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4Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
5Department of Mathematics, Kosar University of Bojnord, P. O. Box 9415615458, Bojnord, Iran

Correspondence should be addressed to Fazlollah Soleymani; fazlollah.soleymani@gmail.com

Received 1 March 2015; Accepted 1 March 2015

Copyright © 2015 Fazlollah Soleymani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Approximation theory is a deep theoretical study of methods
that use numerical approximation for the problems ofmathe-
matical analysis. In practical use, it is typically the application
of computer simulation and other forms of computation to
problems in various scientific disciplines. Recently, numerical
algorithms in approximation theory have been amajor thrust
of research with numerous applications.

This special issue was opened in the middle of 2014 and
closed in February of 2015. A number of selected submissions
were accepted for publication after strict reviews, which
furnished significant improvements in the topics of the
special issue and its related applications. The guest editors
of this special issue hope that the published results could
provide outstanding viewpoints for further studies.

The fundamental aim of this special issue was to provide
new trends in the field of approximation theory and related
applications in mathematics. The authors were invited to
submit original research articles to stimulate the continuing
efforts in numerical approximation of mathematical prob-
lems and related theories. The special issue provided a forum
for researchers and writers to communicate their state-of-
the-art improvements and to propose their new findings on
approximation theory.

The topics of the accepted papers cover the area from
theory to real applications. Some new schemes and their
corresponding convergence analysis have been discussed for
some numerical problems. Furthermore, they have been
equippedwith several numerical testswith some applications.

Now, we have the pleasure to present, the selected papers
for this special issue as follows.

S. S. Motsa et al. presented a novel scheme for solving
higher order nonlinear evolution partial differential equa-
tions (NPDEs). Their discussed approach combines quasi-
linearisation, the Chebyshev spectral collocation method,
and bivariate Lagrange interpolation. They also showed that
there is congruence between the numerical results and the
exact solutions to a high order of accuracy.

The paper of M. Sharifi et al. presented interesting itera-
tive methods including three steps for solving nonlinear
equations. Their iterative approach possesses eighth-order of
convergence which is optimal in the sense of Kung-Traub
while it is also derivative-free. An integral equation has also
been solved as an application-oriented experiment.

T. Lotfi et al., in their paper, investigate an optimal three-
step method which has eighth-order of convergence. Then,
they applied a self-accelerator parameter with Newtonian
interpolation using the highest possible degree to improve the
R-order of convergence as much as possible, that is, from 8 to
12 without any additional functional evaluations. This meant
that a high computational efficiency index has been obtained
for solving nonlinear equations.

H. S. Nik and P. Rebelo presented an application of
pseudospectral method for solving the hyperchaotic complex
systems.The proposedmethod, called theMultistage Spectral
Relaxation Method (MSRM), was based on a technique
of extending Gauss-Seidel type relaxation ideas to systems
of nonlinear differential equations, while using the Cheby-
shev pseudospectral methods to solve the resulting system
on a sequence of multiple intervals. Finally, it has been
used to solve famous hyperchaotic complex systems such
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as hyperchaotic complex Lorenz system and the complex
permanent magnet synchronous motor.

Y. Zhao et al. in their paper proposed a semilocal con-
vergence theorem for the inverse-free Jarratt method under
newHolder conditions. In fact, a new error estimate has been
attained. Finally, three examples were provided to show the
application of their discussed theorem for numerical problem
of solving nonlinear equations.

In the paper of R. Behl and S. S. Motsa, authors proposed
some geometric variation of the fourth-order Ostrowski’s
method so as to obtain methods with eighth-order of con-
vergence and four functional evaluations. In this way, their
method is optimal in the sense of Kung-Traub and would be
useful for a class of problems in approximation theory.

The authors in the paper titled “On a Derivative-Free
Variant of King’s Family with Memory” proposed derivative-
free variants of the well-known King’s family of methods
for nonlinear equations. They designed the approximation
of derivatives to be as accurate as possible so as to keep the
rate of convergence four using the same number of function
evaluations. Finally, an extension of the family as a method
with memory possessing higher computational efficiency
index has been attained.

The paper titled “On a Cubically Convergent Iterative
Method for Matrix Sign” proposed an interesting interlink
between solvers for nonlinear equations and their appli-
cations for computing matrix functions. In this paper, it
was shown that the new scheme has global behavior with
cubical rate of convergence. Finally, several examples were
also included to show the applicability and efficiency of the
proposed scheme and its reciprocal.

K. Muzhinji et al. presented the application of different
smoothers and compared their effects in the overall perfor-
mance of the multigrid solver. They studied the multigrid
method with the following smoothers: distributed Gauss-
Seidel, inexact Uzawa, preconditioned MINRES, and Braess-
Sarazin type smoothers. Lastly, numerical results have been
included to demonstrate the efficiency and robustness of the
multigrid method and confirm the theoretical results.

Finally, B. Alkahtani presented the Homotopy Analysis
Method (HAM) to obtain the analytical solutions of the
general space-time fractional diffusion equation.The explicit
solutions of the equations have been presented in the closed
form by using initial conditions. Several examples were also
discussed to confirm the method proposed in this paper.
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The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations.
A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution
techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution
of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This
study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver.
We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES,
and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good
performance of the multigrid method.We study the problem in a two-dimensional domain using stable Hood-Taylor𝑄

2
-𝑄
1
pair of

finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate
the efficiency and robustness of the multigrid method and confirm the theoretical results.

1. Introduction

This study considers the numerical solution of the large
scale linear algebraic system arising from the discretization
of the partial differential equations. The discretization is
achieved by the finite element method. For positive definite
linear systems, linked to the Poisson equations, the multigrid
(MGM) methods are proven to be the most effective and
fast methods [1, 2]. However it is more challenging for
linear indefinite algebraic systems. In this paper we consider
multigrid methods for solving linear indefinite algebraic
system of equations arising from the mixed finite element
discretization of the steady state Stokes problem:

−Δu + ∇𝑝 = f , inΩ, (1)

div u = 0, inΩ, (2)

u = 0, on 𝜕Ω, (3)

where u is a velocity field, 𝑝 represents pressure, and f is an
external force field. The problem is considered with (1)–(3)
defined on the domainΩ ⊆R2 with boundary 𝜕Ω.

The main goal of this work is to construct and analyze
numerical methods that produce an appropriate solution
to the Stokes problem. The main thrust is to apply an
iterative method, the multigrid method, to solve the linear
system of equations that arise from the discretization of
the Stokes equations. The MFEM applied to (1)–(3) with
carefully chosen finite element spaces results in the algebraic
systemwhichmust be solved.The velocity variable u together
with the pressure variable 𝑝 is the solutions of the system.
We discretize the domain of the Stokes problem by the
rectangular grids with a pair of conforming mixed finite
element spaces that are inf-sup stable. In our experiment
we use Hood-Taylor 𝑄

2
-𝑄
1
pair as used by [3]. The process

produces a symmetric indefinite system of linear algebraic
equations. In this paper we study an efficient solver for this
system. This work on multigrid method has been motivated
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by the need to effectively and efficiently solve large application
problems. The multigrid method has been shown to be very
efficient and successful in solving control problems [1, 2, 4–6]
and elliptic partial differential equations [7–9] in an accurate
and computationally efficient way.Themultigrid method has
been applied to problems discretized by the finite difference
method and widely by finite element method [3, 8, 10–14].
The effectiveness of the multigrid method depends on the
correct choice of the smoothers. Various smoothers have
been suggested in literatureweighted Jacobi,Gauss Seidel [11],
Ilu [8], Vanka-type [9, 12, 13, 15], Braess-Sarazin-type ([13, 16–
18]), Semi implicit method for pressure linked equations
[15], SOR/Richardson [18], and inexact Uzawa [18]. It is
the purpose of this study to apply the multigrid solver to
the Stokes problem with the following iterative solvers as
smoothers: Braess-Sarazin, inexact Uzawa, preconditioned
MINRES, and the distributed Gauss Seidel. The inner solver
of these smoothers can also be taken as the multigridmethod
for the definite subsystems. There is no work known where
a comparative study is made on the effects of these four
smoothers on the performance of the multigrid method
for indefinite systems. The first step is to transform the
continuous problem to the discrete system and apply the
MFEM that produces the linear algebraic system on which
the multigrid method is developed, analyzed, and finally
numerically and computationally implemented.

The key features and ingredients of the multigrid method
are smoothing and coarse grid correction that involves the
intergrid transfers and a solution correction step. The main
results of the work are the convergence of the multigrid
method in calculating the velocity and pressure variables in
an appropriate norm which is based on the smoothing and
approximation properties [9, 18]. The rest of the paper is
organized as follows. In Section 2 we give the discrete system
of the Stokes problem by mixed finite element method. In
Section 3 the iterative solution technique, the geometric
method, and smoothers are outlined. The known theoretical
convergence analysis results are also outlined. In Section 4
a numerical experimental and comparative analysis on the
effects of smoothers on the performance multigrid method
is presented and discussed and the conclusion is given.

2. The Stokes Discrete System

For the discretization of the Stokes equations in the domain
Ω we need to transform the system (1)–(3) to the weak
variational form. For the weak variational formulation of the
Stokes equations we define the following solution and test
spaces:

𝐻
1
(Ω) := {u : Ω → R | u, ∇𝑢 ∈ 𝐿2 (Ω)} ,

𝐻
1

0
(Ω) := {v : v ∈ 𝐻1 | v = 0 on 𝜕Ω} .

(4)

By multiplication of the first equation (1) with v ∈ 𝐻
1

0

and the second equation (2) with 𝑞 ∈ 𝐿2(Ω), subsequently
integrating over the domain Ω, applying the Gauss theorem,
and incorporating the boundary condition (3), we obtain the
variational form.

Find u ∈ 𝐻1
0
(Ω) and 𝑝 ∈ 𝐿2(Ω) such that

𝑎 (u, v) − 𝑏 (v, 𝑝) = 𝐹 (v) , ∀v ∈ 𝐻1
0
(Ω) ,

𝑏 (u, 𝑞) = 0, ∀𝑞 ∈ 𝐿
2
(Ω) ,

(5)

where 𝑎(⋅, ⋅) and 𝑏(⋅, ⋅) are continuous bilinear forms defined
as

𝑎 (u, v) = ∫
Ω

∇u : ∇v 𝑑𝑥,

𝑏 (u, 𝑞) = ∫
Ω

(div v) 𝑞 𝑑𝑥,

𝐹 (v) = ∫
Ω

f ⋅ v 𝑑𝑥,

(6)

where ∇u : ∇v represents a componentwise scalar product
that is ∇𝑢

𝑥
⋅ ∇V
𝑥
+ ∇𝑢
𝑦
⋅ ∇V
𝑦
and 𝑎 : 𝐻1

0
(Ω) × 𝐻

1

0
(Ω) → R

and 𝑏 : 𝐻1
0
(Ω) × 𝐿

2
(Ω) → R. The well-posedness follows

from the coercivity of 𝑎(⋅, ⋅) in the Lax-Milgram theorem [19,
20] and partly from the inf-sup condition [7, 8, 16, 21–23].
Below is a sketch of the analysis of the existence uniqueness
and stability of the solution (u, 𝑝) ∈ V×𝑊 = 𝐻

1

0
(Ω) × 𝐿

2
(Ω)

of mixed problem (5):

(i) the bilinear form 𝑎(⋅, ⋅) is bounded or continuous if

|𝑎 (u, v)| ≤ 𝛼‖u‖V‖v‖V, ∀u, v ∈ V, 𝛼 ∈R; (7)

(ii) the bilinear form 𝑎(⋅, ⋅) is coercive on𝑉 := 𝐻1
0
(Ω); that

is, there exists a positive constant 𝛼
1
:

𝑎 (v, v) ≥ 𝛼
1‖V‖
2

𝑉
,

∀v ∈ V = ker𝐵 = {v ∈ V : 𝑏 (v, 𝑞) = 0 ∀𝑞 ∈ 𝑊} ;
(8)

(iii) the bilinear form 𝑎(⋅, ⋅) is symmetric and nonnegative
if

𝑎 (u, v) = 𝑎 (v, u) , 𝑎 (v, v) ≥ 0, ∀u, v ∈ V; (9)

(iv) the bilinear form 𝑏(⋅, ⋅) is bounded if
𝑏 (u, 𝑞)

 ≤ 𝛼0‖u‖V
𝑞
𝑊, ∀u ∈ V, 𝑞 ∈ 𝑊, 𝛼

0
∈R; (10)

(v) the bilinear form 𝑏(⋅, ⋅) satisfies the inf-sup condition;
that is, there exists a constant 𝛽:

inf
0 ̸=𝑞∈𝑊

sup
0 ̸=v∈V

𝑏 (v, 𝑞)


‖v‖V
𝑞
𝑊

≥ 𝛽 > 0. (11)

For instance, in [22], it is shown that in our concrete case 𝑏(⋅, ⋅)
fulfills the inf-sup condition; thus we can combine (i)–(v) to
give the following theorem.

Theorem 1. The variational problem (5) is uniquely solvable
provided properties (i)–(v) are all satisfied.

The proof relies on the closed range theorem and on the
Lax-Milgram theorem. The details can be found in [22, 24].
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2.1.TheMixed Finite Element Discretization. Themixed finite
element discretization of the weak formulation of the Stokes
equations produces a linear algebraic system of equations.
The finite element method described here is based on [7, 16,
19, 21, 23, 25]. We will introduce the concept of mixed finite
element methods. Details can be found in [7, 19–21, 25].

We assume thatΩ ⊆R2.We define the finite dimensional
spaces. Let𝑊

ℎ
andV

ℎ
be subspaces of𝑊 andV, respectively.

Now we can formulate a discrete version of problem (5).
Find a couple (u

ℎ
, 𝑝
ℎ
) ∈ V
ℎ
×𝑊
ℎ
such that

𝑎 (u
ℎ
, v
ℎ
) − 𝑏 (v

ℎ
, 𝑝
ℎ
) = 𝐹 (v

ℎ
) , ∀v

ℎ
∈ V
ℎ
,

𝑏 (u
ℎ
, 𝑞
ℎ
) = 0, ∀𝑞

ℎ
∈ 𝑊
ℎ
.

(12)

The finite element discretization should satisfy the inf-sup
condition. The following theorem shows that again the inf-
sup condition is of major importance (for the proof we refer
to [22]).

Theorem 2. Assume that 𝑎 is 𝑉
ℎ
-elliptic (with h independent

ellipticity constant) and that there exists a constant 𝛽 > 0

(independent of ℎ) such that the discrete inf-sup condition

inf
0 ̸=𝑞ℎ∈𝑊ℎ

sup
0 ̸=vℎ∈Vℎ

𝑏 (vℎ, 𝑞ℎ)


vℎ
Vℎ
𝑞ℎ
𝑊ℎ

≥ 𝛽 > 0 (13)

holds. Then the associated (discretized, steady state) Stokes
problem has a unique solution (u

ℎ
, 𝑝
ℎ
), and there exists a

constant 𝛽
1
such that

u − u
ℎ

V +
𝑝 − 𝑝ℎ

𝑊

≤ 𝛽
1
( inf
v∈Vℎ

u − u
ℎ

V) + ( inf
q∈Wℎ

𝑝 − 𝑝ℎ
𝑊) .

(14)

If the basis of𝑊
ℎ
is given by {𝜓

1
, . . . , 𝜓

𝑚
} and of 𝑉

ℎ
is given

by {𝜑
1
, . . . , 𝜑

𝑛
}, then

u
ℎ
=

𝑛𝑖

∑

𝑖=1

u
𝑖
⋅ 𝜑
𝑖
+

𝑛𝑖+𝑛𝜕

∑

𝑖=𝑛𝑖+1

u
𝑖
⋅ 𝜑
𝑖
,

𝑝
ℎ
=

𝑚

∑

𝑘=1

𝑝
𝑘
𝜓
𝑘
,

(15)

where 𝑛
𝑖
is the number of inner nodes and 𝑛

𝜕
is the number of

boundary nodes so the coefficients u
𝑖
: 𝑖 = 𝑛

𝑖
+ 1, . . . , 𝑛

𝑖
+ 𝑛
𝜕

interpolate the boundary data and 𝑛 = 𝑛
𝑖
+ 𝑛
𝜕
. The mixed

finite element entails partitioning of the solution domain Ω
into quadrilaterals; in our case that isΩ = ∪

𝑖
𝜏
𝑖
we denote a set

of rectangular (square) elements by 𝑇
ℎ
= {𝜏
1
, 𝜏
2
, 𝜏
3
, . . .} and

on each element 𝜏
𝑖
and we denote the space 𝑃

𝑘
(𝜏
𝑖
) of degree

less than or equal to 𝑘. There are a variety of finite element
pairs whose effectiveness is through stabilization [26]. In this
work we are going to use Hoods-Taylor 𝑄

2
-𝑄
1
square finite

elements which are known to be stable.
We specify

V
ℎ
:= {u
ℎ
∈ Vuℎ

𝜏𝑖
∈ 𝑃
2
(𝜏
𝑖
) , ∀ elements 𝜏

𝑖
} ,

W
ℎ
:= {𝑝
ℎ
∈W𝑝ℎ

𝜏𝑖
∈ 𝑃
1
(𝜏
𝑖
) , ∀ elements 𝜏

𝑖
} .

(16)

An element (u
ℎ
, 𝑝
ℎ
) ∈ 𝑊

ℎ
× 𝑉
ℎ
is uniquely determined by

specifying 𝑑 components of u
ℎ
on the nodes and on the

midpoints of the edges of the elements and the values of𝑝
ℎ
on

the nodes of the elements. The mixed finite element method
results in the coupled linear algebraic system which has to be
solved by the appropriate solvers. The resulting system is

[
𝐴
ℎ
𝐵
𝑇

ℎ

𝐵
ℎ
𝑂
][

u
ℎ

𝑝
ℎ

] = [
f
ℎ

𝑔
ℎ

] ; (17)

with 𝐴
ℎ
being a block Laplacian matrix and 𝐵

ℎ
being the

divergence matrix whose entries are given by

𝐴 = [𝑎
𝑖𝑗
] , 𝑎

𝑖𝑗
= ∫
Ω

(∇𝜙
𝑖
: ∇𝜙
𝑗
)
𝑖, 𝑗=1, ..., 𝑛

,

𝐵 = [𝑏
𝑘𝑖
] , 𝑏

𝑘𝑖
= −∫
Ω

(𝜓
𝑘
∇ ⋅ 𝜙
𝑖
)
𝑖=1, ..., 𝑛; 𝑘=1, ..., 𝑚

.

(18)

The entries of the right hand side vector are

f = [f
𝑖
] , f

𝑖
= ∫
𝜕Ω

f ⋅ 𝜙
𝑖
−

𝑛+𝑛𝜕

∑

𝑖=𝑛+1

u
𝑖
∫
Ω

(∇𝜙
𝑖
: ∇𝜙
𝑗
) ,

𝑔 = [𝑔
𝑘
] , 𝑔

𝑘
=

𝑛+𝑛𝜕

∑

𝑖=𝑛+1

u
𝑖
∫
Ω

(𝜓
𝑘
∇ ⋅ 𝜙
𝑖
) .

(19)

The linear algebraic system can be represented as

M𝑥 = 𝑏, (20)

whereM := [
𝐴ℎ 𝐵
𝑇

ℎ

𝐵ℎ 𝑂
], 𝑥 := [ uℎ𝑝ℎ ], and 𝑏 := [

fℎ
𝑔ℎ
].

The solution vectors (u
ℎ
, 𝑝
ℎ
) from (15) are themixed finite

element solution. The system (17)–(19) is called the discrete
Stokes problem.

The discretization and assembling of matrices are done
by the MATLAB implementation of the mixed finite element
method [8]. 𝐴

ℎ
is stiffness matrix resulting from the dis-

cretization of the Laplacian. The resultant coefficient matrix
is large, sparse, indefinite and the system must be solved
iteratively, in this case by multigrid solvers. The multigrid
solver is a well known fast solver for the elliptic partial
differential equations [2, 5].

3. Multigrid Method

The main focus of this section is the construction of the
multigrid solver to find the approximate solution of (20) at
the finest mesh/discretization. Let (V

𝑙
× 𝑊
𝑙
) be a sequence

of subspaces of the finite dimensional subspaces 𝑊
ℎ
and 𝑉

ℎ

defined on sequence of grids 𝑙 ∈ {0, 1, 2, 3, . . . , 𝑙max} with
mesh sizes ℎ

0
, ℎ
1
, ℎ
2
, . . . , ℎ

𝑙
with ℎ

𝑙+1
:= (1/2)ℎ

𝑙
. We define

a hierarchy/family of nested finite element subspaces for the
velocity and pressure:

(𝑉
𝑙
×𝑊
𝑙
) ⊂ (𝑉

𝑙+1
×𝑊
𝑙+1
) ⊂ (𝑉

ℎ
×𝑊
ℎ
) ⊂ (𝑉 ×𝑊)

= 𝐻
1

0
(Ω) × 𝐿

2
(Ω) ,

(21)

where (𝑉
𝑙+1

× 𝑊
𝑙+1
) subspace which corresponds to Ω

𝑙+1

is the refinement of Ω
𝑙
with subspace (𝑉

𝑙
× 𝑊
𝑙
) such that
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Ω
𝑙
⊂ Ω
𝑙+1
⊂ Ω. At the discrete level with the defined discrete

spaces and bases, the linear algebraic system is defined by

M
𝑙
𝑥
𝑙
= 𝑏
𝑙
, (22)

whereM
𝑙
:= [
𝐴𝑙 𝐵
𝑇

𝑙

𝐵𝑙 𝑂
], 𝑥
𝑙
:= [u
𝑙
𝑝
𝑙
], and 𝑏

𝑙
:= [

f𝑙
𝑔𝑙
].

Themain goal is to find the pair𝑥
𝑙
= (u
𝑙
, 𝑝
𝑙
)of the discrete

velocity and the discrete pressure variables at the finest level
𝑙.

Now we introduce the multigrid iteration for solving the
discretized equation (22) on grid 𝑙. We define the multigrid
algorithm at level 𝑙 as MGM

𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, f
𝑙
, 𝑔
𝑙
, 𝑚
1
,

𝑚
2
), where

(i) (unew
𝑙
, 𝑝

new
𝑙
) is the output of velocity and pressure after

one step of the multigrid algorithm at level 𝑙;

(ii) uold
𝑙

is the input velocity at level 𝑙;

(iii) 𝑝old
𝑙

is the input pressure at level 𝑙;
(iv) 𝑅u,𝑙,𝑙−1 and𝑅𝑝,𝑙,𝑙−1 are restriction operators for velocity

and pressure, respectively, from level 𝑙 to level 𝑙 − 1;
(v) 𝑃u,𝑙−1,𝑙 and 𝑃

𝑝,𝑙−1,𝑙
are prolongation operators for

velocity and pressure, respectively, from level 𝑙 − 1 to
level 𝑙.

Algorithm 3 (multigrid algorithm).

MGM
𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, f
𝑙
, 𝑔
𝑙
, 𝑚
1
, 𝑚
2
) (23)

if 𝑙 = 0 (coarsest grid)

[
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
][

unew
𝑙

𝑝
new
𝑙

]

= [
f
𝑙

𝑔
𝑙

]

= MGM
𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, f
𝑙
, 𝑔
𝑙
, 𝑚
1
, 𝑚
2
)

(24)

else 𝑙 > 0 define MGM
𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, 𝑔
𝑙
, f
𝑙
, 𝑚
1
, 𝑚
2
)

(1) Pre-Smoothing: Smoothing operatorS starting with,
(uold
𝑙
, 𝑝

old
𝑙
) with 𝑚

1
smoothing steps, producing

(ũ
𝑙
, 𝑝
𝑙
),

[
ũ
𝑙

𝑝
𝑙

] = [
uold
𝑝
old] −S

−1
([
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
][

uold
𝑙

𝑝
old
𝑙

] − [
f
𝑙

𝑔
𝑙

]) (25)

(a) defect/residual

r
𝑙
= f
𝑙
− (𝐴
𝑙
ũ
𝑙
+ 𝐵
𝑇

𝑙
𝑝
𝑙
) ,

𝑑
𝑙
= 𝑔
𝑙
− 𝐵
𝑙
ũ
𝑙

(26)

(2) restrict the defect

r
𝑙−1
= 𝑅u,𝑙,𝑙−1r𝑙,

𝑑
𝑙−1
= 𝑅
𝑝,𝑙,𝑙−1

𝑑
𝑙
,

(27)

(3) approximate solution

[
𝐴
𝑙−1

𝐵
𝑇

𝑙−1

𝐵
𝑙−1

𝑂
][

ṽ
𝑙−1

𝑞
𝑙−1

] = [
r
𝑙−1

𝑑
𝑙−1

] (28)

(4) applying one/two iterations of MGM
𝑙−1

at the recur-
sive call:

(a) apply 𝜇 steps of MGM
𝑙−1

(b) Set v0
𝑙−1
= 0

(c) Set 𝑞0
𝑙−1
= 0

(d) compute
for 𝜇 = 1 : 2

(ṽ
𝑙−1
, 𝑞
𝑙−1
)

= MGM
𝑙−1
(ṽ
𝑙−1
, 𝑞
𝑙−1
, v0
𝑙−1
, 𝑞
0

𝑙−1
, r
𝑙−1
, 𝑑
𝑙−1
, 𝑚
1
, 𝑚
2
) ;

(29)

end

(5) Correction Step define the new iterate:

u∗
𝑙
:= ũ
𝑙
− 𝑃u,𝑙−1,𝑙ṽ𝑙−1,

𝑝
∗

𝑙
:= 𝑝
𝑙
− 𝑃
𝑝,𝑙−1,𝑙

𝑞
𝑙−1
.

(30)

Postsmoothing. Starting with (u∗
𝑙
, 𝑝
∗

𝑙
) perform𝑚

2
smoothing

steps using smoothing operator S to produce (unew
𝑙
, 𝑝

new
𝑙
) :

[
unew
𝑝
new] = [

ũ∗
𝑙

𝑝
∗

𝑙

] −S
−1
([
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
][

ũ∗
𝑙

𝑝
∗

𝑙

] − [
f
𝑙

𝑔
𝑙

]) . (31)

The multigrid method described above belongs to a class of
optimal order methods for solving linear systems emanating
from the discretization techniques like the finite element
method. Its known convergence speed does not deteriorate
when the discretization is refined whereas classical iterative
solvers slow down for the decreasingmesh size [1, 2, 5, 6].The
starting point of the multigrid concept is the observation that
classical iteration methods have some smoothing properties.
The operator S represents such methods; in this study it
represents Braess-Sarazin, inexact Uzawa, distributed Gauss
Seidel, and the preconditioned minimum residual method.
Thesemethods are characterized by poor/slow global conver-
gence rates and for errors whose length scales are comparable
to mesh sizes, they provide rapid damping leaving behind
smooth, longer wave length errors. These smooth parts
of the error are responsible for the poor convergence. A
geometric multigrid method involves a hierarchy of meshes
and related discretization. A quantity that is smooth on a
certain grid can also be approximated on a coarser grid.
Low frequency error components can be effectively reduced
by a coarse grid correction procedure. Since the action of
a smoothing iteration leaves only smooth error compo-
nents, it is possible to represent them as the solution of an
appropriate coarser system. Once this coarser problem is
solved, the solution is interpolated back to the fine grid to
correct the fine approximation for its low frequency errors.
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The most essential ingredients of the multigrid method are
the smoothing operator, for which using a wrong smoother
will destroy the efficiency of the entiremultigridmethod, and
the coarse grid correction which involves the prolongation
and the restriction operators. In multigrid methods we have
to transform information from one grid to another and for
that purpose we use prolongations and restrictions operators.
Restriction transfers values from fine grid to the next coarse
grid. Prolongation transfers values from the coarse grid to the
next fine grid.

Next we discuss the key components of the multigrid
method.

(a) Intergrid transfer operators: the intergrid trans-
fer operators are the restriction and prolongation
between different grid levels. The restriction operator
maps the residual from the finer grid to a coarser
grid while the prolongation operator transfers vectors
from coarse grid to fine grid. The restriction between
levels 𝑙 and 𝑙 − 1 is defined by

𝑅
(𝑙,𝑙−1)

:= (
𝑅
(u,𝑙,𝑙−1) 0

0 𝑅
(𝑝,𝑙,𝑙−1)

) , (32)

where the restriction operators 𝑅
(u,𝑙,𝑙−1) : R𝑛𝑙 →

R𝑛𝑙−1 and 𝑅
(𝑝,𝑙,𝑙−1)

: R𝑚𝑙 → R𝑚𝑙−1 for velocity
and pressure, respectively. The prolongation between
levels 𝑙 − 1 and 𝑙 is defined again as

𝑃
(𝑙−1,𝑙)

:= (
𝑃
(u,𝑙−1,𝑙) 0

0 𝑃
(𝑝,𝑙−1,1)

) , (33)

where the prolongation operators 𝑃
(u,𝑙−1,𝑙) : R

𝑛𝑙−1 →

R𝑛𝑙 and 𝑃
(𝑝,𝑙−1,𝑙)

: R𝑚𝑙−1 → R𝑚𝑙 are representations
of the following relations V

𝑙−1
⊂ V
𝑙
for the quadratic

interpolation of the velocity (𝑄
2
) and𝑊

𝑙−1
⊂ 𝑊
𝑙
for

the linear interpolation of the pressure (𝑄
1
).

(b) Coarse grid correction: the other key ingredient of
the multigrid method is the coarse grid correction.
In the multigrid solution process we need to solve
the problem at the finest define level 𝑙 = 𝑙max. The
problem is defined on the coarser grid levels and on
the coarsest grid level the problem is solved exactly.
There are very few situations in which a grid can be
coarsened to the extent that it is not practical to solve
the problem using a direct method but iteratively. In
this work the iterative solver used as a smoother is
applied to solve the problem at the coarsest level.

3.1. The Smoothers. The most crucial part is the proper
choice of a smoothing technique. Usually, the well-known
smoothing iterations for the scalar problems (damped Jacobi
or Gauss-Seidel relaxation) are not appropriate for saddle
point problems or are even not defined, for example, in saddle
point systems like (22). There are natural ways to generalize
scalar smoothing schemes to systems of PDEs. The smooth-
ing process is the main ingredient of the multigrid method.
The convergence of the multigrid method is influenced by
the smoothing process [11, 14, 18]. We perform a number of

iterations of an iterative solver to smooth the residual. The
main goal is to compare the effectiveness of different iterative
schemes as smoothers of the multigrid methods. On each
level of a multigrid method, a system involving operator S
has to be solved approximately. The smoother dumps out
highly oscillating error modes of the systems. In this paper
we consider the following smoothing process:

(
u𝑖+1
𝑙

𝑝
𝑖+1

𝑙

) = (
u𝑖
𝑙

𝑝
𝑖

𝑙

) −S
−1

𝑙
[(
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)(

u𝑖
𝑙

𝑝
𝑖

𝑙

) − (
f
𝑙

0
)] . (34)

Several smoothers have been proposed and applied in litera-
ture. Brandt [4] advocates for the use of the distributed Gauss
Seidel smoothing. The Vanka-type smoother is widely used
with a coupled Gauss Seidel scheme [13, 14] that introduces
the idea of transforming smoothers and combines with
incomplete factorization to develop an efficient smoothing.
John and Tobska [14] and Pernice [15] used the Braess-
Sarazin-type smoother with the Schur complement schemes
as smoothers which exhibit wonderful smoothing properties.
The following algorithms describe the iterative schemes that
are used as smoothers in this study.

3.1.1. Braess-Sarazin-Type Smoother. The Braess-Sarazin
smoothers proposed in [17] and used in [13, 18] solve a
large saddle point problem in each smoothing step. This
Braess-Sarazin or SIMPLE-type iteration uses ( 𝐴 𝐵𝑇

𝐵 𝑂
) as a

smoother for the saddle point problem (22).The smoother as
presented in [17] and generalised in [18] consisted of constant
application of the smoothing iteration:

(
u𝑖+1
𝑙

𝑝
𝑖+1

𝑙

) = (
u𝑖
𝑙

𝑝
𝑖

𝑙

) − (
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)

−1

[(
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)(

u𝑖
𝑙

𝑝
𝑖

𝑙

) − (
f
𝑙

𝑔
𝑙

)]

(35)

with𝐴
𝑙
= 𝛼 diag(𝐴

𝑙
) and𝛼 = 2 given.The smoothing Braess-

Sarazin iteration (35) solves the auxiliary problem

(
𝛼𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)(

û𝑖
𝑙

𝑝
𝑖

𝑙

) = (
r𝑖
𝑙

𝑠
𝑖

𝑙

) (36)

with r𝑖
𝑙
= 𝐴
𝑙
u𝑖
𝑙
+ 𝐵
𝑇

𝑙
𝑝
𝑖

𝑙
− f
𝑙
and 𝑠𝑖
𝑙
= 𝐵
𝑙
u𝑖
𝑙
− 𝑔
𝑙
. Inherent in the

system system (36) is the problem of the auxiliary pressure
variable 𝑝

𝑙

𝑆
𝑙
𝑝
𝑙
= 𝐵
𝑙
𝐴
−1

𝑙
r𝑖
𝑙
− 𝛼𝐵
𝑙
u𝑖
𝑙
. (37)

This system is solved approximatively by an iterative solver.
From the system we get 𝑝

𝑙
approximately which can be used

to approximately determine û
𝑙
from

𝛼𝐴
𝑙
û
𝑙
= r𝑖
𝑙
− 𝐵
𝑇

𝑙
𝑝
𝑖

𝑙
. (38)

3.1.2. Inexact Uzawa Type Smoothers. The variant of the
inexact Uzawa iteration used as a smoother is outlined.

Algorithm 4. (1) For 𝑖 = 1: smoothing steps.
(2) Compute the residual r

𝑖
= f − 𝐴u

𝑖
− 𝐵
𝑇
𝑝
𝑖
.
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(3) Compute the residual 𝑠
𝑖
= 𝑔 − 𝐵u

𝑖
.

(4) Solve 𝐴w
𝑖
= r
𝑖
.

(5) Solve 𝑆𝑑
𝑖
= 𝐵
𝑇w
𝑖
− 𝑠
𝑖
.

(6) Solve 𝐴w
𝑖
= r
𝑖
− 𝐵𝑑
𝑖
.

(7) Update the velocity and pressure

(
u
𝑖+1

𝑝
𝑖+1

) = (
u
𝑖

𝑝
𝑖

) + (
w
𝑖

𝑑
𝑖

) ; (39)

End.

Step (6) in the outline may be rearranged as w
𝑖
:= w
𝑖
−

𝐴
−1
(𝐵𝑑
𝑖
) with 𝐴−1(𝐵𝑑

𝑖
) obtained as a by-product of step (5).

This saves the application of 𝐴−1 at the end of every outer
iteration and hence improves the efficiency of the algorithm.
The other variants of the inexact Uzawa method are analysed
in [26–28].

3.1.3. The Distributed Gauss Seidel Type Smoothers (DGS).
The standard smoothing iteration schemes like Jacobi and
Gauss Seidel smoothers are not applicable to the system (22)
because of the nature of the coefficientmatrix; particularly the
zero block in the diagonal hampers the smoothing process.
The distributive smoother transforms the vital operators to
the main diagonal and applied as a decoupled smoother.
The DGS was introduced in [4] is related to a successive
application of standard Gauss Seidel applied to the matrix
operator M (22) and G = (

𝐼𝑙 𝐵
𝑇

𝑙

𝑂 −𝐵𝑙𝐵
𝑇

𝑙

) with MG = (
𝐴𝑙 𝐵

𝑇

𝑙

𝐵𝑙 𝐵𝑙𝐵
𝑇

𝑙

).
We solve the transformed residual equation

(
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝐴
𝑝

)(
w
𝑖

𝑞
𝑖

) = (
ru
𝑟
𝑝

) (40)

with 𝐴 and 𝐴
𝑝
being invertible approximations of 𝐴 and

𝐴
𝑝
:= 𝐵𝐵

𝑇, respectively. A single iteration with the update
through a distributivematrixG is performed by the following
algorithm.

Algorithm 5 ([u𝑖+1, 𝑝𝑖+1] ← DGS(u𝑖, 𝑝𝑖)). (1) Smooth
momentum equations

w = u𝑖 + 𝐴−1 (f − 𝐴u𝑖 − 𝐵𝑇𝑝𝑖) . (41)

(2) Smooth the transformed continuity equation

𝑞 = 𝐴
−1

𝑝
(𝑔 − 𝐵w) . (42)

(3) Transform the correction back to the original variables

u𝑖+1 = w + 𝐵𝑇𝑞,

𝑝
𝑖+1
= 𝑝
𝑖
− 𝐵𝐵
𝑇
𝑞.

(43)

The DGS has been widely used as a smoother for the
finite difference discretization. In this paper the DGS type
smoothers are used for finite element discretization of the
Stokes problem.

3.1.4. The Preconditioned Minimum Residual Smoother. The
preconditioned minimum residual method is a Krylov sub-
space method for solving symmetric indefinite systems and
uses popular block preconditioners. This method is used as
a smoother for the multigrid method of the Stokes problem
in this paper. For the Stokes equations, the classical block-
diagonal preconditioner for MINRES method [8] is

𝑃 = (
𝐴 0

0 𝑆
) (44)

with 𝑆 = 𝐵𝐴
−1
𝐵
𝑇. The block preconditioning requires the

solution of two systems of equations with matrices 𝐴 and
𝑆 at each MINRES iteration. If 𝑃−1 is computed exactly,
the preconditioned Krylov methods converge in two or
three steps [10]. For practical implementations, the Schur
complement 𝑆 is replaced by the mass matrix 𝑀

𝑝
of the

pressure space. For discontinuous pressure space,𝑀
𝑝
is block

diagonal and easy to invert. For continuous pressure space,
say 𝑄

1
, the mass matrix 𝑀

𝑝
can be further replaced by its

diagonal matrix [8].

3.2. Multigrid Convergence. The convergence analysis of the
multigrid method relies on the two properties, namely, the
approximation and the smoothing. The general convergence
rates are independent of ℎ (the mesh size), 𝑙 is the level
of discretization, and 𝑚

1
and 𝑚

2
are the number of pre-

and postsmoothing iterations [1, 12, 18]. The results for
the convergence of the multigrid method for the scalar
elliptic problems cannot apply to the Stokes equations. We
provide a snapshot of the available convergence results of the
multigrid method for Stokes equations. The ideas presented
in this paper are based on the work in [12, 16, 18]. An
iteration of single multigrid step consists of a combination
of smoothing step and a coarse grid correction step. We
will consider the multigrid convergence with the Braess-
Sarazin smoother with S

𝑙
being the iteration matrix of the

smoother (34) and theM
𝑙
being the Stokes stiffness matrix in

(22). The operator 𝑃
𝑙
and its adjoint 𝑅

𝑙
are intergrid transfer

operators, prolongation, and the restriction, respectively.The
convergence analysis of themultigridmethod begins with the
analysis of the two-gridmethod, with𝑚

1
and𝑚

2
the pre- and

post-smoothing steps, respectively, applied to (22) results in
the iteration matrix

𝐿
𝑙
= S
𝑚1

𝑙
(𝐼
𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
M
𝑙
)S
𝑚2

𝑙
. (45)

The key point on the analysis of the multigrid method is
that the error can be split into two components. That is
the one produced by the smoothing process and the one
produced by the coarse grid correction. The coarse grid
error consists of the low frequency components and the
smoothing consists of the high frequency components of
error.The ability to cope with the low frequency components
is called the approximation property and with the second
is called the smoothing property. For the analysis of the
multigrid convergence [2, 29] used the framework based on
the smoothing and approximation property. For analysis we
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define the following norms, Euclidean norm by ‖ ⋅ ‖, and on
R𝑛𝑙+𝑚𝑙 the following norm is applied:


(
u
𝑙

𝑝
𝑙

)



2

ℎ

:=
u𝑙

2

+ ℎ
2

𝑙

𝑝𝑙

2

=


Θ
𝑙
(
u
𝑙

𝑝
𝑙

)



2

ℎ

with Θ
𝑙
:= (

𝐼
𝑛𝑙
𝑂

𝑂 𝐼
𝑚𝑙

) .

