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With increasing economic and social activities, travel
demand has increased significantly over the past several
decades, overloading many already congested roadways. The
widening gap between travel demand and infrastructure
supply has worsened the levels of congestion worldwide,
resulting in many urban mobility, safety, and environmental
issues, such as severe congestion, lengthened travel time,
increased risk of traffic accidents, excessive fuel consumption,
increased air pollution, and significant public health issues.
The concept of smart cities has been gaining popularity,
which is to leverage big data analytics, sensing technologies,
and Internet of Things (IoT) to move people and goods
faster, cheaper, and more efficiently. As heterogeneous data
and computational resources become available, the devel-
opment of data-driven approaches has been advancing as
well for modeling and analyzing urban mobility. This special
issue serves as a major platform to facilitate the discussion
and exchange of research ideas and technology develop-
ment, encourage multidimensional knowledge sharing, and
enhance research activities in data-driven urban mobility
modeling and analysis. In total, seven papers are included in
this special issue and are summarized as follows.

There are several articles focusing on developing data-
driven approaches to improve public transit system efficiency
and accessibility. J. Ma et al. proposed a methodological
framework to address the issue of customized bus network
design based on large-scale travel demand data. A route
selectionmodel considering operation cost and social welfare
was built, followed by a branch-and-bound-based solution
method for model solving. An empirical study in Beijing,
China, validated the effectiveness of the proposed framework.

Z. Cai et al. proposed a Trip Coverage Index (TCI) based
on mobile phone data to assess transit accessibility. TCI
considered both the individual-level transit trip coverage and
spatial distribution and was then applied to a transit network
in Hangzhou, China.

From the perspective of car-based traffic operation and
management, several articles talk about utilizing sensing
technology and simulation data to analyze drivers’ behav-
iors, route choices, or road traffic network structure. D.
Xu et al. developed a compression method based on LZW
encoding and principle component analysis. Six typical road
segments in Beijing were tested using the proposed method
and presented a high reconstruction accuracy. H. Chen et
al. clustered drivers’ travel characteristics based on license
plate recognition data in Shenzhen, China. Each traveler’s
spatiotemporal variability and activity pattern are taken into
account, resulting in six groups in weekdays and three
groups in weekends. J. Wang et al. proposed a route choice
prediction model in the context of connected vehicles. Five
characteristics indexes including compliance rate, following
rate, penetration rate, release delay time, and congestion
level were built. A simulation scenario demonstrated the
effectiveness of the proposed model with the average root
mean square error as 3.19%. Y. Lu et al. introduced a novel
improved stochastic Gompertz diffusion process to explain
the relationship between vehicle ownership and GDP per-
capita. Based on the data from US, UK, Japan, and Korea
from 1960 to 2008, the proposedmodel performedwell in the
fitting process and predicted that China is still on the initial
stage of motorization.
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The remaining two articles investigated travelers’ psy-
chologies and behaviors using survey data. C. Ding et al.
examined the impact of attitudes to walking and cycling on
commute mode choice and used survey data to establish
an integrated discrete choice model and structural equation
model. A comparison confirmed that the proposed hybrid
model outperforms other traditional models. F. Pan et al.
explored the influence of vehicular countdown signals on
driving psychologies and behaviors. An online survey with
1051 valid questionnaires was undertaken and analyzed.
Results showed that most drivers prefer countdown signal
controls and female drivers are more conservative before the
green countdown ends.

Xiaolei Ma
Guohui Zhang
Xiaoyue Liu
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This paper aims at introducing a new improved stochastic differential equation related to Gompertz curve for the projection of
vehicle ownership growth. This diffusion model explains the relationship between vehicle ownership and GDP per capita, which
has been studied as a Gompertz-like function before. The main innovations of the process lie in two parts: by modifying the
deterministic part of the original Gompertz equation, the model can present the remaining slow increase when the S-shaped curve
has reached its saturation level; by introducing the stochastic differential equation, the model can better fit the real data when there
are fluctuations. Such comparisons are carried out based on data from US, UK, Japan, and Korea with a time span of 1960–2008.
It turns out that the new process behaves better in fitting curves and predicting short term growth. Finally, a prediction of Chinese
vehicle ownership up to 2025 is presentedwith the newmodel, as China is on the initial stage ofmotorizationwithmuch fluctuations
in growth.

