111].
Also, the ρ value would be nearly equal to zero.

3. Results and Discussion

3.1. GEP Expression for Compressive Strength of FA-Depen-
dent Geopolymer Concrete. +e expression tree given by the
GEP algorithm is shown in Figure 3, which is further

decoded to get an empirical equation for the compressive
strength of FA-dependent GPC. +e ETs are comprised of
five arithmetic operators, i.e., − , +, /, ×,

�
·3

√
.

do: curing temperature (T) in degree Celsius, d1: age of
the specimen (A), d2: alkali or activator to the FA ratio
(AL/FA), d3: Na2SiO3 to NaOH ratio (Ns/No), d4: molarity
of NaOH solution (M), d5: percent volume of total ag-
gregate (%AG), d6: fine aggregate to total aggregate ratio
(F/AG) d7: percent plasticizer (%P), d8: percent SiO2 solids
to water ratio (%S/W), and d9: extra water added as percent
FA (%EW).

Equation (8) can be used for the prediction of com-
pressive strength (fc

′) of FA-dependent GPC (MPa). It
consists of four variables, i.e.,A, B , C, andD, presented as
equations (9)–(12), which are extracted from sub-ETs 1, 2, 3,
and 4, respectively, as presented in Figure 3.

fc
′(MPa) � A × B × C × D, (8)

where

A �
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C �
F

AG

− M × %EW( 􏼁 −
0.0003
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T
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��������
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3

􏽳

+ 0.8. (12)

3.2. Evaluation of the Performance of the GEP Model.
Figure 4(a) shows the comparison of two regression lines,
namely, the GEP model output values and experimental
values for both the validation set data and training set data.

Table 2: Range, mean, and standard deviation of response and explanatory variable.

Parameters Maximum value Minimum value Mean value Standard deviation
Output variables
T (OC) 120 23 71.57 24.61
A (days) 540 1 20.87 45.73
A/F 0.3 1 0.4545 0.1187
NS/NO 4 0.4 2.275 0.5168
M 20 8 11.68 2.6415
(% AG) 80 60 72 4.753
F/AG 0.5 0.2 0.3568 0.0493
% P 11.3 0 1.998 2.326
% S/W 81.4 43.4 61.68 10.167
% EW 35 0 3.889 6.341
Response
fc
′(MPa) 63 8.2 37 11.154

Table 3: +e setting of parameters of the GEP algorithm.

Parameters Adjusted GEP setting
General parameters
Number of chromosomes 150
Number of genes 3
Head size 10
Linking function Multiplication
Functions set +, − , /, ×, 3
Arithmetical operators
Constants/gene 10
Type of data Floating data
Upper bound value 10
Lower bound value − 10
Gene operator
Mutation rate 0.001380
Inversion rate 0.005460
IS transportation rate 0.005460
RIS transportation rate 0.005460
Gene recombination rate 0.007550
Gene transportation rate 0.002770
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+e slope of the regression lines shows a strong correlation,
i.e., 0.9892 and 1.000 for validation set data and training set
data, respectively.

+e absolute error between the output of GEPmodel and
experimental values is shown in Figure 4(b). It provides an
idea of maximum percent error in the GEP model. +e
maximum error percentage and mean error percentage are

computed as 8.32% and 6.47%, respectively, which approves
the similarity between GEP model outcomes and experi-
mental values. Also, the frequency of the maximum error is
less. Nearly 90% of GEP model outcomes of the validation
dataset have an error of less than 10%, and the average
percent error is below 5.56%. +is confirms the reliability
and generalization capability of the GEP model.
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Figure 3: Expression trees (ETs) provided by the GEP algorithm.
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For the reliable and accurate GEP model, the ratio of
total data points to the total input variables should be
minimum three [109]. +is research uses a higher value
equal to 30. +e statistical checks for both validation data
points and training data points are listed in Table 4. For the
GEP model, MAE, RMSE, and RSE of training data points
are calculated as 5.832, 5.971, and 0.325, respectively, and
2.057, 2.643, and 0.0675 for validation data points. +e
similarity in the statistical checks guarantees the general-
ization capability of the GEPmodel. Table 4 also shows that ρ
for both sets reaches zero. So, the presented GEP model
could be valid for new data points.

Different statistical measures are also considered for the
external validation of the GEP model. +e literature rec-
ommended that the inclination (slope) of one of the re-
gression lines (k′ or k) crossing the origin should be nearly
equal to 1 [38]. Table 5 shows that the slope of regression
lines is 0.995 and 1.001, which verifies the correlation and
correctness. +e literature also recommended that the
square of correlation coefficient between the experimental
and model predictive output (R′2o ) or between model
predictive output and experimental values (R2

o) should
come near 1 [112]. Table 5 confirms the validity of the GEP
model. So, the proposed GEP model is not just a
correlation.

3.3. Evaluation of Random Forest Regression Model.
Random forest regression technique is an ensemble algorithm
that utilizes weak learner as a supervised learner and provides a
best-performed model based on the coefficient of correlation
(R) as shown in Figure 5.+is algorithm divides the model into
twenty submodels based on different n-estimator and gives
model with maximum R. +e mean ensemble R is equal to
0.9732 which depicts that all the twenty submodels strongly
correlate with the predicted and experimental values. Amongst
all these, the submodel with 40 estimators gives outburst

performancewithmaximumR equal to 0.9826. It is attributable
to the use of weak learners as a decision which is used in
ensemble algorithm [58].

+e relation between the response and the predictor is
shown via the slope of regression lines in Figure 6(a).+e RF
algorithm gives noticeable slope of the regression line as
1.000 and 0.9913 for training set data and validation set data,
respectively, which proves the superiority of the RF
algorithm.

+e absolute error plot between the RF algorithm pre-
dicted values and experimental values is presented in
Figure 6(b). In comparison with the GEP model, the RF
model shows less error as the maximum percent error and
average percent error are calculated as 4.89% and 2.14%.+e
RF algorithm yields outstanding results but does not provide
an empirical equation like GEP.

Furthermore, the performance of the RF algorithm-based
model is also verified through statistical error checks. Table 4
shows that statistical error checks for RF algorithm-predicted
values are lesser than those of the GEP model predicted
outputs, in both the training and validation stage. +is
confirms that the RF algorithm gives good performance than
GEPmodel as it is an ensemble one that uses the decision trees
as weak learners [58]. Also, R′2o and R2

o are used for its external
validation of RFmodel as tabulated in Table 5.+eir values are
calculated near to 1, which verifies that RF algorithm does not
work as simple correlation.

3.4. GEP Model Comparison with Linear and Nonlinear Re-
gression Models. +e past research reveals that for fc

′ of FA-
dependent GPC, no GEP model has been developed using the
influential input parameters considered in this study. So, it is
needed to develop nonlinear and linear regression expressions,
for the same dataset, and compare it with the GEP model
presented as equation (8). Equations (13) and (14) present the
linear and nonlinear regression equations, respectively.
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Figure 4: Performance evaluation of the GEP model. (a) Comparison between model and experimental outcomes for compressive strength
from training and validation set data. (b) Absolute error plot of GEP predicted outcomes and experimental values.
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Table 4: Comparison of statistical measures amongst GEP, RF, nonlinear, and linear regression models.