(46)

Furthermore we introduce

M̂
𝑙
:= Θ
−1

𝑙
M
𝑙
Θ
−1

𝑙
, Ŝ

𝑙
:= Θ
−1

𝑙
S
𝑙
Θ
−1

𝑙
. (47)

Using the norms defined above and taking𝑚
1
= 𝑚 and𝑚

2
=

0 above we obtain
𝐿 𝑙
ℎ =


Θ
𝑙
(M
−1

𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
)Θ
𝑙
Θ
−1

𝑙
𝐿
𝑙
S
𝑚

𝑙
Θ
−1

𝑙



≤

Θ
𝑙
(M
−1

𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
)Θ
𝑙




M̂
𝑙
Ŝ
𝑙


.

(48)

The theorems below state the two properties and the multi-
grid convergence. For detailed proof we refer to [12, 18].

Theorem 6 (approximation property). Assume thatΩ is such
that the problem (5) is 𝐻2-regular. Let M

𝑙
be the coefficient

stiffness matrix and 𝑅
𝑙
and 𝑃

𝑙
the prolongation and the restric-

tion operators. Then there exists a constant 𝐶M independent of
𝑙 and using ℎ-scaling induced byM

𝑙
then


Θ
𝑙
(M
−1

𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
)Θ
𝑙

ℎ
≤ 𝐶M


M
−1

𝑙

2
, (49)

where 𝐶M = 𝐶ℎ
2.

The smoothing property is dependent on the smoother
used. It varies from one smoother to another. In this work
we used the Braess-Sarazin in which we solve the system (37)
exactly and sufficiently accurate inexact inner solver.

Theorem 7 (smoothing property). Let M
𝑙
be the coefficient

stiffness matrix and the smoothing operator S
𝑙
. Then


M̂
𝑙
Ŝ
𝑚

𝑙


≤ 𝑔 (𝑚)

M𝑙
 , (50)

where 𝑔(𝑚) = 𝑐ℎ2
𝑙
/(𝑚 − 1) for𝑚 ≥ 2 and 𝑔(𝑚) is a decreasing

function with lim
𝑚→∞

𝑔(𝑚) = 0.

Combining the approximation property Theorem 6 with
the smoothing property Theorem 7 produces a two-grid
convergence result.

Theorem 8. Assume that 𝑚
2
= 0 and that Ω is such that the

problem (5) is 𝐻2-regular. Then for the two-grid method the
following holds:

M𝑙
ℎ ≤

𝐶M

𝑚 − 1
, 𝑚 ≥ 2 (51)

with a constant 𝐶M independent of l and m.

Using this two-grid contraction number bound themulti-
grid 𝑊-cycle method convergence results can be derived
using ideas in [1, 2].

4. Numerical Results

In this section we present the numerical solution of classical
Stokes problem (1)–(3) using the solver presented above. The
solver is denoted by MGM (Algorithm 3). We present the
results of this method as outlined above to run the traditional
test problem, the driven cavity flow problem [11, 12, 27, 28].
It is a model of the flow in a square cavity (the domain is
Ω
◻
) with the top lid moving from left to right in our case

the regularized cavity model {𝑦 = 1 : −1 ≤ 𝑥 ≤ 1 |

𝑢
𝑥
= 1−𝑥

4
} [11].The Dirichlet no-slip boundary condition is

applied on the side and bottom boundaries. The mixed finite
element method was used to discretize the cavity domain
Ω = (−1, 1)

2.
We pay particular attention to the computational per-

formance of the multigrid method on the system (22) at
different grid levels. We compare the effectiveness of dif-
ferent smoothing/relaxation methods in the performance of
the multigrid method and different approximations for the
preconditioners 𝐴 and 𝑆 of the smoothers. The following
setup of the smoothers listed is considered.

(i) DistributedGauss Seidel (DGS) smoother: we use one
Gauss Seidel iteration for the evaluations of𝐴 and one
Gauss Seidel iteration for the computation of𝐴

𝑝
. The

method becomes DGSMG.
(ii) Inexact Uzawa smoother (IUzawa): the two cases are

considered for the evaluation of the preconditioners.
Firstly, the approximation 𝐴 = diag(𝐴) and one
V(1, 1)-cycle is used to approximate Schur compli-
ment matrix 𝐵𝐴𝐵𝑇. The second case is to use one
V(1, 1)-cycle for both evaluations of𝐴 and 𝐵𝐴𝐵𝑇. The
method becomes IUZAWAMG.

(iii) Braess-Sarazin smoother (B-S): the two cases are
conspired for the evaluation of the preconditioners.
Firstly, the approximation 𝐴 = diag(𝐴) and one
V(1, 1)-cycle is used to solve the approximate Schur
compliment matrix 𝐵𝐴𝐵𝑇. The second case is to use
one V(1, 1)-cycle for both evaluations of𝐴 and 𝐵𝐴𝐵𝑇.
The method becomes B-SMG.

(iv) PMINRES smoother: the first case is to use diagonal
preconditioner for 𝐴 and 𝑆 and the second case is
one V(1, 1)-cycle for committing the inversion of the
Laplacian operator for velocity as one V(1, 1) cycle is
used to approximate the Schur compliment using the
pressure mass matrix to accelerate the MINRES. The
method becomes PMINRESMG.

The comparison is made on the performance of the multigrid
schemes with different smoothers (i)–(iv) and cases involving
different approximations of preconditioners in terms of iter-
ative counts and CPU time.The numerical treatment is given
to the discrete Stokes problemwhich resulted from themixed
finite Hood-Taylor stable elements consisting of biquadratic
elements for the velocities and bilinear elements for the pres-
sure, on a uniform grid. Implementation of our algorithms
was performed on a Windows 7 platform with 2.13 GHz
speed intel dual core processor by using MATLAB 7.14
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Table 1: Refinement levels and number of nodes (𝑛
𝑙
: number of velocity unknowns (×2) and𝑚

𝑙
: number of pressure unknowns).

Refinement level (𝑙) 1 2 3 4 5 6 7 8

Mesh size (ℎ
𝑙
) 1

2

1

4

1

8

1

16

1

32

1

64

1

128

1

256

Velocity nodes (𝑛
𝑙
) 9 25 81 289 1089 4425 16641 66049

Pressure nodes (𝑚
𝑙
) 4 9 25 81 289 1089 4425 16641

Table 2: Number of iterations and CPU time for Braess-Sarazin (2diag(𝐴), V-cycle(1, 1)) multigrid 𝑉-cycle at different levels of refinement,
tolerance = 10−6.

Levels
MG-𝑉-cycle

V(1, 1) V(2, 2) V(3, 3) V(4, 4)
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
21 (7.1𝑒 − 02) 15 (7.3𝑒 − 02) 9 (2.1𝑒 − 02) 6 (8.6𝑒 − 02)

1

32
22 (5.4𝑒 − 01) 12 (6.4𝑒 − 01) 10 (1.6𝑒 − 01) 7 (7.7𝑒 − 01)

1

64
22 (1.6𝑒 − 01) 16 (5.14𝑒 − 01) 11 (1.6) 7 (5.3𝑒 − 01)

1

128
22 (1.64) 16 (2.58) 11 (2.17) 7 (4.45)

Table 3: Number of iterations and CPU time for Braess-Sarazin (2diag(𝐴), V(1, 1)) multigrid 𝑊-cycle at different levels of refinement,
tolerance = 10−6.

Levels
MG-𝑊-cycle

V(1, 1) V(2, 2) V(3, 3) V(4, 4)
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
16 (8.3𝑒 − 02) 11 (8.4𝑒 − 02) 7 (3.5𝑒 − 02) 5 (9𝑒 − 02)

1

32
17 (6𝑒 − 01) 12 (6𝑒 − 01) 7 (1.2𝑒 − 01) 5 (7.1𝑒 − 01)

1

64
17 (5𝑒 − 01) 13 (5.1𝑒 − 01) 8 (1.89) 6 (5.6𝑒 − 01)

1

128
16 (1.98) 13 (3.24) 8 (2.13) 6 (5.78)

programming language and the MATLAB built-in Minres
functions are used for the smoother. For the discretization we
start with a uniform square grid with ℎ

0
= 1/2 and we apply

regular refinements to this starting discretization to obtain
the finest grid level.Thediscretized equations are solved using
the multigrid iteration with the 𝑊-cycle and 𝑉-cycle and
𝑚
1
and 𝑚

2
being presmoothing and postsmoothing steps,

respectively. The smoothers are determined by specifying
approximations 𝐴 and 𝑆 as highlighted in (i)–(vi) and in
all cases where one V-cycle inner multigrid iteration is used
with 𝑛

1
and 𝑛

2
being Gauss Seidel iteration steps of the

presmoothing and the postsmoothing, respectively.
In this work we use the structured mesh and regular

refinements. The finite element matrices on the rectangular
grids are assembled and the meshes are generated by the
MATLAB IFISS toolbox [3] in a hierarchy of grids which
are produced by successive regular refinements. We need
to choose the coarse mesh (the starting mesh), the finest
mesh which corresponds to the maximum level of refine-
ment on which the final approximate solution is considered.

The assembled matrices are stored for each refinement
level for the system (22). Table 1 shows an example of the
refinement levels, we use the coarsest (starting) level to have
9 nodes for velocity and 4 nodes for pressure variables (level
1) but we start the computation at level 2.

Table 1 shows the refinement levels and the number of
grid points (nodes) for each level.

The zero initial guess is chosen for all the tests. In
all the tests the iterations are repeated until the tolerance
‖𝑅
𝑖
‖/‖𝑅
0
‖ < 10

−6, where 𝑅
𝑖
= (

f𝑖
𝑔𝑖
) − (

𝐴𝑙 𝐵
𝑇

𝑙

𝐵𝑙 𝑂
) (

u𝑖
𝑝𝑖
) is

satisfied. The schemes converge if the stopping criteria are
satisfied. The results show the first case of the evaluation, the
preconditioners of the smoothers𝐴 and 𝑆with𝐴 = 2 diag(𝐴),
and for all cases evaluation of 𝑆 by one V-cycle innermultigrid
iteration with 𝑛

1
and 𝑛

2
being Gauss Seidel iteration of the

presmoothing and postsmoothing steps, respectively.
Tables 2 and 3 show the number of iterations and

computing time to demonstrate the effects of different 𝑉-
cycle (1, 2, 3, and 4) and 𝑊-cycle (1, 2, 3, and 4) being
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Table 4: Number of iterations and CPU time for multigrid (𝑉-cycle) with different smoothers and smoother preconditioner approximations
at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑉-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
18 (8.6𝑒 − 02) 13 (6.3𝑒 − 02) 9 (2.1𝑒 − 02) 14 (7.1𝑒 − 02)

1

32
19 (7.4𝑒 − 01) 14 (2.0𝑒 − 01) 10 (1.6𝑒 − 01) 16 (6.5𝑒 − 01)

1

64
19 (3.12) 14 (1.64) 11 (1.6) 16 (4.898)

1

128
19 (8.66) 14 (3.2) 11 (2.17) 16 (7.97)

Table 5: Number of iterations and CPU time for multigrid (𝑊-cycle) with different smoothers and smoother preconditioner approximations
at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑊-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
15 (9.8𝑒 − 02) 9 (7.1𝑒 − 02) 7 (3.5𝑒 − 02) 15 (8.5𝑒 − 02)

1

32
16 (8.3𝑒 − 01) 10 (3.4𝑒 − 01) 8 (1.2𝑒 − 01) 14 (5.1𝑒 − 01)

1

64
17 (5.76) 9 (2.56) 8 (1.89) 14 (6.43)

1

128
17 (9.87) 9 (4.32) 8 (2.13) 14 (8.55)

pre- and postsmoothing steps with Braess-Sarazin (B-S)
smoother (diag(𝐴), V(1, 1)). We compare the performance of
the 𝑉-cycle and 𝑊-cycle multigrid iterations with various
smoothing steps at different grid levels using one of the
smoothers, Braess-Sarazin.

From Tables 2 and 3 we observe that the number of
iterations decreases when the smoothing steps decrease and
the CPU time increases as expected with the increase in
smoothing steps.

Tables 4 and 5 show the numerical results obtained of
the multigrid solver at different grid levels. The number of
𝑉-cycle and𝑊-cycle multigrid iterations and CPU time are
shown, respectively. All the results presented underline the
efficiency of the multigrid solver to indefinite systems of
equations. In both tables we present results of the four studied
smoothers of themultigrid solver. In Tables 4 and 5we choose
the approximation of the smoother preconditioners as 𝐴 =

2 diag(𝐴) and 𝑆 = V-cycle(1, 1) for Braess-Sarazin, IUzawa,
and PMINRES. For the DGS we use the one Gauss Seidel for
both𝐴 and𝐴

𝑝
.We fix the number of smoothing steps to (3,3)

for all the results in the tables.
Comparing the performance of the 𝑉-cycle and𝑊-cycle

multigrid solver, we observe that the smoothers have different
effects on the performance of the multigrid solver. The
multigrid solver is optimal and the iterations are bound for
all the grid levels. In Tables 4 and 5 we compare all smoothers
and we observe that the Braess-Sarazin smoother leads to
faster convergence of the multigrid with fewer iterations and

less CPU ahead of other smoothers. The inexact Uzawa did
not disappoint in relaxing the error but the DGS and the
PMINRES lead to more iterations and computing times. The
other observation in Tables 4 and 5 is that the 𝑊-cycle
converges in fewer iterations than the 𝑉-cycle though it has
more computing times for all smoothers.

In Tables 6 and 7 we use different approximations for the
preconditioner of the smoothers of themultigrid𝑉-cycle and
𝑊-cycle, respectively. In applying the preconditioners, we
approximate the preconditioner 𝐴 of the Laplacian stiffness
and sparse matrix 𝐴 and 𝑆 by a geometric multigrid V(1, 1)-
cyclemethod (𝐴

𝑚𝑔
).Themultigrid is awell-known fast solver

for such systems. The multigrid solver is an inner iteration
of the smoothers. The results in Tables 6 and 7 also show
that the one iteration of the multigrid V-cycle is a suitable
approximation of the smoothers since the multigrid solver
has improved iterations from the ones in Tables 4 and 5. In
both tables the multigrid method is optimal in solving the
indefinite systems and the number of iterations is bounded
for all smoothers independent of the mesh size or grid level.

Table 8 shows the changes in the estimated a posteriori
errors for regularized driven cavity flow using𝑄

2
-𝑄
1
approx-

imation for the flow: using the strategy built in IFISS [3, 8]
that, for every element error, the local error estimation is
given by the combination of the energy norm of the velocity
error and the 𝐿

2
norm of the divergence error; that is,

𝜂
2

𝑇
:=
∇e𝑇


2

𝑇
+
𝑅𝑇


2

𝑇
, (52)
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Table 6: Number of iterations and CPU time of iterations for multigrid (𝑉-cycle) with different smoothers and using one V-cycle multigrid
preconditioner approximation (for both 𝐴 and 𝑆) at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑉-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
14 (4𝑒 − 01) 10 (3.4𝑒 − 02) 6 (1.3𝑒 − 02) 13 (4.4𝑒 − 02)

1

32
15 (2.1𝑒 − 01) 10 (2.3𝑒 − 01) 7 (1.5𝑒 − 01) 14 (5.4𝑒 − 01)

1

64
16 (2.11) 11 (2.01) 8 (1.01) 14 ()

1

128
16 (4.56) 11 (3.67) 8 (2.02) 14 (9.01)

Table 7:Number of iterations andCPU time formultigrid (𝑊-cycle) with different smoothers and using one V-cyclemultigrid preconditioner
approximation (for both 𝐴 and 𝑆) at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑊-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
11 (6.7𝑒 − 01) 8 (5.6𝑒 − 02) 5 (3.2𝑒 − 02) 13 (5.8𝑒 − 02)

1

32
12 (2.4𝑒 − 01) 9 (3.2𝑒 − 01) 6 (2.2𝑒 − 01) 14 (7.3 − 01)

1

64
13 (4.62) 9 (4.31) 6 (1.01) 15 (3.21)

1

128
13 (7.009) 9 (3.35) 6 (2.98) 15 (6.23)

Table 8: Changes in the ‖∇ ⋅ u‖
Ω
estimated velocity divergence error using multigrid 𝑉-cycle. 𝜂: the global error estimator using different

smoothers from one level to the other.

Levels ‖∇ ⋅ u‖
Ω

𝜂

IUzawa Braess-Sarazin IUzawa Braess-Sarazin
1

16
3.2𝑒 − 001 2.7𝑒 − 002 7.97𝑒 − 002 1.81𝑒 − 001

1

32
1.24𝑒 − 002 1.2𝑒 − 002 3.08𝑒 − 002 1.44𝑒 − 001

1

64
5.7𝑒 − 003 5.93𝑒 − 003 1.15𝑒 − 003 1.12𝑒 − 002

1

128
3.18𝑒 − 003 3.93𝑒 − 003 4.8𝑒 − 003 1.12𝑒 − 002

where e
𝑇
is the velocity error estimate and 𝑅

𝑇
= ‖∇ ⋅ u‖

𝑇

and 𝜂 := (∑
𝑇∈𝑇ℎ

𝜂
2

𝑇
)
1/2 are the global error estimator, using

different smoothers from one level to the other.
From Table 8 we note that the velocity divergence is

clearly converging at a faster rate to 𝑂(ℎ3), which means that
the estimated global error 𝜂 is increasingly dominated by the
velocity error component as ℎ → 0.

Figure 1 shows the sample grid output at the levels
1/64 and 1/128, the sample velocity solution (exponential
streamlines), and the pressure plot at the same level with the
same smoother.

5. Conclusion

The purpose of this study was to explore the multigrid
solver for the Stokes equations. We have introduced four
smoother iterative methods for both multigrids 𝑉-cycle and
𝑊-cycle to solve the indefinite systems emanating for the
mixed finite element discretization of the Stokes problem.We
analyse the construction of themultigrid solver, construction
of the smoothers, computation costs, and CPU time as an
indicator of the performance of each smoother at all grid
levels. Numerical experimental results are given for both
𝑉-cycle and𝑊-cycle for the smoothers at different grid levels.
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Figure 1: Velocity streamlines (a) and pressure plot (b) of the Stokes equation at level 5.

We have found out that for both cases and for all smoothers
used in this study the multigrid solver is optimal and the
number of iterations is bounded for all the grid levels. For the
steady Stokes equations and the choices of the smoothers used
the Braess-Sarazin like smoother became the best iteration
to relax the error of the multigrid solver. All the numerical
results show that the one V-cycle multigrid iteration is also a
suitable preconditioner for the smoothers used.
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We propose an iterative method for finding matrix sign function. It is shown that the scheme has global behavior with cubical rate
of convergence. Examples are included to show the applicability and efficiency of the proposed scheme and its reciprocal.

1. Introduction

It is known that the function of sign in the scalar case is
defined for any 𝑧 ∈ C not on the imaginary axis by

sign (𝑧) = {
1, Re (𝑧) > 0,

−1, Re (𝑧) < 0.
(1)

An extension of (1) for the matrix case was given firstly by
Roberts in [1]. This extended matrix function is of clear
importance in several applications (see, e.g., [2] and the refer-
ences therein).

Assume that 𝐴 ∈ C𝑛×𝑛 is a matrix with no eigenvalues on
the imaginary axis. To define this matrix function formally,
let

𝐴 = 𝑇𝐽𝑇
−1 (2)

be a Jordan canonical form arranged so that 𝐽 = diag(𝐽
1
, 𝐽
2
),

where the eigenvalues of 𝐽
1
∈ C𝑝×𝑝 lie in the open left half-

plane and those of 𝐽
2
∈ C𝑞×𝑞 lie in the open right half-plane;

then

𝑆 = sign (𝐴) = 𝑇(
−𝐼
𝑝

0

0 𝐼
𝑞

)𝑇
−1
, (3)

where 𝑝 + 𝑞 = 𝑛. A simplified definition of the matrix sign
function for Hermitian case (eigenvalues are all real) is

𝑆 = 𝑈 diag (sign (𝜆
1
) , . . . , sign (𝜆

𝑛
)) 𝑈
∗
, (4)

where

𝑈
∗
𝐴𝑈 = diag (𝜆

1
, . . . , 𝜆

𝑛
) (5)

is a diagonalization of 𝐴.
The importance of computing 𝑆 is also due to the fact

that the sign function plays a fundamental role in iterative
methods for matrix roots and the polar decomposition [3].

Note that although sign(𝐴) is a square root of the identity
matrix, it is not equal to 𝐼 or −𝐼 unless the spectrum of 𝐴 lies
entirely in the open right half-plane or open left half-plane,
respectively. Hence, in general, sign(𝐴) is a nonprimary
square root of 𝐼.

In this paper, we focus on iterative methods for finding 𝑆.
In fact, such methods are Newton-type schemes which are in
essence fixed-point-type methods by producing a convergent
sequence of matrices via applying a suitable initial matrix.

The most famous method of this class is the quadratic
Newton method defined by

𝑋
𝑘+1

=
1

2
(𝑋
𝑘
+ 𝑋
−1

𝑘
) . (6)

It should be remarked that iterative methods, such as (6),
and the Newton-Schultz iteration

𝑋
𝑘+1

=
1

2
𝑋
𝑘
(3𝐼 − 𝑋

2

𝑘
) (7)

or the cubically convergent Halley method

𝑋
𝑘+1

= [𝐼 + 3𝑋
2

𝑘
] [𝑋
𝑘
(3𝐼 + 𝑋

2

𝑘
)]
−1

, (8)
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Figure 1: Attraction basins for (6) (a) and (8) (b) for the polynomial 𝑔(𝑥) = 𝑥
2
− 1.

are all special cases of the Padé family proposed originally in
[4]. The Padé approximation belongs to a broader category
of rational approximations. Coincidentally, the best uniform
approximation of the sign function on a pair of symmetric
but disjoint intervals can be expressed as a rational function.

Note that although (7) does not possess a global conver-
gence behavior, on state-of-the-art parallel computer archi-
tectures,matrix inversions scale less satisfactorily thanmatrix
multiplications do, and subsequently (7) is useful in some
problems. However, due to local convergence behavior, it is
excluded from our numerical examples in this work.

The rest of this paper is organized as follows. In Section 2,
we discuss how to construct a new iterative method for
finding (3). It is also shown that the constructed method is
convergent with cubical rate. It is noted that its reciprocal
iteration obtained from our main method is also convergent.
Numerical examples are furnished to show the higher numer-
ical accuracy for the constructed solvers in Section 3. The
paper ends in Section 4 with some concluding comments.

2. A New Method

The connection of matrix iteration methods with the sign
function is not immediately obvious, but in fact suchmethods
can be derived by applying a suitable root-finding method to
the nonlinear matrix equation

𝑋
2
= 𝐼 (9)

and when of course sign(𝐴) is one solution of this equation
(see for more [5]).

Here, we consider the following root-solver:

𝑥
𝑘+1

= 𝑥
𝑘
−

10 − 4𝐿 (𝑥
𝑘
)

10 − 9𝐿 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)
, (10)

with 𝐿(𝑥
𝑘
) = 𝑓


(𝑥
𝑘
)𝑓(𝑥
𝑘
)/𝑓

(𝑥
𝑘
)
2. In what follows, we

observe that (10) possesses third order of convergence.

Theorem 1. Let 𝛼 ∈ 𝐷 be a simple zero of a sufficiently
differentiable function 𝑓 : 𝐷 ⊆ C → C, which contains 𝑥

0

as an initial approximation. Then the iterative expression (10)
satisfies

𝑒
𝑘+1

= (
𝑐
2

2

5
− 𝑐
3
) 𝑒
3

𝑘
+ 𝑂 (𝑒

4

𝑘
) , (11)

where 𝑐
𝑗
= 𝑓
(𝑗)

(𝛼)/𝑗!𝑓

(𝛼), 𝑒
𝑘
= 𝑥
𝑘
− 𝛼.

Proof. The proof would be similar to the proofs given in [6].

Applying (10) on the matrix equation (9) will result in the
following new matrix fixed-point-type iteration for finding
(3):

𝑋
𝑘+1

= (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
) [9𝑋

𝑘
+ 11𝑋

3

𝑘
]
−1

, (12)

where𝑋
0
= 𝐴. This is named PM1 from now on.

The proposed scheme (12) is not amember of Padé family
[4]. Furthermore, applying (10) on the scalar equation 𝑔(𝑥) =

𝑥
2
− 1 provides a global convergence in the complex plane

(except the points lying on the imaginary axis). This global
behavior, which is kept for matrix case, has been illustrated
in Figure 1 by drawing the basins of attraction for (6) and (8).
The attraction basins for (7) (local convergence) and (12)
(global convergence) are also portrayed in Figure 2.

Theorem 2. Let 𝐴 ∈ C𝑛×𝑛 have no pure imaginary eigenval-
ues. Then, the matrix sequence {𝑋

𝑘
}
𝑘=∞

𝑘=0
defined by (12) con-

verges to 𝑆, choosing 𝑋
0
= 𝐴.

Proof. We remark that all matrices, whether they are diag-
onalizable or not, have a Jordan normal form 𝐴 = 𝑇𝐽𝑇

−1,
where the matrix 𝐽 consists of Jordan blocks. For this reason,
let 𝐴 have a Jordan canonical form arranged as

𝑇
−1
𝐴𝑇 = Λ = [

𝐶 0

0 𝑁
] , (13)
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Figure 2: Attraction basins of (7) (a) and (12) (b) for the polynomial 𝑔(𝑥) = 𝑥
2
− 1.

where 𝑇 is a nonsingular matrix and 𝐶,𝑁 are square Jordan
blocks corresponding to eigenvalues lying in C− and C+,
respectively. We have

sign (Λ)

= sign (𝑇
−1
𝐴𝑇) = 𝑇

−1 sign (𝐴) 𝑇

=diag (sign (𝜆
1
), . . . , sign (𝜆

𝑝
), sign (𝜆

𝑝+1
) , . . . , sign (𝜆

𝑛
)).

(14)

If we define 𝐷
𝑘

= 𝑇
−1
𝑋
𝑘
𝑇, then, from the method (12), we

obtain

𝐷
𝑘+1

= (2𝐼 + 15𝐷
2

𝑘
+ 3𝐷
4

𝑘
) [9𝐷

𝑘
+ 11𝐷

3

𝑘
]
−1

. (15)

Note that if𝐷
0
is a diagonal matrix, then, based on an induc-

tive proof, all successive 𝐷
𝑘
are diagonal too. From (15), it is

enough to show that {𝐷
𝑘
} converges to sign(Λ). We remark

that the case at which 𝐷
0
is not diagonal will be discussed

later in the proof.
In the meantime, we can write (15) as 𝑛 uncoupled scalar

iterations to solve 𝑔(𝑥) = 𝑥
2
− 1 = 0, given by

𝑑
𝑖

𝑘+1
= (2 + 15𝑑

𝑖

𝑘

2

+ 3𝑑
𝑖

𝑘

4

) [9𝑑
𝑖

𝑘
+ 11𝑑

𝑖

𝑘

3

]
−1

, (16)

where 𝑑
𝑖

𝑘
= (𝐷
𝑘
)
𝑖,𝑖
and 1 ≤ 𝑖 ≤ 𝑛. From (15) and (16), it is

enough to study the convergence of {𝑑𝑖
𝑘
} to sign(𝜆

𝑖
).

It is known that sign(𝜆
𝑖
) = 𝑠
𝑖
= ±1. Thus, we attain

𝑑
𝑖

𝑘+1
− 1

𝑑𝑖
𝑘+1

+ 1
=

(−1 + 𝑑
𝑖

𝑘
)
3

(−2 + 3𝑑
𝑖

𝑘
)

(1 + 𝑑𝑖
𝑘
)
3

(2 + 3𝑑𝑖
𝑘
)

. (17)

Since |𝑑
𝑖

0
| = |𝜆

𝑖
| > 0, we have

lim
𝑘→∞



𝑑
𝑖

𝑘+1
− 1

𝑑𝑖
𝑘+1

+ 1



= 0, (18)

and lim
𝑘→∞

|𝑑
𝑖

𝑘
| = 1 = | sign(𝜆

𝑖
)|. This shows that {𝑑𝑖

𝑘
} is

convergent.
In the convergence proof, 𝐷

0
may not be diagonal. Since

the Jordan canonical form of some matrices may not be
diagonal, thus, one cannot write (15) as 𝑛 uncoupled scalar
iterations (16). We comment that in this case our method
is also convergent. To this goal, we must pursue the scalar
relationship among the eigenvalues of the iterates for the
studied rational matrix iteration.

In this case, the eigenvalues of 𝑋
𝑘
are mapped from the

iterate 𝑘 to the iterate 𝑘 + 1 by the following relation:

𝜆
𝑖

𝑘+1
= (2 + 15𝜆

𝑖

𝑘

2

+ 3𝜆
𝑖

𝑘

4

) [9𝜆
𝑖

𝑘
+ 11𝜆

𝑖

𝑘

3

]
−1

. (19)

So, (19) clearly shows that the eigenvalues in the general case
are convergent to ±1; that is to say,

lim
𝑘→∞



𝜆
𝑖

𝑘+1
− 1

𝜆𝑖
𝑘+1

+ 1



= 0. (20)

Consequently, we have

lim
𝑘→∞

𝑋
𝑘
= 𝑇( lim
𝑘→∞

𝐷
𝑘
)𝑇
−1

= 𝑇 sign (Λ) 𝑇
−1

= sign (𝐴) .

(21)

The proof is ended.

Theorem 3. Let 𝐴 ∈ C𝑛×𝑛 have no pure imaginary eigenval-
ues. Then the proposed method (12) converges cubically to the
sign matrix 𝑆.

Proof. Clearly,𝑋
𝑘
are rational functions of𝐴 and, hence, like

𝐴, commute with 𝑆. On the other hand, we know that 𝑆2 = 𝐼,
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Table 1: Results of comparisons for Example 5 using𝑋
0
= 𝐴.

Methods NM HM PM1 PM2
IT 14 9 8 8
𝑅
𝑘+1

1.41584 × 10
−249

1.0266 × 10
−299

2.5679 × 10
−298

1.45091 × 10
−337

𝜌 1.99077 3 3 3

Table 2: Results of comparisons for Example 6 using𝑋
0
= 𝐴.

Methods NM HM PM1 PM2
IT 10 7 6 6
𝑅
𝑘+1

5.7266 × 10
−155

5.80819 × 10
−203

8.38265 × 10
−153

1.55387 × 10
−143

𝜌 2.00228 3.00001 3.00015 3

𝑆
−1

= 𝑆, 𝑆2𝑗 = 𝐼, and 𝑆
2𝑗+1

= 𝑆, 𝑗 ≥ 1. Using the replacement
𝐵
𝑘
= 9𝑋
𝑘
+ 11𝑋

3

𝑘
, we have

𝑋
𝑘+1

− 𝑆 = (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
) 𝐵
−1

𝑘
− 𝑆

= (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
− 𝑆𝐵
𝑘
) 𝐵
−1

𝑘

= (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
− 9𝑆𝑋

𝑘
− 11𝑆𝑋

3

𝑘
) 𝐵
−1

𝑘

= − (−2𝑆 − 15𝑆𝑋
2

𝑘
− 3𝑆𝑋

4

𝑘
+ 9𝑋
𝑘
+ 11𝑋

3

𝑘
)

× 𝑆
−1
𝐵
−1

𝑘

= (𝑋
𝑘
− 𝑆)
3

(2𝐼 − 3𝑆𝑋
𝑘
) 𝑆
−1
𝐵
−1

𝑘
.

(22)

Now, using anymatrix norm fromboth sides of (22), we attain
𝑋𝑘+1 − 𝑆

 ≤ (

𝐵
−1

𝑘




𝑆
−1

2𝐼 − 3𝑆𝑋
𝑘

)
𝑋𝑘 − 𝑆


3

.

(23)

This reveals the cubical rate of convergence for the new
method (12). The proof is complete.

It should be remarked that the reciprocal iteration
obtained from (12) is also convergent to the sign matrix (3) as
follows:

𝑋
𝑘+1

= (9𝑋
𝑘
+ 11𝑋

3

𝑘
) [2𝐼 + 15𝑋

2

𝑘
+ 3𝑋
4

𝑘
]
−1

, (24)

where 𝑋
0

= 𝐴. This is named PM2. Similar convergence
results as the ones given inTheorems 2-3 hold for (24).

A scaling approach to accelerate the beginning phase of
convergence is normally necessary since the convergence rate
cannot be seen in the initial iterates. Such an idea was dis-
cussed fully in [7] for Newton’s method. An effective way to
enhance the initial speed of convergence is to scale the iterates
prior to each iteration; that is, 𝑋

𝑘
is replaced by 𝜇

𝑘
𝑋
𝑘
. Sub-

sequently, we can present the accelerated forms of our
proposed methods as follows:

𝑋
0
= 𝐴,

𝜇
𝑘
= is the scaling parameter computed by (27) ,

𝑋
𝑘+1

= (2𝐼 + 15𝜇
2

𝑘
𝑋
2

𝑘
+ 3𝜇
4

𝑘
𝑋
4

𝑘
) [9𝜇
𝑘
𝑋
𝑘
+ 11𝜇

3

𝑘
𝑋
3

𝑘
]
−1

,

(25)

or

𝑋
0
= 𝐴,

𝜇
𝑘
= is the scaling parameter computed by (27) ,

𝑋
𝑘+1

= (9𝜇
𝑘
𝑋
𝑘
+ 11𝜇

3

𝑘
𝑋
3

𝑘
) [2𝐼 + 15𝜇

2

𝑘
𝑋
2

𝑘
+ 3𝜇
4

𝑘
𝑋
4

𝑘
]
−1

,

(26)

𝜇
𝑘
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

√


𝑋
−1

𝑘


𝑋𝑘



, (norm scaling) ,

√
𝜌 (𝑋
−1

𝑘
)

𝜌 (𝑋
𝑘
)
, (spectral scaling) ,

√det (𝑋𝑘)

−1/𝑛

, (determinantal scaling) ,

(27)

where lim
𝑘→∞

𝜇
𝑘
= 1 and lim

𝑘→∞
𝑋
𝑘
= 𝑆.The different scal-

ing factors for𝜇
𝑘
in (27) are borrowed fromNewton’smethod.

For this reason it is important to show the behavior of the
accelerator methods (25)-(26) and this will be done in the
next section.

3. Numerical Examples

In this section, the results of comparisons in terms of number
of iterations and the residual norms have been reported for
variousmatrix iterations.We compare PM1 and PM2with (6)
denoted by NM and (8) denoted by HM. The programming
package Mathematica [8] is used throughout this section. In
Tables 1 and 2, IT stands for the number of iterates.

Note that the computational order of convergence for
matrix iterations in finding 𝑆 can be estimated by [9]

𝜌 =
log (𝑋

2

𝑘+1
− 𝐼


/

𝑋
2

𝑘
− 𝐼


)

log (𝑋2𝑘 − 𝐼
 /


𝑋2
𝑘−1

− 𝐼

)
, (28)

where𝑋
𝑘−1

, 𝑋
𝑘
, and𝑋

𝑘+1
are the last three approximations.

Example 4. In this example, we compare the methods for the
following 500 × 500 complex matrix:
n = 500; SeedRandom[123];
A = RandomComplex[{-100 - I, 100 + I},{n,n}];
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Figure 3: Convergence history versus number of iterations for
different methods in Example 4.

We apply here double precision arithmetic with the stop
termination 𝑅

𝑘+1
= ‖𝑋
2

𝑘+1
− 𝐼‖
∞

≤ 10
−5. Results are given in

Figure 3.

Example 5 (academic test). We compute the matrix sign for
the following complex test problem:

𝐴 = (

0 10 𝑖 7 + 𝑖

7 −5 6 −5

0 60 −2 9

0 5 9 𝑖

) , (29)

where

𝑆 = (

0.882671 + 0.0118589𝑖 0.461061 − 0.0519363𝑖 −0.167387 + 0.0215728𝑖 0.168184 − 0.0194164𝑖

0.219355 + 0.00464485𝑖 0.136809 − 0.00840032𝑖 0.313995 − 0.00196855𝑖 −0.314977 − 0.00219388𝑖

−0.566306 − 0.0184534𝑖 2.22878 + 0.0471091𝑖 0.189109 − 0.00416224𝑖 0.813305 + 0.0149399𝑖

0.145285 + 0.00157401𝑖 −0.57165 + 0.000347003𝑖 0.207909 − 0.00345322𝑖 0.791412 + 0.000703638𝑖

) . (30)

We apply here 600-digit fixed point arithmetic in our calcula-
tions with the stop termination 𝑅

𝑘+1
= ‖𝑋
2

𝑘+1
−𝐼‖
∞

≤ 10
−150.

The results for this example are illustrated in Table 1. We
report the COCs in 𝑙

∞
.

Iterative schemes PM1 and PM2 are evidently believed
to be more favorable than the other compared methods due
to their fewer number of iterations and acceptable accuracy.
Hence, the proposed methods with properly chosen initial
matrix𝑋

0
can be helpful in finding the sign of a nonsingular

complex matrix.

Example 6. Here we rerun Example 5 using the scaling
approaches (27) with the stop termination 𝑅

𝑘+1
= ‖𝑋

2

𝑘+1
−

𝐼‖
∞

≤ 10
−100. The results for this example are illustrated in

Table 2. We used the determinantal scaling for all compared
methods. The numerical results uphold the theoretical dis-
cussions of Section 2.

A price paid for the high order convergence is the
increased amount of matrix multiplications and inversions.
This is a typical consequence. However the most important
advantage of the presented methods in contrast to the meth-
ods of the same orders, such as (8), is their larger attraction
basins. This superiority basically allows the new methods to
converge to a required tolerance in one lower iteration than
their same order methods. Hence, studying the thorough
computational efficiency index of the proposedmethodsmay
not be an easy task and it must be pursued experimentally. In
an experimental manner, if the costs of one matrix-matrix
product and one matrix inversion are unity and 1.5 of unity,
respectively, then we have the following efficiency indices for

different methods: 𝐸
(6)

= 2
1/(14(1)+14(1.5))

≃ 1.020, 𝐸
(8)

=

3
1/(9(3)+9(1.5))

≃ 1.027, and 𝐸
(12)

= 3
1/(8(4)+8(1.5))

≃ 1.025.
Note that for Newton’s method we have one matrix-matrix
product per cycle due to the computation of stopping criter-
ion. Other similar computations for efficiency indices for
different examples show similar behaviors to the above
mentioned one.

4. Summary

Matrix functions are used in many areas of linear algebra and
arise in numerous applications in science and engineering.
The function of a matrix can be defined in several ways, of
which the following three are generally the most useful:
Jordan canonical form, polynomial interpolation, and finally
Cauchy integral.

In this paper, we have focus on iterative methods for this
purpose. Hence, a third order nonlinear equation solver has
been employed for constructing a new method for 𝑆. It was
shown that the convergence is global via attraction basins in
the complex plane and the rate of convergence is cubic.
Furthermore, PM2 as the reciprocal of the method PM1 with
the same convergence properties was proposed. The acceler-
ation of PM1 and PM2 via scaling was also illustrated simply.

Finally some numerical examples in both double and
multiple precisions were performed to show the efficiency of
PM1 and PM2. Further researches must be forced to extend
the obtained iterations for computing polar decompositions
in future studies.



6 The Scientific World Journal

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thank the referees for their helpful
corrections and suggestions.

References

[1] J. D. Roberts, “Linear model reduction and solution of the alge-
braic Riccati equation by use of the sign function,” International
Journal of Control, vol. 32, no. 4, pp. 677–687, 1980.

[2] C. S. Kenney and A. J. Laub, “The matrix sign function,” IEEE
Transactions on Automatic Control, vol. 40, no. 8, pp. 1330–1348,
1995.

[3] N. J. Higham, Functions of Matrices: Theory and Computation,
Society for Industrial and Applied Mathematics, Philadelphia,
Pa, USA, 2008.

[4] C. Kenney and A. J. Laub, “Rational iterative methods for the
matrix sign function,” SIAM Journal on Matrix Analysis and
Applications, vol. 12, no. 2, pp. 273–291, 1991.

[5] F. Soleymani, P. S. Stanimirović, S. Shateyi, and F. K. Haghani,
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Based on well-known fourth-order Ostrowski’s method, we proposed many new interesting optimal families of eighth-order
multipoint methods without memory for obtaining simple roots. Its geometric construction consists in approximating 𝑓



𝑛
at z
𝑛

in such a way that its average with the known tangent slopes 𝑓
𝑛
at x
𝑛
and y

𝑛
is the same as the known weighted average of secant

slopes and then we apply weight function approach. The adaptation of this strategy increases the convergence order of Ostrowski’s
method from four to eight and its efficiency index from 1.587 to 1.682. Finally, a number of numerical examples are also proposed
to illustrate their accuracy by comparing them with the new existing optimal eighth-order methods available in the literature. It is
found that they are very useful in high precision computations. Further, it is also noted that larger basins of attraction belong to
our methods although the other methods are slow and have darker basins while some of the methods are too sensitive upon the
choice of the initial value.