1. Introduction

Thegrowth of vehicle ownership has witnessed a great change
of transportation demand sector over the years and is an
important part of urbanization. The study by Simonsen and
Walnum [1] showed that transportation contributes nearly
30% of CO2 emission in OECD countries and accounts
for a critical cause of regional and local air pollutions. In
addition, the prediction of future vehicle numbers is of great
policy revelation. Therefore, the increasing pattern of vehicle
ownership should be paid high attention to, especially for
developing countries, for example, China, who are stepping
into the fast growth stage [2].

Many factors have influence on vehicle ownership
growth, such as economics factor, public transportation
service level, policy restrictions, and urban layout, while the
economic growth has been the dominant driven factor, which
is GDP per capita in the present paper. The relationship of

growth of vehicle ownership andGDP per capita can bemod-
eled in specific form, and an improvement has been carried
out based on the most usually used Gompertz curve in order
to obtain a better fitting projection. The introduced model
solves two significant issues existing in the original Gompertz
curve by introducing the stochastic diffusion process and a
modification part. It reveals a new way of better prediction
vehicle ownership based on limited data, with only the
aggregate vehicle ownership condition and GDP per capita.

This paper is organized as follows. The next part reviews
related studies of the specific topic. Section 3 proposes
the model (improved stochastic Gompertz diffusion curve)
with its structure, inference, and solution. In Section 4,
applications to real data of the US, UK, Japan, and Korea have
been carried out to evaluate comparisons, and projection
of vehicle ownership growth of China is depicted based on
the new model. Finally, we conclude our study and give
suggestions on future study.
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2. Literature Review

An external or internal vehicle ownership model is often
used for various purposes, as mentioned by de Jong et al.
[3]. For the aggregate level, vehicle ownership model can
be used by car manufactory for market analysis, by national
and local government in order to make policy incentives
based on the forecasting results, or by energy industry who
is concerned about the oil consumption related to vehicles.
For the disaggregate level, the model is usually treated as
an input to mode choice in transportation model systems
and thus could have a more detailed output. Examples can
be found as traditional disaggregate car choice model [4],
panel models [5], and dynamic transaction models [6]. This
paper focuses on the aggregate model, as we aim at the main
pattern and future trend of vehicle ownership growth, rather
than the detailed types or components of cars. In addition,
the aggregate model has a much lighter requirement of data,
while the disaggregate one relies heavily on the amount and
types of data collected and sometimes even requires dataset
with a long period of observation.

There are various aggregate models based on their differ-
ent goals. Focusing on the market changing, K. U. Leuven,
and Standard and Poor’s DRI [7] studied how different
structure of transportation modes and car prices influence
the stock of personal vehicles. Focusing on vehicle ownership
revolution, Van den Broecke [8] divided people into different
categories by their age and predicted the growth pattern
of vehicles by people becoming older, assuming that the
behavior characteristics in each category would remain the
same over the years. Based on product life cycle and diffusion
theories, many studies use different models to depict the rela-
tionship between vehicle ownership and economics factors
(e.g., per capita income or gross domestic product, GDP),
which is more straightforward and is especially suitable for
developing countries as they do not possess enough data
related to vehicle ownership growth for other detailed types
of studies. Early studies on this kind of models analyzed and
described the relationship between vehicle ownership and
time series, which is found as an S-shape curve [9]. Different
variables have been shown to influence the development of
vehicle ownership projection, however, given the difference
in data sources, model of including too many variables could
lead to the difficulty in comparison of different results from
various countries and regions [2, 10, 11]. In addition, it is
rather difficult to obtain and unify all the data of different
variables in order to provide a complete dataset. Therefore,
it is more appropriate to generate model based on simple
dataset easily obtained, in order to present the projection of
vehicle ownership development and give a unified prediction
of different countries, especially of developing countries
whose vehicle ownership remains rather small.

Hereafter, studies focus more on the economic factor,
which is seen as the main driving force of vehicle ownership
growth. Various kinds of models are developed to fit the S-
shape curve, such as semi-log linear and log linear regression
models by Dunkerley and Hoch [12], quasi-logistic function
model by Button et al. (1993), elasticity analysis model by
Stares and Liu [13], and Gompertz diffusion function model
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Figure 1: Projections of estimated vehicle Gompertz functions.

by Dargay and Gately [2]. The Gompertz model is found
to be more flexible than logistic model and is suitable for
analysis on both short term and long term prediction [14].
He has carried out a series of examples using a simple
parametric method to choose between a Gompertz and a
logistic equation and suggested that the Gompertz curve
would be indeed appropriate for the stock of car series. In the
present paper, we use the Gompertz function as the base of
our model, with some improvements in order to make it fit
better.