Model
RMSE RSE MAE RRMSE (%) R ρ

TRNG
1 VLDN

2 TRNG VLDN TRNG VLDN TRNG VLDN TRNG VLDN TRNG VLDN

RF 3.034 1.986 0.193 0.0350 2.876 1.862 10.084 4.163 0.9826 0.9943 0.0546 0.02087
GEP 5.971 2.643 0.325 0.0675 5.823 2.057 16.949 4.949 0.8586 0.9643 0.0911 0.02519
Linear 6.986 5.546 0.589 0.3040 6.543 4.967 19.20 10.21 0.8074 0.8976 0.1062 0.05382
Nonlinear 6.593 5.054 0.497 0.2980 6.053 4.875 18.53 9.021 0.8357 0.9247 0.1009 0.04687
1TRNG shows training set data. 2VLDN shows validation set data.

Table 5: External validity of the proposed GEP and RF models.

Expression Constraint GEP model RF model
k � 􏽐

n
i�1(expi × predi)/􏽐

n
i�1 (exp2i ) 0.85< k< 1.15 1.001 1.000

k′ � 􏽐
n
i�1(expi × predi)/􏽐

n
i�1 (pred2i ) 0.85< k′ < 1.15 0.995 0.9995

R2
o � 1 − (􏽐

n
i�1 (predi − expo

i )2/􏽐
n
i�1 (predi − pred

o

i )2), expo
i � k × predi R2

o � 1.0 0.9998 0.9965
R′2o � 1 − (􏽐

n
i�1 (expi − predo

i )2/􏽐
n
i�1 (expi − expo

i )2), predo
i � k′ × expi R′2o � 1.0 0.9849 0.9994

Ensemble average

Max R = 0.9826
Mean R = 0.9723
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Figure 5: A random forest regression model with twenty submodels.
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Figure 6: Performance evaluation of RF model. (a) Comparison between model and experimental outcomes for compressive strength from
training and validation set data. (b) Absolute error plot of RF predicted outcomes and experimental values.
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fc
′ � 12.8 + 0.23T + 0.04A − 27

AL

FA

+ 1.13
NS

No

− 0.4M + 0.64AG% − 0.4
F

AG

+ 1.3P% − 0.45
S

W
% − 0.7EW%,

(13)

fc
′ � − 7.6 + 1.18T

0.68
+ 0.35A

0.63
− 25.8

AL

FA

􏼠 􏼡

2.9

+ 1.8
NS

No

􏼠 􏼡

0.44

− 0.009M
2.24

+ 0.76 AG%( 􏼁
0.93

− 0.37
F

AG

􏼠 􏼡
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+ 2.25(P%)
0.72

− 0.08
S

W
%􏼒 􏼓

1.34
− 0.27 EW%( 􏼁

1.32
.

(14)

Figure 7 compares the results of the GEP model and
nonlinear and linear regression models. For all three models,
the statistical checks like RSE, MAE, RMSE, RMSE%, R, and
ρ are mentioned in Table 4. ρ and RMSE of the GEP model
for both validation set and training set are lesser than those
of the linear and nonlinear regression models. ρtraining and
RMSEtraining for the GEP model are 14% and 14.5% lower
than those of the linear expression, respectively. Also, in the
validation phase, the GEP model performs better than
nonlinear regression expression as ρvalidation differs by 44%.
Figure 7 illustrates that linear and nonlinear regression
models fail to cover a large range of fc

′ effectively. Hence, the
application of regression expression is restricted.

Some limitation of regression analysis like the use of
predefined equations either nonlinear or linear and pre-
assumption of residuals normality restricts its application
[111], while GEP modelling chooses the nonlinear relation
between input and output parameters effectively and pro-
vides a higher generalizedmodel, which significantly reduces
the error as compared to regression analysis.

3.5. Sensitivity and Parametric Analysis. Sensitivity analysis
(SA) checks the relative contribution of input parameters
considered to predict the compressive strength (fc

′) of FA-
dependent GPC, via equation (15) and (16). SA shows the
reliance of output on input parameters.

Nj � fmax yj􏼐 􏼑 − fmin yj􏼐 􏼑, (15)

SA �
Nj

􏽐
i�1
n Nj

, (16)

where fmin(yj) and fmax(yj) are the jth minimum and
maximum predictive model output, respectively while input
values are kept constant at mean value. Nj gives the range of
jth input variable by taking the difference between fmax(yj)

and fmin(yj). Both training data points and validation
points are consistent; therefore, SA and a parametric study
were carried out for only training data points [39, 111]. +e
result of the sensitivity analysis is presented in Figure 8. It
verifies that the relative contribution of input variables is
similar in the perspective of material engineering.

+e GEP empirical equation, i.e., equation (8), is used to
evaluate the effectiveness of influential input parameters by
conducting parametric study. +e parametric analysis of the
GEP model is presented in Figure 9. +e changes in com-
pressive strength were noted against the change in the value
of only one input parameter from maximum to minimum,
and the rest of all input variables are kept at mean value.

+e curing temperature in the most important parameter
to control the compressive strength (fc

′) of FA-dependent
GPC, as shown in Figure 8 which reflects that curing tem-
perature comparatively contributes 25.3%. Figure 9 illustrates
an increase in fc

′ at different rates with an increase in A, T,
(Ns/No), %AG, (F/AG), and %P while it decreases with
(AL/FA), %EW, (% S/W), and M.

+e alkali-activating solution being used in the GPC
liberates silicates and hydroxides that form strong alumina
silicate polymeric structure. As to speed up its reaction
process with the source material, the GPC needs additional
heat: to improve the mechanical properties of GPC. fc

′
increases as curing temperature increases up to 100°C as
shown in Figure 9. After 100°C, the loss in moisture from
concrete decreases its strength [64]. Wardhono et al. [77]
showed through scanning electron microscopy (SEM) that
after 240 days, the gel fills out the interior voids, which
results in the formation of semihomogenous, but com-
pacted, microstructure.+erefore, after 240 days, the decline
in the incremental rate is noted. +e change in total ag-
gregate is related to the fine aggregate to total aggregate ratio.
fc
′ increases with increment in total aggregate amount as

shown in Figure 9.
+e ratio of alkali-to-FA and sodium silicate-to-sodium

hydroxide and molarity of NaOH are all linked. Sodium
silicate changes the microstructure and significantly increases
the compressive strength. +erefore, preparation of sodium
silicate solution with high ratio of percent silica-to-water is
needed. Low alkali-to-FA ratio combines with high sodium
silicate-to-sodium hydroxide ratio, and less molar solution of
NaOH will result in greater fc

′. However, the NaOH solution
should be sufficient to finish the dissolution process. Same
results have also been reported in the literature [78].

Total water used in GPC is the combination of water
needed for the preparation of sodium hydroxide solution
and sodium silicate solution and the extra water added for
adjusting the workability. For the workable GPC mix and to
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avoid cracks, it is essential to add a plasticizer and extra
water [95]. Figure 9 shows that the relative contribution of
plasticizer or extra added water to fc

′ is 6.71% and 18.85%,
respectively. +e extra added water beyond certain limit
leads to segregation and bleeding of green concrete.

+e results in Figure 9 are linked with previous literature
[78, 95]. +e parametric analysis accurately shows the effect
of input parameters to predict fc

′ of FA-dependent GPC.

4. Limitations and Recommendation for
Future Work

+e research work performed in this article does have certain
drawbacks; however, it can be counted as data-mining-based
research.+e broadness and comprehensiveness of the data is
essential for the reliability and proficiency of the predictive

models. +e range of the datasets used in this research was
restricted to 298 experimental data points. +is research did
not consider the compressive strength of fly-ash-based geo-
polymer concrete at elevated temperature. Also, this study
lacks in providing the empirical relation for other mechanical
properties of FGPC like split tensile strength and flexural
strength as limited research is available in the literature for
both the mechanical properties. In fact, an appropriate testing
dataset should be completed as it is essential part in engi-
neering viewpoint. However, this research considered a wide
range dataset with ten most influential parameters for
modelling compressive strength of FA-dependent GPC.