1. Introduction

Multipoint iterative methods for solving nonlinear equation,

𝑓 (𝑥) = 0, (1)

have drawn a considerable attention in the first decade of the
21st century, which led to the construction of many methods
of this type. These methods are primarily introduced with
the aim to achieve as high as possible order of convergence
using a fixed number of function evaluations. However,
multipoint methods do not use higher order derivatives and
have great practical importance since they overcome the
theoretical limitations of one-point methods regarding their
convergence order and computational efficiency.

As the order of an iterative method increases, so does
the number of functional evaluations per step. The efficiency
index [1] gives a measure of the balance between those
quantities, according to the formula 𝑝

1/𝑑, where 𝑝 is the
order of convergence of the method and 𝑑 is the number of
functional evaluations per step. According to the Kung-Traub
conjecture [2], the order of convergence of any multipoint

method cannot exceed the bound 2
𝑛−1, called the optimal

order. Thus, the optimal order for a method with three func-
tional evaluations per step would be four. The well-known
King’s family of methods [3] is an example of fourth order
multipoint methods requiring three functional evaluations
per full iteration, which is given by

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑥
𝑛
−

{𝑓 (𝑥
𝑛
)}
2

+ (𝛽 − 1) 𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) + 𝛽{𝑓 (𝑦

𝑛
)}
2

𝑓 (𝑥
𝑛
) [𝑓 (𝑥

𝑛
) + (𝛽 − 2) 𝑓 (𝑦

𝑛
)]

,

where 𝛽 ∈ R.

(2)

For 𝛽 = 0, one can easily get the well-known Ostrowski’s
method. From practical point of view, King’s family [3] and
Ostrowski’s method [1, 4] are one of the most efficient multi-
point fourth-ordermethods known to date because they have
simple body structures and do not require the computation of
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a second-order derivative.They have efficiency index equal to
1.5874, which is very competitive.

In recent years, based on the King’s method and Ostrow-
ski’s method, some higher order iterative methods have been
proposed and analyzed for solving nonlinear equations. J. R.
Sharma and R. Sharma [5] proposed a family of Ostrowski’s
method with eighth-order convergence, which is given by

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
𝐻 (𝜇
𝑛
) ,

(3)

where 𝜇 = 𝑓(𝑦
𝑛
)/𝑓(𝑥

𝑛
) and 𝐻(𝑡) represents a real-valued

function with 𝐻(0) = 1, 𝐻(0) = 2, and |𝐻

(0)| < ∞. We

will refer to this method as SSM
8
.

Liu and Wang [6] have also presented another eighth-
order family of Ostrowski’s method, requiring three-function
and one-derivative evaluation per iteration:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
[(

(𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
))

(𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
))

)

2

+
𝑓 (𝑧
𝑛
)

(𝑓 (𝑦
𝑛
) − 𝑎𝑓 (𝑧

𝑛
))

+
4𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) + 𝑏𝑓 (𝑧

𝑛
)
] ,

(4)

where 𝑎 and 𝑏 are two free disposable parameters. We will
refer to this method as LWM

8
.

Soleymani et al. [7] also proposed eighth-order variant of
Ostrowski’s method, which is given by

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

(𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
))

× [1 + 2
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
+

𝑓 (𝑧
𝑛
)

𝑓 (𝑦
𝑛
)
+ (

𝑓(𝑦
𝑛
)

𝑓(𝑥
𝑛
)
)

2

+ 2(
𝑓(𝑦
𝑛
)

𝑓(𝑥
𝑛
)
)

3

−
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
+ (

𝑓(𝑦
𝑛
)

𝑓(𝑥
𝑛
)
)

3

] .

(5)

We will refer to this method as SM
8
.

The main goal of this paper is to develop a general class
of very efficient three-point methods for solving nonlinear
equations. Here, we derived several new optimal families of
eighth-order Ostrowski’s method by taking the arithmetic
mean of three slopes and then applying weight function
approach. In terms of computational cost, they require four
functional evaluations per iteration. Thus, the new family
adds only one evaluation of the function at another point
other than Ostrowski’s method and order increases from
four to eight. This property of the new methods provides a
new example of multipoint methods without memory having
optimal order of convergence. The efficiency of the methods
is tested on a number of numerical examples.

2. Development of Optimal Eighth-Order
Families of Ostrowski’s Method

Newton’s method is probably the best known and most
widely used one-point iterative method for solving nonlinear
equation (1). It converges quadratically to a simple root and
linearly to amultiple root. Its geometric construction consists
in considering the straight line

𝑦 = 𝑎𝑥 + 𝑏, (6)

then determining the unknowns 𝑎 and 𝑏 by imposing the
tangency conditions:

𝑦 (𝑥
𝑛
) = 𝑓 (𝑥

𝑛
) , 𝑦


(𝑥
𝑛
) = 𝑓

(𝑥
𝑛
) , (7)

and thereby obtaining the tangent line

𝑦 (𝑥) − 𝑓 (𝑥
𝑛
) = 𝑓

(𝑥
𝑛
) (𝑥 − 𝑥

𝑛
) , (8)

to the graph of 𝑓(𝑥) at (𝑥
𝑛
, 𝑓(𝑥
𝑛
)).

The point of intersection of this tangent line with 𝑥-axis
gives the celebrated Newton’s method

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝑛 ≥ 0. (9)

The convergence order and computational efficiency of the
one-point iterative methods are lower than multipoint iter-
ative methods [8] because multipoint iterative methods can
overcome theoretical limits of one-pointmethods concerning
the convergence order and computational efficiency. In recent
years,manymultipoint iterativemethods have been proposed
that improve the local convergence order of the classical
Newton’s method. In 1973, King [3] had considered the
following fourth-order iteration scheme:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 (𝑦
𝑛
)
, 𝑛 = 0, 1, 2, . . . .

(10)

But according to the Kung-Traub conjecture [2], the above
scheme (10) is not an optimal method because it has fourth-
order convergence and requires four functional evaluations
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per full iteration. However, King [3] had reduced the number
of function evaluations by using some suitable approximation
of𝑓(𝑦

𝑛
). In fact, King had taken the approximation of𝑓(𝑦

𝑛
)

in such a way that its average with the known tangent slopes
𝑓


𝑛
at 𝑥
𝑛
and 𝑦

𝑛
is the same as the known secant slopes; that

is,

𝑓

(𝑦
𝑛
) + 𝑓

(𝑥
𝑛
)

2
=

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

𝑥
𝑛
− 𝑦
𝑛

. (11)

After solving (11), one can get the following value of 𝑓(𝑦
𝑛
) as

𝑓

(𝑦
𝑛
) =

𝑓

(𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

𝑓 (𝑥
𝑛
)

. (12)

Using this value in scheme (10), we get

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

, 𝑛 = 0, 1, 2, 3, . . . .

(13)

This is well-known Ostrowski’s method [1, 4]. It is very
interesting to note that, by adding one evaluation of the
function at another point iterated by Newton’s method, the
order of convergence increases from two to four and is free
from the second-order derivative.

Now, we intend to derive the new optimal eighth-order
family of Ostrowski’s method. For this, we consider a three-
step iteration scheme with existing Ostrowski’s method as
follows:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)
.

(14)

Again the above method is not optimal according to the
Kung-Traub conjecture [2], because it has eighth-order con-
vergence and requires five functional evaluations per full
iteration. However, we can reduce the number of function
evaluations by using some suitable approximation of 𝑓(𝑧

𝑛
).

In fact, we will take the approximation of 𝑓(𝑧
𝑛
) similar to

King’s approximation in such a way that its average with the
known slopes 𝑓

𝑛
at 𝑥
𝑛
, 𝑦
𝑛
, and 𝑧

𝑛
is the same as the known

weighted average of secant slopes:

𝑓

(𝑦
𝑛
) + 𝑓

(𝑥
𝑛
) + 𝑓

(𝑧
𝑛
)

3

=
1

3
[2(

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

𝑥
𝑛
− 𝑦
𝑛

) +
𝑓 (𝑧
𝑛
) − 𝑓 (𝑦

𝑛
)

𝑧
𝑛
− 𝑦
𝑛

] .

(15)

After solving (15), we get

𝑓

(𝑧
𝑛
) =

𝑓

(𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
)) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑧

𝑛
))

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

.

(16)

Using this value of 𝑓(𝑧
𝑛
) in scheme (14), we get

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
)) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑧

𝑛
))

.

(17)

This is a new sixth-order Ostrowski’s method. It satisfies the
following error equation:

𝑒
𝑛+1

= (𝑐
5

2
− 𝑐
3

2
𝑐
3
) 𝑒
6

𝑛
+ 𝑂 (𝑒

7

𝑛
) , (18)

where 𝑒
𝑛
= 𝑥
𝑛
− 𝑟 and 𝑐

𝑘
= (1/𝑘!)(𝑓

(𝑘)
(𝑟)/𝑓

(𝑟)), 𝑘 = 2, 3, . . ..

Again, the above method is not optimal according to the
Kung-Traub conjecture [2]. Therefore, to improve the order
of convergence of this method, we will now make use of
weight function approach to build our optimal families of
this iterative method by a simple change in its third step.
Therefore, we consider

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
)) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑧

𝑛
))

× 𝑄 (𝑢, V) ,
(19)

where 𝑢 = 𝑓(𝑧
𝑛
)/𝑓(𝑥

𝑛
), V = 𝑓(𝑦

𝑛
)/𝑓(𝑥

𝑛
), and 𝑄(𝑢, V) is a

two variable real-valued weight function such that its order
of convergence reaches at the optimal level eight without
using any more functional evaluations. Theorem 1 indicates
that under what conditions on the weight function in (19) the
order of convergence will reach at the optimal level eight.

3. Order of Convergence

Theorem 1. Let a sufficiently smooth function 𝑓 : 𝐷 ⊆ R →

R have a simple zero 𝑟 in the open interval 𝐷. Let 𝑄(𝑢, V) be
a two-variable real-valued differentiable function. If an initial
approximation 𝑥

0
is sufficiently close to the required root 𝑟

of a function 𝑓, then the convergence order of the family of
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three-point methods (19) is equal to eight when it satisfies the
following conditions:

𝑄
00

= 1, 𝑄
10

= 2, 𝑄
01

= 0,

𝑄
02

= 2, 𝑄
03

= 12,
(20)

where 𝑄
𝑖𝑗
= (1/𝑖!𝑗!)(𝜕𝑄(𝑢, V)/𝜕𝑢𝑖V𝑗)|

(0,0)
, for 𝑖 = 0, 1, 2, 3 and

𝑗 = 0, 1, 2, 3.
It satisfies the following error equation:

𝑒
𝑛+1

= − 𝑐
2

2
(𝑐
2

2
− 𝑐
3
)

× ((−7 + 𝑄
11
) 𝑐
3

2
− (−4 + 𝑄

11
) 𝑐
2
𝑐
3
− 𝑐
4
) 𝑒
8

+ 𝑂[𝑒]
9
,

(21)

where 𝑒
𝑛
and 𝑐
𝑘
are already defined in (18).

Proof. Let 𝑥 = 𝑟 be a simple zero of 𝑓(𝑥). Expanding 𝑓(𝑥
𝑛
)

and 𝑓

(𝑥
𝑛
) about 𝑥 = 𝑟 by the Taylor’s series expansion, we

have

𝑓 (𝑥
𝑛
) = 𝑓

(𝑟)

× (𝑒
𝑛
+ 𝑐
2
𝑒
2

𝑛
+ 𝑐
3
𝑒
3

𝑛
+ 𝑐
4
𝑒
4

𝑛
+ 𝑐
5
𝑒
5

𝑛

+ 𝑐
6
𝑒
6

𝑛
+ 𝑐
7
𝑒
7

𝑛
+ 𝑐
8
𝑒
8

𝑛
) + 𝑂 (𝑒

9

𝑛
) ,

𝑓

(𝑥
𝑛
) = 𝑓

(𝑟)

× (1 + 2𝑐
2
𝑒
𝑛
+ 3𝑐
3
𝑒
2

𝑛
+ 4𝑐
4
𝑒
3

𝑛
+ 5𝑐
5
𝑒
4

𝑛

+ 6𝑐
6
𝑒
5

𝑛
+ 7𝑐
7
𝑒
6

𝑛
+ 8𝑐
8
𝑒
7

𝑛
) + 𝑂 (𝑒

9

𝑛
) ,

(22)

respectively.
From (22), we have

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
= 𝑒
𝑛
− 𝑐
2
𝑒
2

𝑛
+ 2 (𝑐

2

2
− 𝑐
3
) 𝑒
3

𝑛

+ (−4𝑐
3

2
+ 7𝑐
2
𝑐
3
− 3𝑐
4
) 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) ,

(23)

and in combinationwith the Taylor series expansion of𝑓(𝑥
𝑛
−

(𝑓(𝑥
𝑛
)/𝑓

(𝑥
𝑛
))) about 𝑥 = 𝑟, we have

𝑓 (𝑦
𝑛
) = 𝑓(𝑥

𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
) = 𝑓


(𝑟)

× [𝑐
2
𝑒
2

𝑛
+ (−2𝑐

2

2
+ 2𝑐
3
) 𝑒
3

𝑛

+ (5𝑐
3

2
− 7𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒
4

𝑛

−2 (6𝑐
4

2
− 12𝑐
2

2
𝑐
3
+ 3𝑐
2

3
+ 5𝑐
2
𝑐
4
− 2𝑐
5
) 𝑒
5

𝑛
]

+ 𝑂 (𝑒
6

𝑛
) .

(24)

Therefore, we have

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)

= 1 + 2𝑐
2
𝑒
𝑛
+ (−2𝑐

2

2
+ 4𝑐
3
) 𝑒
2

𝑛

+ (−4𝑐
2
𝑐
3
+ 6𝑐
4
) 𝑒
3

𝑛
+ (4𝑐
4

2
− 6𝑐
2

2
𝑐
3
− 4𝑐
2
𝑐
4
+ 8𝑐
5
) 𝑒
4

𝑛

− 2 (4𝑐
5

2
− 14𝑐
3

2
𝑐
3
+ 5𝑐
2

2
𝑐
4

−2𝑐
3
𝑐
4
+ 𝑐
2
(9𝑐
2

3
+ 2𝑐
5
) − 5𝑐

6
) 𝑒
5

𝑛
+ 𝑂 (𝑒

6

𝑛
) ,

𝑢
𝑛
=

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
= 𝑐
2
𝑒
2

𝑛
+ (−4𝑐

2

2
+ 2𝑐
3
) 𝑒
3

𝑛

+ (13𝑐
3

2
− 14𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒
4

𝑛

− 2 (19𝑐
4

2
− 32𝑐
2

2
𝑐
3
+ 6𝑐
2

3
+ 10𝑐
2
𝑐
4
− 2𝑐
5
) 𝑒
5

𝑛
+ 𝑂 (𝑒

6

𝑛
) .

(25)

From (25), we have

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)
,

= (𝑐
3

2
− 𝑐
2
𝑐
3
) 𝑒
4

𝑛
− 2 (2𝑐

4

2
− 4𝑐
2

2
𝑐
3
+ 𝑐
2

3
+ 𝑐
2
𝑐
4
) 𝑒
5

𝑛

+ (10𝑐
5

2
− 30𝑐
3

2
𝑐
3
+ 12𝑐
2

2
𝑐
4
− 7𝑐
3
𝑐
4
+ 3𝑐
2
(6𝑐
2

3
− 𝑐
5
))

× 𝑒
6

𝑛
+ 𝑂 (𝑒

7

𝑛
) .

(26)

Now, expanding 𝑓(𝑧
𝑛
) about 𝑟, we get

𝑓 (𝑧
𝑛
) = 𝑓

(𝑟)

× [(𝑐
3

2
− 𝑐
2
𝑐
3
) 𝑒
4

𝑛
− 2 (2𝑐

4

2
− 4𝑐
2

2
𝑐
3
+ 𝑐
2

3
+ 𝑐
2
𝑐
4
) 𝑒
5

𝑛

+ (10𝑐
5

2
− 30𝑐
3

2
𝑐
3
+ 12𝑐
2

2
𝑐
4
− 7𝑐
3
𝑐
4

+ 3𝑐
2
(6𝑐
2

3
− 𝑐
5
)) 𝑒
6

𝑛
] + 𝑂 (𝑒

7

𝑛
) .

(27)

Furthermore, we have

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑧

𝑛
)) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

= (𝑐
3

2
− 𝑐
2
𝑐
3
) 𝑒
4

𝑛
− 2 (2𝑐

4

2
− 4𝑐
2

2
𝑐
3
+ 𝑐
2

3
+ 𝑐
2
𝑐
4
) 𝑒
5

𝑛

+ (9𝑐
5

2
− 29𝑐
3

2
𝑐
3
+ 12𝑐
2

2
𝑐
4

−7𝑐
3
𝑐
4
+ 3𝑐
2
(6𝑐
2

3
− 𝑐
5
)) 𝑒
6

𝑛
+ 𝑂 (𝑒

7

𝑛
) ,

(28)
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𝑢
𝑛
=

𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)

= (𝑐
3

2
− 𝑐
2
𝑐
3
) 𝑒
3

𝑛
+ (−5𝑐

4

2
+ 9𝑐
2

2
𝑐
3
− 2𝑐
2

3
− 2𝑐
2
𝑐
4
) 𝑒
4

𝑛

+ (15𝑐
5

2
− 40𝑐
3

2
𝑐
3
+ 14𝑐
2

2
𝑐
4
− 7𝑐
3
𝑐
4
+ 3𝑐
2
(7𝑐
2

3
− 𝑐
5
))

× 𝑒
5

𝑛
+ 𝑂 (𝑒

6

𝑛
) ,

V
𝑛
=

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)

= 𝑐
2
𝑒
𝑛
+ (−3𝑐

2

2
+ 2𝑐
3
) 𝑒
2

𝑛
+ (8𝑐
3

2
− 10𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒
3

𝑛

+ (−20𝑐
4

2
+ 37𝑐
2

2
𝑐
3
− 8𝑐
2

3
− 14𝑐
2
𝑐
4
+ 4𝑐
5
) 𝑒
4

𝑛

+ 𝑂 (𝑒
5

𝑛
) .

(29)

Since it is clear from (29) that 𝑢
𝑛
and V
𝑛
are of order 𝑒3

𝑛
and 𝑒
𝑛

respectively, therefore, we can expandweight function𝑄(𝑢, V)
in the neighborhood of origin by Taylor series expansion up
to third-order terms as follows:

𝑄 (𝑢, V) = 𝑄
00

+ 𝑄
10
𝑢 + 𝑄

01
V

+
1

2
(𝑄
20
𝑢
2
+ 2𝑄
11
𝑢V + 𝑄

02
V2)

+
1

6
(𝑄
30
𝑢
3
+ 3𝑄
21
𝑢
2V + 3𝑄

12
𝑢V2 + 𝑄

03
V3) .

(30)

Using (28), (29), and (30) in scheme (19), we have the
following error equation size:

𝑒
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
)) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑧

𝑛
))

× 𝑄 (𝑢, V) = − (−1 + 𝑄
00
) 𝑐
2
(𝑐
2

2
− 𝑐
3
) 𝑒
4

𝑛

+ ((−4 + 4𝑄
00

− 𝑄
01
) 𝑐
4

2

+ (8 − 8𝑄
00

+ 𝑄
01
) 𝑐
2

2
𝑐
3

+ 2 (−1 + 𝑄
00
) 𝑐
2

3
+ 2 (−1 + 𝑄

00
) 𝑐
2
𝑐
4
) 𝑒
5

𝑛

+ ((10 − 9𝑄
00

−
𝑄
02

2
+ 7𝑄
01
) 𝑐
5

2

+
1

2
(−60 + 58𝑄

00
+ 𝑄
02

− 26𝑄
01
) 𝑐
3

2
𝑐
3

+ 2 (6 − 6𝑄
00

+ 𝑄
01
) 𝑐
2

2
𝑐
4
+ 7 (−1 + 𝑄

00
) 𝑐
3
𝑐
4

+ 𝑐
2
((18 − 18𝑄

00
+ 4𝑄
01
) 𝑐
2

3

+3 (−1 + 𝑄
00
) 𝑐
5
)) 𝑒
6

𝑛

+ ((−20 + 14𝑄
00

+ 5𝑄
02

−
𝑄
03

6
− 𝑄
10

− 29𝑄
01
) 𝑐
6

2

−
1

6
(−480 + 408𝑄

00
+ 54𝑄

02
− 𝑄
03

− 12𝑄
10

−474𝑄
01
) 𝑐
4

2
𝑐
3

+ (−40 + 38𝑄
00

+ 𝑄
02

− 21𝑄
01
) 𝑐
3

2
𝑐
4

+ 𝑐
2

2
((−80 + 76𝑄

00
+ 3𝑄
02

− 𝑄
10

− 50𝑄
01
) 𝑐
2

3

+ (16 − 16𝑄
00

+ 3𝑄
01
) 𝑐
5
)

+ 2 ((6 − 6𝑄
00

+ 2𝑄
01
) 𝑐
3

3
+ 3 (−1 + 𝑄

00
) 𝑐
2

4

+ 5 (−1 + 𝑄
00
) 𝑐
3
𝑐
5
)

+ 𝑐
2
(2 (26 − 26𝑄

00
+ 7𝑄
01
) 𝑐
3
𝑐
4

+ 4 (−1 + 𝑄
00
) 𝑐
6
)) 𝑒
7

𝑛

+
1

6
((216 − 90𝑄

00
− 174𝑄

02
+ 13𝑄

03
+ 54𝑄

10

−6𝑄
11

+ 558𝑄
01
) 𝑐
7

2

+ (−1068 + 690𝑄
00

+ 450𝑄
02

− 23𝑄
03

−156𝑄
10

+ 12𝑄
11

− 2004𝑄
01
) 𝑐
5

2
𝑐
3

+ 2 (303 − 246𝑄
00

− 45𝑄
02

+ 𝑄
03

+12𝑄
10

+ 348𝑄
01
) 𝑐
4

2
𝑐
4

+ 𝑐
3

2
(−2 (−756 + 624𝑄

00
+ 147𝑄

02
− 4𝑄
03

−63𝑄
10

+ 3𝑄
11

− 987𝑄
01
) 𝑐
2

3

+3 (−102 + 96𝑄
00

+ 3𝑄
02

− 58𝑄
01
) 𝑐
5
)

+ 3𝑐
2

2
((−418 + 390𝑄

00
+ 21𝑄

02

− 8𝑄
10

− 310𝑄
01
) 𝑐
3
𝑐
4

+ 8 (5 − 5𝑄
00

+ 𝑄
01
) 𝑐
6
)

− 6 (10 (−5 + 5𝑄
00

− 2𝑄
01
) 𝑐
2

3
𝑐
4

− 17 (−1 + 𝑄
00
) 𝑐
4
𝑐
5

− 13 (−1 + 𝑄
00
) 𝑐
3
𝑐
6
)

+ 6𝑐
2
((−91 + 87𝑄

00
+ 6𝑄
02

−4𝑄
10

− 76𝑄
01
) 𝑐
3

3
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+ (37 − 37𝑄
00

+ 12𝑄
01
) 𝑐
2

4

+ 4 (17 − 17𝑄
00

+ 5𝑄
01
) 𝑐
3
𝑐
5

+ 5 (−1 + 𝑄
00
) 𝑐
7
)) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) .

(31)

For obtaining an iterative method of order eight, the coef-
ficients of 𝑒4

𝑛
, 𝑒5
𝑛
, 𝑒6
𝑛
, and 𝑒

7

𝑛
in the error equation (31) must

be zero simultaneously. After simplifications, we have the
following equations involving 𝑄

00
, 𝑄
10
, 𝑄
01
, 𝑄
02
, and 𝑄

03
,

(−1 + 𝑄
00
) = 0,

(−4 + 4𝑄
00

− 𝑄
01
) = 0,

(8 − 8𝑄
00

+ 𝑄
01
) = 0,

(10 − 9𝑄
00

−
𝑄
02

2
+ 7𝑄
01
) = 0,

(−60 + 58𝑄
00

+ 𝑄
02

− 26𝑄
01
) = 0,

(6 − 6𝑄
00

+ 𝑄
01
) = 0,

(18 − 18𝑄
00

+ 4𝑄
01
) = 0,

(−20 + 14𝑄
00

+ 5𝑄
02

−
𝑄
03

6
− 𝑄
10

− 29𝑄
01
) = 0,

(−480 + 408𝑄
00

+ 54𝑄
02

− 𝑄
03

− 12𝑄
10

− 474𝑄
01
) = 0,

(−40 + 38𝑄
00

+ 𝑄
02

− 21𝑄
01
) = 0,

(−80 + 76𝑄
00

+ 3𝑄
02

− 𝑄
10

− 50𝑄
01
) = 0,

(16 − 16𝑄
00

+ 3𝑄
01
) = 0,

(6 − 6𝑄
00

+ 2𝑄
01
) = 0,

(26 − 26𝑄
00

+ 7𝑄
01
) = 0.

(32)

After simplifying (32), we have the following conditions on
the weight function:

𝑄
00

= 1, 𝑄
10

= 2, 𝑄
01

= 0,

𝑄
02

= 2, 𝑄
03

= 12.
(33)

Finally, we get the following error equation:

𝑒
𝑛+1

= − 𝑐
2

2
(𝑐
2

2
− 𝑐
3
)

× ((−7 + 𝑄
11
) 𝑐
3

2
− (−4 + 𝑄

11
) 𝑐
2
𝑐
3
− 𝑐
4
) 𝑒
8

𝑛

+ 𝑂 (𝑒
9

𝑛
) .

(34)

This reveals that the three-step class of Ostrowski’s
method (19) reaches the optimal order of convergence eight
by using only four functional evaluations per full iteration.
This completes the proof of the Theorem 1.

4. Special Cases

In this section, we will consider some particular cases of the
proposed scheme (19) depending upon the weight function
𝑄(𝑢, V) as follows.

Case 1. Let us consider the following weight function:

𝑄 (𝑢, V) = (𝑎𝑢 + 1) V2 + 2𝑢 + 2V3 + 1. (35)

It can be easily seen that the abovementionedweight function
𝑄(𝑢, V) satisfies all the conditions ofTheorem 1.Therefore, we
obtain a new optimal family of eighth-order methods given
by

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
− (𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

× [2{𝑓 (𝑦
𝑛
)}
3

+ {𝑓 (𝑦
𝑛
)}
2

× (𝑓 (𝑥
𝑛
) + 𝑎𝑓 (𝑧

𝑛
))

+ {𝑓 (𝑥
𝑛
)}
2

(𝑓 (𝑥
𝑛
) + 2𝑓 (𝑧

𝑛
))])

× (𝑓

(𝑥
𝑛
) {𝑓 (𝑥

𝑛
)}
2

(𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
))

× (𝑓 (𝑦
𝑛
) − 𝑓 (𝑧

𝑛
)) )
1/2

.

(36)

Case 2. Let us consider the following weight function:

𝑄 (𝑢, V) = 1 −
V
2
+

4𝑏𝑢 + 𝑏V
2𝑏 − 2𝑢 − 4𝑏V + 4𝑢V

. (37)

It can be easily seen that the abovementionedweight function
𝑄(𝑢, V) satisfies all the conditions ofTheorem 1.Therefore, we
obtain a new optimal family of eighth-order method given by

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
− (𝑓 (𝑥

𝑛
) 𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

× (1 −
𝑓 (𝑦
𝑛
)

2𝑓 (𝑥
𝑛
)

− (𝑏𝑓 (𝑥
𝑛
) (𝑓 (𝑦

𝑛
) + 4𝑓 (𝑧

𝑛
)))

× (2 (2𝑓 (𝑦
𝑛
) − 𝑓 (𝑥

𝑛
))

× (𝑏𝑓 (𝑥
𝑛
) − 𝑓 (𝑧

𝑛
)))
1/2

))

× (𝑓

(𝑥
𝑛
) (−2𝑓 (𝑦

𝑛
) + 𝑓 (𝑥

𝑛
))

× (𝑓 (𝑦
𝑛
) − 𝑓 (𝑧

𝑛
)))
1/2

.

(38)

Case 3. Let us consider the following weight function:

𝑄 (𝑢, V) =
3

4
−
V
2
+

𝑏 + 8𝑏𝑢

4𝑏 − 8𝑏V − 4𝑢V + 8𝑢V2
. (39)
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Table 1: Test problems.

𝑓(𝑥) 𝑟 [𝑎, 𝑏]

𝑓
1
(𝑥) = 𝑥

5
+ 𝑥
4
+ 4𝑥
2
− 15 1.3474280989683049815067153807148212 [1.1, 1.6]

𝑓
2
(𝑥) = sin𝑥 −

𝑥

3
2.2788626600758283126999511045618886 [2.0, 3.0]

𝑓
3
(𝑥) = 𝑒

𝑥
2
+7𝑥−30

− 1 3.0000000000000000000000000000000000 [2.90, 3.30]
𝑓
4
(𝑥) = 𝑥𝑒

−𝑥 0.0000000000000000000000000000000000 [−1.0, 0.5]
𝑓
5
(𝑥) = 𝑒

−𝑥
+ cos 𝑥 1.7461395304080124176507030889537802 [1.2, 2.5]

𝑓
6
(𝑥) = 10𝑥𝑒

−𝑥
2

− 1 1.6796306104284499406749203388379703 [1.5, 1.8]

Table 2: Comparison of different eighth-order iterative methods with the same total number of functional evaluations (TNFE = 12).

𝑓(𝑥) Initial guess SSM8 LM8 TM8 SM8
MOM18 MOM28
𝑏 = −

1

2
𝑏 = −

1

4

1
1.1 3.0𝑒 − 308 4.94𝑒 − 242 1.1𝑒 − 156 1.5𝑒 − 223 7.6𝑒 − 319 2.3𝑒 − 314

1.6 1.9𝑒 − 340 2.2𝑒 − 297 1.9𝑒 − 233 6.7𝑒 − 297 1.2𝑒 − 417 4.1𝑒 − 429

2
2.0 9.83𝑒 − 386 3.8𝑒 − 331 3.2𝑒 − 288 1.7𝑒 − 339 1.1𝑒 − 437 1.2𝑒 − 431

2.5 9.8𝑒 − 506 3.6𝑒 − 462 5.5𝑒 − 436 1.3𝑒 − 468 7.7𝑒 − 556 7.8𝑒 − 557

3

2.92 1.4𝑒 − 173 2.8𝑒 − 92 𝐷 1.9𝑒 − 42 3.0𝑒 − 177 1.2𝑒 − 163

3.20 1.1𝑒 − 68 2.3𝑒 − 52 5.6𝑒 − 27 2.1𝑒 − 51 8.0𝑒 − 77 3.0𝑒 − 77

3.30 1.8𝑒 − 28 3.8𝑒 − 20 1.1𝑒 − 8 8.3𝑒 − 20 1.5𝑒 − 34 3.3𝑒 − 35

4
−0.5 3.0𝑒 − 222 1.5𝑒 − 188 1.5𝑒 − 139 1.4𝑒 − 193 1.1𝑒 − 249 7.8𝑒 − 252

0.5 3.5𝑒 − 123 3.5𝑒 − 38 𝐷 1.1𝑒 − 3 1.5𝑒 − 165 3.7𝑒 − 112

5
1.2 2.2𝑒 − 516 6.30𝑒 − 444 1.3𝑒 − 441 1.3𝑒 − 456 3.0𝑒 − 527 1.7𝑒 − 527

2.5 6.0𝑒 − 222 4.5𝑒 − 157 1.6𝑒 − 156 7.3𝑒 − 165 4.5𝑒 − 266 2.1𝑒 − 232

6
1.5 4.9𝑒 − 399 1.5𝑒 − 351 9.4𝑒 − 316 1.2𝑒 − 369 1.4𝑒 − 477 9.2𝑒 − 491

1.8 4.6𝑒 − 445 3.8𝑒 − 385 1.0𝑒 − 325 2.1𝑒 − 394 5.5𝑒 − 463 2.2𝑒 − 461

It can be easily seen that the abovementionedweight function
𝑄(𝑢, V) satisfies all the conditions ofTheorem 1.Therefore, we
obtain a new optimal family of eighth-order method given by

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) − 2𝑓 (𝑦

𝑛
))

,

𝑥
𝑛+1

= 𝑧
𝑛
− (𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
))

× (4𝑓

(𝑥
𝑛
) (−2𝑓 (𝑦

𝑛
) + 𝑓 (𝑥

𝑛
))
2

(𝑓 (𝑦
𝑛
) − 𝑓 (𝑧

𝑛
))

× (−𝑏{𝑓 (𝑥
𝑛
)}
2

+ 𝑓 (𝑦
𝑛
) 𝑓 (𝑧
𝑛
)))
1/2

× [𝑓 (𝑦
𝑛
) {4{𝑓 (𝑦

𝑛
)}
2

− 8𝑓 (𝑦
𝑛
) 𝑓 (𝑥

𝑛
) + 3{𝑓 (𝑥

𝑛
)}
2

}

× 𝑓 (𝑧
𝑛
) − 4𝑏{𝑓 (𝑥

𝑛
)}
2

× {{𝑓 (𝑦
𝑛
)}
2

− 2𝑓 (𝑦
𝑛
) 𝑓 (𝑥

𝑛
)

+ 𝑓 (𝑥
𝑛
) (𝑓 (𝑥

𝑛
) + 2𝑓 (𝑧

𝑛
))}] .

(40)

It is straightforward to see that per step all the proposed
family ofmethods require four functional evaluation, namely,

𝑓(𝑥
𝑛
), 𝑓(𝑦

𝑛
)𝑓(𝑧
𝑛
), and 𝑓


(𝑥
𝑛
). In order to obtain an assess-

ment of the efficiency of our proposed methods, one will
make use of efficiency index [1]. For newly proposed eighth-
order three-point methods, one finds 𝑝 = 8 and 𝑑 = 4 to
get 𝐸 =

4√8 ≈ 1.682 which is better than 𝐸 = √2 ≈ 1.414,
the efficiency index ofNewton’smethod. Further, by choosing
different kinds of weight functions one can develope several
new optimal families of eight-order multipoint methods.

5. Numerical Experiments

In this section, we will check the effectiveness of the new
optimal methods. We employ the present methods (38) (for
𝑏 = −1/2) and (40) (for 𝑏 = −1/4) denoted by MOM1

8
and

MOM2
8
, respectively, to solve nonlinear equations given in

Table 1. We compare them with J. R. Sharma and R. Sharma
method (SSM

8
), Liu and Wang method (LWM

8
), Thukral

method [9] (TM
8
), and Soleymani method (SM

8
), respec-

tively. For better comparisons of our proposed methods, we
have given two comparison tables in each example: one is
corresponding to absolute error value of given nonlinear
functions (with the same total number of functional eval-
uations = 12) and the other is with respect to number of
iterations taken by each method to obtain the root correct
up to 35 significant digits in Tables 2 and 3, respectively. All
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Table 3: Comparison of different eighth-order iterative methods with respect to number of iterations.

𝑓(𝑥) Initial guess SSM8 LM8 TM8 SM8
MOM18 MOM28
𝑏 = −

1

2
𝑏 = −

1

4

1
1.1 3 4 4 4 3 3
1.6 3 3 4 3 3 3

2
2.0 3 3 3 3 3 3
2.5 3 3 3 3 3 3

3
2.92 4 4 𝐷 4 4 4
3.30 5 5 5 5 4 4

4
−0.5 4 4 4 4 4 4
0.5 4 4 𝐷 6 4 4

5
1.2 3 3 3 3 3 3
2.5 3 4 4 4 4 4

6 1.5 3 3 3 3 3 3
1.8 3 3 3 3 3 3

Figure 1: The basins of attraction for SSM
8
, LW
8
, and TM

8
, respectively, in problem 1.

computations have been performed using the programming
package 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 9 with multiple precision arithmetic.
We use 𝜖 = 10

−34 as a tolerance error. The following stopping
criteria are used for computer programs:

(i) |𝑥
𝑛+1

− 𝑥
𝑛
| < 𝜖,

(ii) |𝑓(𝑥
𝑛+1

)| < 𝜖.

6. Attractor Basins in the Complex Plane

We here investigate the comparison of the attained multiple
root finders in the complex plane using basins of attraction.
It is known that the corresponding fractal of an iterative root-
findingmethod is a boundary set in the complex plane, which
is characterized by the iterative method applied to a fixed
polynomial𝑝(𝑧) ∈ C; see, for example, [10, 11].The aimherein
is to use basin of attraction as another way for comparing the
iteration algorithms.

From the dynamical point of view,we consider a rectangle
𝐷 = [−3, 3] × [−3, 3] ∈ C with a 400 × 400 grid, and
we assign a color to each point 𝑧

0
∈ 𝐷 according to the

multiple root at which the corresponding iterative method
starting from 𝑧

0
converges, and we mark the point as black

if the method does not converge. In this section, we consider
the stopping criterion for convergence to be less than 10

−4

wherein themaximumnumber of full cycles for eachmethod
is considered to be 200. In this way, we distinguish the
attraction basins by their colors for different methods.

Test Problem 1. Let 𝑝
1
(𝑧) = (𝑧

5
+ 𝑧), having simple zeros

{−0.707107 − 0.707107𝑖, −0.707107 + 0.707107𝑖, 0,

0.707107 − 0.707107𝑖, 0.707107 + 0.707107𝑖}. It is straight
forward to see fromFigures 1 and 2 that ourmethods, namely,
OM1
8
and OM2

8
, contain lesser number of divergent points in

comparison to the methods, namely, SSM
8
, LW
8
, and TM

8
.

Further, our methods have also less chaotic behavior than
other methods, namely, LW1

8
and SM2

8
.

Test Problem 2. Let 𝑝
2
(𝑧) = (𝑧

4
− 1), having simple zeros

{−1, −𝑖, 𝑖, 1}. It is straight forward to see from Figures 3
and 4 that our method, namely, OM1

8
and OM2

8
, performed

better and larger basins of attraction as compared to the other
methods, namely, SSM

8
, LW
8
, TM
8
, and SM

8
. Further, our
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Figure 2: The basins of attraction for SM
8
, OM1
8
, and OM2

8
, respectively, in problem 1.

Figure 3: The basins of attraction for SSM
8
, LW
8
, and TM

8
, respectively, in problem 2.

Figure 4: The basins of attraction for SM
8
, OM1
8
, and OM2

8
, respectively, in problem 2.

methods have lesser number of divergent points and less
chaotic behavior in comparison with other methods.

Test Problem 3. Let 𝑝
3
(𝑧) = (𝑧

3
+ 2𝑧 − 1), having simple zeros

{−0.226699−1.46771𝑖, −0.226699+1.46771𝑖, 0.453398}. It is
straight forward to see from Figures 5 and 6 that our method,

namely, OM1
8
andOM2

8
, performed better and larger basins of

attraction as compared to the other methods, namely, SSM
8
,

LW
8
, TM
8
, and SM

8
. Further, our methods have less number

of divergent points as compared to method TM
8
. Note that

our methods have also less chaotic behavior as compared to
method SM

8
.
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Figure 5: The basins of attraction for SSM
8
, LW
8
, and TM

8
, respectively, in problem 3.

Figure 6: The basins of attraction for SM
8
, OM1
8
, and OM2

8
, respectively, in problem 3.

7. Conclusions

In this paper, we have obtained a simple and elegant families
of Ostrowski’s method with optimal order of convergence
eight by using an additional evaluation of function at the
point iterated by Ostrowski’s method. Its geometric con-
struction consists in approximating 𝑓



𝑛
at 𝑧
𝑛
in such a way

that its average with the known tangent slopes 𝑓
𝑛
at 𝑥
𝑛
and

𝑦
𝑛
is the same as the known weighted average of secant

slopes and then we apply weight function approach. Further,
we can also obtain many new optimal families of eighth-
order Ostrowski’s method by considering different kinds of
weight functions which satisfy the conditions mentioned in
Theorem 1. Each member of the proposed family requires
three evaluations of the function 𝑓 and one of its first-order
derivative 𝑓

 per full step and therefore has efficiency index
better than fourth-order convergent Ostrowski’s method.
The superiority of present methods is also corroborated by
numerical results displayed in Table 2. Our proposed iterative
methods are compared in their efficiency and performance
to various other multipoint methods, and it is observed
that our proposed methods are efficient and perform better
than existing methods available in the literature. Based on
Figures 1–6, we conclude that larger basins of attraction

belong to our methods, namely, OM1
8
and OM2

8
, although the

other methods are slow and have darker basins while some
of the methods are too sensitive upon the choice of the initial
value. Further, this idea can also be extended for the case of
King’s family.
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Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which
is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt
method and present an error estimate. Finally, three examples are provided to show the application of the theorem.