TheGompertz functionwas firstly used in biological field,
with its good performance in predicting growth, mortality,
and thus the lifespan (see example papers as those by
Zwietering et al. [17] and Finch and Pike [18]). Acutt and
Dodgson [19] used the Gompertz curve in his study to
forecast the future car ownership. Dargay and Gately [2]
applied theGompertz function to countries of full range, with
low-income countries and high-income ones. As the model
is more flexible and suitable for developing countries, there
are studies concerning the prediction of Chinese vehicle stock
based on it. Wang [20] used the general Gompertz function
to present the S-shape curve of vehicle ownership growth
in China. Zhao [21] estimates the function with panel data
of 21 countries and arears, 1963–2008, in order to predict
the vehicle ownership in China up to year 2050. Although
the Gompertz curve is widely used these years, it has some
disadvantages in applications. As shown in Figure 1 [2], the
shape of curve is smooth S-shape and remains the same
after it quickly reaches the saturation level. This brings about
two significant problems, firstly, the general Gompertz curve
is unable to present the fluctuations existing in real data;
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secondly, it cannot predict the remaining slow growth after
the growth has reached its saturation level.

According to the slow remaining growth in the rear part
of curve, a modification may be made to the model (see
details in Section 3.2). In order to fit the fluctuations in real
data, we use the stochastic differential equation (SDE) in the
present paper. Gutierrez-Jaimez et al. [22] have tested the SDE
on Gompertz equation and successfully proved that this new
model performs well for random growth of rabbit weights.
The new model proposed thus has advantages as follows:

(1) The newmodel is able to present a better fitting result
based on limited data of only vehicle ownership and
GDP per capita.

(2) It has overcome two main shortcomings of the orig-
inal Gompertz curve as described before, by intro-
ducing a modification part as well as the stochastic
diffusion process.

3. Methodology

As used in previous studies, the relationship of vehicle own-
ership to GDP per capita has been represented by Gompertz
growth curve, modeled as follows:

𝑋𝑔𝑡 = 𝑎 ⋅ exp (−𝑏 ⋅ exp (−𝑐 ⋅ 𝑔𝑡)) , (1)

where 𝑋𝑔𝑡 is the quantity of vehicle ownership per 1000
people in year 𝑡, and 𝑔𝑡 is GDP per capita in year 𝑡, and 𝑎, 𝑏, 𝑐
are parameters of the function to be calculated in regression.

Although there have been problems in applying this
function to real data, as implied in the literature review; the
S-shaped curve could successfully present the general growth
pattern of the process and thus remains the main structure
of the new model. In this part, we propose two kinds of
improvement to the original model, as illustrated below.

3.1. The Stochastic Differential Equation of Gompertz Growth
Function. In order to obtain a diffusion process related to

Gompertz curve (1), we should search for a process in which
the solution of the Fokker-Planck equation without noise is
such a curve, as proposed byCapocelli andRicciardi [23], and
is successfully conducted by Gutiérrez et al. [24] for a specific
Gompertz-like curve used in biological phenomena. In this
paper, we perform the procedure and define the stochastic
Gompertz diffusion process (SGDP):

𝑑𝑋𝑔𝑡𝑑𝑡 = (𝛼1 − 𝛼2 ⋅ ln (𝑋𝑔𝑡)) ⋅ 𝑋𝑔𝑡 + 𝛼3 ⋅ 𝑋𝑔𝑡 ⋅ 𝑑𝜔𝑡, (2)

where 𝑋𝑔𝑡 and 𝑔𝑡 remain the same as before, 𝛼𝑖, 𝑖 ∈ (1, 2, 3),
are three parameters to be calculated in regression, and 𝜔𝑡 is
a one-dimensional wiener standard process with zero mean
and var(𝜔𝑡 − 𝜔𝑠) = (𝑡 − 𝑠).

By applying the Fokker-Planck equation, this process has
forward equation and infinitesimal moments as

𝜕𝑓
𝜕𝑔 = −

𝜕𝑓
𝜕𝑥 (𝑎𝑏 ⋅ exp (−𝑐𝑔) ⋅ 𝑥 ⋅ 𝑓)

+ 𝜎2 𝜕2𝜕𝑥2 (𝑥2𝑓) ,
(3)

𝐴1 (𝑥, 𝑔) = 𝑎𝑏 ⋅ exp (−𝑐𝑔) ⋅ 𝑥,
𝐴2 (𝑥, 𝑔) = 𝜎2𝑥2,

(4)

where 𝜎 = 1 for a standard wiener process.
It is clear that when 𝜎 vanishes, the solution of (3) turns

into the original equation (1). Thus the process we proposed
fulfills the condition imposed.