Furthermore, it is also recommended that the new da-
tabase developed should be investigated with various su-
pervised machine learning techniques like artificial neural
network (ANN), recurrent neural network (RNN), support
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Figure 9: +e trend of compressive strength with chosen input parameters.
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vector machine learning (SVM), adaptive neuro fuzzy in-
terface (ANFIS), and multivariate adaptive regression spline
(MARS).

5. Conclusions

In this study, random forest (RF) and gene expression pro-
gramming (GEP) are used to develop a mathematical expres-
sion for the compressive strength fc

′ of fly-ash- (FA-)
dependent geopolymer concrete (GPC). +e RF and GEP
models are developed on the data collected from the past re-
search, and the most effective variables are considered as input
parameters. +e proposed GEP empirical expression can be
used for the utilization of toxic FA in place of dumping into
landfills. +is would eventually lead to sustainable green con-
struction. Following are the conclusions deducted via a su-
pervised machine learning algorithm.

(1) +e highest R and lowest error checks are observed in
the RF model as compared to GEP, nonlinear, and
linear regression models. +e RF as ensemble ma-
chine learning algorithm gives a remarkable per-
formance with R, MAE, RMSE, RSE, and ρ equal to
0.9826, 2.896, 3.034, 0.193, and 0.0546 for training
dataset, respectively, and 0.9943, 1.862, 1.986, 0.0350,
and 0.02087 for validation dataset, respectively. Also,
RF and GEP model accurately meets the specifica-
tions for external validation.

(2) RF model outburts performance but lacks in providing
an empirical equation. In comparison with nonlinear
and linear regression models, the GEP model gives
outburst performance and provides an empirical ex-
pression, which is suitable for the preliminary design of
FA-dependent GPC.

(3) +e sensitivity analysis reveals that curing temperature
is the most sensitive and dominant parameter in
handling the production of FA-dependent GPC. +e
parametric study of the GEP model shows that the
model correctly covers the effect of all explanatory
variables.

(4) Furthermore, it is recommended to perform a leachate
study before the addition of FA as geopolymermaterial.
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Pervious concrete is an environmentally friendly material that improves water permeability, skid resistance, and sound absorption
characteristics. Permeability is the most important functional performance for the pervious concrete while limited studies have
been conducted to predict permeability based on mix-design parameters. .is study proposed a method to combine the beetle
antennae search (BAS) and random forest (RF) algorithm to predict the permeability of pervious concrete. Based on the 36
samples designed in the laboratory and 4 key influencing variables, the permeability of pervious concrete can be obtained by
varying mix-design parameters by RF. BAS algorithmwas used to tune the hyperparameters of RF, which were then verified by the
so-called 10-fold cross-validation. Furthermore, the model to combine the BAS and RF was validated by the correlation pa-
rameters. .e results showed that the hyperparameters of RF can be tuned by the BAS efficiently; the BAS can combine the
conventional RF algorithm to construct the evolved model to predict the permeability of pervious concrete; the cement/aggregate
ratio was the most significant variable to determine the permeability, followed by the coarse aggregate proportions.

1. Introduction

Pervious concrete is similar to conventional concrete but
designed without fine aggregates (i.e., sand) and has a po-
rosity andmedian pore diameter in the range of 0.15–0.3 and
2–4mm, respectively [1–4]. Pervious concrete is an envi-
ronmentally friendly material that improves skid resistance
and sound absorption characteristics and reduces the “heat
island effect” [5–10]. Further, pervious concrete displays
better water permeability characteristics due to connected
pore structure through the fluid [2, 11].

Permeability is the most important functional perfor-
mance for the pervious concrete, and it has been confirmed
to be closely related to the pore structure, which determines
the permeation rate per unit area. .e permeability is tra-
ditionally characterized by the so-called permeability

coefficient, and its value is typically between 0.1 and 2 cm/s
[12, 13]. According to whether it is directly related to
permeability performance of pervious concrete, pore-
structure parameters can be divided into two categories:
nonconnected related parameters and connected related
parameters. Nonconnected related parameters include total
porosity, pore diameter, and distribution, and connected
related parameters include connected porosity and pore
tortuosity [14–16]. .e total porosity of pervious concrete
can be defined as the ratio of the voids volume to the
specimen volume, which mainly depends on the ratio of
mortar to aggregate and the compactness degree of the
concrete, usually between 15% and 25% [17]. Studies have
shown that the total porosity of pervious concrete decreases
with the increase of the ratio of mortar to aggregate [18].
Besides, as the pressure load or vibration load increases, the
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skeleton of pervious concrete tends to be dense, and the total
porosity gradually decreases [19]. Connected porosity is also
called effective porosity, that is, pores that can effectively
pass air and liquid. Cosic et al. used X-ray tomography
technology to study the effects of aggregate type and size on
the pore structure and found that the interconnected po-
rosity is a function of aggregate size, accounting for about
50% to 70% of the total porosity [20]. Also, another study
confirmed that the connected porosity decreases with the
increase of the amount of mortar [13]. Kuang et al. defined
the ratio of the effective length of the pore to the total length
of the pervious concrete specimen as the pore tortuosity,
which can more intuitively reflect the characteristics of the
pore structure [21]. Zhong et al. defined the pore tortuosity
as a function of the average pore diameter and the aggregate
size and believed that the fluidity of the mortar and the
aggregate size directly affects the pore tortuosity. .e pore
tortuosity increases with the decrease of aggregate size and
the increase of mortar fluidity [22]. It can be confirmed from
the previous research that the parameters affecting the
permeability of pervious concrete have been studied, in-
cluding aggregate size and mortar content [14, 17, 19].
However, from the author’s knowledge, few studies can
predict the water permeability based on these variable pa-
rameters. Although some studies can propose models for
predicting permeability from a microscopic perspective
(pore structure, the effective length of pores, etc.) [21, 22],
these models often require the acquisition of concrete cross-
section information firstly (e.g., CTscan), and it is difficult to
predict from the perspective of mixture design. .erefore,
systematical investigations are required to evaluate the
permeability of pervious concrete in a way of more eco-
nomic and efficient technology as per the permeability
database including varying parameters.

Machine learning methods are gradually applied to the
evaluation and prediction of the mechanical performance of
cement materials [22–32]. .e punching shear capacity of
steel fiber reinforced concrete slabs was predicted by using
the sequential piecewise multiple linear regression and ar-
tificial neural network [33]. Jamal et al evaluated the pos-
sibility to predict the strength of recycled aggregate concrete
using machine learning methods, multiple linear regression,
and adaptive neurofuzzy inference system [34]. .e same
method was also used by Khademi et al. in a follow-up study
for the prediction of compressive strength after 28 days [35].
In the above-mentioned methods, the agreement between
the experimental results and the predicted results indicates
the feasibility of the machine learning algorithm for strength
prediction of cementmaterials. However, within the scope of
the author’s knowledge, the limited literature can provide
accurate and widely used machine learning algorithms
specifically for the functional performance (permeability,
workability, etc.) of cement materials.