1. Introduction

We consider the following boundary value problem:

𝑥

= −𝜆𝐺 (𝑥) ,

𝑥 (𝑎) = 𝑥
𝑎
, 𝑥 (𝑏) = 𝑥

𝑏
.

(1)

Those are equivalent to the following nonlinear integral equa-
tion (see [1, 2]):

𝑥 (𝑠) = 𝛼 (𝑠) + 𝜆∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝐺 (𝑥 (𝑡)) 𝑑𝑡, (2)

where 𝛼(𝑠) = (1/(𝑏 − 𝑎))(𝑥
𝑎
(𝑏 − 𝑠) + 𝑥

𝑏
(𝑠 − 𝑎)) and 𝐺 : Ω ⊂

𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏] is a twice Fréchet-differentiable operator.
𝐶[𝑎, 𝑏] is the set of all continuous functions in [𝑎, 𝑏]; 𝑘(𝑠, 𝑡) is
the Green function:

𝑘 (𝑠, 𝑡) =

{{

{{

{

(𝑏 − 𝑠) (𝑡 − 𝑎)

𝑏 − 𝑎
, 𝑡 ≤ 𝑠,

(𝑠 − 𝑎) (𝑏 − 𝑡)

𝑏 − 𝑎
, 𝑠 ≤ 𝑡.

(3)

Instead of (2), we can try to solve a nonlinear operator
equation 𝐹(𝑠) = 0, where

𝐹 : Ω ⊂ 𝐶 [𝑎, 𝑏] → 𝐶 [𝑎, 𝑏] ,

𝐹 (𝑥) (𝑠) = 𝑥 (𝑠) − 𝛼 (𝑠) − 𝜆∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝐺 (𝑥 (𝑡)) 𝑑𝑡.
(4)

Solving the nonlinear operator equation is an important issue
in the engineering and technology field as these kinds of
problems appear inmany real-world applications. Economics
[3], chemistry [4], and physics [5–8] are some of the examples
of the scientific and engineering technology areas applied to
solve these type of equations. In this study, we consider to
establish a new semilocal convergence theorem of the Jarratt
method in Banach space which is used to solve the nonlinear
operator equation

𝐹 (𝑥) = 0, (5)

where 𝐹 is defined on an open convexΩ of a Banach space𝑋
with values in a Banach space 𝑌.

There are a lot of methods of finding a solution of
equation 𝐹(𝑥) = 0. Particularly iterative methods are often
used to solve this problem (see [1, 2, 9, 10]). If we use the
famous Newton method, we can proceed as

𝑥
𝑛+1
= 𝑥
𝑛
− 𝐹

(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , (𝑛 ≥ 0) (𝑥

0
∈ Ω) . (6)

Under a reasonable hypothesis, Newton’s method is the
second-order convergence.

To improve the convergence order, many modified meth-
ods have been presented. The famous Halley’s method and
the supper-Halley method are the third-order convergence.
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References [11–22] give the convergence analysis for these
methods. Now, we consider the following Jarratt method (see
[23–25]):

𝑦
𝑛
= 𝑥
𝑛
− 𝐹

(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) ,

𝐻 (𝑥
𝑛
, 𝑦
𝑛
) =
3

2
𝐹

(𝑥
𝑛
)
−1

[𝐹

(𝑥
𝑛
+
2

3
(𝑦
𝑛
− 𝑥
𝑛
)) − 𝐹


(𝑥
𝑛
)] ,

𝑥
𝑛+1
= 𝑦
𝑛
−
1

2
𝐻 (𝑥
𝑛
, 𝑦
𝑛
) [𝐼 − 𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
) .

(7)
In this paper, we discuss the convergence of (7) for solving

nonlinear operator equations in Banach spaces and establish
a new semilocal convergence theorem under the following
condition (see [20, 21]):


𝐹

(𝑥) − 𝐹


(𝑦)

≤ 𝜔 (

𝑥 − 𝑦
) , (8)

where 𝜔 : [0, +∞) → 𝑅 is a nondecreasing continuous
function. Finally, the corresponding error estimate is also
given.

2. Main Results

In the section, we establish a new semilocal convergence
theorem and present the error estimate. Denote 𝐵(𝑥, 𝑟) =
{𝑦 ∈ 𝑋 | ‖𝑦 − 𝑥‖ < 𝑟} and 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 | ‖𝑦 − 𝑥‖ ≤ 𝑟}.
Suppose that 𝑋 and 𝑌 are the Banach spaces, Ω is an open
convex of the Banach space 𝑋, and 𝐹 : Ω ⊂ 𝑋 → 𝑌

has continuous Fréchet derivative of the third-order.𝐹(𝑥
0
)
−1

exists, for some 𝑥
0
∈ Ω, and 𝐹 satisfies

(A1) 𝑦0 − 𝑥0
 =

𝐹

(𝑥
0
)
−1

𝐹 (𝑥
0
)

≤ 𝜂;

(A2) 𝐹

(𝑥
0
)
−1

𝐹

(𝑥)

≤ 𝑀, 𝑥 ∈ Ω, 𝑀 ≥ 0;

(A3) 𝐹

(𝑥
0
)
−1

𝐹

(𝑥)

≤ 𝑁, 𝑥 ∈ Ω, 𝑁 ≥ 0;

(A4) 𝐹

(𝑥
0
)
−1

[𝐹

(𝑥) − 𝐹


(𝑦)]


≤ 𝜔 (

𝑥 − 𝑦
) ,

𝑥, 𝑦 ∈ Ω.

(9)

(A5) 𝜔(𝑧) is a nondecreasing continuous real function for
𝑧 > 0 such that 𝜔(0) ≥ 0, and there exists a positive
real number 𝑝 ∈ (0, 1] such that 𝜔(𝑡𝑧) ≤ 𝑡𝑝𝜔(𝑧) for
𝑡 ∈ [0, 1] and 𝑧 ∈ [0, +∞).

(A6) Denote 𝐴 = ∫
1

0
∫
1

0
𝑡(1 − 𝑡)(𝑠𝑡)

𝑝
𝑑𝑠 𝑑𝑡 = (1/(𝑝 +

1)(𝑝 + 2)(𝑝 + 3)), 𝐵 = (1/3) ∫1
0
∫
1

0
(2𝑠𝑡/3)

𝑝
𝑡 𝑑𝑠 𝑑𝑡 =

(2
𝑝
/3
𝑝+1
(𝑝 + 1)(𝑝 + 2)). Let 𝑎

0
= 𝑀𝜂, 𝑏

0
= 𝑁𝜂

2,
𝑐
0
= 𝜂
2
𝜔(𝜂), 𝑎

𝑛+1
= 𝑎
𝑛
𝑓
2
(𝑎
𝑛
)𝑔(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
), 𝑏
𝑛+1

=

𝑏
𝑛
𝑓
3
(𝑎
𝑛
) 𝑔
2
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
), 𝑐
𝑛+1
= 𝑓
3+𝑝
(𝑎
𝑛
)𝑔
2+𝑝
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
),

where

𝑓 (𝑥) =
2

2 − 2𝑥 − 𝑥2 − 𝑥3
,

𝑔 (𝑥, 𝑦, 𝑧) =
5𝑥
3
+ 2𝑥
4
+ 𝑥
5

8
+
𝑥𝑦

12
+ (𝐴 + 𝐵) 𝑧.

(10)

First, we get some lemmas.

Lemma 1. Suppose that𝑓(𝑥),𝑔(𝑥, 𝑦, 𝑧) are given by (10).Then

∀𝑥 ∈ (0, 1/2), 𝑓(𝑥) is increasing and 𝑓(𝑥) > 1;
∀𝑥 ∈ (0, 1/2), 𝑦 > 0, 𝑔(𝑥, 𝑦, 𝑧) is increasing;
∀𝛾 ∈ (0, 1), 𝑥 ∈ (0, 1/2), 𝑝 > 0, 𝑓(𝛾𝑥) < 𝑓(𝑥) and
𝑔(𝛾𝑥, 𝛾

2
𝑦, 𝛾
2+𝑝
𝑧) < 𝛾

2+𝑝
𝑔(𝑥, 𝑦, 𝑧).

Lemma 2. Suppose that 𝑓(𝑥), 𝑔(𝑥, 𝑦, 𝑧) are given by (10). If

𝑎
0
∈ (0,

1

2
) , 𝑓

2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) < 1, (11)

then

(i) the sequences {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
} are nonnegative and

decreasing;
(ii) (1 + (𝑎

𝑛
/2)(1 + 𝑎

𝑛
))𝑎
𝑛
< 1, ∀𝑛 ≥ 0.

Proof. (i) When 𝑛 = 1,

0 ≤ 𝑎
1
= 𝑎
0
𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑎
0
,

0 ≤ 𝑏
1
= 𝑏
0
𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑏
0
,

0 ≤ 𝑐
1
= 𝑐
0
𝑓
3+𝑝
(𝑎
0
) 𝑔
2+𝑝
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑐
0
.

(12)

Suppose 𝑎
𝑗
≤ 𝑎
𝑗−1
, 𝑏
𝑗
≤ 𝑏
𝑗−1

for 𝑗 = 1, 2, . . . , 𝑛. By Lemma 1,
𝑓 and 𝑔 are increasing; then

𝑎
𝑛+1
= 𝑎
𝑛
𝑓
2
(𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝑎
𝑛
𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑎
𝑛
,

𝑏
𝑛+1
= 𝑏
𝑛
𝑓
3
(𝑎
𝑛
) 𝑔
2
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝑏
𝑛
𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑏
𝑛
,

𝑐
𝑛+1
= 𝑐
𝑛
𝑓
3+𝑝
(𝑎
𝑛
) 𝑔
2+𝑝
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝑐
𝑛
[𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
)]
2+𝑝

≤ 𝑐
𝑛
.

(13)

(ii) By (i), {𝑎
𝑛
} is decreasing and 𝑎

0
∈ (0, 1/2). So, for all

𝑛 ≥ 0,

(1 +
𝑎
𝑛

2
(1 + 𝑎

𝑛
)) 𝑎
𝑛
≤ (1 +

𝑎
0

2
(1 + 𝑎

0
)) 𝑎
0
< 1. (14)

This completes the proof of Lemma 2.

Lemma 3. Suppose that the conditions of Lemma 2 hold.
Denote 𝛾 = 𝑎

1
/𝑎
0
= 𝑓
2
(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) < 1. Then

(i) 𝑎
𝑛
≤ 𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1

≤ 𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

𝑎
0
, 𝑏
𝑛
≤

(𝛾
(3+𝑝)

𝑛−1

)
2
𝑏
𝑛−1

≤ (𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

)
2
𝑏
0
, 𝑐
𝑛

≤

(𝛾
(3+𝑝)

𝑛−1

)
2+𝑝
𝑐
𝑛−1
≤ 𝛾
(3+𝑝)

𝑛
−1
𝑐
0
∀𝑛 ≥ 1;

(ii) 𝑓(𝑎
𝑛
)𝑔(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝛾

(3+𝑝)
𝑛
−1
𝑓(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) =

(𝛾
(3+𝑝)

𝑛

/𝑓(𝑎
0
)), ∀𝑛 ≥ 1.

Proof. First, by induction, we prove that (i) holds. Because
𝑎
1
= 𝛾𝑎
0
and 𝑓(𝑎

0
) > 1, we have

𝑏
1
= 𝑏
0
𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝛾
2
𝑏
0
,

𝑐
1
= 𝑐
0
𝑓
3+𝑝
(𝑎
0
) 𝑔
2+𝑝
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝛾
2+𝑝
𝑐
0
.

(15)
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Suppose that (i) holds for 𝑛 ≥ 1. Then we get

𝑎
𝑛+1
= 𝑎
𝑛
𝑓
2
(𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
𝑓
2
(𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
)

× 𝑔(𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
, (𝛾
(3+𝑝)

𝑛−1

)
2

𝑏
𝑛−1
, (𝛾
(3+𝑝)

𝑛−1

)
2+𝑝

𝑐
𝑛−1
)

≤ 𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
𝑓
2
(𝑎
𝑛−1
)(𝛾
(3+𝑝)

𝑛−1

)
2+𝑝

𝑔 (𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
)

= 𝛾
(3+𝑝)

𝑛

𝑎
𝑛−1
𝑓
2
(𝑎
𝑛−1
) 𝑔 (𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
) = 𝛾
(3+𝑝)

𝑛

𝑎
𝑛
,

𝑎
𝑛+1
≤ 𝛾
(3+𝑝)

𝑛

𝑎
𝑛
≤ 𝛾
(3+𝑝)

𝑛

𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1

≤ ⋅ ⋅ ⋅ ≤ 𝛾
(3+𝑝)

𝑛

𝛾
(3+𝑝)

𝑛−1

⋅ ⋅ ⋅ 𝛾
(3+𝑝)

0

𝑎
0

= 𝛾
(((3+𝑝)

𝑛+1
−1)/(2+𝑝))

𝑎
0
,

𝑏
𝑛+1
= 𝑏
𝑛
𝑓
3
(𝑎
𝑛
) 𝑔
2
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝑏
𝑛
(
𝑎
𝑛+1

𝑎
𝑛

)

2

≤ (𝛾
(3+𝑝)

𝑛

)
2

𝑏
𝑛

≤ ⋅ ⋅ ⋅ ≤ (𝛾
(3+𝑝)

𝑛

)
2

(𝛾
(3+𝑝)

𝑛−1

)
2

⋅ ⋅ ⋅ (𝛾
(3+𝑝)

0

)
2

𝑏
0

= (𝛾
(((3+𝑝)

𝑛+1
−1)/(2+𝑝))

)
2

𝑏
0
,

𝑐
𝑛+1
= 𝑐
𝑛
𝑓
3+𝑝
(𝑎
𝑛
) 𝑔
2+𝑝
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝑐
𝑛
[𝑓
2
(𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)]
2+𝑝

= 𝑐
𝑛
(
𝑎
𝑛+1

𝑎
𝑛

)

2+𝑝

≤ (𝛾
(3+𝑝)

𝑛

)
2+𝑝

𝑐
𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛾

(3+𝑝)
𝑛+1
−1
𝑐
0

(16)

and from (ii) we get

𝑓 (𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝑓 (𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

𝑎
0
)

× 𝑔 (𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

𝑎
0
, (𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

)
2

𝑏
0
, 𝛾
3
𝑛
−1
𝑐
0
)

≤ 𝛾
(3+𝑝)

𝑛
−1
𝑓 (𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) =
𝛾
(3+𝑝)

𝑛

𝑓 (𝑎
0
)
, 𝑛 ≥ 1.

(17)

This completes the proof of Lemma 3.

Lemma 4. Suppose that 𝑋 and 𝑌 are Banach spaces, Ω is
an open convex of the Banach space 𝑋, 𝐹 : Ω ⊂ 𝑋 → 𝑌

has continuous Fréchet derivative of the second-order, and the

sequences {𝑥
𝑛
}, {𝑦
𝑛
} are generated by (7). Then, for all natural

numbers 𝑛 ≥ 0, the following formula holds:

𝐹 (𝑥
𝑛+1
)

= ∫

1

0

𝐹

(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ [∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡

−
1

2
∫

1

0

𝐹

(𝑥
𝑛
+
2

3
𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡] (𝑦

𝑛
− 𝑥
𝑛
)
2

−
1

2
∫

1

0

[𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
))

−𝐹

(𝑥
𝑛
+
2

3
𝑡 (𝑦
𝑛
− 𝑥
𝑛
))] 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+
1

2
∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(18)

Proof. Consider

𝐹 (𝑦
𝑛
)

= 𝐹 (𝑦
𝑛
) − 𝐹 (𝑥

𝑛
) − 𝐹

(𝑥
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

= ∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)
2

,

𝐹

(𝑦
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

= −
1

2
[𝐹

(𝑦
𝑛
) − 𝐹

(𝑥
𝑛
)]𝐻 (𝑥

𝑛
, 𝑦
𝑛
)

× [𝐼 − 𝐻 (𝑥
𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
)

−
1

2
𝐹

(𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) [𝐼 − 𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
)

= −
1

2
∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+
1

2
∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

−
1

2
∫

1

0

𝐹

(𝑥
𝑛
+
2

3
𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)
2

+
1

2
∫

1

0

𝐹

(𝑥
𝑛
+
2

3
𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) ,
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𝐹 (𝑥
𝑛+1
)

= 𝐹 (𝑥
𝑛+1
) − 𝐹 (𝑦

𝑛
) − 𝐹

(𝑦
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

+ 𝐹 (𝑦
𝑛
) + 𝐹

(𝑦
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

= ∫

1

0

𝐹

(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ [∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡

−
1

2
∫

1

0

𝐹

(𝑥
𝑛
+
2

3
𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡] (𝑦

𝑛
− 𝑥
𝑛
)
2

−
1

2
∫

1

0

[𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
))

− 𝐹

(𝑥
𝑛
+
2

3
𝑡 (𝑦
𝑛
− 𝑥
𝑛
))] 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+
1

2
∫

1

0

𝐹

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(19)

This completes the proof of Lemma 4.
By (A1)–(A6), (10), and (11), if 𝑎

0
< 1/2, then

𝐻 (𝑥0, 𝑦0)
 ≤ 𝑀

𝑦0 − 𝑥0


= 𝑀

𝐹

(𝑥
0
)
−1

𝐹

(𝑥
0
)

𝑦0 − 𝑥0

 ≤ 𝑎0,

𝑥1 − 𝑦0
 ≤
1

2

𝐻 (𝑥0, 𝑦0)

𝐼 − 𝐻 (𝑥0, 𝑦0)


𝑦0 − 𝑥0



≤
𝑎
0

2
(1 + 𝑎

0
)
𝑦0 − 𝑥0

 ,

𝑥1 − 𝑥0
 ≤
𝑥1 − 𝑦0

 +
𝑦0 − 𝑥0



≤ [1 +
𝑎
0

2
(1 + 𝑎

0
)]
𝑦0 − 𝑥0

 < 𝑅𝜂,

(20)

where𝑅 = [1+(𝑎
0
/2)(1+𝑎

0
)](1/(1−𝑓(𝑎

0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
))); hence,

𝑥
1
, 𝑦
0
∈ 𝑆(𝑥
0
, 𝑅𝜂). Consider


𝐹

(𝑥
0
)
−1

𝐹

(𝑥
1
) − 𝐼



≤ 𝑀
𝑥1 − 𝑥0

 ≤ [1 +
𝑎
0

2
(1 + 𝑎

0
)] 𝑎
0
< 1.

(21)

By Banach lemma, 𝐹(𝑥
1
)
−1 exists, and


𝐹

(𝑥
1
)
−1

𝐹

(𝑥
0
)

≤ 𝑓 (𝑎

0
) = 𝑓 (𝑎

0
)

𝐹

(𝑥
0
)
−1

𝐹

(𝑥
0
)

.

(22)

By Lemma 4, we have

𝐹

(𝑥
0
)
−1

× ∫

1

0

𝐹

(𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
)) (1 − 𝑡) 𝑑𝑡

−
1

2
𝐹

(𝑥
0
)
−1

× ∫

1

0

𝐹

(𝑥
0
+
2

3
𝑡 (𝑦
0
− 𝑥
0
)) 𝑑𝑡



=


𝐹

(𝑥
0
)
−1

∫

1

0

𝐹

[ (𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
))

−𝐹

(𝑥
0
)] (1 − 𝑡) 𝑑𝑡

−
1

2
𝐹

(𝑥
0
)
−1

× ∫

1

0

[𝐹

(𝑥
0
+
2

3
𝑡 (𝑦
0
− 𝑥
0
)) − 𝐹


(𝑥
0
)] 𝑑𝑡



=


𝐹

(𝑥
0
)
−1

∬

1

0

𝐹

[ (𝑥
0
+ 𝑠𝑡 (𝑦

0
− 𝑥
0
))

− 𝐹

(𝑥
0
)] 𝑑𝑠

× 𝑡 (1 − 𝑡) 𝑑𝑡 (𝑦
0
− 𝑥
0
)

−
1

3
𝐹

(𝑥
0
)
−1

×∬

1

0

[𝐹

(𝑥
0
+
2

3
𝑠𝑡 (𝑦
0
− 𝑥
0
))

−𝐹

(𝑥
0
) ] 𝑑𝑠 𝑡 𝑑𝑡 (𝑦

0
− 𝑥
0
)



≤ (𝐴 + 𝐵) 𝜔 (𝜂)
(𝑦0 − 𝑥0)

 ,


𝐹

(𝑥
0
)
−1

𝐹 (𝑥
1
)


≤
𝑀

2

𝑥1 − 𝑦0

2

+
𝑁

12
𝑎
0

𝑦0 − 𝑥0

3

+
𝑀

2
𝑎
2

0

𝑦0 − 𝑥0

2

+ (𝐴 + 𝐵) 𝜔 (𝜂)
𝑦0 − 𝑥0


3

,

𝑦1 − 𝑥1


≤

𝐹

(𝑥
1
)
−1

𝐹

(𝑥
0
)



𝐹

(𝑥
0
)
−1

𝐹 (𝑥
1
)


≤ 𝑓 (𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
)
𝑦0 − 𝑥0

 .

(23)

Hence,
𝐻 (𝑥1, 𝑦1)

 ≤ 𝑀

𝐹

(𝑥
1
)
−1

𝐹

(𝑥
0
)

𝑦1 − 𝑥1



≤ 𝑀𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
)
𝑦0 − 𝑥0

 = 𝑎1,
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𝑁

𝐹

(𝑥
1
)
−1

𝐹

(𝑥
0
)

𝑦1 − 𝑥1


2

≤ 𝑁𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
)
𝑦0 − 𝑥0


2

= 𝑏
1
,


𝐹

(𝑥
1
)
−1

𝐹

(𝑥
0
)

𝜔 (
𝑦1 − 𝑥1

)
𝑦1 − 𝑥1


2

≤ 𝑓
3+𝑝
(𝑎
0
) 𝑔
2+𝑝
(𝑎
0
, 𝑏
0
, 𝑐
0
) 𝜔 (𝜂)

𝑦0 − 𝑥0

2

= 𝑐
1
.

(24)

Hence,

𝑥2 − 𝑦1
 ≤
1

2
𝑎
1
(1 + 𝑎

1
)
𝑦1 − 𝑥1

 ,

𝑥2 − 𝑥1
 ≤
𝑥2 − 𝑦1

 +
𝑦1 − 𝑥1



≤ (1 +
1

2
𝑎
1
(1 + 𝑎

1
))
𝑦1 − 𝑥1

 ,

𝑥2 − 𝑥0
 ≤
𝑥2 − 𝑥1

 +
𝑥1 − 𝑥0



≤ [1 +
𝑎
0

2
(1 + 𝑎

0
)] [𝑓 (𝑎

0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) + 1]

×
𝑦0 − 𝑥0

 < 𝑅𝜂.

(25)

By


𝐹

(𝑥
1
)
−1

𝐹

(𝑥
2
) − 𝐼


≤ 𝑀


𝐹

(𝑥
1
)
−1

𝐹

(𝑥
0
)

𝑥2 − 𝑥1



≤ 𝑎
1
[1 +

𝑎
1

2
(1 + 𝑎

1
)] < 1,

(26)

hence 𝐹

(𝑥
2
)
−1
𝐹

(𝑥
0
) exists, and ‖𝐹


(𝑥
2
)
−1
𝐹

(𝑥
0
)‖ ≤

𝑓(𝑎
1
)‖𝐹

(𝑥
1
)
−1
𝐹

(𝑥
0
)‖. By induction, we can prove that the

following Lemma 5 holds.

Lemma 5. Under the hypotheses of Lemma 2, the following
items are true for all 𝑛 ≥ 1:

(I) 𝐹(𝑥
𝑛
)
−1
𝐹

(𝑥
0
) exists and ‖𝐹


(𝑥
𝑛
)
−1
𝐹

(𝑥
0
)‖ ≤

𝑓(𝑎
𝑛−1
)‖𝐹

(𝑥
𝑛−1
)
−1
𝐹

(𝑥
0
)‖;

(II) ‖𝑦
𝑛
− 𝑥
𝑛
‖ ≤ 𝑓(𝑎

𝑛−1
)𝑔(𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
)‖𝑦
𝑛−1
− 𝑥
𝑛−1
‖;

(III) 𝐻(𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝑀‖𝐹


(𝑥
𝑛
)
−1
𝐹

(𝑥
0
)‖‖𝑦
𝑛
− 𝑥
𝑛
‖ ≤ 𝑎
𝑛
;

(IV) 𝑁‖𝐹(𝑥
𝑛
)
−1
𝐹

(𝑥
0
)‖‖𝑦
𝑛
− 𝑥
𝑛
‖
2
≤ 𝑏
𝑛
;

(V) ‖𝐹(𝑥
𝑛
)
−1
𝐹

(𝑥
0
)‖𝜔(‖𝑦

𝑛
− 𝑥
𝑛
‖)‖𝑦
𝑛
− 𝑥
𝑛
‖
2
≤ 𝑐
𝑛
;

(VI) ‖𝑥
𝑛+1
− 𝑦
𝑛
‖ ≤ (𝑎

𝑛
/2)(1 + 𝑎

𝑛
)‖𝑦
𝑛
− 𝑥
𝑛
‖;

(VII) ‖𝑥
𝑛+1
− 𝑥
𝑛
‖ ≤ [1 + (𝑎

𝑛
/2)(1 + 𝑎

𝑛
)]‖𝑦
𝑛
− 𝑥
𝑛
‖;

(VIII) ‖𝑥
𝑛+1
−𝑥
0
‖ ≤ 𝑅𝜂, where𝑅 = [1+(𝑎

0
/2)(1+𝑎

0
)] (1/(1−

𝑓(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
))).

Theorem 6. Let 𝑋 and 𝑌 be two Banach spaces and 𝐹 : Ω ⊂
𝑋 → 𝑌 has continuous Fréchet derivative of the third-order on
a nonempty open convexΩ. One supposes that Γ

0
= 𝐹

(𝑥
0
)
−1
∈

𝐿(𝑌,𝑋) exists for some 𝑥
0
∈ Ω and conditions (A1)–(A6) and

(11) hold. If 𝑆(𝑥
0
, 𝑅𝜂) ⊂ Ω, then the sequence {𝑥

𝑛
} generated

by (7) is well defined and converges to a unique solution 𝑥∗ of
(2) in 𝑆(𝑥

0
, (2/𝑀)−𝑅𝜂) ∩Ω. Furthermore, the following error

estimate is obtained:
𝑥
∗
− 𝑥
𝑛



≤ [1 +
𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

𝑎
0

2
(1 + 𝛾

(((3+𝑝)
𝑛
−1)/(2+𝑝))

𝑎
0
)]

×
1

1 − 𝛾(3+𝑝)
𝑛

Δ
𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

Δ
𝑛
𝜂,

(27)

where 𝛾 = 𝑓2(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) = 𝑎
1
/𝑎
0
and Δ = 1/𝑓(𝑎

0
), 𝑅 =

(1 + (𝑎
0
/2)(1 + 𝑎

0
)) (1/(1 − 𝛾Δ)).

Proof. Firstly, we prove that the sequence {𝑥
𝑛
} is a Cauchy

one. From (II) and by Lemma 3, we have

𝑦𝑛 − 𝑥𝑛
 ≤ 𝑓 (𝑎𝑛−1) 𝑔 (𝑎𝑛−1, 𝑏𝑛−1, 𝑐𝑛−1)

𝑦𝑛−1 − 𝑥𝑛−1


≤ ⋅ ⋅ ⋅ ≤ (

𝑛−1

∏

𝑖=0

𝑓 (𝑎
𝑖
) 𝑔 (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
)) 𝜂

≤ (

𝑛−1

∏

𝑖=0

𝛾
(3+𝑝)

𝑖

Δ)𝜂 = 𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

Δ
𝑛
𝜂.

(28)

For 𝑛 ≥ 0,𝑚 ≥ 1,
𝑥𝑛+𝑚 − 𝑥𝑛



≤
𝑥𝑛+𝑚 − 𝑥𝑛+𝑚−1

 +
𝑥𝑛+𝑚−1 − 𝑥𝑛+𝑚−2



+ ⋅ ⋅ ⋅ +
𝑥𝑛+1 − 𝑥𝑛



≤ [1 +
𝑎
𝑛

2
(1 + 𝑎

𝑛
)]

× (
𝑦𝑛+𝑚−1 − 𝑥𝑛+𝑚−1

 + ⋅ ⋅ ⋅ +
𝑦𝑛+1 − 𝑥𝑛

)

≤ [1 +
𝑎
𝑛

2
(1 + 𝑎

𝑛
)]

× (𝛾
(((3+𝑝)

𝑛+𝑚−1
−1)/(2+𝑝))

Δ
𝑛+𝑚−1

+ ⋅ ⋅ ⋅ + 𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

Δ
𝑛
) 𝜂

= [1 +
𝑎
𝑛

2
(1 + 𝑎

𝑛
)] 𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

Δ
𝑛
𝜂

× (𝛾
((3+𝑝)

𝑛
[(3+𝑝)

𝑚−1
−1]/(2+𝑝))

Δ
𝑚−1
+ ⋅ ⋅ ⋅ + 1) .

(29)

By the Bernoulli inequality (1+𝑥)𝑘 −1 > 𝑘𝑥, so (3+𝑝)𝑘 −1 >
𝑘(2 + 𝑝). Hence, we have

𝑥𝑛+𝑚 − 𝑥𝑛


< [1 +
𝑎
𝑛

2
(1 + 𝑎

𝑛
)]

1

1 − 𝛾(3+𝑝)
𝑛

Δ
𝛾
(((3+𝑝)

𝑛
−1)/(2+𝑝))

Δ
𝑛
𝜂.

(30)
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Hence, {𝑥
𝑛
} is a Cauchy sequence and 𝑥∗ = lim

𝑛→∞
𝑥
𝑛
.

Obviously, 𝑥
𝑚
∈ 𝐵(𝑥

0
, 𝑅𝜂), for all 𝑚 ≥ 1, as if 𝑛 = 0 in (30);

we obtain

𝑥𝑚 − 𝑥0
 < (1 +

𝑎
0

2
(1 + 𝑎

0
))

1

1 − 𝛾Δ
𝜂 = 𝑅𝜂. (31)

Following a similar procedure, we have 𝑦
𝑛
∈ 𝐵(𝑥

0
, 𝑅𝜂), for all

𝑛 ≥ 0.
Now, let 𝑛 → ∞ in (28). It follows that ‖𝐹(𝑥

𝑛
)
−1

𝐹(𝑥
𝑛
)‖ → 0. Besides ‖𝐹(𝑥

𝑛
)‖ → 0, since ‖𝐹(𝑥

𝑛
)‖ ≤ ‖𝐹


(𝑥
𝑛
)‖

‖𝐹

(𝑥
𝑛
)
−1
𝐹(𝑥
𝑛
)‖ and {‖𝐹(𝑥

𝑛
)‖} is a bounded sequence, there-

fore 𝐹(𝑥∗) = 0 by the continuity of 𝐹 in 𝑆(𝑥
0
, 𝑅𝜂).

By letting𝑚 → ∞ in (30), we obtain error estimate (28).
To show uniqueness, let us assume that there exists a

second solution 𝑦∗ of (2) in 𝑆(𝑥
0
, (2/𝑀) − 𝑅𝜂) ∩ Ω. Then

∫

1

0


𝐹

(𝑥
0
)
−1

[𝐹

(𝑥
∗
+ 𝑡 (𝑦

∗
− 𝑥
∗
)) − 𝐹


(𝑥
0
)]

𝑑𝑡

≤ 𝑀∫

1

0

𝑥
∗
+ 𝑡 (𝑦

∗
− 𝑥
∗
) − 𝑥
0

 𝑑𝑡

≤ 𝑀∫

1

0

[(1 − 𝑡)
𝑥
∗
− 𝑥
0

 + 𝑡
𝑦
∗
− 𝑥
0

] 𝑑𝑡

<
𝑀

2
(𝑅𝜂 +

2

𝑀
− 𝑅𝜂) = 1.

(32)

By Banach lemma, we can obtain that the inverse of the linear
operator ∫1

0
𝐹

(𝑥
∗
+ 𝑡(𝑦
∗
− 𝑥
∗
))𝑑𝑡 exists and

∫

1

0

𝐹

(𝑥
∗
+ 𝑡 (𝑦

∗
− 𝑥
∗
)) 𝑑𝑡 (𝑦

∗
− 𝑥
∗
) = 𝐹 (𝑦

∗
) − 𝐹 (𝑥

∗
) = 0.

(33)

We get that 𝑥∗ = 𝑦∗.
This completes the proof of Theorem 6.

3. Application

In this section, we apply the convergence theorem and show
three numerical examples.

Example 1. Consider the root of the equation 𝐹(𝑥) = 𝑥10/3 +
𝑥
7/2
− 𝑥 − 1 = 0 on 𝑥 ∈ (0, +∞). Then, we easily get that

𝐹

(𝑥) =

280

27
𝑥
1/3
+
105

8
𝑥
1/2 (34)

does not satisfy (𝐾, 𝑝) Hölder condition

𝐹

(𝑥) − 𝐹


(𝑦)

≤ 𝐾

𝑥 − 𝑦

𝑝 (35)

because, for all 𝑝 ∈ (0, 1],

sup
𝑥,𝑦∈(0,+∞)

(280/27)
𝑥 − 𝑦


1/3

+ (105/8)
𝑥 − 𝑦


1/2

𝑥 − 𝑦

𝑝

= +∞.

(36)

Let

𝜔 (𝑧) =
280

27
𝑧
1/3
+
105

8
𝑧
1/2
, 𝑧 > 0; (37)

then 𝜔(𝑡𝑧) ≤ 𝑡1/3𝜔(𝑧) for 𝑡 ∈ [0, 1] and 𝑧 ∈ [0, +∞);

𝐹

(𝑥) − 𝐹


(𝑦)

≤ 𝜔
𝑥 − 𝑦

 . (38)

Let us consider a particular case of (2) from the operator
given by the following nonlinear integral equation of mixed
Hammerstein type (see [26]):

𝑥 (𝑠) = 𝛼 (𝑠) −

𝑚

∑

𝑖=1

∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝜑
𝑖
(𝑥 (𝑡)) 𝑑𝑡, (39)

where −∞ < 𝑎 < 𝑏 < +∞, 𝑢, 𝜑
𝑖
, for 𝑖 = 1, 2, . . . , 𝑚, are

known functions and 𝑥 is a solution to be determined. If 𝜑
is (𝐿
𝑖
, 𝑝
𝑖
) Hölder continuous in Ω, for 𝑖 = 1, 2, . . . , 𝑚, the

corresponding operator 𝐹 : Ω ⊆ 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏],

[𝐹 (𝑥)] (𝑠) = 𝑥 (𝑠) +

𝑚

∑

𝑖=1

∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝜑
𝑖
(𝑥 (𝑡)) 𝑑𝑡 − 𝛼 (𝑠) ,

𝑠 ∈ [𝑎, 𝑏] ,

(40)

does not satisfy (𝐾, 𝑝) Hölder condition; for instance, the
max-norm is considered. In this case,


𝐹

(𝑥) − 𝐹


(𝑦)

≤

𝑚

∑

𝑖=1

𝐿
𝑖

𝑥 − 𝑦

𝑝𝑖 ,

𝐿
𝑖
> 0, 𝑝

𝑖
∈ (0, 1] , 𝑥, 𝑦 ∈ Ω.

(41)

To solve this type of equations, we can consider

𝐹

(𝑥) − 𝐹


(𝑦)

≤ 𝜔 (

𝑥 − 𝑦
) , 𝑥, 𝑦 ∈ Ω, (42)

where 𝜔(𝑧) = Σ𝑚
𝑖=1
𝐿
𝑖
𝑧
𝑝𝑖 satisfy 𝜔(𝑡𝑧) ≤ 𝑡𝑞𝜔(𝑧), where 𝑞 =

min{𝑝
𝑖
, 𝑝
2
, . . . , 𝑝

𝑚
}.

Remark 7. Observe that if 𝐹 is Lipschitz continuous in Ω,
we can choose𝜔(𝑧) = 𝐾𝑧,𝐾 > 0, so that Jarratt’s method is of
𝑅-order, at least four order. If 𝐹 is (𝐿, 𝑝)Hölder continuous
in Ω, then we can choose 𝜔(𝑧) = 𝐿𝑧𝑝, 𝐿 < 0, 𝑝 ∈ (0, 1], and
Jarratt’s method is of 𝑅-order, at least 3 + 𝑝.

Example 2. Consider the case as follows:

𝑥 (𝑠) = 1 +
1

32
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
16/5
𝑑𝑡

+
1

30
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
10/3
𝑑𝑡,

(43)

where the space is𝑋 = 𝐶[0, 1] with the norm

‖𝑥‖ = max
0≤𝑠≤1

|𝑥 (𝑠)| ,

𝑘 (𝑠, 𝑡) = {
𝑡 (1 − 𝑠) , 𝑡 ≤ 𝑠,

𝑠 (1 − 𝑡) , 𝑠 ≤ 𝑡.

(44)
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This equation arises in the theory of the radiative transfer
and neutron transport and in the kinetic theory of gasses. Let
us define the operator 𝐹 on𝑋 by

𝐹 (𝑥) = 𝑥 (𝑠) −
1

32
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
16/5
𝑑𝑡

−
1

30
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
10/3
𝑑𝑡 − 1.

(45)

The first, the second, and the third derivatives of𝐹 are defined
by

𝐹

(𝑥) 𝑢 (𝑠) = 𝑢 (𝑠) −

1

10
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
11/5
𝑢 (𝑡) 𝑑𝑡

−
1

9
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
7/3
𝑢 (𝑡) 𝑑𝑡, 𝑢 ∈ 𝑋,

𝐹

(𝑥) (𝑢V) (𝑠) = −

11

50
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
6/5
𝑢 (𝑡) V (𝑡) 𝑑𝑡

−
7

27
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)

4

3 𝑢 (𝑡) V (𝑡) 𝑑𝑡,

𝑢 ∈ 𝑋,

𝐹

(𝑥) (𝑢V𝑤) (𝑠) = −

66

250
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
1/5
𝑢 (𝑡) V (𝑡) 𝑤 (𝑡) 𝑑𝑡

−
28

81
∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
1/3
𝑢 (𝑡) V (𝑡) 𝑤 (𝑡) 𝑑𝑡,

(46)

and we have

[𝐹

(𝑥) − 𝐹


(𝑦)] 𝑢V𝑤



≤
66

250
max
𝑠∈[0,1]

× ∫

1

0

𝑘 (𝑠, 𝑡)

(𝑥 (𝑡)
1/5
− 𝑦 (𝑡)

1/5
) 𝑢 (𝑡) V (𝑡) 𝑤 (𝑡)


𝑑𝑡

+
28

81
max
𝑠∈[0,1]

× ∫

1

0

𝑘 (𝑠, 𝑡)

(𝑥 (𝑡)
1/3
− 𝑦 (𝑡)

1/3
) 𝑢 (𝑡) V (𝑡) 𝑤 (𝑡)


𝑑𝑡

≤
66

250
×
1

8

𝑥 − 𝑦

1/5

‖𝑢V𝑤‖

+
28

81
×
1

8

𝑥 − 𝑦

1/3

‖𝑢V𝑤‖ .

(47)

To apply Theorem 6, we choose 𝑥
0
= 𝑥
0
(𝑠) = 1 and we look

for a domain in the form

Ω = 𝐵 (1, 2) ⊆ 𝐶 ([0, 1]) . (48)

In this case, we have


𝐼 − 𝐹

(𝑥
0
)

≤
19

720
< 1 (49)

and from the Banach lemma, we obtain


𝐹

(𝑥
0
)
−1
≤
720

701
,


𝐹

(𝑥
0
)
−1

𝐹 (𝑥
0
)

≤
720

701
×
1

8
(
1

32
+
1

30
) = 𝜂 =

93

11216
,

𝑀 = 0.148766 ⋅ ⋅ ⋅ , 𝑁 = 0.0948511 ⋅ ⋅ ⋅ ,

𝜔 (𝑧) =
33

100𝑧1/5
+

7

162𝑧1/3
, 𝑝 =

1

5
.