After defining the SGDP function, we continue to its
parameter estimation. There are three parameters in the
function, with 𝛼1, 𝛼2 being drifting parameters and 𝛼3 being
the noise coefficient. Ferrante et al. [25] have proposed Itô’s
stochastic differential equations from an observed continu-
ous sample path. With the same method, the estimations are
calculated as

�̂�1 = (∫
𝑇

0
(log𝑥𝑡)2 𝑑𝑡) (∫𝑇0 (𝑑𝑥𝑡/𝑥𝑡)) − (∫𝑇0 log𝑥𝑡𝑑𝑡) (∫𝑇0 (log𝑥𝑡/𝑥𝑡) 𝑑𝑥𝑡)

𝑇∫𝑇
0
log2𝑥𝑡𝑑𝑡 − (∫𝑇0 log𝑥𝑡𝑑𝑡)

2
,

�̂�2 = (∫
𝑇

0
log𝑥𝑡𝑑𝑡) (∫𝑇0 (𝑑𝑥𝑡/𝑥𝑡)) − 𝑇∫𝑇0 (log𝑥𝑡/𝑥𝑡) 𝑑𝑥𝑡

𝑇∫𝑇
0
log2𝑥𝑡𝑑𝑡 − (∫𝑇0 log𝑥𝑡𝑑𝑡)

2
,

(5)

where {𝑥𝑡; 𝑡 ∈ [0, 𝑇]} is the observed sample path.
In practice, as there is no continuous data for vehicle

ownership, the estimation could only be based on discrete
sample data (𝑋𝑔1 , 𝑋𝑔2 , . . . , 𝑋𝑔𝑇). In the present study, we
use Riemann integral instead of the continuous stochastic
integral. The interval is divided with a small step (0.001 in

this paper), and each is applied with Itô formula, in order to
approach the continuous function.

With the same procedure, we can obtain the noise
coefficient with the following form:

�̂�3 = 1
𝑇 − 1

𝑇∑
𝑡=2

𝑥𝑡 − 𝑥𝑡−1√𝑡𝑥𝑡𝑥𝑡−1 . (6)
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The conditional trend function of SGDP is presented as

𝑚(𝑔𝑡 | 𝑔𝑠) = 𝐸 (𝑋𝑔𝑡 | 𝑋𝑔𝑠 = 𝑥𝑠)
= exp(𝛼1𝛼2 − exp (−𝛼2 (𝑔𝑡 − 𝑔𝑠)))

⋅ 𝐸 exp(𝛼3 ∫
𝑡

𝑠
exp (−𝛼2 (𝑡 − 𝜂)) 𝑑𝜔𝜂) .

(7)

As 𝜔𝑡 is a wiener standard process with a variation of
𝛼32 ∫𝑡𝑠 exp(−2𝛼2(𝑡 − 𝜂))𝑑𝜂, we can calculate its expectation as

𝐸 exp(𝛼3 ∫
𝑡

𝑠
exp (−𝛼2 (𝑡 − 𝜂)) 𝑑𝜔𝜂)

= exp(𝛼322 ∫𝑡
𝑠
exp (−𝛼2 (𝑡 − 𝜂)) 𝑑𝜂) .

(8)

Applying (8) to (7), and with the initial value, we can get the
conditional trend function as (9), which should be used in the
prediction of future values.

𝑚(𝑔𝑡) = exp(𝛼1𝛼2 − exp (−𝛼2 (𝑔𝑡 − 𝑔𝑠)))

+ 𝛼324𝛼2 (1 − exp (−2𝛼2𝑔𝑡)) .
(9)

3.2.The Improved SGDPModel. By applying the SGDPmodel
to a set of data of vehicle ownership and GDP per capita in
America, as presented in Figure 2, we can see that although
the SGDP curve fits better than the original Gompertz
curve when there is fluctuations in data, it still cannot
present the slow increase when the curve begins to reach its
saturation level in the rear. Therefore, an improvement in the
deterministic part should be carried out for this problem.