Furthermore, the above machine learning methods have
been used for the specific predictions in cement-based
materials, but limitations still existed in these studies, such as
uncertain structure, time-consuming, and low efficiency.
Consequently, more efficient and simple machine learning
models need to be proposed and used to predict the

permeability of pervious concrete. In recent years, due to the
good performance of the random forest (RF) method in
nonlinear regression and classification, it has been used to
predict the mechanical and functional properties of con-
crete. Specifically, the coefficients of thermal expansion and
other properties of concrete were confirmed to be accurately
predicted using the RF method [36]. .e same method was
also employed to predict and evaluate the compressive
strength of high-performance concrete. However, no cor-
responding studies were reported to use RF to predict the
permeability of pervious concrete so far. Besides, as far as the
RF model employed in the previous studies, the hyper-
parameters were still required to be optimized to arrive at
their optimized predictive ability [37].

2. Research Objective and Overview

.epresent study aims to propose a robust machine learning
technique to be used as a tool to predict the permeability of
pervious concrete. An efficient global optimization algo-
rithm (called the beetle antennae search, BAS) proposed by
Jiang et al. was adopted in this study to obtain the optimized
parameters of RF [37]. In this way, the random forest (RF)
and beetle antennae search (BAS) algorithms were combined
to build a robust machine learning technique, named as BRF
method. To plant the database applied to the proposed BRF
method, varying mixes of pervious concrete were designed
considering four parameters (aggregate proportion %:
9.5∼13.2mm; aggregate proportion: 4.75∼9.5mm; aggregate
proportion %: 2.36∼4.75mm; cement-aggregate ratio) that
have significant effects on the permeability coefficient
according to the investigation based on known literature.
Using the obtained database of the permeability of the
pervious concrete, the training subset and the testing subset
were developed for machine learning, and finally, the pre-
diction of permeability can be realized. .e above research
process can be overviewed in Figure 1.

3. Methodology

3.1. BRF Model. BRF model combines BAS and RF, where
RF is used to determine the nonlinear relationship of the
dataset, and BAS is applied to adjust the hyperparameters of
RF..e detailed introduction for the BRFmodel is described
as follows.

3.1.1. Random Forest (RF) Model. .e RF model is a
modeling method that combines multiple independent
classification trees. .e algorithm can improve the predic-
tion accuracy on the premise that the calculation is not
significantly increased. .e principle framework of the RF
model is presented in Figure 2.

RF is a classifying method that uses a collection of
classification trees, and every classification tree is con-
structed by using guided samples of data. For the tree
construction, variables are randomly selected in each par-
tition as the candidate variable set.
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3.1.2. Beetle Antennae Search (BAS). .e design of the BAS
algorithm is inspired by the behavior of the beetle when
looking for a mate. Similar to intelligent optimization
algorithms such as genetic algorithm, particle swarm
algorithm, and simulated annealing, BAS does not need to
know the specific form of the function and does not need
gradient information to achieve efficient optimization.
Compared with the particle swarm algorithm, BAS only
requires one individual, that is, a long beetle, which
greatly reduces the amount of calculation. It simulates the
behavior of beetles, which can use the two antennae to
randomly explore nearby areas and transform them into a
higher concentration of odor. .e performance of the BAS
algorithm has been evaluated in various applications
[39, 40]. Figure 3 gives the work chart of the BAS
algorithm.

4. Experimental Testing and Model Validation

4.1. Experimental Testing. .e purpose of the laboratory
testing is to evaluate the influence of different variables in the
design of pervious concrete on the permeability coefficient
and then provide enough data to be assembled as the
training set and testing set. .e raw materials, mixture
design, sample preparation, and permeability test methods
used in the laboratory testing are introduced as follows.

4.1.1. Raw Materials. Cement and aggregate were used as
the rawmaterials to prepare the pervious concrete specimen.
.e ordinary Portland cement grade 42.5 was selected as the
cemented material. Table 1 gives the physical properties of
the cement.

Experimental testing Machine learning

Training

Mix design

• Agg. % (9.5~13.2 mm)
• Agg. % (4.75-9.50 mm)
• Agg. % (2.36-4.75 mm)
• Cement agg. ratio

RF

BAS Testing

Permeability
prediction

BRF

Figure 1: Research overview.

Tree 1

Tree 2

Input

Tree ...

Tree n

Prediction 1

Prediction 2

Average all predictions Random forest predictions

Prediction ...

Prediction n

Figure 2: Principle of the RF model.
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According to the standard CJJ/T135-200, four different
sizes of limestone gravel aggregates (G1, G2, and G3) were
adopted in the present study. .e physical indexes are given
in Table 2. To ensure that the performance of the prepared
pervious concretes to meet the requirements, the aggregate
used should be placed in a constant temperature oven in
advance to keep it clean and dry. A liquid modifier for the
pervious concrete provided by a local supplier in Jiangsu
Province was used.

4.1.2. Mix Design and Sample Preparation. To evaluate the
effects of different variables on the permeability coefficient,
the designed mix was divided into 69 groups according to
different aggregate proportions and cement-aggregate ratio
(C/A), as shown in Table 3.

Generally, the reasonable water-cement ratio (W/C) of
pervious concrete ranges from 0.29 to 0.33, and 0.3 was
determined in the present study for the mixing [7]. .ree
possible C/A values (0.22, 0.24, and 0.26) were chosen to
determine their effects on water permeability, based on the
results of previous studies conducted [18, 39, 40]. After
stirring and weighing, the mixture of pervious concrete was
poured into a cylindrical mold with a diameter of 100mm
and a thickness of 50mm to obtain samples for permeability
testing. Before demolding, cover the sample and mold with
damp geotextile in the laboratory at a temperature of 20°C
for 24 h. .en, the samples were placed in a standard curing
roomwith a temperature of 20°C and humidity of 95% for 28

days. It should be noted that three replicate samples were
prepared for each mixture to reduce the deviation.

4.1.3. Experimental Methods. As far as the permeability
testing methods concerned, the falling-head and constant-
head method were typically used in the previous studies
[41, 42]. For materials with poor permeability (perme-
ability coefficient < 10−3 cm/s) such as cohesive soil and
fine-grained soil, permeability is typically measured by the
falling-head method since the flow is too small to be
measured. However, for pervious concrete, its perme-
ability coefficient is relatively high (>0.35 cm/s) and the
constant-head method is more suitable to measure the
permeability coefficient. .erefore, the constant-head
method was selected for the determination of the per-
meability coefficient in the study. .e permeability co-
efficient was determined based on Darcy’s law, where the
amount of water passing through the concrete per unit
time is proportional to the surface area and inversely
proportional to the length of the permeable path, as given
in equation (1):

kt �
Q · D

A · H · Δt
, (1)

where kt (mm/s) represents the coefficient of permeability at
the given temperature t (°C),Q (mm3) is the amount of water
flowing through concrete in Δt (s) time; D (mm) and A
(mm2) are the thickness and area of the pervious concrete

Initialize the position of beetle Fitting function of beetle

Update the best position

Current fitting better
than the best position?

Unchanged

Set beetle direction and
calculate fitness of antennae

NoNo

Stopping criterion?
Yes

Best solution Fitness of le� antennae
> fitness of right

antennae?

Yes

A step to right

A step to right

No

Yes

Figure 3: Work chart of the BAS algorithm.

Table 1: Physical properties of the cement.

Coagulation
time (min)

Flexural
strength
(MPa)

Compressive
strength
(MPa)

Initial
solidification

Finial
solidification 3d 28d 3d 28d

165 330 5.1 7.1 20.9 44.3

Table 2: Physical properties of coarse aggregate.