(50)

Then 𝑎
0
= 𝑀𝜂 = 0.00123353 < 1/2, 𝑏

0
= 6.52127 × 10

−6, 𝑐
0
=

1.47132 × 10
−6, 𝛾 = 𝑓2(𝑎

0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) = 3.48167 × 10

−7
< 1,

Δ = 0.998766 ⋅ ⋅ ⋅ , and 𝑅 = 1.00062 ⋅ ⋅ ⋅ . This means that the
hypothesis of Theorem 6 is satisfied. Then, the error bound
becomes

𝑥
∗
− 𝑥
𝑛



≤ [1 +
𝛾
(((3.2)

𝑛
−1)/2.2)

𝑎
0

2
(1 + 𝛾

(((3.2)
𝑛
−1)/2.2)

𝑎
0
)]

×
1

1 − 𝛾(3.2)
𝑛

Δ
𝛾
(((3.2)

𝑛
−1)/2.2)

Δ
𝑛
𝜂.

(51)

For 𝑛 = 1, 2, 3, 4, we get

𝑥1 − 𝑥
∗ ≤ 4.28944 × 10

−10
,

𝑥2 − 𝑥
∗ ≤ 5.76451 × 10

−16
,

𝑥3 − 𝑥
∗ ≤ 6.63209 × 10

−23
,

𝑥4 − 𝑥
∗ ≤ 2.86064 × 10

−32
.

(52)

Example 3. Let us consider the system of equations 𝐹(𝑢, V) =
0, where

𝐹 (𝑢, V) = (𝑢7/2 − 𝑢V − V10/3 + 1, 𝑢7/2 + 𝑢V − V10/3 − 1)
𝑇

.

(53)

Then, we have

𝐹

(𝑢, V) = (

7

2
𝑢
5/2
− V −

10

3
V7/3 − 𝑢

7

2
𝑢
5/2
+ V −

10

3
V7/3 + 𝑢

) ,
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𝐹

(𝑢, V)−1 =

1

(14/2) 𝑢7/2 + (20/3) V10/3

×(

−
10

3
V
7

3 + 𝑢
10

3
V
7

3 + 𝑢

−
7

2
𝑢

5

2 − V
7

2
𝑢

5

2 − V,

) ,

𝐹

(𝑢, V) =

(
(
(

(

35

4
𝑢
3/2

−1

−1 −
70

9
V4/3

35

4
𝑢
3/2

1

1 −
70

9
V4/3.

)
)
)

)

,

𝐹

(𝑢, V) (𝑠, 𝑡)3 = (

105

8
𝑢
1/2 280

27
V1/3

105

8
𝑢
1/2 280

27
V1/3
)(

𝑠
3

𝑡
3) .

(54)

Now, we choose 𝑥
0
= (𝑢
0
, V
0
) = (1.5, 1.5) and Ω = {𝑥 |

‖𝑥 − 𝑥
0
‖ ≤ 1.5}. We take the max-norm in 𝑅2 and the norm

‖𝐴‖ =max{|𝑎
11
|+|𝑎
12
|, |𝑎
21
|+|𝑎
22
|} for𝐴 = ( 𝑎11 𝑎12𝑎21 𝑎22

).We define
the norm of a bilinear operator 𝐵 on 𝑅2 by

‖𝐵‖ = sup
‖𝑢‖=1

max
𝑖

2

∑

𝑗=1



2

∑

𝑘=1

𝑏
𝑗𝑘

𝑖
𝑢
𝑘



, (55)

where 𝑢 = (𝑢
1
, 𝑢
2
)
𝑇 and 𝐵 = (

𝑏
11

1
𝑏
12

1

𝑏
21

1
𝑏
22

1

𝑏
11

2
𝑏
12

2

𝑏
21

2
𝑏
22

2

).

Then, we get the following results: 𝜂 = ‖𝐹(𝑥
0
)
−1
𝐹(𝑥
0
)‖ =

0.09598 ⋅ ⋅ ⋅ ,𝑀 = 9.20456 ⋅ ⋅ ⋅ ,𝑁 = 10.7635 ⋅ ⋅ ⋅ , and 𝑝 = 1/3.
We get that the hypotheses of Theorem 6 are satisfied.
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The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear
equations. It is proved that the proposed method possesses higher R-order of convergence using the same number of functional
evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme.

1. Introduction

Many problems arising in diverse disciplines of mathematical
sciences can be described by a nonlinear equation of the
following form (see, e.g., [1]):

𝑓 (𝑥) = 0, (1)

where 𝑓 : 𝐷 ⊆ R → R is a sufficiently differentiable
function in a neighborhood 𝐷 of a simple zero 𝛼 of (1). If
we are interested in approximating the root 𝛼, we can do it
by means of an iterative fixed-point method in the following
form:

𝑥
𝑘+1
= 𝜓 (𝑥

𝑘
) , 𝑘 ≥ 0, (2)

provided that the starting point 𝑥
0
is given.

In this work, we are concerned with the fixed-point
methods that generate sequences presumably convergent
to the true solution of a given single smooth equation.
These schemes can be divided into one-point and multipoint
schemes. We remark that the one-point methods can possess
high order by using higher derivatives of the function, which
is expensive from a computational point of view. On the other
hand, the multipoint methods are allowing the user not to
waste information that had already been used.This approach
provides the construction of efficient iterative root-finding
methods [2].

In such circumstance, special attention is devoted to
multipoint methods withmemory that use already computed

information to considerably increase convergence rate with-
out additional computational costs. This would be the focus
of this paper.

Traub in [2] proposed the following method with mem-
ory (TM):

𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) , 𝛽

𝑘
= −

1

𝑓 [𝑥
𝑘
, 𝑥
𝑘−1
]
, 𝑘 = 0, 1, 2, . . . ,

𝑥
𝑘+1
= 𝑥
𝑘
−
𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
,

(3)

with the order of convergence 1 + √2.
The iterative methods with memory can improve the

order of convergence of thewithoutmemorymethodwithout
any additional functional calculations, and this results in a
higher computational efficiency index. We remark that it is
assumed that an initial approximation 𝑥

0
close enough to the

sought simple zero and 𝛽
0
are given for iterative methods of

type (3).
Recently, authors in [3] designed an approach to make

derivative-free families with low complexity out of optimal
methods. In fact, they conjectured that every time that
one applies the approximation of the derivative 𝑓(𝑥

𝑛
) ≈

𝑓[𝑥
𝑛
, 𝑤
𝑛
], with 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
)
𝑙, on an optimal order 2𝑞,

we will need 𝑙 ≥ 𝑞 for preserving the order of convergence.
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For instance, choosing the well-known optimal two-step
family of King (KM) [4],

𝑦
𝑘
= 𝑥
𝑘
−
𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)
, 𝑘 = 0, 1, 2, . . . ,

𝑥
𝑘+1
= 𝑦
𝑘
−
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
) + 𝛾𝑓 (𝑦

𝑘
)

𝑓 (𝑥
𝑘
) + (𝛾 − 2) 𝑓 (𝑦

𝑘
)
, 𝛾 ∈ R,

(4)

and the conjecture of Cordero-Torregrosa, one may propose
the following method (DKM):

𝑦
𝑘
= 𝑥
𝑘
−
𝑓 (𝑥
𝑘
)

FD
, 𝑘 = 0, 1, 2, . . . ,

𝑥
𝑘+1
= 𝑦
𝑘
−
𝑓 (𝑦
𝑘
)

FD

𝑓 (𝑥
𝑘
) + 𝛾𝑓 (𝑦

𝑘
)

𝑓 (𝑥
𝑘
) + (𝛾 − 2) 𝑓 (𝑦

𝑘
)
, 𝛾 ∈ R,

(5)

wherein

FD =
𝑓 (𝑥
𝑘
) − 𝑓 (𝑤

𝑘
)

𝑥
𝑘
− 𝑤
𝑘

, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
)
2

,

𝛽 ∈ R \ {0} .

(6)

In this work, we propose a two-stepmethodwithmemory
possessing a high efficiency index according to the well-
known family of King’s methods (5).

Our inspiration andmotivation for constructing a higher-
order method are linked in a direct manner with the fun-
damental concept of numerical analysis that any numerical
method should give as accurate as possible output results with
minimal computational cost. To state the matter differently,
it is necessary to pursue methods of higher computational
efficiency.

For more background concerning this topic, one may
refer to [5, 6].

The paper is organized as follows. In Section 2, the
aim of this paper is presented by contributing an iterative
method with memory based on (5) for solving nonlinear
equations. The proposed scheme is an extension over (4)
and has a simple structure with an increased computational
efficiency. In Section 3, we compare the theoretical results
by applying the definition of efficiency index and further
supports are furnished whereas numerical reports are stated.
Some concluding remarks will be drawn in Section 4 to end
the paper.

2. A New Method with Memory

In this section, we propose the following iterative method
with memory based on (5):

𝑦
𝑘
= 𝑥
𝑘
−
𝑓 (𝑥
𝑘
)

FD
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
)
2

, 𝑘 = 0, 1, 2, . . . ,

𝑥
𝑘+1
= 𝑦
𝑘
−
𝑓 (𝑦
𝑘
)

FD

𝑓 (𝑥
𝑘
) + 𝛾𝑓 (𝑦

𝑘
)

𝑓 (𝑥
𝑘
) + (𝛾 − 2) 𝑓 (𝑦

𝑘
)
, 𝛾 = −

1

2
,

(7)

wherein the self-accelerating parameter is 𝛽
𝑘
. The error

equation of (5) is (𝛾 = −1/2)

𝑒
𝑘+1
= −𝑐
2
(𝑓

(𝛼)
2
𝛽𝑐
2
+ 𝑐
3
) 𝑒
4

𝑘
+ 𝑂 (𝑒

5

𝑘
) , (8)

where 𝑐
𝑗
= (1/𝑗!)(𝑓

(𝑗)
(𝛼)/𝑓


(𝛼)). We now must find a way so

as to vanish the asymptotic error constant 𝜂 = −𝑐
2
(𝑓

(𝛼)
2
𝛽𝑐
2
+

𝑐
3
).
Toward this goal, one can increase the 𝑅-order by consid-

ering the following substitution:

𝛽 = −
𝑐
3

𝑓 (𝛼)
2
𝑐
2

. (9)

Since the zero is not known, relation (9) cannot be used in
its exact form and we must approximate it recursively. This
builds a variant with memory for King’s family by using

𝛽
𝑘
≈ −

𝑐
3

𝑓


(𝛼)
2
𝑐
2

, (10)

where 𝑐
𝑗
≈ 𝑐
𝑗
. Now if we consider 𝑁

3
(𝑡) to be Newton’s

interpolation polynomial of third degree set through four
available approximations 𝑥

𝑘
, 𝑥
𝑘−1
, 𝑦
𝑘−1
, 𝑤
𝑘−1

at the end of
each cycle, we can propose the following new method with
memory:

𝛽
𝑘
= −

𝑁


3
(𝑥
𝑘
)

3𝑁
3
(𝑥
𝑘
)
2

𝑁
3
(𝑥
𝑘
)
,

𝑦
𝑘
= 𝑥
𝑘
−
𝑓 (𝑥
𝑘
)

FD
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
)
2

,

𝑘 = 0, 1, 2, . . . ,

𝑥
𝑘+1
= 𝑦
𝑘
−
𝑓 (𝑦
𝑘
)

FD

𝑓 (𝑥
𝑘
) − 1/2𝑓 (𝑦

𝑘
)

𝑓 (𝑥
𝑘
) − 5/2𝑓 (𝑦

𝑘
)
.

(11)

Note that, for example, we have the following formulation
for the interpolating polynomial:

𝑁


3
(𝑥
𝑘
) = [

𝑑

𝑑𝑡
𝑁
3
(𝑡)]
𝑡=𝑥𝑘

= 𝑓 [𝑥
𝑘
, 𝑥
𝑘−1
] + 𝑓 [𝑥

𝑘
, 𝑥
𝑘−1
, 𝑦
𝑘−1
] (𝑥
𝑘
− 𝑥
𝑘−1
)

+ 𝑓 [𝑥
𝑘
, 𝑥
𝑘−1
, 𝑦
𝑘−1
, 𝑤
𝑘−1
] (𝑥
𝑘
− 𝑥
𝑘−1
) (𝑥
𝑘
− 𝑦
𝑘−1
) .

(12)

Acceleration in convergence for (11) is based on the use of
a variation of one free nonzero parameter in each iterative
step. This parameter is calculated using information from
the current and previous iteration(s) so that the developed
method may be regarded as method with memory according
to Traub’s classification [2].

We are at the time to write about the theoretical aspects
of our proposed solver (11).



The Scientific World Journal 3

Theorem 1. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxima-
tion𝑥

0
is sufficiently close to𝛼, then, the𝑅-order of convergence

of the two-step method (11) with memory is at least 4.23607.

Proof. Let {𝑥
𝑘
} be a sequence of approximations generated

by an iterative method. The error relations with the self-
accelerating parameter 𝛽 = 𝛽

𝑘
for (11) are in what follows:

𝑒
𝑘
= 𝑤
𝑘
− 𝛼 ∼ 𝑐

𝑘,1
𝑒
𝑘
, (13)

𝑒
𝑘
= 𝑦
𝑘
− 𝛼 ∼ 𝑐

𝑘,2
𝑒
2

𝑘
, (14)

𝑒
𝑘+1
= 𝑥
𝑘+1
− 𝛼 ∼ 𝑐

𝑘,4
𝑒
4

𝑘
. (15)

Using a symbolic computations, we attain that

−𝑐
2
(𝑓

(𝛼)
2
𝛽𝑐
2
+ 𝑐
3
) ∼ 𝑒
𝑘−1
. (16)

Substituting the value of −𝑐
2
(𝑓

(𝛼)
2
𝛽𝑐
2
+𝑐
3
) from (16) in (15),

one may obtain

𝑒
𝑘+1
∼ 𝑐
𝑘,4
𝑒
𝑘−1
𝑒
4

𝑘
. (17)

Note that in general we know that the error equation should
read 𝑒

𝑘+1
∼ 𝐴𝑒
𝑝

𝑘
, where𝐴 and 𝑝 are to be determined. Hence,

one has 𝑒
𝑘
∼ 𝐴𝑒
𝑝

𝑘−1
, and subsequently

𝑒
𝑘−1
∼ 𝐴
−1/𝑝
𝑒
1/𝑝

𝑘
. (18)

Thus, it is easy to obtain

𝑒
𝑝

𝑘
∼ 𝐴
−1/𝑝
𝐶𝑒
4+1/𝑝

𝑘
, (19)

wherein 𝐶 is a constant. This results in

𝑝 = 4 +
1

𝑝
, (20)

with two solutions {−0.236068, 4.23607}. Clearly the value for
𝑝 = 4.23607 is acceptable and would be the convergence
𝑅-order of method (11) with memory. The proof is com-
plete.

The increase of 𝑅-order is attained without any (new)
additional function calculations so that the novel method
with memory possesses a high computational efficiency
index. This technique is an extension over scheme (5) to
increase the 𝑅-order from 4 to 4.23607.

The accelerating method (11) is new, simple, and useful,
providing considerable improvement of convergence rate
without any additional function evaluations in contrast to the
optimal two-step methods without memory.

We also remark that an alternative form of our proposed
method with memory could be deduced using backward
finite difference formula at the beginning of the first substep
and a minor modification in the accelerators; that is to

say, we have the following alternative method with memory
possessing 4.23607 as its 𝑅-order (APM) as well:

𝛽
𝑘
=

𝑁


3
(𝑥
𝑘
)

3𝑁
3
(𝑥
𝑘
)
2

𝑁
3
(𝑥
𝑘
)
,

𝑦
𝑘
= 𝑥
𝑘
−
𝑓 (𝑥
𝑘
)

FD
, 𝑤

𝑘
= 𝑥
𝑘
− 𝛽
𝑘
𝑓 (𝑥
𝑘
)
2

,

𝑥
𝑘+1
= 𝑦
𝑘
−
𝑓 (𝑦
𝑘
)

FD

𝑓 (𝑥
𝑘
) − 1/2𝑓 (𝑦

𝑘
)

𝑓 (𝑥
𝑘
) − 5/2𝑓 (𝑦

𝑘
)
.

(21)

Theorem 2. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxima-
tion𝑥

0
is sufficiently close to𝛼, then, the𝑅-order of convergence

of the two-step method (21) with memory is at least 4.23607.

Proof. The proof of this theorem is similar toTheorem 1. It is
hence omitted.

3. Numerical Computations

Computational efficiency of different iterative methods with
and without memory can be measured in a prosperous
manner by applying the definition of efficiency index. For an
iterative method with convergence (𝑅-)order 𝑟 that requires
𝜃 functional evaluations, the efficiency index (also named
computational efficiency) is calculated by Ostrowski-Traub’s
formula [2]:

𝐸 = 𝑟
1/𝜃
. (22)

According to this, we find

𝐸 (SM) ≈ 1.4142 < 𝐸 (3) ≈ 1.5737 = 𝐸 (4) ≈ 1.5874

= 𝐸 (5) ≈ 1.5874 < 𝐸 (11) ≈ 1.6180,
(23)

where SM is the quadratically convergent method of Stef-
fensen without memory [7].

It should be remarked that Džunić in [8] designed
an efficient one-step Steffensen-type method with memory
possessing (1/2)(3+√17) 𝑅-order of convergence as follows:

𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝛽
𝑘
= −

1

𝑁
2
(𝑥
𝑘
)
, 𝑝

𝑘
= −

𝑁


3
(𝑤
𝑘
)

2𝑁
3
(𝑤
𝑘
)
,

𝑥
𝑘+1
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
] + 𝑝
𝑘
𝑓 (𝑤
𝑘
)
,

(24)
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Table 1: Results of comparisons for Example 3 and to find 𝛼 = 2.

Methods |𝑓(𝑥
1
)| |𝑓(𝑥

2
)| |𝑓(𝑥

3
)| |𝑓(𝑥

4
)| coc

KM 18.577 64890. 7.2226 × 10
10

3.2493 × 10
9 —

OM 4.7484 0.0023129 1.3928 × 10
−16

1.8313 × 10
−69 4.00000

DKM 0.53362 5.3207 × 10
−7

5.2711 × 10
−31

5.0774 × 10
−127 4.00000

PM 0.53362 1.9202 × 10
−6

3.6106 × 10
−30

1.6392 × 10
−130 4.22928

Table 2: Results of comparisons for Example 4.

Methods |𝑓(𝑥
1
)| |𝑓(𝑥

2
)| |𝑓(𝑥

3
)| |𝑓(𝑥

4
)| coc

KM 2.0873 0.0095650 7.7971 × 10
−12

3.4597 × 10
−48 4.00000

OM 0.81344 0.0010884 1.5476 × 10
−15

6.3280 × 10
−63 4.00000

DKM 2.1909 0.013379 2.9909 × 10
−11

7.5008 × 10
−46 4.00000

PM 2.1909 0.0011772 7.0556 × 10
−16

8.4197 × 10
−68 4.23539

APM 1.9861 0.00089226 2.3251 × 10
−16

7.5243 × 10
−70 4.23526

and Cordero et al. in [9] presented a two-step biparametric
Steffensen-type iterative method with memory possessing
seventh 𝑅-order of convergence:

𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) , 𝛽

𝑘
= −

1

𝑁
3
(𝑥
𝑘
)
,

𝑝
𝑘
= −

𝑁


4
(𝑤
𝑘
)

2𝑁
4
(𝑤
𝑘
)
,

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
] + 𝑝
𝑘
𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓 [𝑥
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑥
𝑘
, 𝑦
𝑘
] (𝑦
𝑘
− 𝑥
𝑘
)
.

(25)

Note that our main aim was to develop King’s family in
terms of efficiencies index and was not to achieve the highest
possible efficiency index.

Although these methods possess higher computational
efficiency indices than our proposed method (11), we exclude
them from numerical comparisons since our method is not a
Steffensen-type method and it is a Newton-type method with
memory. For more refer to [10].

Now, we apply and compare the behavior of different
methods for finding the simple zeros of some different
nonlinear test functions in the programming package Math-
ematica [11] using multiple precision arithmetic to clearly
reveal the high 𝑅-order of PM and APM. We compare
methods with the same number of functional evaluations per
cycle.

We notice that, by applying any root solver with local
convergence, a special attention must be paid to the choice
of initial approximations. If initial values are sufficiently
close to the sought roots, then the expected (theoretical)
convergence speed is obtainable in practice; otherwise, the
iterative methods show slower convergence, especially at the
beginning of the iterative process.

In this section, the computational order of convergence
(coc) has been computed by

coc =
ln 𝑓 (𝑥𝑘) /𝑓 (𝑥𝑘−1)



ln 𝑓 (𝑥𝑘−1) /𝑓 (𝑥𝑘−2)


. (26)

The calculated value coc estimates the theoretical order of
convergence well when pathological behavior of the iter-
ative method (i.e., slow convergence at the beginning of
the implemented iterative method, oscillating behavior of
approximations, etc.) does not exist.

Here the results of comparisons for the test functions are
given by applying 1000 fixed floating point arithmetic using
the stop termination |𝑓(𝑥

𝑘
)| ≤ 10

−100.

Example 3. Weconsider the following nonlinear test function
in the interval𝐷 = [1.5, 2.5]:

𝑓 (𝑥) = (𝑥 − 2 tan (𝑥)) (𝑥3 − 8) , (27)

using the initial approximation 𝑥
0
= 1.7. The results are

provided in Table 1.

In this section, we have used 𝛽
0
= 0.0001 whenever

required. Furthermore, for DKM we considered 𝛾 = −1/2.

Example 4. We compare the behavior of different methods
for finding the complex solution of the following nonlinear
equation:

𝑔 (𝑥) = (−1 + 2𝐼) +
1

𝑥
+ 𝑥 + sin (𝑥) , (28)

using the initial approximation 𝑥
0
= 1 − 3𝐼 where 𝛼 =

0.28860 ⋅ ⋅ ⋅ − 1.24220 ⋅ ⋅ ⋅ 𝐼. The results for this test are given
in Table 2.

It is evident from Tables 1 and 2 that approximations to
the roots possess great accuracy when the proposed method
withmemory is applied. Results of the fourth iterate in Tables
1 and 2 are given only for demonstration of convergence speed
of the tested methods and in most cases they are not required
for practical problems at present.
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We also incorporated and applied the developedmethods
with memory (11) and (21) for different test examples and
obtained results with the same behavior as above. Hence,
we could mention that the theoretical results are upheld by
numerical experiments and thus the newmethod is goodwith
a high computational efficiency index.

4. Summary

In this paper, we have proposed a new two-step Steffensen-
type iterative method with memory for solving nonlinear
scalar equations. Using one self-correcting parameter calcu-
lated by Newton interpolatory polynomial, the 𝑅-order of
convergence of the constructed method was increased from
4 to 4.23607 without any additional calculations.

The new method was compared in performance and
computational efficiency with some existing methods by
numerical examples. We have observed that the computa-
tional efficiency index of the presentedmethod withmemory
is better than those of other existing two-step King-type
methods.
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We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the
multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems
of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of
multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic
complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta
based ode45 solver to show that the MSRM gives accurate results.

1. Introduction

Chaos theory studies the behaviour of dynamical systems that
are highly sensitive to initial conditions and have complex
and highly unpredictable profiles [1, 2]. Chaotic systems can
be observed in a wide variety of applications. In 1982, the
complex Lorenz equations were proposed by Fowler et al. [3],
which extended nonlinear systems into complex space. After
that, some research works in this field have been achieved
[4–9]. With in-depth study of complex nonlinear systems,
a variety of physical phenomena could be described by the
chaotic or hyperchaotic complex systems, for instance, the
detuned laser systems and the amplitudes of electromagnetic
fields.

The nature of complex chaotic systems precludes the
possibility of obtaining closed form analytical solutions of
the underlying governing equations. Thus, approximate-
analytical methods, which are implemented on a sequence of
multiple intervals to increase their radius of convergence, are
often used to solve IVPsmodelling chaotic systems. Examples
of multistage methods that have been developed recently to
solve IVPs for chaotic and nonchaotic systems include the

multistage homotopy analysis method [10], piecewise homo-
topy perturbation methods [11, 12], multistage variational
iteration method [13], and multistage differential transfor-
mation method [14]. Other multistage methods which use
numerical integration techniques have also been proposed
such as the piecewise spectral homotopy analysis method
[15–17] which uses a spectral collocation method to perform
the integration process. Accurate solutions of highly chaotic
and hyperchaotic systems require resolution over many
small intervals. Thus, seeking analytical solutions over the
numerous intervals may be impractical or computationally
expensive if the solution is sought over very long intervals.

In this paper, we propose a piecewise or multistage
spectral relaxation method (MSRM) for solving the hyper-
chaotic complex systems as an accurate and robust alternative
to recent multistage methods. The proposed MSRM was
developed using the Gauss-Seidel idea of decoupling systems
of equations and using Chebyshev pseudospectral methods
to solve the resulting decoupled system on a sequence of
multiple intervals.The spectral relaxationmethod (SRM)was
recently proposed in [18, 19].

The rest of the paper is organized as follows. In Section 2,
we give a brief description of the proposedMSRM algorithm.
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e Scientific World Journal
Volume 2014, Article ID 943293, 10 pages
http://dx.doi.org/10.1155/2014/943293

http://dx.doi.org/10.1155/2014/943293


2 The Scientific World Journal

In Section 3, we present the numerical implementation of the
MSRM on two examples of hyperchaotic complex systems.
Finally, the conclusion is given in Section 4.

2. Multistage Spectral Relaxation Method

In this section, we give a brief description of the numerical
method of solution used to solve the nonlinear hyperchaotic
complex. We employ the multistage spectral relaxation
method (MSRM) proposed in [19]. The MSRM algorithm is
based on a Gauss-Seidel type of relaxation that decouples
and linearises the system and the use of spectral collocation
method to solve the linearised equations in a sequential
manner. For compactness, we express the system of 𝑚

nonlinear first order differential equations in the form

̇𝑥
𝑟
(𝑡) =

𝑚

∑

𝑘=1

𝛼
𝑟,𝑘
𝑥
𝑘
(𝑡)

+ 𝑓
𝑟
[𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑟−1
(𝑡) ,

𝑥
𝑟+1

(𝑡) , . . . , 𝑥
𝑚
(𝑡)] ,

(1)

subject to the initial conditions

𝑥
𝑟
(0) = 𝑥

∗

𝑟
, 𝑟 = 1, 2, . . . , 𝑚, (2)

where 𝑥
𝑟
are the unknown variables and 𝑥

∗

𝑟
are the corre-

sponding initial conditions, 𝛼
𝑟,𝑘

are known constant input
parameters and 𝑓

𝑟
is the nonlinear component of the 𝑟th

equation and the dot denotes differentiation with respect to
time 𝑡.

The scheme computes the solution of (1) in a sequence
of equal subintervals that makes the entire interval. We
define the interval of integration as Ω = [0, 𝑇] and divide
it into a sequence of nonoverlapping subintervals Ω

𝑖
=

[𝑡
𝑖−1

, 𝑡
𝑖
] (𝑖 = 1, 2, 3, . . . , 𝑓), where 𝑡

0
= 0 and 𝑡

𝑓
= 𝑇.

We denote the solution of (1) in the first subinterval [𝑡
0
, 𝑡
1
]

as 𝑥
1

𝑟
(𝑡) and the solutions in the subsequent subintervals

[𝑡
𝑖−1

, 𝑡
𝑖
] (𝑖 = 2, 3, . . . , 𝑓) as 𝑥𝑖

𝑟
(𝑡). For obtaining the solution

in the first interval [𝑡
0
, 𝑡
1
], (2) is used as the initial condition.

By using the continuity condition between neighbouring
subintervals the obtained solution in the interval [𝑡

0
, 𝑡
1
] is

used to obtain the initial condition for the next subinterval
[𝑡
1
, 𝑡
2
]. This is applied over the 𝑓 successive subintervals;

that is, the obtained solution for each subinterval [𝑡
𝑖−1

, 𝑡
𝑖
] is

used to obtain the initial condition for the next subinterval
[𝑡
𝑖
, 𝑡
𝑖+1

] (𝑖 = 1, 2, . . . , 𝑓−1).Thus, in each interval [𝑡
𝑖−1

, 𝑡
𝑖
]we

must solve

̇𝑥
𝑖

𝑟
= 𝛼
𝑟,𝑟
𝑥
𝑖

𝑟
+ (1 − 𝛿

𝑟𝑠
)

𝑚

∑

𝑘=1

𝛼
𝑟,𝑘
𝑥
𝑖

𝑘

+ 𝑓
𝑟
[𝑥
𝑖

1
, . . . , 𝑥

𝑖

𝑟−1
, 𝑥
𝑖

𝑟+1
, . . . , 𝑥

𝑖

𝑛
] ,

(3)

subject to

𝑥
𝑖

𝑟
(𝑡
𝑖−1

) = 𝑥
𝑖−1

𝑟
(𝑡
𝑖−1

) , (4)

where 𝛿
𝑟𝑠
is the Kronecker delta. As mentioned earlier, the

main idea behind the MSRM scheme is decoupling the

system of nonlinear IVPs using the Gauss-Seidel idea of
decoupling systems of algebraic equations. The proposed
MSRM iteration scheme for the solution in the interval Ω

𝑖
=

[𝑡
𝑖−1

, 𝑡
𝑖
] is given as

̇𝑥
𝑖

1,𝑠+1
− 𝛼
1,1

𝑥
𝑖

1,𝑠+1
= 𝛼
1,2

𝑥
𝑖

2,𝑠
+ 𝛼
1,3

𝑥
𝑖

3,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
1,𝑛

𝑥
𝑖

𝑛,𝑠
+ 𝑓
1
[𝑥
𝑖

1,𝑠
, . . . , 𝑥

𝑖

𝑛,𝑠
] ,

̇𝑥
𝑖

2,𝑠+1
− 𝛼
2,2

𝑥
𝑖

2,𝑠+1
= 𝛼
2,1

𝑥
𝑖

1,𝑠+1
+ 𝛼
2,3

𝑥
𝑖

3,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
2,𝑛

𝑥
𝑖

𝑛,𝑠

+ 𝑓
2
[𝑥
𝑖

1,𝑠+1
, 𝑥
𝑖

2,𝑠
, . . . , 𝑥

𝑖

𝑛,𝑠
] ,

...

̇𝑥
𝑖

𝑚,𝑠+1
− 𝛼
𝑚,𝑚

𝑥
𝑖

𝑚,𝑠+1
= 𝛼
𝑚,1

𝑥
𝑖

1,𝑠+1
+ ⋅ ⋅ ⋅ + 𝛼

𝑚,𝑚−1
𝑥
𝑖

𝑚−1,𝑠+1

+ 𝑓
𝑚
[𝑥
𝑖

1,𝑠+1
, . . . , 𝑥

𝑖

𝑚−1,𝑠+1
, 𝑥
𝑖

𝑚,𝑠
] ,

(5)

subject to the initial conditions

𝑥
𝑖

𝑟,𝑠+1
(𝑡
𝑖−1

) = 𝑥
𝑖−1

𝑟
(𝑡
𝑖−1

) , 𝑟 = 1, 2, . . . , 𝑚, (6)

where 𝑥
𝑟,𝑠

is the estimate of the solution after 𝑠 iterations. A
suitable initial guess to start the iteration scheme (5) is one
that satisfies the initial condition (6). A convenient choice
of initial guess that was found to work in the numerical
experiments considered in this work is

𝑥
𝑖

𝑟,0
(𝑡) =

{

{

{

𝑥
∗

𝑟
if 𝑖 = 1,

𝑥
𝑖−1

𝑟
(𝑡
𝑖−1

) if 2 ≤ 𝑖 ≤ 𝑓.

(7)

The Chebyshev spectral method is used to solve (5) on
each interval [𝑡

𝑖−1
, 𝑡
𝑖
]. First, the region [𝑡

𝑖−1
, 𝑡
𝑖
] is transformed

to the interval [−1, 1] onwhich the spectralmethod is defined
by using the linear transformation,

𝑡 =
(𝑡
𝑖
− 𝑡
𝑖−1

) 𝜏

2
+

(𝑡
𝑖
+ 𝑡
𝑖−1

)

2
, (8)

in each interval [𝑡
𝑖−1

, 𝑡
𝑖
] for 𝑖 = 1, . . . , 𝑓. We then discretize

the interval [𝑡
𝑖−1

, 𝑡
𝑖
] using the Chebyshev-Gauss-Lobatto

collocation points [20]:

𝜏
𝑖

𝑗
= cos(

𝜋𝑗

𝑁
) , 𝑗 = 1, 2, . . . , 𝑁, (9)

which are the extrema of the 𝑁th order Chebyshev polyno-
mial:

𝑇
𝑁
(𝜏) = cos (𝑁cos−1𝜏) . (10)

The Chebyshev spectral collocation method is based on
the idea of introducing a differentiation matrix 𝐷 which is
used to approximate the derivatives of the unknown variables
𝑥
𝑖

𝑟,𝑠+1
(𝑡) at the collocation points as thematrix vector product

𝑑𝑥
𝑖

𝑟,𝑠+1

𝑑𝑡

𝑡=𝑡𝑗

=

𝑁

∑

𝑘=0

D
𝑗𝑘
𝑥
𝑖

𝑟,𝑠+1
= DX𝑖

𝑟,𝑠+1
, 𝑗 = 1, 2, . . . , 𝑁,

(11)
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Table 1: Numerical comparison between MSRM and ode45 for the hyperchaotic complex Lorenz system.

𝑡
𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)

MSRM ode45 MSRM ode45 MSRM ode45

2 −2.91138 −2.91138 21.73155 21.73155 −3.24491 −3.24491
4 −3.63001 −3.63001 6.52144 6.52144 −6.30884 −6.30884
6 2.80571 2.80571 −2.77638 −2.77638 −2.37099 −2.37099
8 0.01134 0.01134 2.09585 2.09585 −0.14880 −0.14880
10 −0.80219 −0.80219 16.48559 16.48560 −0.06690 −0.06690

where D = 2𝐷/(𝑡
𝑖
− 𝑡
𝑖−1

) and X𝑖
𝑟,𝑠+1

= [𝑥
𝑖

𝑟,𝑠+1
(𝜏
𝑖

0
), 𝑥
𝑖

𝑟,𝑠+1
(𝜏
𝑖

1
),

. . . , 𝑥
𝑖

𝑟,𝑠+1
(𝜏
𝑖

𝑁
)] are the vector functions at the collocation

points 𝜏𝑖
𝑗
.

Applying the Chebyshev spectral collocation method in
(5) gives

A
𝑟
X𝑖
𝑟,𝑠+1

= B𝑖
𝑟
, X𝑖

𝑟,𝑠+1
(𝜏
𝑖−1

𝑁
) = X𝑖−1

𝑟
(𝜏
𝑖−1

𝑁
) ,

𝑟 = 1, 2, . . . , 𝑚,

(12)

with
A
𝑟
= D − 𝛼

𝑟,𝑟
I,

B𝑖
1
= 𝛼
1,2
X𝑖
2,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
1,𝑛
X𝑖
𝑛,𝑠

+ 𝑓
1
[X𝑖
1,𝑠
, . . . ,X𝑖

𝑚,𝑠
] ,

B𝑖
2
= 𝛼
2,1
X𝑖
1,𝑠+1

+ 𝛼
2,3
X𝑖
3,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
2,𝑚

X𝑖
𝑚,𝑠

+ 𝑓
2
[X𝑖
1,𝑠+1

,X𝑖
2,𝑠
, . . . ,X𝑖

𝑚,𝑠
] ,

...

B𝑖
𝑚

= 𝛼
𝑚,1

X𝑖
1,𝑠+1

+ 𝛼
𝑚,2

X𝑖
2,𝑠+1

+ ⋅ ⋅ ⋅ + 𝛼
𝑚,𝑚−1

X𝑖
𝑚−1,𝑠+1

+ 𝑓
𝑚
[X𝑖
1,𝑠+1

, . . . ,X𝑖
𝑚−1,𝑠+1

,X𝑖
𝑚,𝑠

] ,

(13)

where I is an identity matrix of order 𝑁 + 1. Thus, starting
from the initial approximation (7), the recurrence formula

X𝑖
𝑟,𝑠+1

= A−1
𝑟
B𝑖
𝑟
, 𝑟 = 1, 2, . . . , 𝑚 (14)

can be used to obtain the solution 𝑥
𝑖

𝑟
(𝑡) in the interval

[𝑡
𝑖−1

, 𝑡
𝑖
]. The solution approximating 𝑥

𝑟
(𝑡) in the entire

interval [𝑡
0
, 𝑡
𝐹
] is given by

𝑥
𝑟
(𝑡) =

{{{{{

{{{{{

{

𝑥
1

𝑟
(𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
1
]

𝑥
2

𝑟
(𝑡) , 𝑡 ∈ [𝑡

1
, 𝑡
2
]

...

𝑥
𝐹

𝑟
(𝑡) , 𝑡 ∈ [𝑡

𝑓−1
, 𝑡
𝑓
] .

(15)

3. Numerical Examples

In this section, we consider two examples which demonstrate
the efficiency and accuracy of the proposed method. In
particular, we use the MSRM algorithm as an appropriate
tool for solving nonlinear IVPs; we apply the method to two
complex nonlinear chaotic systems.

Example 1. The hyperchaotic complex Lorenz system can be
described as

̇𝑧
1
= 𝑎
1
(𝑧
2
− 𝑧
1
) + 𝑗𝑧

4
,

̇𝑧
2
= 𝑎
2
𝑧
1
− 𝑧
2
− 𝑧
1
𝑧
3
+ 𝑗𝑧
4
,

̇𝑧
3
=

1

2
(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝑎
3
𝑧
3
,

̇𝑧
4
=

1

2
(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝑎
4
𝑧
4
,

(16)

where 𝑧
1

= 𝑥
1
+ 𝑗𝑥
2
, 𝑧
2

= 𝑥
3
+ 𝑗𝑥
4
, 𝑧
3

= 𝑥
5
, 𝑧
4

= 𝑥
6
,

𝑗 = √−1, 𝑧
1
and 𝑧

2
are the conjugates of 𝑧

1
and 𝑧

2
. When

the parameters are chosen as 𝑎
1
= 15, 𝑎

2
= 36, 𝑎

3
= 4.5, and

𝑎
4
= 12, the system (16) is hyperchaotic [21].
Replacing the complex variables in system (16) with real

and imaginary number variables, one can get an equivalent
system as follows:

̇𝑥
1
= 𝑎
1
(𝑥
3
− 𝑥
1
) ,

̇𝑥
2
= 𝑎
1
(𝑥
4
− 𝑥
2
) + 𝑥
6
,

̇𝑥
3
= 𝑎
2
𝑥
1
− 𝑥
3
− 𝑥
1
𝑥
5
,

̇𝑥
4
= 𝑎
2
𝑥
2
− 𝑥
4
− 𝑥
2
𝑥
5
+ 𝑥
6
,

̇𝑥
5
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
− 𝑎
3
𝑥
5
,

̇𝑥
6
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
− 𝑎
4
𝑥
6
.

(17)

For (17), the parameters 𝛼
𝑟,𝑘

and 𝑓
𝑟
are defined as

𝛼
1,1

= −𝑎
1
, 𝛼

1,3
= 𝑎
1
, 𝛼

2,2
= −𝑎
1
,

𝛼
2,4

= 𝑎
1
, 𝛼

2,6
= 1,

𝛼
3,1

= 𝑎
2
, 𝛼

3,3
= −1, 𝛼

4,2
= 𝑎
2
,

𝛼
4,4

= −1, 𝛼
4,6

= 1,

𝛼
5,5

= −𝑎
3
, 𝛼

6,6
= −𝑎
4
, 𝑓

3
= −𝑥
1
𝑥
5
,

𝑓
4
= −𝑥
2
𝑥
5
, 𝑓

5
= 𝑓
6
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
,

(18)

with all other 𝛼
𝑟,𝑘

and 𝑓
𝑟
= 0 for 𝑟, 𝑘 = 1, 2, . . . , 6.

Through numerical experimentation, it was determined
that 𝑁 = 6 collocation points and 5 iterations of the MSRM
scheme at each interval were sufficient to give accurate results
in each [𝑡

𝑖−1
, 𝑡
𝑖
] interval. Tables 1 and 2 show a comparison

of the solutions of the hyperchaotic complex Lorenz system
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Table 2: Numerical comparison between MSRM and ode45 for the hyperchaotic complex Lorenz system.