In the present paper, an improvement is carried out in the
deterministic part of the improved SGDPmodel, proposed as

𝑋𝑔𝑡 = 𝑎 ⋅ exp (−𝑏 ⋅ exp (−𝑐 ⋅ 𝑔𝑡)) + 𝛽1 𝑋𝑔𝑡𝑋𝑔𝑡 + 𝛽2 , (10)

where 𝛽1 and 𝛽2 are parameters to be estimated.
The improved SGDPmodel has a more complex function

and thus is difficult for estimation by inference. In this paper,
we use the SDE Toolbox of Matlab Package by Umberto
Picchini (Umberto Picchini, SDE Toolbox: Simulation and
Estimation of Stochastic Differential Equations with Mat-
lab, http://sdetoolbox.sourceforge.net) to get the numerical
results, illustrated in the next part.

4. Data and Applications

4.1. The Estimation and Comparison in Sample Countries.
The growth pattern of vehicle ownership per 1000 people
has been changing with the increasing of GDP per capita.
In terms of elasticity (elasticity: the ratio of the average%
growth in vehicle ownership to the average% growth in per
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capita income), the values are different in different stages of
development, also in different countries and regions [13]. A
country such as the United States has reached the saturation
levelwith vehicle ownership per 1000 people of approximately
800 units, while some countries are in the stage of slow
growth, like Japan, with the value of elasticity approximately
0.5, and other developing countries are in the stage of fast
growth with a high elasticity of 1.7, taking China as an
example [26]. In addition, some cities, for example, London
and Singapore, have conducted policy restrictions on vehicle
usage/purchase and thus have a different path from countries
without any restrictions. Therefore, in the present paper, we
choose four countries with quite different growth curve to
illustrate the differences between a general Gompertz curve
and the improved SDEG curve proposed.

The countries selected are the United States, the United
Kingdom, Japan, and Korea. Due to data availability, the
period of data estimation is 1960–2008 for the former three
countries and is 1966–2008 for Korea.Three kinds of data are
collected:

(i) Population and economic index: we use the index
of population, total and GDP, and PPP (current
international dollar) from the database ofWorld Bank
(for population: http://data.worldbank.org/indicator/
SP.POP.TOTL; for economics factor: http://data.world-
bank.org/indicator/NY.GDP.MKTP.PP.CD).

(ii) Vehicle ownership: we use the total number of
vehicles in each country (unit). Different resources
of data are given (US: Historical Highway Sta-
tistics (1945–1995): http://www.fhwa.dot.gov/policy/
ohpi/hss/hsspubsarc.cfm; https://www.census.gov/
compendia/statab/cats/transportation/motor_vehi-
cle_registrations_alternative_fueled_vehicles.html.
(1990–2008); UK: https://www.gov.uk/government/
publications/tsgb-2011-vehicles; Japan: 全国の自 動

http://sdetoolbox.sourceforge.net
http://data.worldbank.org/indicator/SP.POP.TOTL
http://data.worldbank.org/indicator/SP.POP.TOTL
http://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD
http://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubsarc.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubsarc.cfm
https://www.census.gov/compendia/statab/cats/transportation/motor_vehicle_registrations_alternative_fueled_vehicles.html
https://www.census.gov/compendia/statab/cats/transportation/motor_vehicle_registrations_alternative_fueled_vehicles.html
https://www.census.gov/compendia/statab/cats/transportation/motor_vehicle_registrations_alternative_fueled_vehicles.html
https://www.gov.uk/government/publications/tsgb-2011-vehicles
https://www.gov.uk/government/publications/tsgb-2011-vehicles
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Table 1: Estimated parameters of improved SGDP and general Gompertz in sample countries.

Improved SGDP General Gompertz
𝑎 𝑏 𝑐 𝛽1 𝛽2 𝛼3 𝑎 𝑏 𝑐

US 589.623 1.453 0.406 432.828 40.879 1.13 774.996 1.167 0.205
UK 83.753 105.702 0.184 533.851 4.529 0.75 515.885 1.464 0.140
Japan 71.671 40.729 0.861 773.112 13.531 0.62 603.796 2.556 0.139
Korea 230.316 19.710 0.246 794.593 141.921 1.42cc 338.00 6.237 0.156

Table 2: Predict values by improved SGDP and general Gompertz of vehicle ownership per 1000 people in the United States.

Real data Gompertz Improved SGDP 95% confidence interval
2001 784.933 774.311 789.520 747.682 831.358
2002 808.761 774.517 794.774 749.836 839.712
2003 798.673 774.637 798.819 752.811 844.827
2004 797.935 774.760 804.472 757.099 851.845
2005 810.240 774.846 810.261 761.024 859.498
2006 815.994 774.899 815.489 765.278 865.700
2007 818.134 774.928 819.591 767.680 871.502
2008 820.714 774.934 820.557 766.282 874.832
Standard error 34.103 5.721 — —

Table 3: Prediction standard errors of improved SGDP and general
Gompertz in sample countries.