Aggregates Size (mm) Apparent density
(kg/m3)

Bulk density (kg/
m3)

G1 2.36–4.75 2787 1406
G2 4.75–9.50 2844 1513
G3 9.50–13.2 2840 1537
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Table 3: Mix proportions.

Mixes
Aggregate proportion

Cement-aggregate ratio (C/A) Water-cement ratio
G1 G2 G3

M1 1 0 0 0.22

0.3

M2 1 0 0 0.24
M3 1 0 0 0.26
M4 0 1 0 0.22
M5 0 1 0 0.24
M6 0 1 0 0.26
M7 0 0 1 0.22
M8 0 0 1 0.24
M9 0 0 1 0.26
M10 0.1 0.9 0 0.22
M11 0.1 0.9 0 0.24
M12 0.1 0.9 0 0.26
M13 0.2 0.8 0 0.22
M14 0.2 0.8 0 0.24
M15 0.2 0.8 0 0.26
M16 0 0.9 0.1 0.22
M17 0 0.9 0.1 0.24
M18 0 0.9 0.1 0.26
M19 0 0.8 0.2 0.22
M20 0 0.8 0.2 0.24
M21 0 0.8 0.2 0.26
M22 0.1 0.8 0.1 0.22
M23 0.1 0.8 0.1 0.24
M24 0.1 0.8 0.1 0.26
M25 0.1 0.7 0.2 0.22
M26 0.1 0.7 0.2 0.24
M27 0.1 0.7 0.2 0.26
M28 0.1 0.6 0.3 0.22
M29 0.1 0.6 0.3 0.24
M30 0.1 0.6 0.3 0.26
M31 0.1 0.5 0.4 0.22
M32 0.1 0.5 0.4 0.24
M33 0.1 0.5 0.4 0.26
M34 0.1 0.4 0.5 0.22
M35 0.1 0.4 0.5 0.24
M36 0.1 0.4 0.5 0.26
M37 0.15 0.7 0.15 0.22
M38 0.15 0.7 0.15 0.24
M39 0.15 0.7 0.15 0.26
M40 0.15 0.6 0.25 0.22
M41 0.15 0.6 0.25 0.24
M42 0.15 0.6 0.25 0.26
M43 0.15 0.5 0.35 0.22
M44 0.15 0.5 0.35 0.24
M45 0.15 0.5 0.35 0.26
M46 0.15 0.4 0.45 0.22
M47 0.15 0.4 0.45 0.24
M48 0.15 0.4 0.45 0.26
M49 0.2 0.7 0.1 0.22
M50 0.2 0.7 0.1 0.24
M51 0.2 0.7 0.1 0.26
M52 0.2 0.6 0.2 0.22
M53 0.2 0.6 0.2 0.24
M54 0.2 0.6 0.2 0.26
M55 0.2 0.5 0.3 0.22
M56 0.2 0.5 0.3 0.24
M57 0.2 0.5 0.3 0.26
M58 0.2 0.4 0.4 0.22
M59 0.2 0.4 0.4 0.24
M60 0.2 0.4 0.4 0.26
M61 0.3 0.6 0.1 0.22
M62 0.3 0.6 0.1 0.24
M63 0.3 0.6 0.1 0.26
M64 0.3 0.5 0.2 0.22
M65 0.3 0.5 0.2 0.24
M66 0.3 0.5 0.2 0.26
M67 0.3 0.4 0.3 0.22
M68 0.3 0.4 0.3 0.24
M69 0.3 0.4 0.3 0.26
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specimen, respectively; H (mm) represents the hydraulic
head difference.

.e equipment used in the permeability tests was self-
made in the laboratory, and the schematic diagram is
presented in Figure 4. During the test, water was injected
above the steel mold, then flooded the pervious concrete
specimen below, and entered the tank, while the excess water
overflowed from the outlet pipe. When the flow was too
large, water can flow out through the vent pipe above the
steel mold. It should be noted that the water level inside the
steel mold should be kept constant and then the head dif-
ference can be recorded to calculate the permeability co-
efficient of the specimen.

4.2. Model Validation

4.2.1. Methods for Model Validation. In the present study,
the evolved random forest model was trained for the 70%
dataset while the remaining 30% was for the testing dataset.
It should be noted that all datasets should be split randomly
during the training and validating process. Besides, two
parameters (correlation, R; root-mean-square error, ERMS)
that were widely used in the previous studies were selected to
assess the predictive ability of the dataset. .e two pa-
rameters can be given as follows:

R �
􏽐

N
i�1 y
∗
i − y
∗

􏼐 􏼑 yi − y( 􏼁
�������������
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N
i�1 y
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1
N
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N
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􏽴

y
∗
i − yi( 􏼁

2

, (2)

where N represents the collected numbers of the dataset; yi
and y∗i represent actual values and predicted values, re-
spectively; y and y∗ represent the mean of the actual values
and the predicted values. In addition, in order to minimize
the deviation, the so-called 10-fold cross-validation
method was adopted in the present study [43]. Under such
a validation system, the samples as training dataset are
divided into 10 subsets, one of these 10 subsets is applied to
verify the predicted results of the BRF method, and the
remaining 9 subsets are applied for training. Such a process
should be repeated 10 times as described above.

4.2.2. Procedures of Hyperparameter Tuning. In order to
obtain the optimized RF structure, hyperparameter tuning
should be conducted. In the present study, the BAS al-
gorithm was applied to tune two important parameters (the
number of the trees, named as tree_num; the minimum
number of samples required at a leaf node in RF, named as
min_sample_leaf ). .rough the 10-fold cross-validation
method introduced above, the 9 subsets as the training set
were applied to search for the idealized hyperparameters of
RF..is process should be performed 50 times by BAS [37].
For the validation dataset, the smallest ERMS was selected
after 50 iterations and in this fold, it can represent the

optimized RF model. Consequently, the optimized RF
model and the corresponding optimized hyperparameters
(tree_num and min_sample_leaf ) can be selected after 10
times. Due to the possibility of overfitting, the performance
of the RF model should be verified by evaluating the testing
set. Figure 5 summarizes the flowchart of the hyper-
parameters for RF tuning by BAS during training and
testing.

4.2.3. Dataset Description. .e dataset of pervious concrete
from the experimental testing is applied to establish and
validate the proposed BRF model for permeability predic-
tion. A total of 36 mixes were used for the verification and
prediction of the proposedmodel. It should be noted that the
test results of the water permeability of each mixture are
derived from the average of three parallel samples. Four key
influencing variables (aggregate proportion of G1 and G1%;
the aggregate proportion of G2 and G2%; the aggregate
proportion of G3 and G3%; cement-aggregate ratio, C/A)
were determined in the present study, as given in Table 3.
.ese four variables have been confirmed in previous studies
to have significant effects on the water permeability of
pervious concrete and its clogging behavior [44–46]. Table 3
gives the influencing variables and their values in the design
of pervious concrete, which were used to construct the
dataset.

.emain goal is to predict the permeability coefficient of
pervious concrete, which is determined by the mix-design
parameters. .e relative importance of the mix-design pa-
rameters used for the input variables needs further analysis.
It should be noted that the collected dataset should be
normalized to [0, 1] in order to improve the efficiency of the
proposed model. According to the proportion of the dataset,
25 mixes (70%) were randomly selected as the training
dataset, and the other 11 mixes (30%) were used as the
testing dataset (Figure 5).