𝑡
𝑥
4
(𝑡) 𝑥

5
(𝑡) 𝑥

6
(𝑡)

MSRM ode45 MSRM ode45 MSRM ode45

2 23.96851 23.96851 44.32071 44.32071 26.54682 26.54682
4 11.30830 11.30830 14.68007 14.68007 3.25221 3.25221
6 4.65208 4.65208 39.34559 39.34559 12.99055 12.99055
8 −4.99685 −4.99685 33.79560 33.79560 8.02232 8.02232
10 1.98179 1.98179 50.59739 50.59740 24.48234 24.48234
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Figure 1: Comparison between the MSRM and ode45 results for the hyperchaotic complex Lorenz system.

computed by the MSRM and ode45. In Figures 1, 2, and 3,
the MSRM graphical results are also compared with ode45
and good agreement is observed. The MRSM phase portraits
in Figures 4 and 5 were also found to be exactly the same as
those computed using ode45. This shows that the proposed
MSRM is a valid tool for solving the hyperchaotic complex
Lorenz system.

Example 2. State equations of a permanent magnet syn-
chronous motor system in a field-oriented rotor can be
described as follows [22, 23]:

𝑑𝑖
𝑑

𝑑𝑡
=

−𝑅
1
𝑖
𝑑
+ 𝜔𝐿
𝑞
𝑖
𝑞
+ 𝑢
𝑑

𝐿
𝑑

,

𝑑𝑖
𝑞

𝑑𝑡
=

𝑅
1
𝑖
𝑞
+ 𝜔𝐿
𝑑
𝑖
𝑞
+ 𝑢
𝑞
− 𝜔Ψ
𝑟

𝐿
𝑞

,

𝑑𝜔

𝑑𝑡
=

𝑛
𝑞
Ψ
𝑟
𝑖
𝑑
+ 𝑛
𝑝
(𝐿
𝑑
− 𝐿
𝑞
) 𝑖
𝑑
𝑖
𝑞
− 𝑇
𝐿
− 𝛽𝜔

𝐽
,

(19)

where 𝑖
𝑑
, 𝑖
𝑞
, and 𝜔 are the state variables which represent

currents and motor angular frequency, respectively; 𝑢
𝑑
and

𝑢
𝑞
are the direct-axis stator and quadrature-axis stator voltage

components, respectively; 𝐽 is the polar moment of inertia;
𝑇
𝐿
is the external load torque; 𝛽 is the viscous damping

coefficient; 𝑅
1
is the stator winding resistance; 𝐿

𝑑
and 𝐿

𝑞

are the direct-axis stator inductors and quadrature-axis stator
inductors, respectively;Ψ

𝑟
is the permanent magnet flux; and

𝑛
𝑝
is the number of pole-pairs; the parameters 𝐿

𝑑
, 𝐿
𝑞
, 𝐽, 𝑇
𝐿
,

𝑅
1
, Ψ
𝑟
, 𝛽 are all positive.

When the air gap is even, and the motor has no load or
power outage, the dimensionless equations of a permanent
magnet synchronous motor system can be depicted as

̇𝑧
1
= 𝑎 (𝑧

2
− 𝑧
1
) ,

̇𝑧
2
= 𝑏𝑧
1
− 𝑧
2
− 𝑧
1
𝑧
3
,

̇𝑧
3
= 𝑧
1
𝑧
2
− 𝑧
3
,

(20)

where 𝑎, 𝑏 are both positive parameters. If the current in the
system (19) is plural and the variables 𝑧

1
, 𝑧
2
in the system (20)

are complex numbers, by changing cross coupled terms 𝑧
1

and 𝑧
2
to conjugate form, Wang and Zhang got a complex
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Figure 2: Comparison between the MSRM and ode45 results for the hyperchaotic complex Lorenz system.
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Figure 3: Comparison between the MSRM and ode45 results for the hyperchaotic complex Lorenz system.

permanent magnet synchronous motor system as follows
[24]:

̇𝑧
1
= 𝑎 (𝑧

2
− 𝑧
1
) ,

̇𝑧
2
= 𝑏𝑧
1
− 𝑧
2
− 𝑧
1
𝑧
3
,

̇𝑧
3
=

1

2
(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝑧
3
,

(21)

where 𝑧
1

= 𝑥
1
+ 𝑗𝑥
2
, 𝑧
2

= 𝑥
3
+ 𝑗𝑥
4
, 𝑧
3

= 𝑥
5
, 𝑗 = √−1,

𝑧
1
and 𝑧

2
are the conjugates of 𝑧

1
and 𝑧

2
. Replacing the

complex variables in system (21) with real and imaginary

number variables, Wang and Zhang got an equivalent system
as follows (see [24]):

̇𝑥
1
= 𝑎 (𝑥

3
− 𝑥
1
) ,

̇𝑥
2
= 𝑎 (𝑥

4
− 𝑥
2
) ,

̇𝑥
3
= 𝑏𝑥
1
− 𝑥
3
− 𝑥
1
𝑥
5
,

̇𝑥
4
= 𝑏𝑥
2
− 𝑥
4
− 𝑥
2
𝑥
5
,

̇𝑥
5
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
− 𝑥
5
,

(22)

where 𝑎, 𝑏 are positive parameters determining the chaotic
behaviors and bifurcations of system (22). When the param-
eters satisfy 1 ≤ 𝑎 ≤ 11, 10 ≤ 𝑏 ≤ 20, there is one positive
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Lyapunov exponent, two Lyapunov exponents of zero, and
two negative Lyapunov exponents for system (22), which
means system (22) is chaotic [24]. The values of parameters
and initial values are 𝑎 = 11, 𝑏 = 20, and 𝑥

1
(0) = 1, 𝑥

2
(0) = 2,

𝑥
3
(0) = 3, 𝑥

4
(0) = 4, 𝑥

5
(0) = 5.

For (21), the parameters 𝛼
𝑟,𝑘

and 𝑓
𝑟
are defined as

𝛼
1,1

= −𝑎, 𝛼
1,3

= 𝑎, 𝛼
2,2

= −𝑎,

𝛼
2,4

= 𝑎, 𝛼
3,1

= 𝑏, 𝛼
3,3

= −1,

𝛼
4,2

= 𝑏, 𝛼
4,4

= −1, 𝛼
5,5

= −1,

𝑓
3
= −𝑥
1
𝑥
5
, 𝑓

4
= −𝑥
2
𝑥
5
, 𝑓

5
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
,

(23)

with all other 𝛼
𝑟,𝑘

and 𝑓
𝑟
= 0 for 𝑟, 𝑘 = 1, 2, . . . , 5.

The results obtained were compared to those from the
MATLAB inbuilt solver, ode45. The ode45 solver integrates
a system of ordinary differential equations using explicit
4th and 5th Runge-Kutta formula. Tables 3 and 4 show
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Table 3: Numerical comparison between MSRM and ode45 for the complex permanent magnet synchronous motor.

𝑡
𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)

MSRM ode45 MSRM ode45 MSRM ode45

3 −3.85711 −3.85711 −5.66683 −5.66683 −5.20445 −5.20445
10 −0.33729 −0.33729 −0.49554 −0.49554 −0.49104 −0.49104
17 0.12630 0.12631 0.18555 0.18557 0.15550 0.15551
24 0.05091 0.05105 0.07480 0.07501 0.19500 0.19518
31 −2.55034 −2.54878 −3.74694 −3.74465 −0.79819 −0.79326
38 −3.93154 −3.73551 −5.77619 −5.48818 −5.33693 −5.20595

Table 4: Numerical comparison between MSRM and ode45 for the complex permanent magnet synchronous motor.

𝑡
𝑥
4
(𝑡) 𝑥

5
(𝑡)

MSRM ode45 MSRM ode45

3 −7.64635 −7.64635 15.05932 15.05932
10 −0.72144 −0.72143 10.73663 10.73663
17 0.22846 0.22848 14.25582 14.25583
24 0.28649 0.28675 19.33844 19.33921
31 −1.17270 −1.16545 25.34856 25.35739
38 −7.84098 −7.64855 14.98250 14.03140
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Figure 6: Comparison between the MSRM and ode45 results for the complex permanent magnet synchronous motor.

a comparison of the solutions of the complex permanent
magnet synchronous motor computed by the MSRM and
ode45. In Figures 6, 7, and 8, the MSRM graphical results are
also compared with ode45 and good agreement is observed.
The MRSM phase portraits in Figures 9 and 10 were also
found to be exactly the same as those computed using
ode45. This shows that the proposed MSRM is a valid tool
for solving the complex permanent magnet synchronous
motor.

4. Conclusion

In this paper, we have applied a spectral method called the
multistage spectral relaxation method (MSRM) for the solu-
tions of hyperchaotic complex systems.The proposedMSRM
was developed using the Gauss-Seidel idea of decoupling
systems of equations and using Chebyshev pseudospectral
methods to solve the resulting decoupled system on a
sequence of multiple intervals. The proposed MSRM was
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used to solve the hyperchaotic complex Lorenz system
and complex permanent magnet synchronous motor. The
accuracy and validity of the proposed method was tested
against Matlab Runge-Kutta based inbuilt solvers and against
previously published results.
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A class of derivative-free methods without memory for approximating a simple zero of a nonlinear equation is presented. The
proposed class uses four function evaluations per iteration with convergence order eight. Therefore, it is an optimal three-step
scheme without memory based on Kung-Traub conjecture. Moreover, the proposed class has an accelerator parameter with the
property that it can increase the convergence rate from eight to twelve without any new functional evaluations. Thus, we construct
a with memory method that increases considerably efficiency index from 8

1/4
≈ 1.681 to 12

1/4
≈ 1.861. Illustrations are also

included to support the underlying theory.

1. Introduction

The first attempts for classifying iterative root-finding meth-
ods were done by Traub [1]. He divided iterative methods
for finding zeros of a function into two sets: one-point and
multipoint methods. There is a fact about how to create
a new method. As Traub investigated in his book [1], and
Kung and Traub mentioned in [2], construction of one-point
methods is not a useful task. In other words, to construct an
optimal one-pointmethodwith convergence order𝑛, we need
𝑛 functional evaluations, while for construction an optimal
method without memory having convergence order 2𝑛; only
𝑛 + 1 function evaluations are required.

To be more precise, constructing an optimal one-point
method with eighth-order convergence needs eight func-
tion evaluations, while constructing an optimal three-point
method without memory having the same convergence
order requires four functional evaluations. As a result, many
researchers have paid much attention to construct optimal
multipoint iterationswithoutmemory based on the unproved
conjecture due to Kung and Traub: any multipoint iteration
without memory using 𝑛 + 1 function evaluations can reach
the optimal order 2𝑛.

This work follows two main goals: frst developing a
new optimal three-step derivative-free class of methods
without memory and second developing the proposed class
to methods with memory. In this way, it reaches convergence
order 12 without any new functional evaluations. Because of
the derivative-free property of the proposed class, it can be
used for finding zeros of not only smooth functions but also
nonsmooth ones. Moreover, as we pointed out above we can
reach the convergence order 12 using the same functional
evaluations (to three-step without memory iterations) and,
therefore, increasing 50% convergence order is the other
aspect and contribution of this work.

Note that in most test problems for nonlinear equations
computing derivatives are an easy exercise. However, for
some practical problems computing the derivative might be
a cumbersome task and we have to relay on methods free of
derivatives. For further reading on this topic, one may refer
to [3–6].

The paper is organized as follows. First, a new without
memory family of optimal order eight, consuming four
function evaluations per iteration, is proposed by using two
weight functions in Section 2. A different way to compute the
order of convergence for iterative methods that use divided
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differences instead of derivatives is presented in Section 3,
when we derive a method with memory. The significant
increase of convergence speed is achieved without additional
function evaluations, which is the main advantage of such
methods. Section 4 is devoted to numerical results connected
to the order of the methods with and without memory. And
finally, concluding remarks will be drawn in Section 5.

2. Construction of a New Three-Step Class

Let the scalar function 𝑓 : 𝐷 ⊂ R → R and 𝑓(𝛼) = 0 ̸=

𝑓

(𝛼) = 𝑐

1
. In other words, 𝛼 is a simple zero of 𝑓(𝑥) = 0. In

this section, we start with the three-step scheme:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)
,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓 (𝑦
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−

𝑓 (𝑧
𝑘
)

𝑓 (𝑧
𝑘
)
,

(1)

where 𝑘 = 0, 1, . . ., is the iteration indicator. The order of
convergence for (1) is eight but its computational efficiency
is low. We substitute derivatives in all three steps by suitable
approximations that use available data; thus we introduce the
following approximations:

𝑓

(𝑥
𝑘
) ≈ 𝑓 [𝑥

𝑘
, 𝑤
𝑘
] ,

where 𝑤
𝑘
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𝑘
+ 𝛽𝑓 (𝑥

𝑘
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)
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𝑘
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, V
𝑘
=

𝑓 (𝑦
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𝑘
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𝑓

(𝑧
𝑘
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𝑘
, 𝑧
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
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𝑘
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,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
,

(2)

in the first, second, and third steps of (1), where𝐻 and𝑊 are
weight functions. The following iterative family of three-step
methods is obtained:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)
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𝑘
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(3)

In the following theorem, we state suitable conditions for
deriving a new optimal class without memory according
to the Kung and Traub conjecture [2] (also known as K-T
hypothesis).

Theorem 1. Let 𝑓 : 𝐷 ⊂ R → R be a scalar function
which has a simple root 𝛼 in the open interval 𝐷, and also
the initial approximation 𝑥

0
is sufficiently close to the simple

zero. Then, the three-step iterative method (3) has eighth-order
under the conditions𝑊(0) = 𝑊


(0) = 1,𝐻(0, 0) = 𝐻

𝑢
(0, 0) =

𝐻
𝑢𝑢
(0, 0) = 1, 𝐻V(0, 0) = 𝐻VV(0, 0) = 0, and 𝐻

𝑢V(0, 0) = 2

and satisfies the following error equation:
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(4)

Proof. By using Taylor’s expansion of 𝑓(𝑥) around 𝛼 and
taking into account that 𝑓(𝛼) = 0, we obtain
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Note that we used ⋅ ⋅ ⋅ in order to avoid writing further terms
of the Taylor expansions due to symbolic computations. By
using (5) and (7), we obtain
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2
𝑒
2

𝑘

+ (− (2 + 𝛽𝑓

(𝛼) (2 + 𝛽𝑓


(𝛼))) 𝑐

2

2

+ (1 + 𝛽𝑓

(𝛼)) (2 + 𝛽𝑓


(𝛼)) 𝑐
3
)

× 𝑒
3

𝑘
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑘
) ,

𝑓 [𝑤
𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] = 𝑓

(𝛼) 𝑐
2
+ 𝑓

(𝛼) (1 + 𝛽𝑓


(𝛼)) 𝑐
3
𝑒
𝑘

+ 𝑓

(𝛼) ( (1 + 2𝛽𝑓


(𝛼)) 𝑐
2
𝑐
3

+ (1 + 𝛽𝑓

(𝛼))
2

𝑐
4
) 𝑒
2

𝑘

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑘
) .

(12)

Therefore, we attain

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

= − (1 + 𝛽𝑓

(𝛼))
2

𝑐
2
𝑐
3
𝑒
4

𝑘
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑘
) .

(13)

Finally, according to the above analysis, the general error
equation is given by

𝑒
𝑘+1

= 𝑒
𝑘,𝑧

−𝑊(𝑠
𝑘
)

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

= (1 + 𝛽𝑓

(𝛼))
4

𝑐
2

2
𝑐
3

× ((9 + 𝛽𝑓

(𝛼) (7 + 𝛽𝑓


(𝛼))) 𝑐

3

2

+ 2𝑐
2
𝑐
3
− 𝑐
4
) 𝑒
8

𝑘
+ 𝑂 (𝑒

9

𝑘
) ,

(14)

so that the proof of the theorem is finished.

We provide some specific weight functions that satisfy the
conditions of Theorem 1 as follows:

𝐻
1
(𝑢
𝑘
, V
𝑘
) = 1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
,

𝐻
2
(𝑢
𝑘
, V
𝑘
) =

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

,

𝑊
1
(𝑠
𝑘
) = cos (𝑠

𝑘
) + sin (𝑠

𝑘
) ,

𝑊
2
(𝑠
𝑘
) =

1

1 − 𝑠
𝑘

,

𝑊
3
(𝑠
𝑘
) = 1 + 𝑠

𝑘
,

𝑊
4
(𝑠
𝑘
) = 𝑒
𝑠𝑘 .

(15)

We consider these weight functions in, without and with
memory methods, (3) and (18) in the forthcoming sections.

There are some measures for comparing various iterative
techniques. Traub [1] introduced the informational efficiency
and efficiency index, which can be expressed in terms of the
order (𝑟) of the method and the number of function (and
derivative) evaluations (𝜌). In fact, the efficiency index (or
computational efficiency) is given by 𝐸 = 𝑟

1/𝜌.
Clearly, the efficiency index of the proposed optimal class

of method is 81/4 ≈ 1.682 which is optimal in the sense of
K-T hypothesis and is higher than two- or one-step methods
without memory.

It is worth emphasizing that themaximal order of conver-
gence is not the only goal in constructing root-finding meth-
ods and, consequently, the ultimate measure of efficiency of
the designed method. Complexity of the formulae involved,
often called combinatorial cost, makes another important
parameter, which should be taken into account. Hence, we
wish to construct a new method with memory possessing a
high order 12 requiring only 4 functional evaluations (just like
(3)).
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In the next section, we will modify the proposed method
and introduce a new method. We use an accelerator parame-
ter to increase the order of convergence significantly.

3. Construction of a Method with Memory

Error equation (14) indicates that the order of convergence
for class (3) is equal to eight. This section is concerned with
extracting an efficiency with memory method from (3) since
its error equation contains the parameter 𝛽 which can be
approximated in such a way that increases the local order of
convergence.

We set 𝛽 = 𝛽
𝑘
as the iteration proceeds by the formula

𝛽
𝑘

= −1/𝑓(𝛼) for 𝑘 = 1, 2, . . ., where 𝑓(𝛼) is an
approximation of 𝑓(𝛼). We have a method via the following
forms of 𝛽

𝑘
:

𝛽
𝑘
= −

1

𝑓 (𝛼)
= −

1

𝑁
4
(𝑥
𝑘
)
. (16)

The key idea that provides the order acceleration lies
in a special form of the error relation and a convenient
choice of a free parameter. We define a self-accelerating
parameter, which is calculated during the iterative process
using Newton’s interpolating polynomial.

Hence, we consider Newton’s interpolation as themethod
for approximating 𝑓(𝛼), where 𝑁

4
(𝑡) is Newton’s interpola-

tion polynomial of fourth degree, set through five available
approximations 𝑥

𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑤
𝑘−1

, 𝑥
𝑘−1

as follows:

𝑁


4
(𝑥
𝑘
) = [

𝑑

𝑑𝑡
𝑁
4
(𝑡)]
𝑡=𝑥𝑘

= [
𝑑

𝑑𝑡
(𝑓 (𝑥
𝑘
) + 𝑓 [𝑥

𝑘
, 𝑧
𝑘−1

] (𝑡 − 𝑥
𝑘
)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

] (𝑡 − 𝑥
𝑘
)

×(𝑡 − 𝑧
𝑘−1

)+𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑡 − 𝑥
𝑘
)

× (𝑡 − 𝑧
𝑘−1

) (𝑡 − 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑤
𝑘−1

]

× (𝑡 − 𝑥
𝑘
) (𝑡 − 𝑧

𝑘−1
) (𝑡 − 𝑦

𝑘−1
)

× (𝑡 − 𝑥
𝑘−1

)) ]
𝑡=𝑥𝑘

= 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

] + 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

] (𝑥
𝑘
− 𝑧
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑥
𝑘
− 𝑧
𝑘−1

) (𝑥
𝑘
− 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑤
𝑘−1

] (𝑥
𝑘
− 𝑧
𝑘−1

)

× (𝑥
𝑘
− 𝑦
𝑘−1

) (𝑥
𝑘
− 𝑥
𝑘−1

) .

(17)

Here, the with memory development of (3) can be presented
as follows:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− 𝐻 (𝑢

𝑘
, V
𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
, 𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−𝑊(𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(18)

We attempt to prove that the method with memory
(18) has convergence order twelve provided that we use
accelerator 𝛽

𝑘
as in (16). It should be remarked that we have

applied the Herzberger’s matrix method [7].

Theorem 2. If an initial approximation 𝑥
0
is sufficiently close

to the zero 𝛼 of 𝑓(𝑥) and the parameter 𝛽
𝑘
in the iterative

scheme (18) is recursively calculated by the forms given in (16),
then the order of convergence is twelve.

Proof. We will use Herzberger’s matrix method to determine
the order of convergence. Note that the lower bound of order
for a single-step 𝑠-point method 𝑥

𝑘
= 𝐺(𝑥

𝑘−1
, 𝑥
𝑘−2

, . . . , 𝑥
𝑘−𝑠

)

is the spectral radius of a matrix 𝑀(𝑠) = (𝑚
𝑖𝑗
), associated to

the method with elements:

𝑚
1,𝑗

= amount of information required at point 𝑥
𝑘−𝑗

𝑗 = 1, 2, . . . , 𝑠,

𝑚
𝑖,𝑖−1

= 1 (𝑖 = 2, 3, . . . , 𝑠) ,

𝑚
𝑖,𝑗
= 0, otherwise.

(19)

On the other hand, the lower bound of order of an 𝑠-step
method 𝐺 = 𝐺

1
∘ 𝐺
2
∘ ⋅ ⋅ ⋅ ∘ 𝐺

𝑠
is the spectral radius of the

product of matrices𝑀 = 𝑀
1
⋅ 𝑀
2
⋅ ⋅ ⋅𝑀
𝑠
.

We can express each approximation𝑥
𝑘+1

, 𝑧
𝑘
,𝑦
𝑘
, and𝑤

𝑘
as

a function of available information 𝑓(𝑧
𝑘
), 𝑓(𝑦

𝑘
), 𝑓(𝑤

𝑘
), and

𝑓(𝑥
𝑘
) from the 𝑘th iteration and 𝑓(𝑧

𝑘−1
), 𝑓(𝑦

𝑘−1
), 𝑓(𝑤

𝑘−1
),

and 𝑓(𝑥
𝑘−1

) from the previous iteration, depending on the
accelerating technique. Now, we determine the order of
convergence for (18) applied for the calculation of 𝛽

𝑘
.
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Method (N4). We use the following matrices to express
informational dependence:

𝑥
𝑘+1

= 𝜑
1
(𝑧
𝑘
, 𝑦
𝑘
, 𝑤
𝑘
, 𝑥
𝑘
, 𝑧
𝑘−1

) → 𝑀
1
=

[
[
[
[
[

[

1 1 1 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

,

𝑧
𝑘
= 𝜑
2
(𝑦
𝑘
, 𝑤
𝑘
, 𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

) → 𝑀
2
=

[
[
[
[
[

[

1 1 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

,

𝑦
𝑘
= 𝜑
3
(𝑤
𝑘
, 𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑤
𝑘−1

) → 𝑀
3
=

[
[
[
[
[

[

1 1 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

,

𝑤
𝑘
=𝜑
4
(𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑤
𝑘−1

, 𝑥
𝑘−1

) → 𝑀
4
=

[
[
[
[
[

[

1 1 1 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

.

(20)

Hence, it is easy to derive

𝑀
(𝑁4)

= 𝑀
1
𝑀
2
𝑀
3
𝑀
4
=

[
[
[
[
[

[

8 4 4 4 4

4 2 2 2 2

2 1 1 1 1

1 1 1 1 1

1 0 0 0 0

]
]
]
]
]

]

, (21)

with the eigenvalues {12, 0, 0, 0, 0}. Consequently, the order
of the method with memory (18)-(N4) is at least twelve. The
proof of Theorem 2 is finished.

Clearly, the proposed with memory scheme possesses a
high computational efficiency index 12

1/4
≈ 1.861, which

makes it interesting for practical problems.

4. Numerical Examples

In this section, we test our proposed methods and compare
their results with some other methods of the same order of
convergence. The errors |𝑥

𝑘
− 𝛼| denote approximations to

the sought zeros, and 𝑎(−𝑏) stands for 𝑎 × 10
−𝑏. Moreover,

coc indicates computational order of convergence and is
computed by

coc =
log (𝑓 (𝑥

𝑘
) /𝑓 (𝑥

𝑘−1
)
)

log (𝑓 (𝑥
𝑘−1

) /𝑓 (𝑥
𝑘−2

)
)
. (22)

The calculated value coc estimates the theoretical order
of convergence well when “pathological behavior” of the
iterative method (for instance, slow convergence at the

beginning of the implemented iterative method, “oscillating”
behavior of approximations, etc.) does not exist.

We have used 1000-fixed floating point arithmetic so as to
minimize the effect of round-off errors.

By using weight functions (15), we introduce some con-
crete methods based on the proposed class. Note that it is
assumed that the initial estimate 𝛽

0
should be chosen before

starting the iterative process and also 𝑥
0
is given suitably.

Concrete method 1:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (cos (𝑠

𝑘
) + sin (𝑠

𝑘
))

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(23)

Concrete method 2:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (

1

1 − 𝑠
𝑘

)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(24)

Concrete method 3:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,
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𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (1 + 𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(25)

Concrete method 4:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (𝑒
𝑠𝑘)

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(26)

Concrete method 5:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (cos (𝑠

𝑘
) + sin (𝑠

𝑘
))

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(27)

Concrete method 6:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (

1

1 − 𝑠
𝑘

)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑤
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(28)

Concrete method 7:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (1 + 𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑤
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(29)

Concrete method 8:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (𝑒
𝑠𝑘)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑤
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(30)

Several iterative methods (IM) of optimal order eight,
which also require four function evaluations, for comparisons
with our proposed methods have been chosen.
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Table 1: Consider 𝑓
1
(𝑥) = sin(𝜋𝑥)𝑒(𝑥

2
+𝑥 cos(𝑥)−1)

+ 𝑥 log(𝑥 sin(𝑥) + 1), 𝛼 = 0, 𝑥
0
= 0.6, 𝛽 = −0.01.

Methods without memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.3810(−3) 5.5392(−25) 6.9091(−201) 8.0003
Our method (24) 2.1802(−3) 3.9973(−28) 5.0816(−226) 8.0001
Our method (25) 4.2865(−3) 8.9612(−26) 3.2420(−207) 8.0002
Our method (26) 3.1912(−3) 8.4384(−27) 2.0042(−215) 8.0002
Our method (27) 5.7030(−3) 4.9625(−25) 1.6203(−201) 8.0002
Our method (28) 2.3293(−3) 3.8278(−28) 2.0304(−226) 8.0001
Our method (29) 5.7030(−3) 4.9625(−25) 1.6203(−201) 8.0002
Our method (30) 4.5488(−3) 8.1186(−26) 8.3149(−208) 8.0002
(34), 𝛽 = −0.01 9.7732(−3) 4.3543(−24) 6.6317(−195) 8.0002
(35), 𝛽 = −0.01 1.7342(−2) 1.1724(−21) 3.5692(−175) 8.0085

Three-step method by Wang et al. [8]:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
𝐻 (𝑡
𝑘
) , 𝑡

𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑤
𝑘
]
𝐺 (𝑡
𝑘
, 𝑠
𝑘
) , 𝑠

𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑦
𝑘
)
,

(31)

where functions 𝐻 and 𝐺 are following 𝐻
1
(𝑡) = 1 + 𝑡,

𝐺
1
(𝑡, 𝑠) = 1 + 𝑡 + 𝑠 + 2𝑡𝑠 − (1 + 𝜆)𝑡

3, and 𝜆 = 1/(1 +𝛽𝑓[𝑥, 𝑤]).
Three-step method by Lotfi and Tavakoli [9]:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
,

𝑧
𝑛
= 𝑦
𝑛
− 𝐻 (𝑡

𝑛
, 𝑢
𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑤
𝑛
]
, 𝑡
𝑛
=
𝑓 (𝑦)

𝑓 (𝑥)
,

𝑢
𝑛
=
𝑓 (𝑤)

𝑓 (𝑥)
,

𝑥
𝑘+1

= 𝑧
𝑛
− 𝐺 (𝑡

𝑛
, 𝑠
𝑛
)𝑊 (V

𝑛
, 𝑠
𝑛
)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑤
𝑛
]
,

𝑠
𝑛
=

𝑓 (𝑧)

𝑓 (𝑦)
, V
𝑛
=

𝑓 (𝑧)

𝑓 (𝑥)
,

(32)

where

𝑊(𝑠
𝑛
, V
𝑛
) = 1 + 𝑠

2

𝑛
+ V2
𝑛
,

𝐺 (𝑡
𝑛
, 𝑠
𝑛
) = 1 + 𝑡

𝑛
+ 𝑠
𝑛
+ 2𝑡
𝑛
𝑠
𝑛
+ (−1 − 𝜙

𝑛
) 𝑡
3

𝑛
,

(𝜙
𝑛
=

1

1 + 𝛽
𝑛
𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
) ,

𝐻 (𝑡
𝑛
, 𝑢
𝑛
) = 1 + 𝑡

𝑛
.

(33)

Derivative-free Kung-Traub’s family [2]:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
) 𝑓 (𝑤

𝑘
)

[𝑓 (𝑤
𝑘
) − 𝑓 (𝑦

𝑘
)] 𝑓 [𝑥

𝑘
, 𝑦
𝑘
]
,

𝑥
𝑘+1

= 𝑧
𝑘
−
𝑓 (𝑦
𝑘
) 𝑓 (𝑤

𝑘
) (𝑦
𝑘
− 𝑥
𝑘
+ 𝑓 (𝑥

𝑘
) /𝑓 [𝑥

𝑘
, 𝑧
𝑘
])

[𝑓 (𝑦
𝑘
) − 𝑓 (𝑧

𝑘
)] [𝑓 (𝑤

𝑘
) − 𝑓 (𝑧

𝑘
)]

+
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑧
𝑘
]
.

(34)

Three-step methods made by Zheng et al. [10]:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
] + 𝑓 [𝑦

𝑘
, 𝑥
𝑘
, 𝑤
𝑘
] (𝑦
𝑘
− 𝑥
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (𝑓 (𝑧

𝑘
) × (𝑓 [𝑧

𝑘
, 𝑦
𝑘
] + 𝑓 [𝑧

𝑘
, 𝑦
𝑘
, 𝑥
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

+ 𝑓 [𝑧
𝑘
, 𝑦
𝑘
, 𝑥
𝑘
, 𝑤
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

×(𝑧
𝑘
− 𝑥
𝑘
))
−1

) .

(35)

In Tables 1, 3, and 5 our without memory proposed
method by different weight functions (23)–(30) has been
compared with optimal three-point methods (34) and (35),
and we observe that all these methods behave very well
practically and confirm their theoretical results.

Also Tables 2, 4, and 6 present numerical results for
our with memory classes (23)–(30). It is also clear that all
these methods behave very well practically and confirm their
relevant theories. They all provide wherea bout twelve of
convergence order.
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Table 2: Consider 𝑓
1
(𝑥) = sin(𝜋𝑥)𝑒(𝑥

2
+𝑥 cos(𝑥)−1)

+ 𝑥 log(𝑥 sin(𝑥) + 1), 𝛼 = 0, 𝑥
0
= 0.6, 𝛽

0
= −0.01.

Methods with memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.3810(−3) 2.7788(−35) 1.8668(−426) 12.1156
Our method (24) 2.1802(−3) 3.0336(−38) 5.3469(−462) 12.1571
Our method (25) 4.2865(−3) 5.2041(−36) 3.4739(−435) 12.1273
Our method (26) 3.1912(−3) 5.6445(−37) 9.2065(−447) 12.1411
Our method (27) 5.7030(−3) 4.6138(−35) 8.1591(−424) 12.1138
Our method (28) 2.3293(−3) 5.4580(−38) 6.1228(−459) 12.1556
Our method (29) 4.5488(−3) 8.7828(−36) 1.8467(−432) 12.1256
Our method (30) 3.3939(−3) 9.7470(−37) 6.4438(−444) 12.1395
(31), 𝛽 = −1 2.1170(−3) 1.1077(−41) 3.4407(−501) 12.0035
(32), 𝛽 = −1 5.7578(−3) 2.7125(−39) 1.4859(−474) 11.9819

Table 3: Consider 𝑓
2
(𝑥) = 𝑒

−5𝑥
(𝑥 − 2)(𝑥

10
+ 𝑥 + 2), 𝛼 = 2, 𝑥

0
= 2.2, 𝛽 = −1.

Methods without memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.4211(−6) 7.6321(−54) 1.1776(−436) 8.0000
Our method (24) 5.4981(−6) 8.5429(−54) 2.9020(−436) 8.0000
Our method (25) 5.4468(−6) 7.9261(−54) 1.5935(−436) 8.0001
Our method (26) 5.4725(−6) 8.2301(−54) 2.1533(−436) 8.0000
Our method (27) 3.2606(−6) 1.3070(−55) 8.7125(−451) 8.0000
Our method (28) 3.3757(−6) 1.7249(−55) 8.0153(−450) 8.0000
Our method (29) 3.2991(−6) 1.4354(−55) 1.8434(−450) 8.0000
Our method (30) 3.3375(−6) 1.5747(−55) 3.8666(−450) 8.0000
(34), 𝛽 = −1 8.0552(−6) 1.4131(−52) 1.2677(−456) 8.0000
(35), 𝛽 = −0.01 3.9453(−6) 1.2705(−59) 5.0021(−491) 8.0085

Table 4: Consider 𝑓
2
(𝑥) = 𝑒

−5𝑥
(𝑥 − 2)(𝑥

10
+ 𝑥 + 2), 𝛼 = 2, 𝑥

0
= 2.2, 𝛽

0
= −1.

Methods with memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.4211(−6) 2.1857(−80) 4.4911(−970) 11.9590
Our method (24) 5.4981(−6) 2.4529(−80) 1.7931(−969) 11.9587
Our method (25) 5.4468(−6) 2.2719(−80) 7.1443(−970) 11.9589
Our method (26) 5.4725(−6) 2.3611(−80) 9.2065(−969) 11.9588
Our method (27) 5.4981(−6) 2.4529(−80) 1.7931(−969) 11.9587
Our method (28) 3.3757(−6) 7.7624(−82) 1.8084(−987) 11.9732
Our method (29) 3.2991(−6) 6.4445(−82) 1.9393(−988) 11.9737
Our method (30) 3.3375(−6) 7.0781(−82) 5.9748(−988) 11.9735
(31), 𝛽 = −1 4.9425(−5) 1.5275(−69) 4.1256(−874) 12.0535
(32), 𝛽 = −1 4.0518(−6) 8.2730(−77) 2.4267(−861) 11.0982

Table 5: Consider 𝑓
3
(𝑥) = 𝑒

𝑥
3
−𝑥

− cos(𝑥2 − 1) + 𝑥
3
+ 1, 𝛼 = −1, 𝑥

0
= −1.65, 𝛽 = −1.

Methods without memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 6.0256(−3) 4.0898(−24) 1.8272(−193) 8.0001
Our method (24) 5.9797(−3) 3.8471(−24) 1.1202(−193) 8.0001
Our method (25) 6.0104(−3) 4.0081(−24) 1.5548(−193) 8.0001
Our method (26) 5.9952(−3) 3.9278(−24) 1.3225(−193) 8.0001
Our method (27) 5.3628(−3) 1.6071(−24) 1.0388(−196) 8.0001
Our method (28) 5.3357(−3) 1.5431(−24) 7.5042(−197) 8.0001
Our method (29) 5.3537(−3) 1.5856(−24) 9.3292(−197) 8.0001
Our method (30) 5.3448(−3) 1.5644(−24) 8.3766(−197) 8.0001
(34), 𝛽 = −1 2.9152(−4) 5.3239(−34) 6.5827(−272) 8.0000
(35), 𝛽 = −0.01 6.4036(−5) 4.4335(−44) 2.4457(−357) 7.9995
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Table 6: Consider 𝑓
3
(𝑥) = 𝑒

𝑥
3
−𝑥

− cos(𝑥2 − 1) + 𝑥
3
+ 1, 𝛼 = −1, 𝑥

0
= −1.65, 𝛽

0
= −1.

Methods with memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 6.0256(−3) 4.7294(−38) 3.8067(−459) 11.9952
Our method (24) 5.9797(−3) 4.4345(−38) 1.7580(−459) 11.9955
Our method (25) 6.0104(−3) 4.6300(−38) 2.9502(−459) 11.9953
Our method (26) 5.9959(−3) 4.5324(−38) 2.2850(−459) 11.9954
Our method (27) 5.3628(−3) 9.5497(−39) 1.7425(−467) 11.9929
Our method (28) 5.3357(−3) 9.1483(−39) 1.0410(−467) 11.9931
Our method (29) 5.3538(−3) 9.4151(−39) 1.4696(−467) 11.9929
Our method (30) 5.3448(−3) 9.2821(−39) 1.2391(−467) 11.9930
(31), 𝛽 = −1 1.3000(−2) 5.5214(−33) 1.2114(−401) 12.1381
(32), 𝛽 = −1 1.0937(−2) 3.5221(−34) 1.7174(−415) 12.1081

5. Concluding Remarks

We have constructed a class of methods without and with
memory. Our proposed methods do not need any derivative
and therefore are applicable to nonsmooth functions too.
Another advantage of the proposed methods is that their
without memory versions are optimal in the sense of K-T
conjecture. In addition, it contains an accelerator parameter
which rises convergence order from eight to twelve without
any new functional evaluations. In other words, the efficiency
index of the with memory class is 121/4 ≈ 1.861.

We finalize this work by suggesting some outlines for
future research: first developing the proposed methods for
computing multiple roots and second exploring its dynamic
or basins of attractions, and finally we wonder why not to use
an adaptive arithmetic in each step of the iterative method
instead of using a fixed precision, since this higher precision
is only necessary in the last step of the iterative process.
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The purpose of this paper is to derive and discuss a three-step iterative expression for solving nonlinear equations. In fact, we derive
a derivative-free form for one of the existing optimal eighth-order methods and preserve its convergence order. Theoretical results
will be upheld by numerical experiments.

1. Introduction

Assume that 𝑓 : 𝐷 ⊆ R → R is sufficiently smooth and that
𝛼 ∈ 𝐷 is its simple zero; that is,𝑓(𝛼) = 0.This paper concerns
with numerical solution of nonlinear scalar equations by
iterative expressions. Considering a known optimal eighth-
order method with derivative and the conjecture of Cordero
and Torregrosa [1], we construct a family of derivative-free
methods without memory for solving a nonlinear equation.

To shortly review the literature, we remind readers of the
following. Kung and Traub in [2] have provided a class of 𝑛-
step derivative-involved methods including 𝑛 evaluations of
the function and one of its first derivatives per full iteration
to reach the convergence rate 2𝑛. They also have given a 𝑛-
step derivative-free family of one parameter (consuming 𝑛+1
evaluations of the function) to again achieve the optimal
convergence rate 2𝑛.

Remark 1 (Kung-Traub’s conjecture [2]). Multipoint iterative
methods without memory, requiring 𝑑 + 1 function evalua-
tions per iteration, have the order of convergence at most 2𝑑.
Multipointmethods which satisfy the Kung-Traub conjecture
(still unproved) are called optimal methods.

Some well-known methods with eighth order of conver-
gence can be found at [3]. As another example, Liu andWang

[4] suggested some optimal eighth-order methods using four
evaluations per full cycle (𝛽

1
, 𝛽
2
∈ R) in what follows:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)

4𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

4𝑓 (𝑥
𝑛
) − 9𝑓 (𝑦

𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
[

8𝑓 (𝑦
𝑛
)

4𝑓 (𝑥
𝑛
) − 11𝑓 (𝑦

𝑛
)

+ (1 +
𝑓 (𝑧
𝑛
)

3𝑓 (𝑦
𝑛
) − 𝛽
1
𝑓 (𝑧
𝑛
)
)

3

+
4𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) + 𝛽
2
𝑓 (𝑧
𝑛
)
] ,

(1)

where the efficiency index is 1.682. Reference [4] also sug-
gested the following three-step approach (𝛼

1
, 𝛼
2
∈ R) with

the same number of evaluations and efficiency index:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)
,
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𝑥
𝑛+1

= 𝑧
𝑛
−
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
[(

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)
)

2

+
𝑓 (𝑧
𝑛
)

𝑓 (𝑦
𝑛
) − 𝛼
1
𝑓 (𝑧
𝑛
)

+
4𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
) + 𝛼
2
𝑓 (𝑧
𝑛
)
] .