General Gompertz Improved SGDP
US 34.103 5.721
UK 41.671 5.702
Japan 23.753 4.729
Korea 4.267 4.956

車保有台数の推移. http://www.city.osaka.lg.jp/
kankyo/cmsfiles/contents/0000006/6885/101.1-1.pdf;
Korea: http://www.index.go.kr/egams/stts/jsp/potal/
stts/PO_STTS_IdxMain.jsp?idx_cd=1257&bbs=
INDX_001).

After the calculation of vehicle ownership per 1000 people
and GDP per capita, we use the data of up to year 2000 as
inputs variables and the parameters of proposed improved
SGDP could be given by the SDE Toolbox of Matlab package,
as presented in Table 1.

Then we predict the vehicle ownership per 1000 people
based on the knownGDPper capita andparameter estimated,
from year 2001 to year 2008. Table 2 presents the real
data, the results from the general Gompertz fitting curve,
and the improved SGDP fitting curve as well as its 95%
confidence interval. The improved SGDP curve has a much
lower standard error and thus predicts better than the general
Gompertz function. For simplicity, we only give the standard
error of the other three countries, as shown in Table 3.

It should be highlighted that although improved SGDP
function gives an obvious better performance for the data
of the United States, the United Kingdom, and Japan, it
behaves almost the same as general Gompertz for the data
of Korea. To see more directly into this condition as well as
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Figure 3: Real data versus Improved SDE Gompertz versus Trend
Gompertz in the United States.

intuitive comparison of different fitting curves, each country’s
paths have been presented as Figures 3–6 (using data with
a time span up to 2008 (when using data of full time span,
the parameters regressed are a little different from those
presented inTable 1; as the difference is little, for simplicity, we
do not present the results specifically but pay more attention
to the comparing figures)).

It is quite straightforward that the improved SGDPGom-
pertz curve proposed in this paper behaves better than the
general one, which fits more close or nearly the same pattern
as the real growth curve for all four sample countries, espe-
cially for the US, the UK, and Japan, whose real data either

http://www.city.osaka.lg.jp/kankyo/cmsfiles/contents/0000006/6885/101.1-1.pdf
http://www.city.osaka.lg.jp/kankyo/cmsfiles/contents/0000006/6885/101.1-1.pdf
http://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1257&bbs=INDX_001
http://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1257&bbs=INDX_001
http://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1257&bbs=INDX_001
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Figure 4: Real data versus Improved SDE Gompertz versus Trend
Gompertz in the United Kingdom.
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Figure 5: Real data versus Improved SDE Gompertz versus Trend
Gompertz in Japan.

reaches the level of saturation or has quite large fluctuations
in the path. As for Korea, as its path has a “perfect” feature of
S-shaped curve, and almost no obvious fluctuations, the real
data, general Gompertz curve, and the improved SGDP curve
behave almost the same. Combining with the prediction
results from Table 2, the general Gompertz behaves even
slightly better than the improved SGDP curve.

Therefore, the improved SGDP model outstands when
either there are features of the original curve: it has reached or
almost reached the saturation level, or there is quite obvious
fluctuations in the curve path. Otherwise, when the curve
is a smooth S-shaped path, the general Gompertz performs
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Figure 6: Real data versus Improved SDE Gompertz versus Trend
Gompertz in Korea.

Table 4: Estimated parameters of improved SGDP in China.

𝑎 𝑏 𝑐 𝛽1 𝛽2 𝛼3 (noise)
30.790 8.308 0.028 1.190 0.028 1.26

approximately the same with the improved SGDP model,
under which circumstance, we suggest using the general
Gompertz as the estimation is much easier.

4.2. The Projection of Vehicle Ownership to 2025 in China.
China is in the initial stage of mobility development and
thus possesses a quite low quantity of vehicle ownership
per 1000 people and a fast-growing trend. The vehicle
ownership growth in the initial stage is quite unstable, with
lots of possible fluctuations [13]. Therefore, we conduct the
proposed improved SGDPmodel to the original data (civilian
vehicles, with a time span of 1980 to 2014 (data resource:Mar-
coChina database (1980–2011) http://www.macrochina.com
.cn/macro_data/; National Bureau of Statistics (2010–2014)
http://www.stats.gov.cn/)) in China. After regression, the
prediction of vehicle ownership per 1000 people as well as the
total vehicle quantity is made based on the parameters and
predicted GDP per capita and population. As the improved
SGDP model is suitable for short term predictions, thus
we assume a predicted time span of up to year 2025. The
estimated parameters and predicted values are presented in
Tables 4 and 5, and the projection of vehicle ownership per
1000 people and total vehicle quantity in China up to year
2025 are depicted in Figures 7 and 8.