5. Results and Discussion

5.1. Results ofHyperparameterTuning. In order to obtain the
optimized RF structure, the hyperparameters were adjusted
on the testing set based on ERMS obtained from the 10-fold

1

2

3

4

5

6

7
H

Figure 4: Schematic diagram of the permeable test device.∗Notes:
1: steel mold; 2: vent pipe; 3: water tank; 4: concrete specimen; 5:
pad; 6: outlet pipe; 7: measuring cylinder.

6 Advances in Civil Engineering



cross-validation. Figure 6 gives the relationship between
ERMS and iterations during BAS tuning, which was per-
formed 50 times in the present study.

It can be seen that ERMS was greatly reduced with the
increase of iteration, indicating that BAS can effectively
tune the RF structure. In addition, ERMS converged and
reached the minimum value after 25 iterations, indicating
that the optimized RF model was obtained in this fold.
During the 10-fold cross-validation process, the opti-
mized RF model in the whole calculation was determined
after 10-fold and the corresponding optimized hyper-
parameters can be obtained. It should be noted that the
prediction results of the RF should be verified through the
way of evaluating the testing set. Table 4 gives the final
hyperparameters of RF.

5.2. Assessing the Established Model. Figure 7 gives the
comparison of the predicted permeability of the pervious
concrete by the proposedmethod and the actual one in datasets.

Good agreement can be seen between the predicted
permeability of pervious concrete and the actual

permeability, indicating that the proposed method can well
establish the nonlinear relationship between the perme-
ability of pervious concrete and the input variables.

Furthermore, the statistical parameters of these
comparisons for training and testing datasets were ob-
tained, as shown in Table 5. .e low ERMS values of 0.0059
and 0.0131 can be observed for the training and testing
dataset, respectively. Also, the high R values for the
training set and test set were 0.9258 and 0.9208, re-
spectively. All the above results indicated that the pro-
posed RF model has no overfitting

5.3. Variable Importance of Pervious Concrete. Figure 8 gives
the relative importance of the 4 design parameters, which
were used as the input variables in the machine learning
process.

Obviously, C/A was the most important design variable
to determine the permeability of pervious concrete, since
the highest importance score of 1.7762 can be observed.
.e mechanism of the effect of C/A on water permeability
is that as C/A increases, the compaction resistance pro-
vided by the reduced aggregates decreases, resulting in a
decrease in the volume of intercrystalline voids. .is leads
to lower porosity and permeability. .e results of this study
indicated that the effect mechanism of C/A on permeability
exceeded the role of the aggregate proportion in deter-
mining permeability. Contemporaneously, the results were
consistent with the findings noted by Zhang et al.,
Chandrappa et al., and Wang et al. [18, 47, 48]. As the
largest aggregate used in the testing, the proportion of G3
(9.50mm to 13.2mm) also played an important role in
determining the permeability of pervious concrete. .is
result was in line with the permeability properties of
pervious concrete developed in the previous studies to
understand the effects of aggregate sizes [44, 49, 50]. Also, it
can be observed that the importance score of the G1
(2.36mm–4.75mm) aggregate is 0.8440, which ranks third
among all variables by virtue of this score, indicating that it
was more sensitive than the G2 (4.75mm–9.50mm) ag-
gregate in determining the permeability of pervious

Dataset

Training results

Testing results

RF

BAS
R and ERMS

R and ERMS

Training set (70%) 10-fold cross-validation

Testing set (30%)

Figure 5: Flowchart of the hyperparameters for RF tuning by BAS during training and testing.
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Figure 6: Relationship between the iteration and ERMS.

Table 4: Final hyperparameters of RF.

Parameters Initial Results Empirical scope
tree_num 6 9 [1, 10]
min_sample_leaf 6 1 [1, 10]
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concrete..erefore, in the future tests of pervious concrete,
more C/A and G3 aggregate proportion combinations
should be selected to optimize the target permeability. .e
results obtained can effectively guide the design of pervious
concrete and select appropriate parameters to optimize C/
A and aggregate gradation.
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Figure 7: Comparison of permeability. (a) Training dataset. (b) Testing dataset.

Table 5: Statistical parameters of actual and predicted permeability
in the datasets.

Datasets ERMS R
Training dataset 0.0059 0.9258
Testing dataset 0.0131 0.9208
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6. Conclusions

.e present study aims to propose a method to combine the
beetle antennae search (BAS) and random forest (RF) al-
gorithm to predict the permeability of pervious concrete.
Based on the 36 samples designed in the laboratory and 4 key
influencing variables, the permeability of pervious concrete
can be determined by the independent variables under the
RF model. .e BAS algorithm was used to tune the
hyperparameters of RF and the results were verified by 10-
fold cross-validation..e prediction results of the optimized
BRF were evaluated through R and ERMS. .e importance of
the variables that determine permeability is also revealed and
discussed. .e following are the conclusions drawn from the
above research process:

(i) .e BAS algorithm is effective for adjusting the
hyperparameters of RF and can be applied in
evolved RF to construct predictive models; it has
higher reliability and effectiveness than random
hyperparameter selection.

(ii) .e proposed RF model can accurately predict the
permeability of pervious concrete, which can guide
the functional designing for pervious concrete; for
the testing set, R and ERMS were 0.9223 and 0.0123,
respectively, indicating that the proposed RF model
showed good predictive ability on the collected
dataset.

(iii) .e C/A (cement/aggregate ratio) can be considered
as the most significant variable for determining the
permeability of pervious concrete, followed by the
coarse aggregate proportions. Among them, the
proportion of G3 andG1 aggregates is considered to
be the most significant variable affecting the per-
meability for pervious concrete. However, the
proportion of G2 aggregate has an almost negligible
influence on the permeability. .e results obtained
can effectively guide the design of pervious concrete
and select appropriate parameters to optimize C/A
and aggregate gradation.

It should be noted that the results obtained in this study
were limited by the number of samples. If more datasets and

more variables are considered, the predicted permeability
closer to the actual ones can be obtained. In the future, more
samples with different combinations will be designed,
mixed, and tested to obtain larger data sets for analysis
through machine learning methods to more widely and
effectively apply pervious concrete in the field of green
construction.
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*e extreme learning machine (ELM) algorithm optimized by genetic algorithm (GA) was used to quickly predict the low-
temperature rheological properties of styrenic block copolymer (SBS) modified asphalt through the properties of the raw
materials. In this work, one hundred groups of survey data and test data were collected and analyzed. Fourteen vital raw material
parameters, such as chemical composition indexes of matrix asphalt and technical indexes of SBS modifier, were selected as the
input parameter. *e stiffness modulus and m-value of SBS modified asphalt were taken as the output parameter. *en, the GA-
ELM prediction model of low-temperature rheological properties was established. According to comparison and analysis with
other prediction models, the accuracy and output stability of the GA-ELM prediction model were verified. *e results show that
the GA-ELM model had obvious accuracy and efficiency. It can be used to predict the low-temperature rheological properties of
SBS modified asphalt. Compared with the traditional prediction models, the error of the GA-ELM model was reduced
by 68.97–81.48%.