(2)
In what follows, in Section 2, the main derivation is pro-

vided to design a new derivative-free family with optimal
eighth-order convergence for nonlinear equations. Therein,
we confirm the conjecture of Cordero-Torregrosa as well.
Section 3 illustrates the accuracy of the new obtained three-
step family of iterative methods by comparing the results for
some nonlinear test functions. Finally, in Section 4, a conclu-
sion will be drawn.

2. A New Derivative-Free Family

There are a number of papers (see, e.g., [1] and the references
therein) about the idea of removing derivatives from the
iteration function in order to avoid defining new functions
and calculate iterates only by using the function that describes
the problem and also trying to preserve the convergence
order. The interest of these methods is to be applied on non-
linear equations when there are many problems for obtaining
and evaluating the derivatives involved or when there is no
analytical function to derive.

Hence, our focus in this work is to derive a method
without the use of derivatives for nonlinear equations.

Remark 2 (Cordero and Torregrosa’s conjecture [1]). Every
time that one applies the approximation of the derivative
𝑓

(𝑥
𝑛
) ≈ 𝑓[𝑥

𝑛
, 𝑤
𝑛
], with 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
)
𝑙, on an optimal

method with the order 2𝑞, one needs 𝑙 ≥ 𝑞 for preserving the
order of convergence.

We begin by reminding the readers of the three-step
iterative method without memory proposed in [5] with
optimal eighth order of convergence:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑥
𝑛
− (

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)
)

× (1 + (
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

2

+ 3(
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

3

) ,

𝑥
𝑛+1

= 𝑧
𝑛
− (

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
)

× (1 + 2
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
− 18(

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

4

+ (
𝑓 (𝑧
𝑛
)

𝑓 (𝑦
𝑛
)
)

3

) .

(3)

The main aim is to follow Remark 2 and to present a der-
ivative-free form of (3) with optimal eighth order of conver-
gence.Therefore, using the approximation𝑤

𝑛
= 𝑥
𝑛
+𝛽𝑓(𝑥

𝑛
)
3,

we present the following formulation (𝛽 ∈ R \ {0}):

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
, 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
)
3

,

𝑧
𝑛
= 𝑥
𝑛
− (

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)
)

× (1 + (
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

2

+ 3(
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

3

) ,

𝑥
𝑛+1

= 𝑧
𝑛
− (

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝜑
𝑧𝑛,𝑥𝑛,𝑥𝑛

(𝑧
𝑛
− 𝑦
𝑛
)
)

× (1 + 2
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
− 18(

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

4

+ (
𝑓 (𝑧
𝑛
)

𝑓 (𝑦
𝑛
)
)

3

) ,

(4)

wherein

𝜑
𝑧𝑛 ,𝑥𝑛,𝑥𝑛

=
𝑓 [𝑧
𝑛
, 𝑥
𝑛
] − 𝑓 [𝑥

𝑛
, 𝑤
𝑛
]

𝑧
𝑛
− 𝑥
𝑛

. (5)

We shall see that the order of convergence for (4) reaches
to the optimal case, that is, 8, with only four function evalu-
ations per full iteration, which means that the proposed uni-
parametric family of derivative-free methods possesses the
high efficiency index 1.682 and can be viewed as the deri-
vative-free formulation of (3).

Theorem 3. Let 𝛼 ∈ 𝐷 be a simple zero of a sufficiently
differentiable function𝑓 : 𝐷 ⊂ R → R for an open interval𝐷,
which includes 𝑥

0
as an initial approximation of 𝛼. Then, the

family of derivative-free methods (4) is of optimal order eight.

Proof. To find the asymptotic error constant of (4) where 𝑐
𝑗
=

𝑓
(𝑗)
(𝛼)/𝑗!, 𝑗 ≥ 1, we expand any terms of (4) around the

simple root 𝛼 in the 𝑛th iterate. Thus, we write

𝑓 (𝑥
𝑛
) = 𝑐
1
𝑒
𝑛
+ 𝑐
2
𝑒
2

𝑛
+ 𝑐
3
𝑒
3

𝑛
+ 𝑐
4
𝑒
4

𝑛
+ 𝑐
5
𝑒
5

𝑛

+ 𝑐
6
𝑒
6

𝑛
+ 𝑐
7
𝑒
7

𝑛
+ 𝑐
8
𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) ,

(6)

where 𝑒
𝑛
= 𝑥
𝑛
− 𝛼 and

𝑓 (𝑤
𝑛
) = 𝑐
1
𝑏
𝑛
+ 𝑐
2
𝑏
2

𝑛
+ 𝑐
3
𝑏
3

𝑛
+ 𝑐
4
𝑏
4

𝑛
+ 𝑐
5
𝑏
5

𝑛

+ 𝑐
6
𝑏
6

𝑛
+ 𝑐
7
𝑏
7

𝑛
+ 𝑐
8
𝑏
8

𝑛
+ 𝑂 (𝑏

9

𝑛
) ,

(7)

wherein 𝑏
𝑛
= 𝑤
𝑛
− 𝛼. Hence, we obtain

𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
− 𝛼

=
𝑐
2
𝑒
2

𝑛

𝑐
1

+
2 (−𝑐
2

2
+ 𝑐
1
𝑐
3
) 𝑒
3

𝑛

𝑐2
1

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑛
) .

(8)
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In the same vein, we have

𝑓 (𝑦
𝑛
) = 𝑐
2
𝑒
2

𝑛
+ (−

2𝑐
2

2

𝑐
1

+ 2𝑐
3
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑛
) , (9)

and for the second substep, we have

𝑧
𝑛
− 𝛼

= −
𝑐
2
𝑐
3

𝑐2
1

𝑒
4

𝑛

+
(−𝛽𝑐
5

1
𝑐
2

2
+ 9𝑐
4

2
+ 2𝑐
1
𝑐
2

2
𝑐
3
− 2𝑐
2

1
(𝑐
2

3
+ 𝑐
2
𝑐
4
))

𝑐4
1

𝑒
5

𝑛

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑛
) .

(10)

At this time, Taylor’s series expansion of 𝑓(𝑧
𝑛
) around the

root is needed. We find that

𝑓 (𝑧
𝑛
)

= −
𝑐
2
𝑐
3
𝑒
4

𝑛

𝑐
1

+
(−𝛽𝑐
5

1
𝑐
2

2
+ 9𝑐
4

2
+ 2𝑐
1
𝑐
2

2
𝑐
3
− 2𝑐
2

1
(𝑐
2

3
+ 𝑐
2
𝑐
4
))

𝑐3
1

𝑒
5

𝑛

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑛
) ,

(11)

and subsequently

𝜑
𝑧𝑛,𝑥𝑛,𝑥𝑛

= 𝑐
2
+ 2𝑐
3
𝑒
𝑛
+ (𝛽𝑐
3

1
𝑐
2
+ 3𝑐
4
) 𝑒
2

𝑛

+ 3𝛽𝑐
2

1
(𝑐
2

2
+ 𝑐
1
𝑐
3
) 𝑒
3

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑛
) .

(12)

Considering these Taylor’s series expansions in the last step
of (4) will result in the following final error equation:

𝑒
𝑛+1

= −
𝑐
2

2
𝑐
3
(𝑐
2
(𝛽𝑐
4

1
− 2𝑐
3
) + 𝑐
1
𝑐
4
)

𝑐5
1

𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) . (13)

This shows that the iterative family of derivative-freemethods
without memory (4) is of optimal order eight. The proof is
complete.

Remark 4. Theorem 3 clearly supports the conjecture of Cor-
dero-Torregrosa for providing low-complexity derivative-
free iterative methods without memory out of optimal meth-
ods with derivative.

Note that each method of (4) reaches the efficiency index
4√8 ≈ 1.682, which is greater than 3√4 ≈ 1.587 of optimal
fourth-order techniques and 2√2 ≈ 1.424 of optimal Newton’s
method. It has also the same computational efficiency index
with (1), (2), and (3).

Remark 5. It must be remarked that, firstly, the paper [6]
studied the multipoint iterative schemes using divided differ-
ences for self-acceleration of classical methods.

We here state that the free nonzero parameter 𝛽 in (4)
gives us the ability to increase the convergence 𝑅-order of (4)
more. Such an acceleration in𝑅-order is known aswithmem-
orization (see, e.g., [7]) according the classification of Traub
[8] for nonlinear solvers. To be more precise, choosing

𝛽 =
2𝑐
2
𝑐
3
− 𝑐
1
𝑐
4

𝑐4
1
𝑐
2

(14)

would yield an acceleration of convergence.
Anyhow, since the simple zero 𝛼 and subsequently 𝑐

𝑗
are

not known, one should give an approximation for (14) using
an approximation polynomial 𝐴(𝑡) ≈ 𝑓(𝑡) in the domain 𝐷.
Toward this goal, if we consider 𝐴(𝑡) to be Newton’s inter-
polatory polynomial of fourth degree passing through the
five available nodes 𝑥

𝑛−1
,𝑤
𝑛−1

, 𝑦
𝑛−1

, 𝑧
𝑛−1

, and 𝑥
𝑛
at the end of

each cycle, then one has the following approximation:

𝛽
𝑛
=
4𝐴
(3)
(𝑥
𝑛
) − 𝐴

(𝑥
𝑛
) 𝐴
(4)
(𝑥
𝑛
) /𝐴

(𝑥
𝑛
)

12𝐴(𝑥
𝑛
)
4

, (15)

using a suitable 𝛽
0
. Consequently, one is able to derive the

following accelerated iterative method with memory:

𝛽
𝑛
=
4𝐴
(3)
(𝑥
𝑛
) − 𝐴

(𝑥
𝑛
) 𝐴
(4)
(𝑥
𝑛
) /𝐴

(𝑥
𝑛
)

12𝐴(𝑥
𝑛
)
4

,

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
, 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽
𝑛
𝑓(𝑥
𝑛
)
3

,

𝑧
𝑛
= 𝑥
𝑛
− (

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)
)

× (1 + (
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

2

+ 3(
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

3

) ,

𝑥
𝑛+1

= 𝑧
𝑛
− (

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝜑
𝑧𝑛,𝑥𝑛,𝑥𝑛

(𝑧
𝑛
− 𝑦
𝑛
)
)

× (1 + 2
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
− 18(

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
)

4

+ (
𝑓 (𝑧
𝑛
)

𝑓 (𝑦
𝑛
)
)

3

) .

(16)

Obviously, if fewer nodes are used for the interpolating
polynomial, slower acceleration is achieved. An increase of
convergence is achieved in this way without additional func-
tional evaluations, making the proposed root solvers (16)
efficient. This acceleration will be seen in Section 3.

Theorem 6. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxima-
tion 𝑥

0
is sufficiently close to 𝛼, then the𝑅-order of convergence

of (16) is at least 4 + √17.

Proof. Let {𝑥
𝑛
} be a sequence of approximations generated by

an iterative method with order 𝑝. The error relation with the
self-accelerating parameter 𝛽 = 𝛽

𝑛
for (16) is in what follows:

𝑒
𝑛+1

= 𝑥
𝑛+1

− 𝛼 ∼ 𝑐
𝑛,8
𝑒
8

𝑛
, (17)
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Table 1: Results of comparisons for Example 7.

Methods |𝑓(𝑥
1
)| |𝑓(𝑥

2
)| |𝑓(𝑥

3
)| |𝑓(𝑥

4
)| COC

LW8 0.85460 4.8410 × 10
−7

2.8515 × 10
−57

4.1317 × 10
−459 8.00000

SM8 0.85215 1.4818 × 10
−8

3.3414 × 10
−70

2.2345 × 10
−563 8.00000

PM 0.64289 2.2594 × 10
−9

9.7768 × 10
−77

1.2017 × 10
−615 8.00000

APM 0.64289 1.2590 × 10
−9

2.0944 × 10
−79

2.9252 × 10
−646 8.12358

Table 2: Results of comparisons for Example 8.

Methods |𝑓(𝑥
1
)| |𝑓(𝑥

2
)| |𝑓(𝑥

3
)| |𝑓(𝑥

4
)| COC

LW8 0.080790 4.3442 × 10
−14

6.3406 × 10
−112

1.3057 × 10
−894 8.00000

SM8 2.0294 2.2403 × 10
−9

1.1696 × 10
−74

6.4533 × 10
−597 8.00000

PM 2.0357 2.2049 × 10
−9

1.0295 × 10
−74

2.3266 × 10
−597 8.00000

APM 2.0357 9.1086 × 10
−10

7.2327 × 10
−78

1.3852 × 10
−631 8.13093

wherein 𝑐
𝑛,8

is the asymptotic error constant. Using a sym-
bolic computation and (13), we attain that

2𝑐
2
𝑐
3
− 𝑐
1
𝑐
4

𝑐4
1
𝑐
2

∼ 𝑒
𝑛−1

. (18)

Substituting the value of (2𝑐
2
𝑐
3
−𝑐
1
𝑐
4
)/(𝑐
4

1
𝑐
2
) from (18) in (17),

one may obtain

𝑒
𝑛+1

∼ 𝑒
𝑛−1

𝑒
8

𝑛
. (19)

Thus, it is easy to obtain

𝑒
𝑝

𝑛
∼ 𝐴
−1/𝑝

𝐶𝑒
8+1/𝑝

𝑛
, (20)

wherein 𝐴 and 𝐶 are two constants and subsequently

𝑝 = 8 +
1

𝑝
, (21)

with two solutions {4−√17, 4+√17}. Clearly the value for𝑝 =
4+√17 ≈ 8.12311 is acceptable andwould be the convergence
𝑅-order of the method (16) with memory. The proof is
complete.

3. Numerical Testing

The objective of this section is to provide a comparison
between the presented schemes and the already known
methods in the literature.

For numerical reports here, we have used the optimal
eighth-order three-step method (1) as (LW8) with 𝛽

1
= 𝛽
2
=

0, the optimal eighth-order three-step method (3) as (SM8),
our optimal three-step eighth-order method (4) with 𝛽 =

−0.0001, and the accelerated method with memory (16)
denoted by (APM) with 𝛽

0
= −0.0001.

The results are summarized in Tables 1 and 2 after some
full iterations. As they show, novel schemes are compara-
ble with all of the methods. All numerical instances were
performed by Mathematica 8 using 1000 fixed floating point
arithmetic [9].

We have computed the root of each test function for the
initial guess𝑥

0
while the iterative schemeswere stoppedwhen

|𝑓(𝑥
𝑛
)| ≤ 10

−150. As can be seen, the obtained results inTables
1 and 2 are in harmony with the analytical procedure given in
Section 2.

The computational order of convergence (COC) has also
been computed by

COC =
ln 𝑓 (𝑥𝑛) /𝑓 (𝑥𝑛−1)



ln 𝑓 (𝑥𝑛−1) /𝑓 (𝑥𝑛−2)


. (22)

Example 7. In this test, we compare the behavior of different
methods for finding the complex solution of the following
nonlinear equation:

𝑓 (𝑥) = (−1 + 2𝐼) +
1

𝑥
+ 𝑥 + sin (𝑥) , (23)

using the initial approximation 𝑥
0
= 1 − 3𝐼 where 𝛼 =

0.28860 ⋅ ⋅ ⋅−1.24220 ⋅ ⋅ ⋅ 𝐼.The results for this test are given in
Table 1.

Example 8. We here compare the behavior of different meth-
ods for finding the solution of

𝑔 (𝑥) = (−2 + 𝑥) sin (tanh (𝑥)) , (24)

using the initial approximation 𝑥
0
= 1.0 where 𝛼 = 2. The

results for this test are given in Table 2.

It should be mentioned that our method (4) cannot be
easily extended for nonlinear systems. The reason is that the
weight functions used in (4) do not contain a finite difference
operator in the denominators. Such an extension might be
pursued for future studies. However, a simple extended ver-
sion of (4) for the𝑁-dimensional case can be written in what
follows:

y(𝑛) = x(𝑛) − 𝐽−1
𝑥,𝑤
𝐹 (x(𝑛)) , 𝑛 = 0, 1, 2, . . . ,

z(𝑛) = y(𝑛) − [𝐽−1
𝑥,𝑦
𝐽
𝑥,𝑤

− 𝐼] [𝐽
−1

𝑥,𝑤
𝐹 (x(𝑛))] ,

x(𝑛+1) = z(𝑛) − 𝐽−1
𝑦,𝑧
𝐹 (z(𝑛)) ,

(25)
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Table 3: Results of comparisons for Example 9.

Methods ‖𝑓(𝑥
1
)‖ ‖𝑓(𝑥

2
)‖ ‖𝑓(𝑥

3
)‖ ‖𝑓(𝑥

4
)‖ COC

PMS 23.6907 2.05639 × 10
−8

6.73602 × 10
−48

2.554 × 10
−245 4.99994

whereinw(𝑛) = x(𝑛)+𝐹(x(𝑛)) and it possesses only fifthorder of
convergence. Note that the extended version of Steffensen’s
method has been written by

x(𝑛+1) = x(𝑛) − 𝐽−1
𝑥,𝑤
𝐹 (x(𝑛)) , 𝑛 = 0, 1, 2, . . . , (26)

wherein

𝐽
𝑥,𝑤

= 𝐽 (x(𝑛), 𝛽𝐻(𝑛))

= (𝐹 (x(𝑛) + 𝐻(𝑛)𝑒1) − 𝐹 (x(𝑛)) , . . . ,

𝐹 (x(𝑛) + 𝐻(𝑛)𝑒𝑁) − 𝐹 (x(𝑛)))𝐻(𝑛)
−1

,

(27)

with𝐻(𝑛) = diag(𝛽𝑓
1
(x(𝑛)), . . . , 𝛽𝑓

𝑁
(x(𝑛))). Nowwe apply (25)

to solve a nonlinear integral equation, and keeping the rate
of convergence at eight will remain as an open problem for
future works.

Example 9. Consider the mixed Hammerstein integral equa-
tion [10]:

𝑥 (𝑠) = 1 +
1

5
∫

1

0

𝐺 (𝑠, 𝑡) 𝑥(𝑡)
3
𝑑𝑡, (28)

where 𝑥 ∈ 𝐶[0, 1], 𝑠, 𝑡 ∈ [0, 1], and the kernel 𝐺 is given by

𝐺 (𝑠, 𝑡) = {
(1 − 𝑠) 𝑡, 𝑡 ≤ 𝑠,

𝑠 (1 − 𝑡) , 𝑡 > 𝑠.
(29)

In order to solve this nonlinear integral equation, we
transform the above equation into a finite-dimensional prob-
lem by using Gauss-Legendre quadrature formula given as

∫

1

0

𝑓 (𝑡) 𝑑𝑡 ≈

𝑡

∑

𝑗=1

𝑤
𝑗
𝑓 (𝑡
𝑗
) , (30)

where the abscissas 𝑡
𝑗
and the weights 𝑤

𝑗
are determined for

𝑡 = 10 by Gauss-Legendre quadrature formula. Denoting the
approximation of 𝑥(𝑡

𝑖
) by 𝑥

𝑖
(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑡), we obtain the

system of nonlinear equations

𝑓 (𝑥
1
, . . . , 𝑥

𝑡
) = 5𝑥

𝑖
− 5 −

𝑡

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
3

𝑗
= 0, (31)

where, for 𝑖 = 1, 2, . . . , 𝑡, we have

𝑎
𝑖𝑗
= {

𝑤
𝑗
𝑡
𝑗
(1 − 𝑡
𝑖
) , if 𝑗 ≤ 𝑖,

𝑤
𝑗
𝑡
𝑖
(1 − 𝑡

𝑗
) , if 𝑖 < 𝑗,

(32)

wherein the abscissas 𝑡
𝑗
and the weights 𝑤

𝑗
are known.

Using the initial approximation x(0) = (0.5, . . . , 0.5)
𝑇, we

apply the proposed method (25) denoted by PMS with 𝛽 =

0.001 which is multiplication-rich to find the final solution
vector of the nonlinear integral equation (31). Table 3 shows
the residuals in 𝑙

2
norm, when 𝑡 = 10 is the size of the

nonlinear system of equations.

4. Concluding Remarks

Solving nonlinear equations is a classical problem which has
interesting applications in various branches of science and
engineering (see, e.g., [11]). In this study, we have described an
iterative method without memory to find a simple root 𝛼 of a
nonlinear equation 𝑓(𝑥) = 0 on an open interval𝐷.

The derived scheme was developed by applying the con-
jecture of Cordero-Torregrosa and it was proved that it con-
verges to the simple zero of a nonlinear equation with
optimal eighth order of convergence. This shows that it has
the optimal efficiency index 1.682. We, furthermore, dis-
cussed how to increase the 𝑅-order of convergence via with
memorization. Some examples have also been included to
support the theoretical parts.
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This paper presents a newmethod for solving higher order nonlinear evolution partial differential equations (NPDEs).Themethod
combines quasilinearisation, the Chebyshev spectral collocationmethod, and bivariate Lagrange interpolation. In this paper, we use
the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified
KdV equation, Fisher’s equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The
results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness
of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were
generated to present the order of accuracy of themethod; convergence graphs to verify convergence of themethod and error graphs
are presented to show the excellent agreement between the results from this study and the known results from literature.

1. Introduction

Nonlinearity exists everywhere and, in general, nature is non-
linear. Nonlinear evolution partial differential equations arise
inmany fields of science, particularly in physics, engineering,
chemistry, finance, and biological systems. They are widely
used to describe complex phenomena in various fields of sci-
ences, such as wave propagation phenomena, fluid mechan-
ics, plasma physics, quantum mechanics, nonlinear optics,
solid state physics, chemical kinematics, physical chemistry,
population dynamics, financial industry, and numerous areas
of mathematical modeling. The development of both numer-
ical and analytical methods for solving complicated, highly
nonlinear evolution partial differential equations continues
to be an area of interest to scientists whose research aim
is to enrich deep understanding of such alluring nonlinear
problems.

Innumerable number of methods for obtaining analytical
and approximate solutions to nonlinear evolution equations
have been proposed. Someof the analyticalmethods that have
been used to solve evolution nonlinear partial differential
equations include Adomian’s decomposition method [1–3],

homotopy analysis method [4–7], tanh-function method [8–
10], Haar wavelet method [11–13], and Exp-function method
[14–16]. Several numerical methods have been used to
solve nonlinear evolution partial differential equations.These
include the explicit-implicit method [17], Chebyshev finite
difference methods [18], finite difference methods [19], finite
element methods [20], and pseudospectral methods [21, 22].

Some drawbacks of approximate analytical methods
include slow convergence, particularly for large time (𝑡 > 1).
Theymay also be cumbersome to use as some involvemanual
integration of approximate series solutions and, hence, it is
difficult to find closed solutions sometimes. On the other
hand, some numerical methods may not work in some cases,
for example, when the required solution has to be found
near a singularity. Certain numerical methods, for example,
finite differences require many grid points to achieve good
accuracy and, hence, require a lot of computer memory and
computational time. Conventional first-order finite differ-
ence methods may result in monotonic and stable solutions,
but they are strongly dissipative causing the solution of the
strongly convective partial differential equations to become
smeared out and often grossly inaccurate. On the other hand,
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higher order difference methods are less dissipative but are
prone to numerical instabilities.

Spectral methods have been used successfully in many
different fields in sciences and engineering because of their
ability to give accurate solutions of differential equations.
Khater et al. [23] applied the Chebyshev spectral collocation
method to solve Burgers type of equations in space and finite
differences to approximate the time derivative. The Cheby-
shev spectral collocationmethod has been used together with
the fourth-order Runge-Kutta method to solve the nonlinear
PDEs in this study.TheChebyshev spectral collocation is first
applied to the NPDE and this yields a system of ordinary
differential equations, which are solved using the fourth-
order Runge-Kutta method. Olmos and Shizgal [24], Javidi
[25, 26], Dehghan and Fakhar-Izadi [27], Driscoll [28], and
Driscoll [28] solved the Fisher, Burgers-Fisher, Burgers-
Huxley, Fitzhugh-Nagumo, and KdV equations, respectively,
using a combination of the Chebyshev spectral collocation
method and fourth-order Runge-Kutta method. Darvishi et
al. [29, 30] solved the KdV and the Burgers-Huxley equations
using a combination of the Chebyshev spectral collocation
method and Darvishi’s preconditioning. Jacobs and Harley
[31] and Tohidi and Kilicman [32] used spectral collocation
directly for solving linear partial differential equations. Accu-
racy will be compromised if they implement their approach
in solving nonlinear partial differential equations since they
use Kronecker multiplication.

Chebyshev spectral methods are defined everywhere in
the computational domain. Therefore, it is easy to get an
accurate value of the function under consideration at any
point of the domain, beside the collocation points. This
property is often exploited, in particular to get a significant
graphic representation of the solution, making the possible
oscillations due to a wrong approximation of the derivative
apparent. Spectral collocationmethods are easy to implement
and are adaptable to various problems, including variable
coefficient and nonlinear differential equations. The error
associated with the Chebyshev approximation is O(1/𝑁

𝑟
)

where 𝑁 refers to the truncation and 𝑟 is connected to
the number of continuous derivatives of the function. The
interest in using Chebyshev spectral methods in solving
nonlinear PDEs stems from the fact that these methods
require less grid points to achieve accurate results. They
are computational and efficient compared to traditional
methods like finite difference and finite element methods.
Chebyshev spectral collocation method has been used in
conjunction with additional methods which may have their
own drawbacks. Here, we provide an alternative method that
is not dependent on another method to approximate the
solution.

The main objective of this work is to introduce a new
method that uses Chebyshev spectral collocation, bivariate
Lagrange interpolation polynomials together with quasilin-
earisation techniques. The nonlinear evolution equations
are first linearized using the quasilinearisation method. The
Chebyshev spectral collocation method with Lagrange inter-
polation polynomials are applied independently in space and
time variables of the linearized evolution partial differential
equation. This new method is termed bivariate interpolated

spectral quasilinearisation method (BI-SQLM). We present
the BI-SQLM algorithm in a general setting, where it can be
used to solve any 𝑟th order nonlinear evolution equations.
The applicability, accuracy, and reliability of the proposed
BI-SQLM are confirmed by solving the modified KdV-
Burger equation, highly nonlinear modified KdV equation,
the Cahn-Hillard equation,the fourth-order KdV equation,
Fisher’s, Burgers-Fisher, Burger-Huxley, and the Fitzhugh-
Nagumo equations.The results of the BI-SQLMare compared
against known exact solutions that have been reported in the
scientific literature. It is observed that the method achieves
high accuracy with relatively fewer spatial grid points. It also
converges fast to the exact solution and approximates the
solution of the problem in a computationally efficientmanner
with simulations completed in fractions of a second in all
cases. Tables are generated to show the order of accuracy
of the method and time taken to compute the solutions. It
is observed that, as the number of grid points is increased,
the error decreases. Error graphs and graphs showing the
excellent agreement of the exact and analytical solutions for
all the nonlinear evolution equations are also presented.

The paper is organized as follows. In Section 2, we
introduce the BI-SQLM algorithm for a general nonlinear
evolution PDE. In Section 3, we describe the application
of the BI-SQLM to selected test problems. The numerical
simulations and results are presented in Section 4. Finally, we
conclude in Section 5.

2. Bivariate Interpolated Spectral
Quasilinearization Method (BI-SQLM)

In this section, we introduce the Bivariate Interpolated
Spectral Quasilinearization Method (BI-SQLM) for finding
solutions to nonlinear evolution PDEs. Without loss of
generality, we consider nonlinear PDEs of the form

𝜕𝑢

𝜕𝜏
= 𝐻(𝑢,

𝜕𝑢

𝜕𝜂
,
𝜕
2
𝑢

𝜕𝜂2
, . . . ,

𝜕
𝑛
𝑢

𝜕𝜂𝑛
) ,

with the physical region 𝜏 ∈ [0, 𝑇] , 𝜂 ∈ [𝑎, 𝑏] ,

(1)

where 𝑛 is the order of differentiation, 𝑢(𝜂, 𝜏) is the required
solution, and 𝐻 is a nonlinear operator which contains all
the spatial derivatives of 𝑢. The given physical region, 𝜏 ∈

[0, 𝑇], is converted to the region 𝑡 ∈ [−1, 1] using the linear
transformation 𝜏 = 𝑇(𝑡 + 1)/2 and 𝜂 ∈ [𝑎, 𝑏] is converted to
the region 𝑥 ∈ [−1, 1] using the linear transformation

𝜂 =
1

2
(𝑏 − 𝑎) 𝑥 +

1

2
(𝑏 + 𝑎) . (2)

Equation (1) can be expressed as

𝜕𝑢

𝜕𝑡
= 𝐻(𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕
2
𝑢

𝜕𝑥2
, . . . ,

𝜕
𝑛
𝑢

𝜕𝑥𝑛
) , 𝑡 ∈ [−1, 1] , 𝑥 ∈ [−1, 1] .

(3)
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The solution procedure assumes that the solution can be
approximated by a bivariate Lagrange interpolation polyno-
mial of the form

𝑢 (𝑥, 𝑡) ≈

𝑁𝑥

∑

𝑖=0

𝑁𝑡

∑

𝑗=0

𝑢 (𝑥
𝑖
, 𝑡
𝑗
) 𝐿
𝑖
(𝑥) 𝐿
𝑗
(𝑡) , (4)

which interpolates 𝑢(𝑥, 𝑡) at selected points in both the 𝑥 and
𝑡 directions defined by

{𝑥
𝑖
} = {cos( 𝜋𝑖

𝑁
𝑥

)}

𝑁𝑥

𝑖=0

, {𝑡
𝑗
} = {cos(

𝜋𝑗

𝑁
𝑡

)}

𝑁𝑡

𝑗=0

. (5)

The choice of the Chebyshev-Gauss-Lobatto grid points (5)
ensures that there is a simple conversion of the continuous
derivatives, in both space and time, to discrete derivatives
at the grid points. The functions 𝐿

𝑖
(𝑥) are the characteristic

Lagrange cardinal polynomials

𝐿
𝑖
(𝑥) =

𝑁𝑥

∏

𝑖=0

𝑖 ̸=𝑘

𝑥 − 𝑥
𝑘

𝑥
𝑖
− 𝑥
𝑘

, (6)

where

𝐿
𝑖
(𝑥
𝑘
) = 𝛿
𝑖𝑘

= {
0 if 𝑖 ̸= 𝑘

1 if 𝑖 = 𝑘.
(7)

The function 𝐿
𝑗
(𝑡) is defined in a similar manner. Before

linearizing (3), it is convenient to split 𝐻 into its linear and
nonlinear components and rewrite the governing equation in
the form

𝐹 [𝑢, 𝑢

, . . . , 𝑢

(𝑛)
] + 𝐺 [𝑢, 𝑢


, . . . , 𝑢

(𝑛)
] − ̇𝑢 = 0, (8)

where the dot and primes denote the time and space deriva-
tives, respectively, 𝐹 is a linear operator, and 𝐺 is a nonlinear
operator. Assuming that the difference 𝑢

𝑟+1
− 𝑢
𝑟
and all it’s

space derivative is small, we first approximate the nonlinear
operator 𝐺 using the linear terms of the Taylor series and,
hence,

𝐺 [𝑢, 𝑢

, . . . , 𝑢

(𝑛)
] ≈ 𝐺 [𝑢

𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
]

+

𝑛

∑

𝑘=0

𝜕𝐺

𝜕𝑢(𝑘)
(𝑢
(𝑘)

𝑟+1
− 𝑢
(𝑘)

𝑟
) ,

(9)

where 𝑟 and 𝑟 + 1 denote previous and current iterations,
respectively. We remark that this quasilinearization method
(QLM) approach is a generalisation of the Newton-Raphson
method and was first proposed by Bellman and Kalaba [33]
for solving nonlinear boundary value problems.

Equation (9) can be expressed as

𝐺 [𝑢, 𝑢

, . . . , 𝑢

(𝑛)
] ≈ 𝐺 [𝑢

𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
]

+

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] 𝑢
(𝑘)

𝑟+1

−

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] 𝑢
(𝑘)

𝑟
,

(10)

where

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] =

𝜕𝐺

𝜕𝑢(𝑘)
[𝑢
𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] . (11)

Substituting (10) into (8), we get

𝐹 [𝑢
𝑟+1

, 𝑢


𝑟+1
, . . . , 𝑢

(𝑛)

𝑟+1
] +

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟+1
− ̇𝑢
𝑟+1

= 𝑅
𝑟
[𝑢
𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] ,

(12)

where

𝑅
𝑟
[𝑢
𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] =

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
− 𝐺 [𝑢

𝑟
, 𝑢


𝑟
, . . . , 𝑢

(𝑛)

𝑟
] . (13)

A crucial step in the implementation of the solution proce-
dure is the evaluation of the time derivative at the grid points
𝑡
𝑗
(𝑗 = 0, 1, . . . , 𝑁

𝑡
) and the spatial derivatives at the grid

points 𝑥
𝑖
(𝑖 = 0, 1, . . . , 𝑁

𝑥
). The values of the time derivatives

at the Chebyshev-Gauss-Lobatto points (𝑥
𝑖
, 𝑡
𝑗
) are computed

as (for 𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
)

𝜕𝑢

𝜕𝑡

𝑥=𝑥𝑖 ,𝑡=𝑡𝑗

=

𝑁𝑥

∑
𝑝=0

𝑁𝑡

∑

𝑘=0

𝑢 (𝑥
𝑝
, 𝑡
𝑘
) 𝐿
𝑝
(𝑥
𝑖
)
𝑑𝐿
𝑘
(𝑡
𝑗
)

𝑑𝑡

=

𝑁𝑡

∑

𝑘=0

𝑢 (𝑥
𝑖
, 𝑡
𝑘
) 𝑑
𝑗𝑘

=

𝑁𝑡

∑

𝑘=0

𝑑
𝑗𝑘
𝑢 (𝑥
𝑖
, 𝑡
𝑘
) ,

(14)

where 𝑑
𝑗𝑘

= 𝑑𝐿
𝑘
(𝑡
𝑗
)/𝑑𝑡 is the standard first derivative Che-

byshev differentiation matrix of size (𝑁
𝑡
+ 1) × (𝑁

𝑡
+ 1) as

defined in [34]. The values of the space derivatives at the
Chebyshev-Gauss-Lobatto points (𝑥

𝑖
, 𝑡
𝑗
) (𝑖 = 0, 1, 2, . . . , 𝑁

𝑥
)

are computed as

𝜕𝑢

𝜕𝑥

𝑥=𝑥𝑖 ,𝑡=𝑡𝑗

=

𝑁𝑥

∑
𝑝=0

𝑁𝑡

∑

𝑘=0

𝑢 (𝑥
𝑝
, 𝑡
𝑘
)
𝑑𝐿
𝑝
(𝑥
𝑖
)

𝑑𝑥
𝐿
𝑘
(𝑡
𝑗
)

=

𝑁𝑥

∑
𝑝=0

𝑢 (𝑥
𝑝
, 𝑡
𝑗
)𝐷
𝑖𝑝

=

𝑁𝑥

∑
𝑝=0

𝐷
𝑖𝑝
𝑢 (𝑥
𝑝
, 𝑡
𝑗
) ,

(15)

where 𝐷
𝑖𝑝

= 𝑑𝐿
𝑝
(𝑥
𝑖
)/𝑑𝑥 is the standard first derivative

Chebyshev differentiation matrix of size (𝑁
𝑥
+ 1) × (𝑁

𝑥
+ 1).

Similarly, for an 𝑛th order derivative, we have

𝜕
𝑛
𝑢

𝜕𝑥𝑛

𝑥=𝑥𝑖 ,𝑡=𝑡𝑗

=

𝑁𝑥

∑
𝑝=0

𝐷
𝑛

𝑖𝑝
𝑢 (𝑥
𝑝
, 𝑡
𝑗
) = D𝑛U

𝑗
,

𝑖 = 0, 1, 2, . . . , 𝑁
𝑥
,

(16)

where the vector U
𝑗
is defined as

U
𝑗
= [𝑢
𝑗
(𝑥
0
) , 𝑢
𝑗
(𝑥
1
) , . . . , 𝑢

𝑗
(𝑥
𝑁𝑥

)]
𝑇 (17)
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and the superscript 𝑇 denotes matrix transpose. Substituting
(16) into (12) we get

𝐹 [U
𝑟+1,𝑗

,U
𝑟+1,𝑗

, . . . ,U(𝑛)
𝑟+1,𝑗

] +

𝑛

∑

𝑘=0

Φ
𝑘,𝑟
U(𝑘)
𝑟+1,𝑗

−

𝑁𝑡

∑

𝑘=0

𝑑
𝑗𝑘
U
𝑟+1,𝑘

= 𝑅
𝑟
[U
𝑟,𝑗
,U
𝑟,𝑗
, . . . ,U(𝑛)

𝑟,𝑗
]

(18)

for 𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
, where

U(𝑛)
𝑟+1,𝑗

= D𝑛U
𝑟+1,𝑗

,

Φ
𝑘,𝑟

=

[
[
[
[

[

𝜙
𝑘,𝑟

(𝑥
0
, 𝑡
𝑗
)

𝜙
𝑘,𝑟

(𝑥
1
, 𝑡
𝑗
)

d
𝜙
𝑘,𝑟

(𝑥
𝑁𝑥

, 𝑡
𝑗
)

]
]
]
]

]

.

(19)

The initial condition for (3) corresponds to 𝜏
𝑁𝑡

= −1 and,
hence, we express (18) as

𝐹 [U
𝑟+1,𝑗

,U
𝑟+1,𝑗

, . . . ,U(𝑛)
𝑟+1,𝑗

]

+

𝑛

∑

𝑘=0

Φ
𝑘,𝑟
U(𝑘)
𝑟+1,𝑗

−

𝑁𝑡−1

∑

𝑘=0

𝑑
𝑗𝑘
U
𝑟+1,𝑘

= R
𝑗
,

(20)

where

R
𝑗
= 𝑅
𝑟
[U
𝑟,𝑗
,U
𝑟,𝑗
, . . . ,U(𝑛)

𝑟,𝑗
] + 𝑑
𝑗𝑁𝑡

U
𝑁𝑡
,

𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
− 1.

(21)

Equation (20) can be expressed as the following𝑁
𝑡
(𝑁
𝑥
+1) ×

𝑁
𝑡
(𝑁
𝑥
+ 1)matrix system

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑁𝑡−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑁𝑡−1

...
... d

...
𝐴
𝑁𝑡−1,0

𝐴
𝑁𝑡−1,1

⋅ ⋅ ⋅ 𝐴
𝑁𝑡−1,𝑁𝑡−1

]
]
]
]

]

[
[
[
[

[

U
0

U
1

...
U
𝑁𝑡−1

]
]
]
]

]

=

[
[
[
[

[

R
0

R
1

...
R
𝑁𝑡−1

]
]
]
]

]

,

(22)

where

𝐴
𝑖,𝑖

= 𝐹 [I,D, . . . ,D(𝑛)] +
𝑛

∑

𝑘=0

Φ
𝑘,𝑟
D(𝑘) − 𝑑

𝑖,𝑖
I,

𝐴
𝑖,𝑗

= −𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

(23)

and I is the identity matrix of size (𝑁
𝑥
+1)× (𝑁

𝑥
+1). Solving

(19) gives 𝑢(𝑥
𝑖
, 𝑡
𝑗
) and, hence, we use (4) to approximate

𝑢(𝑥, 𝑡).

3. Numerical Experiments

We apply the proposed algorithm to well-known nonlinear
PDEs of the form (3) with exact solutions. In order to
determine the level of accuracy of the BI-SQLM approximate
solution, at a particular time level, in comparison with the
exact solution, we report maximum error which is defined by

𝐸
𝑁

= max
𝑟

{
𝑢 (𝑥
𝑟
, 𝑡) − �̃� (𝑥

𝑟
, 𝑡)

 , : 0 ≤ 𝑟 ≤ 𝑁} , (24)

where �̃�(𝑥
𝑟
, 𝑡) is the approximate solution and is the 𝑢(𝑥

𝑟
, 𝑡)

exact solution at the time level 𝑡.