According to the prediction, China will maintain a fast-
growing trend, and its vehicle ownership per 1000 people will
reach 265 units in 2025, and a total vehicle quantity of over
350 million.

http://www.macrochina.com.cn/macro_data/
http://www.macrochina.com.cn/macro_data/
http://www.stats.gov.cn/
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Table 5: Prediction of vehicle ownership per 1000 people and total ownership to 2025 in China.

Year 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
GDP1 per capita 8451.81 9043.44 9631.26 10257.30 10924.02 11601.31 12320.59 13084.47 13895.70 14757.24
Population2 1381.53 1389.82 1398.16 1406.55 1414.99 1423.48 1427.75 1432.03 1434.89 1437.76
Vehicle per 1000 (unit) 133.60 148.56 164.01 181.07 199.90 219.73 241.53 249.02 256.74 264.70
Total vehicle (million units) 184.57 206.48 229.32 254.69 282.86 312.78 344.84 356.60 368.39 380.57
1GDP indicator (in international dollar) up to 2025 is obtained from the paper of Perkins and Rawski [15]; 2population forecasting data (in million people) is
obtained from the paper of Dadao [16].
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Figure 7: Projection of vehicle ownership per 1000 people to 2025
in China.
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Figure 8: Projection of total vehicle ownership to 2025 in China.

5. Conclusion

This study introduces a new form of Gompertz function
based on stochastic differential equation, aiming at depicting
the growth pattern of vehicle ownership with economic driv-
ing. Different frompreviousmodels used for fitting the curve,
the proposed improved SGDP model has an adjustment in
the deterministic part and is transformed to the stochastic
differential form. The general solution of SGDP model is
presented in the present paper, and numerical studies are
carried out based on a SDE Toolbox of Matlab Package. In
comparison, the improved SGDP model has the following
advantages and features:

(i) Better fitting and predicting for countries with vehicle
ownership reaching (or almost reaching) the satura-
tion level: the improved SGDP model can reveal the
slow growth in the rear and thus can obtain a better
fitting curve and a more precise prediction in the
short term.

(ii) Better performance for vehicle ownership growth
curves with fluctuations: when there is obvious fluc-
tuations in the pattern, the stochastic nature and
adjustment part can capture them in order to fit better
and precisely capture the real projection; this is useful
for the understanding of vehicle ownership growth.

(iii) For growth patterns which is exactly the S-shaped
curve, we suggest using the general Gompertz equa-
tion instead of the improved SGDP; they perform
almost the same, and the computing work is much
easier for the general Gompertz function.

Then we use the improved SGDP model to draw the predic-
tion of Chinese vehicle ownership up to year 2025.The fitting
curve performs quite well, and the prediction value of vehicle
ownership per 1000 people and total vehicle quantity is over
250 units and over 350 million units in year 2025.

Future studies can focus on such aspects: firstly, the
aggregate study usually follows on the relationship between
vehicle ownership and economics factor; other influencing
factors such as the public transportation service, vehicle
policy restrictions, and car culture (proposed by research
groups of IFMO (The Institute for Mobility Research by
the BMW Group)) should be included to obtain a more
comprehensive understanding of vehicle ownership revolu-
tion, a simple model with main influencing factors is highly
recommended in the future study. Secondly, a mathematical
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solution for the improved SGDPmay be developed instead of
the numerical outputs byMatlab Package. Last but not least, a
more detailed model may be proposed according to different
stages of growth, in order to better capture the features of
vehicle ownership revolution.
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Transport-related problems, such as automobile dependence, traffic congestion, and greenhouse emissions, lead to a great burden
on the environment. In developing countries like China, in order to improve the air quality, promoting sustainable travel modes
to reduce the automobile usage is gradually recognized as an emerging national concern. Though there are many studies related to
the physically active modes (e.g., walking and cycling), the research on the influence of attitudes to active modes on travel behavior
is limited, especially in China. To fill up this gap, this paper focuses on examining the impact of attitudes to walking and cycling
on commute mode choice. Using the survey data collected in China cities, an integrated discrete choice model and the structural
equation model are proposed. By applying the hybrid choice model, not only the role of the latent attitude played in travel mode
choice, but also the indirect effects of social factors on travel mode choice are obtained. The comparison indicates that the hybrid
choice model outperforms the traditional model. This study is expected to provide a better understanding for urban planners on
the influential factors of green travel modes.