1. Introduction

At present, the main research methods of low-temperature
performance of styrenic block copolymer (SBS) modified
asphalt are the force ductility method, microscopic obser-
vation method, and rheological test method [1]. Strategic
Highway Research Program (SHRP) mainly uses the
bending beam rheological test (BBR) to evaluate the low-
temperature performance of asphalt [2]. *e stiffness
modulus and creep rate (m-value) of asphalt are the core
indexes. Some scholars have carried out a large number of
macroexperiments and microanalysis. Shan et al. evaluated
the effect of SBS on the linear and nonlinear rheological
behavior of asphalt binder [3]. Chen et al. analyzed the
characteristics and reasons for the rheological behavior of
SBS modified asphalt with different SBS dosages [4]. Ren
et al. studied the effect of trans-polyactenamer on rheo-
logical properties, microstructure, and thermal stability of
crumb rubber (CR)/SBS modified asphalt [5]. *e effects of
stiffness modulus and m-value on low-temperature

performance of SBSmodified asphalt were determined [6, 7].
However, due to the complex source of matrix asphalt and
SBS modifier and the small number of test samples, there are
some differences in the research conclusions of different
scholars. For SBS modified asphalt, the chemical composi-
tion of matrix asphalt and the physicochemical index of
modifier have different effects on the performance of
modified asphalt. As a result, many factors need to be
considered in the performance evaluation of SBS modified
asphalt [8], and the amount and time of the experiment are
large relatively, limiting the promotion and application of
SBS modified asphalt in the engineering field to a certain
extent.

In order to reduce the amount of test and get more
accurate results quickly, the energy coefficient method
(ECM), grey target decision-making method (GTDM),
backpropagation algorithm (BP), radial basis function al-
gorithm (RBF), and other evaluation methods and algo-
rithms were used to predict the performance of asphalt
materials [9–13]. Yan et al. predicted the change of modulus
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and phase angle of SBS polymer modified asphalt by ex-
ponential regression and linear regression [14]. Xu et al.
established the performance prediction model of SBS
modified asphalt by using principal component analysis
(PCA) and partial least squares (PLS) [15]. Diab et al.
predicted the viscosity and rheological behavior of SBS
modified asphalt, according to Vinogradov Malkin and
Phillips Deutsch models [16]. However, there are some
problems with these methods [17, 18]. For example, it is easy
to fall into the local optimum solution in the process of
solving; the parameters are not easy to determine; the re-
quirements of training samples are high relatively; and the
training is difficult.

*erefore, many vital parameters, such as the chemical
composition of matrix asphalt and physicochemical index of
modifier, were selected. *e extreme learning machine
(ELM) algorithm was optimized by the genetic algorithm
(GA) to form the GA-ELM algorithm.*e prediction model
for the low-temperature rheological properties of SBS
modified asphalt based on the GA-ELM algorithm was
established. Compared with the BP model and the ELM
model, the accuracy and output stability of the GA-ELM
prediction model were verified. It provided a new pathway
for the study of low-temperature rheological properties of
SBS modified asphalt.

2. Experiment

2.1. Test Method. According to Test Method for Separation
of Asphalt into Four Fractions (NB/SH/T 0509-2010), CN,
the component of asphalt, was measured [19]. *e specific
steps were as follows.*e asphaltenes were precipitated from
the sample with normal heptane. After filtration, the soluble
inclusions in the precipitation were removed by reflux of
normal heptane. *e asphaltenes were obtained by dis-
solving precipitation with toluene reflux. *en, the deas-
phalting part was adsorbed on the alumina chromatographic
column. In turn, normal heptane, toluene, and toluene-
ethanol were used to obtain saturates, aromatics, and
colloids.

2.2. Data Preparation. *e raw material parameters of SBS
modified asphalt were selected as the input parameter. *ey
mainly consisted of the following: PG-grade, stiffness
modulus,m-value, asphaltenes, colloids, aromatics, saturates
of matrix asphalt and structure, block ratio (S/B), tensile
strength, elongation, permanent deformation, hardness
(HSD), and the content of SBS modifier. *e stiffness
modulus andm-value of SBS modified asphalt were taken as
the output parameter.

In order to collect more sample data, on the basis of the
data provided in the literature [8], more series of experi-
ments were completed. *e test parameters and indexes are
shown in Tables 1 and 2. Finally, 100 sets of test data were
collected. Among them, 80 sets of data were used for
training, and 20 sets were used for testing. According to
equation (1), the sample data were normalized.

Xi �
X − Xmin

Xmax − Xmin
, (1)

where Xi are the normalized sample data, X are the initial
sample data, Xmax is the maximum of the initial sample data,
and Xmin is the minimum of initial sample data.

2.3. GA-ELM Prediction Model. ELM is a new feed-forward
neural network. Compared with the traditional neural
network with a single hidden layer, its hidden layer does not
need iteration and has an obvious faster learning speed.
However, the input layer weight matrix and the hidden layer
threshold matrix of the ELM model are random. GA has a
strong global optimization ability. *e fitting accuracy of the
ELMmodel can be improved by optimizing the abovematrix
with the GA. *e GA-ELM model was established in the
following steps [20].

(1) For input sample Xi, which had been normalized, the
output matrix (H) of hidden layer neurons was
calculated according to the following equation:

H � g WX
T

+ b􏼐 􏼑, (2)

where W is the weight matrix of the input layer, b is
the threshold matrix of the implicit layer, and g is the
neuronal activation function of the hidden layer,
which was a “sigmoid” function in this study.

(2) According to equation (3), the output value (P) of the
ELM neural network was calculated.

P � H
Tβ􏼐 􏼑, (3)

where β is the weight matrix from the implicit layer
to the output layer, and the ELM neural network can
be determined by calculating β.

(3) *e given training output sample (Y) was used to
replace the output value of the neural network. β can
be obtained by solving the least square solution of the
following equation:

min
β

H
Tβ − Y

����
����. (4)

(4) *e genetic algorithm was used to find the optimal
initial W and b of the ELM neural network. *rough
fitness function, the genetic algorithm found the
corresponding individuals of minimum fitness value
through selection, crossover, and mutation
operation.

(5) *e optimal initial weight and threshold assignment
of the ELM neural network were obtained by the
genetic algorithm. *e number of the hidden layers
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was determined, and the GA-ELM model was
established.

(6) According to equations (5)–(7), mean absolute error
(MAE), mean absolute percent error (MAPE), and
root mean squared error (RMSE) were used as error
criteria. *e GA-ELM model was tested and evalu-
ated by the test set samples. *e algorithm flow is
shown in Figure 1 [20].

MAE �
1
n

􏽘

n

i�1
P − P′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (5)

MAPE �
1
n

􏽘

n

i�1

P − P′
P

× 100%
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (6)

RMSE �

������������

1
n

􏽘

n

i�1
P − P′( 􏼁

2

􏽶
􏽴

, (7)

where P is the true value, P′ is a predictive value, and n is the
number of test sample data.

3. Results and Discussion

3.1. Parameter Optimization of the ELM Model. *e key
operation parameter of the ELM model is the number of
hidden layers. *e operation parameters of the genetic al-
gorithm include population size, crossover probability,
mutation probability, and maximum iterations. In practical
applications, it is often necessary to undergo a large number
of tests before the reasonable range of these parameters is
determined. Based on the test set data, the superior hidden

layer number of the ELM prediction model was determined
through multiple tests, as shown in Figure 2.

Figures 2(a) and 2(b) show that with the increase of the
hidden layer number in the ELMmodel, the error decreased
first and then increased. When the number of the hidden
layers was in the range of 60–70, the error was small. After
many tests, the optimal hidden layer number of the ELM
model was determined to be 65. At this time, MAE, MAPE,
and RMSE were 369.37%, 1.66%, and 502.77%, respectively.
It was noteworthy that MAE and RMSE were large and
needed to be reduced in the subsequent optimization pro-
cess. For m-value, Figures 2(c) and 2(d) show that the
optimal hidden layer number was determined to be 55. Its
MAE, MAPE, and RMSE were 0.27%, 0.85%, and 0.32%,
respectively.