Example 1. Weconsider the generalizedBurgers-Fisher equa-
tion [35]:

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿 𝜕𝑢

𝜕𝑥
=

𝜕
2
𝑢

𝜕𝑥2
+ 𝛽𝑢 (1 − 𝑢

𝛿
) , (25)

with initial condition

𝑢 (𝑥, 0) = {
1

2
+

1

2
tanh(

−𝛼𝛿

2(𝛿 + 1)
𝑥)}

1/𝛿

(26)

and exact solution

𝑢 (𝑥, 𝑡)

= {
1

2
+

1

2
tanh(

−𝛼𝛿

2 (𝛿 + 1)

× [𝑥 − (
𝛼

𝛿 + 1
+

𝛽 (𝛿 + 1)

𝛼
) 𝑡])}

1/𝛿

,

(27)

where 𝛼, 𝛽, and 𝛿 are parameters. For illustration purposes,
these parameters are chosen to be𝛼 = 𝛽 = 𝛿 = 1 in this paper.
The linear operator 𝐹 and nonlinear operator𝐺 are chosen as

𝐹 (𝑢) = 𝑢

+ 𝑢, 𝐺 (𝑢) = −𝑢𝑢


− 𝑢
2
. (28)

We first linearize the nonlinear operator 𝐺. We approximate
𝐺 using the equation

𝐺 ≈ 𝐺 [𝑢
𝑟
, 𝑢


𝑟
, 𝑢


𝑟
] +

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟+1
−

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
. (29)

The coefficients are given by

𝜙
0,𝑟

=
𝜕𝐺

𝜕𝑢
[𝑢
𝑟
, 𝑢


𝑟
, 𝑢


𝑟
] = − (𝑢



𝑟
+ 2𝑢
𝑟
) ,

𝜙
1,𝑟

=
𝜕𝐺

𝜕𝑢
[𝑢
𝑟
, 𝑢


𝑟
, 𝑢


𝑟
] = −𝑢

𝑟
,

𝜙
2,𝑟

=
𝜕𝐺

𝜕𝑢
[𝑢
𝑟
, 𝑢


𝑟
, 𝑢


𝑟
] = 0,

𝑅
𝑟
=

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
− 𝐺 [𝑢

𝑟
, 𝑢


𝑟
, 𝑢


𝑟
] = −𝑢

2

𝑟
− 𝑢
𝑟
𝑢


𝑟
.

(30)
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Therefore, the linearized equation can be expressed as

𝑢


𝑟+1
+ 𝜙
1,𝑟
𝑢


𝑟+1
+ 𝜙
0,𝑟
𝑢
𝑟+1

+ 𝑢
𝑟+1

− ̇𝑢 = 𝑅
𝑟
. (31)

Applying the spectral method both in 𝑥 and 𝑡 and initial
condition, we get

D2U
𝑟+1,𝑖

+Φ
1,𝑟
DU
𝑟+1,𝑖

+Φ
0,𝑟
U
𝑟+1,𝑖

+ U
𝑟+1,𝑖

− 2

𝑁𝑡−1

∑

𝑗=0

𝑑
𝑖𝑗
U
𝑟+1,𝑗

= R
𝑖
.

(32)

Equation (32) can be expressed as

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑁𝑡−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑁𝑡−1

...
... d

...
𝐴
𝑁𝑡−1,0

𝐴
𝑁𝑡−1,1

⋅ ⋅ ⋅ 𝐴
𝑁𝑡−1,𝑁𝑡−1

]
]
]
]

]

[
[
[
[

[

U
0

U
1

...
U
𝑁𝑡−1

]
]
]
]

]

=

[
[
[
[

[

R
0

R
1

...
R
𝑁𝑡−1

]
]
]
]

]

,

(33)

where

𝐴
𝑖,𝑖

= D2 +Φ(𝑖)
1,𝑟
D +Φ

(𝑖)

0,𝑟
+ (1 − 2𝑑

𝑖,𝑖
) I,

𝐴
𝑖,𝑗

= − 2𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

R
𝑖
= 𝑅
𝑟
+ 2𝑑
𝑖𝑁𝑡

U
𝑟,𝑁𝑡

.

(34)

The boundary conditions are implemented in the first and
last row of the matrices 𝐴

𝑖𝑗
and the column vectors R

𝑖
for

𝑖 = 0, 1, . . . , 𝑁
𝑡
− 1 and 𝑗 = 0, 1, . . . , 𝑁

𝑡
− 1. The procedure

for finding the variable coefficients 𝜙
𝑖
and matrices for the

remaining examples is similar.

Example 2. We consider Fisher’s equation

𝜕𝑢

𝜕𝑡
=

𝜕
2
𝑢

𝜕𝑥2
+ 𝛼𝑢 (1 − 𝑢) , (35)

subject to the initial condition

𝑢 (𝑥, 0) =
1

(1 + 𝑒√𝛼/6𝑥)
2 (36)

and exact solution [36]

𝑢 (𝑥, 𝑡) =
1

(1 + 𝑒√𝛼/6𝑥−5𝛼𝑡/6)
2
, (37)

where 𝛼 is a constant. The Fisher equation represents a
reactive-diffusive system and is encountered in chemical
kinetics and population dynamics applications. For this
example, the appropriate linear operator 𝐹 and nonlinear
operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢

+ 𝛼𝑢, 𝐺 (𝑢) = −𝛼𝑢

2
. (38)

Table 1: Maximum errors 𝐸
𝑁
for Fisher equation when 𝛼 = 1 using

𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.986𝑒 − 008 1.119𝑒 − 011 7.398𝑒 − 013 7.171𝑒 − 013

0.2 3.934𝑒 − 008 3.121𝑒 − 011 1.552𝑒 − 012 1.561𝑒 − 012

0.3 5.577𝑒 − 008 4.864𝑒 − 011 1.004𝑒 − 012 1.005𝑒 − 012

0.4 6.997𝑒 − 008 6.802𝑒 − 011 7.895𝑒 − 013 8.124𝑒 − 013

0.5 8.107𝑒 − 008 7.971𝑒 − 011 1.088𝑒 − 012 1.027𝑒 − 012

0.6 8.891𝑒 − 008 8.560𝑒 − 011 8.805𝑒 − 013 7.847𝑒 − 013

0.7 9.344𝑒 − 008 8.953𝑒 − 011 6.418𝑒 − 013 6.463𝑒 − 013

0.8 9.431𝑒 − 008 8.759𝑒 − 011 6.199𝑒 − 013 6.164𝑒 − 013

0.9 9.178𝑒 − 008 8.325𝑒 − 011 3.978𝑒 − 013 3.695𝑒 − 013

1.0 8.787𝑒 − 008 7.421𝑒 − 011 7.988𝑒 − 014 5.596𝑒 − 014

CPU
time
(sec)

0.019942 0.025988 0.027756 0.029436

Table 2:Maximum errors𝐸
𝑁
for the Burgers-Fisher equation when

𝛼 = 𝛾 = 𝛿 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.142𝑒 − 007 1.369𝑒 − 010 5.891𝑒 − 012 6.143𝑒 − 012

0.2 1.178𝑒 − 007 1.373𝑒 − 010 9.570𝑒 − 012 1.013𝑒 − 011

0.3 1.186𝑒 − 007 1.479𝑒 − 010 1.489𝑒 − 011 1.512𝑒 − 011

0.4 1.069𝑒 − 007 9.450𝑒 − 011 1.703𝑒 − 011 1.702𝑒 − 011

0.5 9.030𝑒 − 008 7.944𝑒 − 011 5.283𝑒 − 012 5.736𝑒 − 012

0.6 6.963𝑒 − 008 6.618𝑒 − 011 1.639𝑒 − 011 1.626𝑒 − 011

0.7 4.638𝑒 − 008 1.579𝑒 − 011 1.362𝑒 − 011 1.364𝑒 − 011

0.8 2.457𝑒 − 008 4.030𝑒 − 011 3.934𝑒 − 012 3.852𝑒 − 012

0.9 2.028𝑒 − 008 6.006𝑒 − 011 4.466𝑒 − 012 4.727𝑒 − 012

1.0 3.147𝑒 − 008 7.708𝑒 − 011 7.757𝑒 − 013 7.261𝑒 − 013

CPU
Time
(sec)

0.010152 0.015387 0.019163 0.021564

Example 3. Consider the Fitzhugh-Nagumo equation

𝜕𝑢

𝜕𝑡
=

𝜕
2
𝑢

𝜕𝑥2
+ 𝑢 (𝑢 − 𝛼) (1 − 𝑢) (39)

with initial condition

𝑢 (𝑥, 0) =
1

2
[1 − coth(−

𝑥

2√2
)] . (40)

This equation has the exact solution [37]

𝑢 (𝑥, 𝑡) =
1

2
[1 − coth(−

𝑥

2√2
+

2𝛼 − 1

4
𝑡)] , (41)

where 𝛼 is a parameter. In this example, the linear operator 𝐹
and nonlinear operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢

− 𝛼𝑢, 𝐺 (𝑢) = (1 + 𝛼) 𝑢

2
− 𝑢
3
. (42)
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Table 3: Maximum errors 𝐸
𝑁
for the Fitzhug-Nagumo equation

when 𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 5.719𝑒 − 007 1.196𝑒 − 009 2.367𝑒 − 012 9.881𝑒 − 014

0.2 6.193𝑒 − 007 1.299𝑒 − 009 2.761𝑒 − 012 3.952𝑒 − 014

0.3 6.662𝑒 − 007 1.463𝑒 − 009 3.259𝑒 − 012 8.216𝑒 − 014

0.4 6.779𝑒 − 007 1.448𝑒 − 009 3.341𝑒 − 012 8.094𝑒 − 014

0.5 6.920𝑒 − 007 1.526𝑒 − 009 3.587𝑒 − 012 5.063𝑒 − 014

0.6 7.019𝑒 − 007 1.573𝑒 − 009 3.729𝑒 − 012 3.775𝑒 − 014

0.7 6.933𝑒 − 007 1.516𝑒 − 009 3.660𝑒 − 012 8.915𝑒 − 014

0.8 6.828𝑒 − 007 81.535𝑒 − 009 3.635𝑒 − 012 7.594𝑒 − 014

0.9 6.765𝑒 − 007 1.528𝑒 − 009 3.519𝑒 − 012 3.242𝑒 − 013

1.0 6.687𝑒 − 007 1.490𝑒 − 009 3.405𝑒 − 012 1.688𝑒 − 013

CPU
time
(sec)

0.024281 0.024901 0.026810 0.032389

Table 4:Maximum errors𝐸
𝑁
for the Burger-Huxley equation when

𝛾 = 0.75, 𝛽 = 1, and𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 2.217𝑒 − 006 8.482𝑒 − 009 2.166𝑒 − 011 7.822𝑒 − 014

0.2 2.596𝑒 − 006 9.369𝑒 − 009 2.536𝑒 − 011 1.184𝑒 − 013

0.3 2.859𝑒 − 006 1.073𝑒 − 008 3.201𝑒 − 011 1.049𝑒 − 013

0.4 3.001𝑒 − 006 1.112𝑒 − 008 3.652𝑒 − 011 9.426𝑒 − 014

0.5 3.137𝑒 − 006 1.213𝑒 − 008 4.262𝑒 − 011 1.510𝑒 − 013

0.6 3.270𝑒 − 006 1.311𝑒 − 008 4.842𝑒 − 011 2.127𝑒 − 013

0.7 3.367𝑒 − 006 1.359𝑒 − 008 5.289𝑒 − 011 1.230𝑒 − 013

0.8 3.467𝑒 − 006 1.438𝑒 − 008 5.803𝑒 − 011 1.549𝑒 − 013

0.9 3.562𝑒 − 006 1.504𝑒 − 008 6.260𝑒 − 011 3.063𝑒 − 013

1.0 3.640𝑒 − 006 1.559𝑒 − 008 6.674𝑒 − 011 2.951𝑒 − 013

CPU
time
(sec)

0.023822 0.024901 0.02685 0.032806

Example 4. Consider the Burgers-Huxley equation

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿
𝑢
𝑥
=

𝜕
2
𝑢

𝜕𝑥2
+ 𝛽𝑢 (1 − 𝑢

𝛿
) (𝑢
𝛿
− 𝛾) , (43)

where 𝛼, 𝛽 ≥ 0 are constant parameters, 𝛿 is a positive integer
(set to be 𝛿 = 1 in this study), and 𝛾 ∈ (0, 1). The exact
solution subject to the initial condition

𝑢 (𝑥, 0) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
𝑥] , (44)

is reported in [38, 39] as

𝑢 (𝑥, 𝑡) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
(𝑥 − 𝑐𝑡)] , (45)

where

𝑟 = √𝛼2 + 8𝛽, 𝑐 =
(𝛼 − 𝑟) (2𝛾 − 1) + 2𝛼

4
(46)

Table 5: Maximum errors 𝐸
𝑁

for the modified KdV-Burgers
equation, with𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.803𝑒 − 007 3.419𝑒 − 010 4.449𝑒 − 013 1.572𝑒 − 013

0.2 2.614𝑒 − 007 4.347𝑒 − 010 5.049𝑒 − 013 5.992𝑒 − 014

0.3 2.717𝑒 − 007 4.677𝑒 − 010 5.532𝑒 − 013 8.128𝑒 − 013

0.4 2.009𝑒 − 007 3.663𝑒 − 010 4.771𝑒 − 013 6.158𝑒 − 013

0.5 2.580𝑒 − 007 4.410𝑒 − 010 7.518𝑒 − 013 2.555𝑒 − 013

0.6 2.653𝑒 − 007 4.606𝑒 − 010 8.738𝑒 − 013 5.756𝑒 − 013

0.7 2.248𝑒 − 007 4.039𝑒 − 010 6.210𝑒 − 013 2.393𝑒 − 013

0.8 2.572𝑒 − 007 4.476𝑒 − 010 5.432𝑒 − 013 6.812𝑒 − 013

0.9 2.436𝑒 − 007 4.351𝑒 − 010 6.111𝑒 − 013 6.287𝑒 − 013

1.0 8.275𝑒 − 008 3.721𝑒 − 010 7.569𝑒 − 013 1.087𝑒 − 007

CPU
time
(sec)

0.015646 0.021226 0.030159 0.035675

Table 6: Maximum errors 𝐸
𝑁
for the highly nonlinear modified

KdV equation, with𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 7.788𝑒 − 005 3.553𝑒 − 007 7.601𝑒 − 010 2.080𝑒 − 010

0.2 1.153𝑒 − 004 4.000𝑒 − 007 5.684𝑒 − 010 1.189𝑒 − 010

0.3 1.011𝑒 − 004 3.739𝑒 − 007 4.471𝑒 − 010 4.503𝑒 − 010

0.4 3.926𝑒 − 005 1.785𝑒 − 007 6.544𝑒 − 010 4.987𝑒 − 010

0.5 6.727𝑒 − 005 2.342𝑒 − 007 2.638𝑒 − 010 1.528𝑒 − 010

0.6 6.065𝑒 − 005 2.207𝑒 − 007 4.565𝑒 − 010 4.568𝑒 − 010

0.7 2.511𝑒 − 005 1.105𝑒 − 007 4.749𝑒 − 010 3.748𝑒 − 010

0.8 4.074𝑒 − 005 1.427𝑒 − 007 1.062𝑒 − 010 1.604𝑒 − 010

0.9 2.386𝑒 − 005 1.018𝑒 − 007 2.343𝑒 − 010 8.114𝑒 − 011

1.0 1.440𝑒 − 006 7.256𝑒 − 008 1.436𝑒 − 009 1.513𝑒 − 011

CPU
time
(sec)

0.020609 0.021241 0.030617 0.032816

The general solution (45) was reported in [40, 41]. In this
example, the linear operator 𝐹 and nonlinear operator 𝐺 are
chosen as

𝐹 (𝑢) = 𝑢

− 𝛽𝛾𝑢,

𝐺 (𝑢) = −𝛼𝑢𝑢

+ 𝛽 (1 + 𝛾) 𝑢

2
− 𝛽𝑢
3
.

(47)

Example 5. We consider the modified KdV-Burgers equation

𝜕𝑢

𝜕𝑡
=

𝜕
3
𝑢

𝜕𝑥3
−

𝜕
2
𝑢

𝜕𝑥2
− 6𝑢
2 𝜕𝑢

𝜕𝑥
(48)

subject to the initial condition

𝑢 (𝑥, 0) =
1

6
+

1

6
tanh(

𝑥

6
) (49)

and exact solution [42]

𝑢 (𝑥, 𝑡) =
1

6
+

1

6
tanh(

𝑥

6
−

𝑡

27
) . (50)
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Table 7: Maximum errors 𝐸
𝑁
for Fisher equation when 𝛼 = 1 using

𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.119𝑒 − 011 7.398𝑒 − 013 8.266𝑒 − 013 3.808𝑒 − 014

0.4 3.121𝑒 − 011 1.552𝑒 − 012 7.378𝑒 − 013 3.780𝑒 − 014

0.6 4.864𝑒 − 011 1.004𝑒 − 012 3.402𝑒 − 012 7.283𝑒 − 014

0.8 6.802𝑒 − 011 7.895𝑒 − 013 1.118𝑒 − 012 3.714𝑒 − 014

1.0 7.971𝑒 − 011 1.088𝑒 − 012 1.473𝑒 − 012 1.691𝑒 − 013

1.2 8.560𝑒 − 011 8.805𝑒 − 013 2.611𝑒 − 012 3.119𝑒 − 013

1.4 8.953𝑒 − 011 6.418𝑒 − 013 6.671𝑒 − 012 1.796𝑒 − 013

1.6 8.759𝑒 − 011 6.199𝑒 − 013 1.118𝑒 − 011 1.097𝑒 − 013

1.8 8.325𝑒 − 011 3.978𝑒 − 013 7.515𝑒 − 013 6.273𝑒 − 014

2.0 7.421𝑒 − 011 7.988𝑒 − 014 3.682𝑒 − 012 2.311𝑒 − 013

CPU
time
(sec)

0.013542 0.022967 0.023792 0.024758

Table 8:Maximum errors𝐸
𝑁
for the Burgers-Fisher equation when

𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.223𝑒 − 007 1.400𝑒 − 008 1.402𝑒 − 008 1.094𝑒 − 012

0.4 1.145𝑒 − 007 1.919𝑒 − 008 1.918𝑒 − 008 3.919𝑒 − 012

0.6 9.192𝑒 − 008 2.082𝑒 − 008 2.085𝑒 − 008 1.953𝑒 − 012

0.8 2.293𝑒 − 008 1.793𝑒 − 008 1.793𝑒 − 008 6.340𝑒 − 013

1.0 2.395𝑒 − 008 1.337𝑒 − 008 1.339𝑒 − 008 2.381𝑒 − 012

1.2 5.778𝑒 − 008 1.954𝑒 − 008 1.930𝑒 − 008 1.005𝑒 − 011

1.4 6.045𝑒 − 008 1.620𝑒 − 008 1.620𝑒 − 008 3.535𝑒 − 012

1.6 5.244𝑒 − 008 7.218𝑒 − 009 7.345𝑒 − 009 5.765𝑒 − 012

1.8 4.395𝑒 − 008 6.828𝑒 − 009 6.784𝑒 − 009 3.983𝑒 − 012

2.0 2.944𝑒 − 008 9.406𝑒 − 010 8.820𝑒 − 010 3.812𝑒 − 012

CPU
time
(sec)

0.019942 0.025988 0.027756 0.029436

The modified KdV-Burgers equation describes various kinds
of phenomena such as a mathematical model of turbulence
[43] and the approximate theory of flow through a shockwave
traveling in viscous fluid [44]. For this example, the linear
operator 𝐹 and nonlinear operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢


− 𝑢

, 𝐺 (𝑢) = −6𝑢


𝑢
2
. (51)

Example 6. We consider the high nonlinear modified KdV
equation

𝜕𝑢

𝜕𝑡
=

𝜕
3
𝑢

𝜕𝑥3
+ (

𝜕𝑢

𝜕𝑥
)

2

− 𝑢
2 (52)

subject to the initial condition

𝑢 (𝑥, 0) =
1

2
+

𝑒
−𝑥

4
(53)

Table 9: Maximum errors 𝐸
𝑁
for the Fitzhugh-Nagumo equation

when 𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 6.326𝑒 − 007 1.311𝑒 − 009 2.886𝑒 − 012 1.131𝑒 − 012

0.4 6.721𝑒 − 007 1.467𝑒 − 009 3.310𝑒 − 012 1.564𝑒 − 012

0.6 7.140𝑒 − 007 1.602𝑒 − 009 3.617𝑒 − 012 1.936𝑒 − 012

0.8 6.730𝑒 − 007 1.496𝑒 − 009 4.707𝑒 − 012 1.196𝑒 − 012

1.0 6.660𝑒 − 007 1.487𝑒 − 009 3.675𝑒 − 012 1.264𝑒 − 012

1.2 6.449𝑒 − 007 1.366𝑒 − 009 1.897𝑒 − 012 1.727𝑒 − 012

1.4 5.690𝑒 − 007 1.083𝑒 − 009 2.972𝑒 − 012 1.200𝑒 − 012

1.6 4.931𝑒 − 007 8.010𝑒 − 010 1.519𝑒 − 012 8.590𝑒 − 013

1.8 3.986𝑒 − 007 4.658𝑒 − 010 1.068𝑒 − 012 6.790𝑒 − 013

2.0 2.904𝑒 − 007 2.968𝑒 − 010 1.592𝑒 − 012 1.770𝑒 − 013

CPU
time
(sec)

0.041048 0.049629 0.055008 0.053863

Table 10: Maximum errors 𝐸
𝑁

for the Burgers-Huxley equation
when 𝛾 = 0.5, 𝛽 = 1, and𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 2.866𝑒 − 006 1.119𝑒 − 008 3.670𝑒 − 011 1.150𝑒 − 012

0.4 3.401𝑒 − 006 1.420𝑒 − 008 5.744𝑒 − 011 1.638𝑒 − 012

0.6 3.814𝑒 − 006 1.687𝑒 − 008 7.426𝑒 − 011 1.958𝑒 − 012

0.8 3.915𝑒 − 006 1.729𝑒 − 008 8.171𝑒 − 011 7.002𝑒 − 013

1.0 3.938𝑒 − 006 1.738𝑒 − 008 8.157𝑒 − 011 1.267𝑒 − 012

1.2 3.808𝑒 − 006 1.624𝑒 − 008 7.687𝑒 − 011 1.710𝑒 − 012

1.4 3.456𝑒 − 006 1.527𝑒 − 008 6.965𝑒 − 011 5.109𝑒 − 013

1.6 3.230𝑒 − 006 1.349𝑒 − 008 5.535𝑒 − 011 8.203𝑒 − 013

1.8 2.925𝑒 − 006 1.078𝑒 − 008 3.598𝑒 − 011 8.294𝑒 − 013

2.0 2.497𝑒 − 006 7.505𝑒 − 009 2.265𝑒 − 011 9.726𝑒 − 014

CPU
time
(sec)

0.023822 0.024901 0.02685 0.032806

and exact solution

𝑢 (𝑥, 𝑡) =
1

𝑡 + 2
+

𝑒
−(𝑥+𝑡)

(𝑡 + 2)
2
. (54)

For this example, the linear operator 𝐹 and nonlinear opera-
tor 𝐺 are chosen as

𝐹 (𝑢) = 𝑢

, 𝐺 (𝑢) = (𝑢


)
2

− 𝑢
2
. (55)

4. Results and Discussion

In this section we present the numerical solutions obtained
using the BI-SQLM algorithm. The number of collocation
points in the space 𝑥 variable used to generate the results is
𝑁
𝑥

= 10 in all cases. Similarly, the number of collocation
points in the time 𝑡 variable used is 𝑁

𝑡
= 10 in all cases. It

was found that sufficient accuracy was achieved using these
values in all numerical simulations.
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Table 11: Maximum errors 𝐸
𝑁

for the modified KdV-Burgers
equation, with𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 2.137𝑒 − 007 3.820𝑒 − 010 4.846𝑒 − 013 9.998𝑒 − 013

0.4 2.480𝑒 − 007 4.267𝑒 − 010 5.596𝑒 − 013 8.775𝑒 − 013

0.6 2.691𝑒 − 007 4.676𝑒 − 010 6.565𝑒 − 013 2.054𝑒 − 012

0.8 2.214𝑒 − 007 3.979𝑒 − 010 8.776𝑒 − 013 1.168𝑒 − 012

1.0 2.538𝑒 − 007 4.463𝑒 − 010 9.650𝑒 − 013 8.410𝑒 − 013

1.2 2.650𝑒 − 007 4.680𝑒 − 010 7.450𝑒 − 013 5.113𝑒 − 013

1.4 2.383𝑒 − 007 4.296𝑒 − 010 7.500𝑒 − 013 1.110𝑒 − 012

1.6 2.568𝑒 − 007 4.572𝑒 − 010 9.704𝑒 − 013 2.837𝑒 − 013

1.8 2.520𝑒 − 007 4.529𝑒 − 010 7.443𝑒 − 013 5.353𝑒 − 013

2.0 2.370𝑒 − 007 4.438𝑒 − 010 2.719𝑒 − 013 8.849𝑒 − 013

CPU
time
(sec)

0.062066 0.081646 0.080718 0.10775

Table 12: Maximum errors 𝐸
𝑁
for the highly nonlinear modified

KdV equation, with𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.986𝑒 − 008 1.119𝑒 − 011 7.398𝑒 − 013 7.171𝑒 − 013

0.4 8.010𝑒 − 005 3.577𝑒 − 007 3.902𝑒 − 008 1.979𝑒 − 010

0.6 7.235𝑒 − 005 2.549𝑒 − 007 2.016𝑒 − 008 4.899𝑒 − 010

0.8 6.284𝑒 − 005 1.663𝑒 − 007 1.155𝑒 − 007 2.679𝑒 − 010

1.0 1.642𝑒 − 005 1.620𝑒 − 007 1.243𝑒 − 007 2.474𝑒 − 010

1.2 2.753𝑒 − 005 1.073𝑒 − 007 1.073𝑒 − 007 1.679𝑒 − 010

1.4 3.738𝑒 − 006 8.971𝑒 − 008 8.598𝑒 − 008 4.788𝑒 − 011

1.6 1.223𝑒 − 005 2.153𝑒 − 008 2.503𝑒 − 008 2.941𝑒 − 011

1.8 5.836𝑒 − 006 2.986𝑒 − 008 9.127𝑒 − 009 5.177𝑒 − 011

2.0 9.310𝑒 − 006 6.548𝑒 − 008 7.277𝑒 − 008 1.453𝑒 − 009

CPU
time
(sec)

0.020609 0.021241 0.030617 0.032816

In Tables 1, 2, 3, 4, 5, and 6 we give the maximum
errors between the exact and BI-SQLM results for the Fisher
equation, Burgers-Fisher equation, Fitzhugh-Nagumo equa-
tion, Burgers-Huxley equation, the modified KdV-Burgers
equation, and the modified KdV equation, respectively, at
𝑡 ∈ [0.1, 1]. The results were computed in the space domain
𝑥 ∈ [0, 1]. To give a sense of the computational efficiency of
the method, the computational time to generate the results
is also given. Tables 1–6 clearly show the accuracy of the
method. The accuracy is seen to improve with an increase
in the number of collocation points 𝑁

𝑥
. It is remarkable to

note that accurate results with errors of order up to 10
−14

are obtained using very few collocation points in both the 𝑥

and 𝑡 variables 𝑁
𝑡
≤ 10, 𝑁

𝑥
≤ 10. This is a clear indication

that the BI-SQLM is powerful method that is appropriate
in solving nonlinear evolution PDEs. We remark, also, that
the BI-SQLM is computationally fast as accurate results are
generated in a fraction of a second in all the examples
considered in this work.
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Figure 1: Fishers equation analytical solution graph.
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Figure 2: Burger-Fishers equation analytical solution graph.

In Tables 7, 8, 9, 10, 11, and 12 we give the maxi-
mum errors of the BI-SQLM results for the Fisher equa-
tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation,
Burgers-Huxley equation, the modified KdV-Burgers equa-
tion, and themodified KdV equation, respectively, at selected
values of 𝑡 = 2 for different collocation points, 𝑁

𝑡
, in the

𝑡-variable. The results in Tables 7–12 were computed on the
space domain 𝑥 ∈ [0, 1]. We note that the accuracy does not
detoriate when 𝑡 > 1 for this method as is often the case with
numerical schemes such as finite differences.
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Figure 4: Burgers-Huxley equation analytical solution graph.

Figures 1, 2, 3, 4, 5, and 6 show a comparison of the
analytical and approximate solutions of the Fisher equa-
tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation,
Burgers-Huxley equation, the modified KdV-Burgers equa-
tion, and the modified KdV equation, respectively, when 𝑡 =

2. The approximate solutions are in excellent agreement with
the analytical solutions, and this demonstrates the accuracy
of the algorithm presented in this study.

In Figures 7, 8, 9, 10, 11, and 12, we present error analysis
graphs for the Fisher equation, Burgers-Fisher equation,
Fitzhugh-Nagumo equation, Burgers-Huxley equation, the
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modified KdV-Burgers equation, and the modified KdV
equation, respectively, when 𝑡 = 2.

In Figures 13, 14, 15, 16, 17, and 18, convergence analysis
graphs for the Fisher equation, Burgers-Fisher equation,
Fitzhugh-Nagumo equation, Burgers-Huxley equation, the
modified KdV-Burgers equation, and the modified KdV
equation, respectively. The figures present a variation of the
error norm at a fixed value of time (𝑡 = 1) with iterations
of the BI-SQLM scheme. It can be seen that, in almost all
the examples considered, the iteration scheme takes about
3 or 4 iterations to converge fully. Beyond the point where
full convergence is reached, error norm levels off and does
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The error graph of the Burgers-Fisher equation
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The error graph of the Fitzhurg-Nagumo equation
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Figure 9: Fitzhugh-Nagumo equation error graph.

The error graph of the Burger-Huxley equation

0.40.2 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Er
ro

r n
or

m
 

10

−11

10

−12

10

−13

10

−14
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The error analysis graph of the modified KdV-Burger equation
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Figure 16: Burgers-Huxley equation convergence graph.
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not improve with an increase in the number of iterations.
This plateau level gives an estimate of the maximum error
that can be achieved when using the proposed method with
a certain number of collocation points. It is worth remarking
that the accuracy of the method depends on the number of
collocation points in both the 𝑥 and 𝑡 directions. The results
from Figures 13–18 clearly demonstrate that the BI-SQLM is
accurate.

5. Conclusion

This paper has presented a new Chebyshev collocation
spectral method for solving general nonlinear evolution
partial differential equations.The bivariate interpolated spec-
tral quasilinearisation method (BI-SQLM) was developed
by combining elements of the quasilinearisation method
and Chebyshev spectral collocation with bivariate Lagrange
interpolation.Themain goal of the current studywas to assess
the accuracy, robustness, and effectiveness of the method in
solving nonlinear partial differential equations.

Numerical simulations were conducted on the modified
KdV-Burger equation, highly nonlinear modified KdV equa-
tion, the Fisher equation, Burgers-Fisher equation, Fitzhugh-
Nagumo equation, andBurgers-Huxley equation. It is evident
from the study that the BI-SQLM gives accurate results in
a computationally efficient manner. Further evidence from
this study is that the BI-SQLM gives solutions that are
uniformly accurate and valid in large intervals of space and
time domains. The apparent success of the method can be
attributed to the use of the Chebyshev spectral collocation
method with bivariate Lagrange interpolation in space and
time for differentiating. This work contributes to the existing
body of literature on quasilinearisation tools for solving
complex nonlinear partial differential equations. Further
work needs to be done to establish whether the BI-SQLM can
be equally successful in solving coupled systems of equations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported in part by the National Research
Foundation of South Africa (Grant no. 85596).

References

[1] G. Adomian, Stochastic Systems, vol. 169 of Mathematics in
Science and Engineering, Academic Press, Orlando, Fla, USA,
1983.

[2] G. Adomian, “A review of the decomposition method in
applied mathematics,” Journal of Mathematical Analysis and
Applications, vol. 135, no. 2, pp. 501–544, 1988.

[3] L. Bougoffa and R. C. Rach, “Solving nonlocal initial-boundary
value problems for linear and nonlinear parabolic and hyper-
bolic partial differential equations by the Adomian decomposi-
tion method,” Applied Mathematics and Computation, vol. 225,
pp. 50–61, 2013.

[4] S. J. Liao, Advances in Homotopy Analysis Method, World
Scientific Publishing, Singapore, 2014.

[5] J. He, “Application of homotopy perturbation method to non-
linear wave equations,” Chaos, Solitons and Fractals, vol. 26, no.
3, pp. 695–700, 2005.

[6] S. Abbasbandy, “The application of homotopy analysis method
to solve a generalized Hirota-Satsuma coupled KdV equation,”
Physics Letters A: General, Atomic and Solid State Physics, vol.
361, no. 6, pp. 478–483, 2007.

[7] L. Song and H. Zhang, “Application of homotopy analy-
sis method to fractional KdV-Burgers-KURamoto equation,”
Physics Letters A, vol. 367, no. 1-2, pp. 88–94, 2007.

[8] E. J. Parkes and B. R. Duffy, “An automated tanh-function
method for finding solitary wave solutions to non-linear evolu-
tion equations,” Computer Physics Communications, vol. 98, no.
3, pp. 288–300, 1996.

[9] B. R. Duffy and E. J. Parkes, “Travelling solitary wave solutions
to a seventh-order generalized KdV equation,” Physics Letters A,
vol. 214, no. 5-6, pp. 271–272, 1996.

[10] Z. B. Li, “Exact solitary wave solutions of nonlinear evolution
equations,” in Mathematics Mechanization and Application, X.
S. Gao and D.M.Wang, Eds., Academic Press, San Diego, Calif,
USA, 2000.

[11] U. Lepik, “Numerical solution of evolution equations by the
Haar wavelet method,” Applied Mathematics and Computation,
vol. 185, no. 1, pp. 695–704, 2007.

[12] I. Celik, “Haar wavelet method for solving generalized Burgers-
Huxley equation,” Arab Journal of Mathematical Sciences, vol.
18, no. 1, pp. 25–37, 2012.

[13] G. Hariharan, K. Kannan, and K. R. Sharma, “Haar wavelet
method for solving Fisher's equation,”AppliedMathematics and
Computation, vol. 211, no. 2, pp. 284–292, 2009.

[14] J. He and X. Wu, “Exp-function method for nonlinear wave
equations,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp. 700–
708, 2006.

[15] C. Chun, “Solitons and periodic solutions for the fifth-order
KdV equation with the Exp-function method,” Physics Letters
A, vol. 372, no. 16, pp. 2760–2766, 2008.

[16] X. H. Wu and J. H. He, “EXP-function method and its applica-
tion to nonlinear equations,” Chaos, Solitons & Fractals, vol. 38,
no. 3, pp. 903–910, 2008.

[17] F.W.Wubs and E. D. deGoede, “An explicit-implicitmethod for
a class of time-dependent partial differential equations,”Applied
Numerical Mathematics, vol. 9, no. 2, pp. 157–181, 1992.

[18] E.M. E. Elbarbary andM. El-Kady, “Chebyshev finite difference
approximation for the boundary value problems,” Applied
Mathematics and Computation, vol. 139, no. 2-3, pp. 513–523,
2003.

[19] A. C. Vliegenthart, “On finite-difference methods for the
Korteweg-de Vries equation,” Journal of EngineeringMathemat-
ics, vol. 5, pp. 137–155, 1971.

[20] J. Argyris and M. Haase, “An engineer’s guide to soliton phe-
nomena: application of the finite element method,” Computer
Methods in AppliedMechanics and Engineering, vol. 61, no. 1, pp.
71–122, 1987.

[21] G. F. Carey and Y. Shen, “Approximations of the KdV equation
by least squares finite elements,” Computer Methods in Applied
Mechanics and Engineering, vol. 93, no. 1, pp. 1–11, 1991.

[22] K. Djidjeli, W. G. Price, P. Temarel, and E. H. Twizell, “A
linearized implicit pseudo-spectral method for certain non-
linear water wave equations,” Communications in Numerical



The Scientific World Journal 13

Methods in Engineering with Biomedical Applications, vol. 14, no.
10, pp. 977–993, 1998.

[23] A. H. Khater, R. S. Temsah, and M. M. Hassan, “A Chebyshev
spectral collocation method for solving Burger's-type equa-
tions,” Journal of Computational and Applied Mathematics, vol.
222, no. 2, pp. 333–350, 2008.

[24] D. Olmos and B. D. Shizgal, “A pseudospectral method of
solution of Fisher's equation,” Journal of Computational and
Applied Mathematics, vol. 193, no. 1, pp. 219–242, 2006.

[25] M. Javidi, “Spectral collocation method for the solution of the
generalized Burger-Fisher equation,” Applied Mathematics and
Computation, vol. 174, no. 1, pp. 345–352, 2006.

[26] M. Javidi, “A numerical solution of the generalized Burgers-
Huxley equation by spectral collocation method,” Applied
Mathematics and Computation, vol. 178, no. 2, pp. 338–344,
2006.

[27] M. Dehghan and F. Fakhar-Izadi, “Pseudospectral methods for
Nagumoequation,” International Journal forNumericalMethods
in Biomedical Engineering, vol. 27, no. 4, pp. 553–561, 2011.

[28] T. A. Driscoll, “A composite Runge-Kutta method for the
spectral solution of semilinear PDEs,” Journal of Computational
Physics, vol. 182, no. 2, pp. 357–367, 2002.

[29] M. T. Darvishi, S. Kheybari, and F. Khani, “A numerical solution
of Korteweg-de Vries equation by pseudospectral method
using Darvishi’s preconditionings,” Applied Mathematics and
Computation, vol. 182, no. 1, pp. 98–105, 2006.

[30] M. T. Darvishi, S. Kheybari, and F. Khani, “Spectral collocation
method and Darvishi’s preconditionings to solve the general-
ized Burgers-Huxley equation,” Communications in Nonlinear
Science and Numerical Simulation, vol. 13, no. 10, pp. 2091–2103,
2008.

[31] B. A. Jacobs and C. Harley, “Two hybrid methods for solv-
ing two-dimensional linear time-fractional partial differential
equations,” Abstract and Applied Analysis, vol. 2014, Article ID
757204, 10 pages, 2014.

[32] E. Tohidi and A. Kilicman, “An efficient spectral approximation
for solving several types of parabolic pdes with nonlocal
boundary conditions,” Mathematical Problems in Engineering,
vol. 2014, Article ID 369029, 6 pages, 2014.

[33] R. E. Bellman and R. E. Kalaba, Quasilinearization and Non-
linear Boundary-Value Problems, vol. 3 ofModern Analytic and
Computional Methods in Science and Mathematics, American
Elsevier, New York, NY, USA, 1965.

[34] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadel-
phia, Pa, USA, 2000.

[35] A. Golbabai and M. Javidi, “A spectral domain decomposition
approach for the generalized Burger’s-Fisher equation,” Chaos,
Solitons & Fractals, vol. 39, no. 1, pp. 385–392, 2009.

[36] A. Wazwaz and A. Gorguis, “An analytic study of Fisher’s
equation by using Adomian decomposition method,” Applied
Mathematics and Computation, vol. 154, no. 3, pp. 609–620,
2004.

[37] H. Li and Y. Guo, “New exact solutions to the FitzHugh-
Nagumo equation,”AppliedMathematics and Computation, vol.
180, no. 2, pp. 524–528, 2006.

[38] E. Fan, “Traveling wave solutions for nonlinear equations
using symbolic computation,” Computers & Mathematics with
Applications, vol. 43, no. 6-7, pp. 671–680, 2002.

[39] Y. N. Kyrychko, M. V. Bartuccelli, and K. B. Blyuss, “Persistence
of travelling wave solutions of a fourth order diffusion system,”
Journal of Computational and AppliedMathematics, vol. 176, no.
2, pp. 433–443, 2005.

[40] I. Hashim, M. S. M. Noorani, and M. R. Said Al-Hadidi,
“Solving the generalized Burgers-Huxley equation using the
Adomian decompositionmethod,”Mathematical andComputer
Modelling, vol. 43, no. 11-12, pp. 1404–1411, 2006.

[41] X. Y. Wang, Z. S. Zhu, and Y. K. Lu, “Solitary wave solutions of
the generalised Burgers-Huxley equation,” Journal of Physics A:
Mathematical and General, vol. 23, no. 3, pp. 271–274, 1990.

[42] M. A. Helal and M. S. Mehanna, “A comparison between two
different methods for solving KdV-Burgers equation,” Chaos,
Solitons and Fractals, vol. 28, no. 2, pp. 320–326, 2006.

[43] J. M. Burgers, “A mathematical model illustrating the theory of
turbulence,” in Advances in Applied Mechanics, vol. 1, pp. 171–
199, 1948.

[44] J. D. Cole, “On a quasi-linear parabolic equation occurring in
aerodynamics,” Quarterly of Applied Mathematics, vol. 9, pp.
225–236, 1951.