3.2. Parameter Optimization of the GA. After repeated cyclic
tests, the optimal values of the four parameters of the GA
were determined by using the Sheffield toolbox in MATLAB
software, as shown in Figure 3. To simplify the simulation
process, when population size, crossover probability, and
mutation probability were optimized, the maximum itera-
tions was set to 50.

Figure 3 indicates that with the change of the four pa-
rameters of the GA, the corresponding error values also
changed regularly. In general, the recommended ranges of
population size, crossover probability, mutation probability,
and maximum iterations are 40–100, 0.40–0.80, 0.001–0.1,
and 100–300, respectively. According to the test results of
the stiffness modulus prediction model, the optimal ranges
of population size, crossover probability, mutation proba-
bility, and maximum iterations were 40–45, 0.40–0.50,
0.0005–0.001, and 300–400, respectively. As for the m-value
prediction model, the optimal ranges of population size,

Table 2: Test parameters and their indexes of SBS modifier.

Type
Index

Structure Block ratio (S/B) Tensile strength (MPa) Elongation (%) Permanent deformation (%) Hardness Content (%)
DG2 Star 40/60 >12.0 >650 <30 >79 3.6–5.2
T161B Star 30/70 >18.0 >630 <25 >78 3.6–5.2
1320-115 Linear 30/70 >18.0 >750 <40 >70.5 3.6–5.2
YS4303 Star 30/70 >12.0 >590 <45 >65 3.6–5.2
YH791 Linear 30/70 >18.0 >700 <45 >60 3.6–5.2
Note. S/B is the abbreviation of styrene and butadiene. Test temperature was −18°C.

Table 1: Test parameters and their indexes of matrix asphalt.

Type
Index

PG-
grade

Stiffness modulus (−18°C)
(MPa)

m-value (−18°C)
(MPa · s−1)

Asphaltenes
(%) Colloids (%) Aromatics

(%)
Saturates

(%)
SK 90 58-22 270–275 0.295–0.300 8.73–8.78 19.35–19.40 46.65–46.70 25.20–25.24
Shell 90 58-22 325–320 0.270–0.274 8.10–8.14 33.17–33.21 35.55–35.59 23.08–23.13
Kunlun 90 58-22 270–275 0.292–0.295 10.54–10.57 30.14–30.17 39.80–39.83 19.19–19.22
Zhenhai
90 58-22 265–269 0.288–0.293 7.24–7.28 30.08–30.12 39.62–39.65 23.00–23.03

Esso 70 58-16 311–315 0.190–0.195 15.50–15.52 20.14–20.17 44.20–44.26 20.09–20.13
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crossover probability, mutation probability, and maximum
iterations were 45–50, 0.70–0.80, 0.0005–0.001, and
200–300, respectively. At this time, the genetic algorithm has
better convergence to the optimal weights and thresholds.
Due to the large scale of the weight matrix and threshold
matrix, their specific values are no longer described.

3.3. Prediction Accuracy of the GA-ELMModel. *e Pearson
correlation test was used to verify the prediction accuracy of
the GA-ELM model. *e discriminant coefficient (R2) of the
fitting function between the true value and predictive value
of the test set sample was calculated, as shown in Figure 4.
*e accuracy of the GA-ELM prediction model for low-
temperature rheological properties was determined by an-
alyzing the goodness of fit between predictive data and true
data.

Figure 4 shows that the true value of test set samples is
very close to the predictive value.*e correlation coefficients
(R) of the fitting function of the two models are 0.9997 and
0.9992, respectively. *is indicated that the predictive value
was strongly correlated with the true value, and the pre-
diction accuracy of the prediction model was high. In ad-
dition, the corresponding discriminant coefficients (R2) are
0.9995 and 0.9985, respectively, which indicates that the GA-

ELM prediction model could maintain the stability of output
based on high prediction accuracy.

3.4. Contrastive Analysis of Different Models. To further
verify the output stability of the GA-ELM model, the BP
model, the ELMmodel, and the GA-ELMmodel were used
to predict 20 sets of test sample data. For stiffness modulus,
after many simulation calculations, the neuron node
number of hidden layers in the BP model was set to 15. *e
hidden layer number in the ELM model was set to 65. *e
population size, crossover probability, mutation proba-
bility, and maximum iterations of the GA were set to 45,
0.80, 0.001, and 350, respectively. And for the m-value, the
neuron node number of hidden layers in the BP model was
set to 15. *e hidden layer number in the ELM model was
set to 55. *e population size, crossover probability,
mutation probability, and maximum iterations of the GA
were set to 50, 0.50, 0.001, and 200, respectively. *e
prediction results based on different models are shown in
Figure 5.

Figure 5 shows that the three models achieved con-
sistent prediction results. Still, the prediction error of the
GA-ELM model was significantly smaller than that of the
BP model and the ELM model. For stiffness modulus, the
MAE, MAPE, and RMSE of the GA-ELM model were

GA

Input data

Data preprocessing

Code for initial value

The average error of the
partial samples of the

training set is used as the
fitness value in ELM

Determine the number of
hidden layer neurons

Initialize the length of
weight

and threshold in ELM
network

Get the optimal
weight and
threshold

Return the optimal
value to ELM

Set the number of
hidden layer nodes

Complete model
building

Test and evaluate
End

condition is
met

Caluculate fitness
value

Mutation

Cross

Selection

YN

ELM

Figure 1: *e algorithm flow of the GA-ELM model.
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0.7539, 0.36%, and 1.1323, respectively. Compared with the
BP model and the ELM model, the error of the GA-ELM
model decreased by 68.97–72.10% and 83.63–87.41%, re-
spectively. And for the m-value, the MAE, MAPE, and
RMSE of the GA-ELM model were 0.0005, 0.16%, and
0.0006, respectively. Compared with the BP model and the
ELM model, the error of the GA-ELM model decreased by
79.75–80.65% and 81.18–81.48%, respectively. *is indi-
cated that the GA-ELM model had better advantages in
prediction accuracy and efficiency than the traditional
prediction model.

4. Conclusion

(1) *e GA-ELM prediction model can rapidly predict
the low-temperature rheological properties of SBS
modified asphalt. Compared with the traditional
prediction model, the GA-ELM model had obvious
accuracy and efficiency. *e error was reduced by
68.97–81.48%.

(2) *e applicable boundaries of the input parameter are
as follows. For the matrix asphalt, PG-grade is 58-22
and 58-16; stiffness modulus is 265–320MPa; m-
value is 0.19–0.3MPa/s; asphaltenes are
7.24–15.52%; colloids are 19.35–33.21%; aromatics
are 35.55–46.70%; and saturates are 19.19–25.24%.
For the SBS modifier, block ratio (S/B) is 40/60 and
30/70; tensile strength is over 12%; elongation is over
590%; permanent deformation is less than 45%;
hardness is over 60; and the content is 3.6–5.2%.

(3) Due to the use of the genetic algorithm, the training
efficiency of the GA-ELMmodel was lower than that
of the original ELMmodel. In addition, the optimum
number of the hidden layers was influenced by the
input of data.*e more the number and type of data,
the less the optimum number of hidden layers.
However, the optimum number will remain within a
specific range.

(4) *e GA-ELM model still belongs to the black-box
operation. It should be further improved in future
studies. With the updating of the algorithm and
software, the prediction model will be established
based on input parameters, which is more conducive
to regulating the model and the feedback of the
results. In addition, more raw material parameters
and their corresponding performance indexes
should be collected in the future to further expand
the prediction range of the model.
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