1. Introduction

In recent years, the increasing automobile ownership and
usage cause serious traffic problems and lead to a large
amount of greenhouse gas emissions. The commuting trip,
as one of the most important travel demands, often occurs
at fixed times and contributes regular pressures to the traffic
system. Unlike automobile modes, the nonmotorized travel
modes (e.g., walking and cycling) are widely considered as
sustainable patterns with low emissions [1]. Besides, using
the travel modes of walking and cycling to work provides
opportunities for people to get physical exercise. A reasonable
amount of physical activities related to travel can help people
keep healthy, which appears to be important for people in
modern society. Bassett et al. [2] found that higher levels
of active travel are usually correlated with a lower obesity
rate. Briefly, the modes of walking and cycling may be

the attractive alternatives for the short-distance commuting
travels, especially in the compact China cities.

A literature review has identified a wide range of factors
influencing an individual walking and cycling mode choice,
such as sociodemographic factors, road infrastructure fea-
tures, and environmental variables [3–10].There is a growing
body of research that focuses on the influence of psychologi-
cal factors on the individual travel mode choice decision [11].
For example, the attitudes to the nonmotorized travel mode
are perhaps one of themost important factors influencing the
decision to walk or cycle. In developing countries like China,
in order to improve the air quality, promoting sustainable
travel modes to reduce the automobile usage is gradually
recognized as an emerging national concern. Though there
are many studies related to the physically active modes
(e.g., walking and cycling), the research on the influence
of attitudes to active modes on travel behavior is limited,
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especially in China. To fill up this gap, this paper focuses on
examining the impact of attitudes to walking and cycling on
commute mode choice and capturing the mediating role of
attitudes played in travel mode choice decision.

The remainder of this paper is organized as follows. The
following section presents a literature review related to our
study. The third section describes the modeling approach
used in this study. Data sources and description are provided
in the fourth section. In the following section, empirical
model results are analyzed. In the end, the conclusions and
limitations of this study are provided.

2. Literature Review

With the environmental and healthy advantages in mind,
the nonmotorized travel modes gain a growing attention.
The influences of sociodemographic factors and built envi-
ronment on the modes of walking and cycling have been
widely investigated. An and Chen [8] found that the nonmo-
torized mode choice was strongly influenced by the factors
of employment density, household income, and average
sidewalk length. Using the logit model, Plaut [12] found that
higher household income and housing price were correlated
with lower propensity to walk or bicycle. As to the other
sociodemographic factors (e.g., gender, age, and car own-
ership), similar empirical studies were conducted [6, 8, 12–
15]. With regard to the influence from built environment,
it is widely confirmed that the factors of density, diversity,
and mixed land use have significant influences on the travel
modes of walking and cycling [8, 9, 16, 17]. Furthermore,
there is an undeniable fact that travel mode choice behavior
is affected, not only by the attributes of themodes themselves,
but also by the unobserved factors. The cognitive psychology
theory claims that preferences and behavior are correlated
with perceptions and attitudes [18]. Generally, the attitudes
determine the behavioral intentions, which are associated
with the individual heterogeneity.The individual heterogene-
ity is a reflection of individual tastes, needs, values and goals,
which is affected by experience, education, and so forth [19–
22].

In recent years, many exiting studies have adopted travel
choice model by involving psychological variables (e.g.,
attitude and perception). Using a discrete choice model with
latent variables, Johansson et al. [21] examined the commuter
travel mode choice behavior. It is found that the environ-
mental preferences increase the possibility of selecting a
train mode. Using the data collected from a stated prefer-
ence survey, Maldonado-Hinarejos et al. [23] incorporated
the latent variables of attitudes, perceptions, and security
concerns on bicycle use into the travel choice model. These
study results indicate the necessary role of latent variables
played in the multinomial logit choice model, and probike
attitudes have positively significant effect on the cyclingmode
choice. Similar findings relate to the study conducted by Dill
and Voros [24]. Moreover, cyclists usually take cycling as
a healthy and environmental travel mode [25]. Using the
survey data collected in the San Francisco Bay Area, Choo
andMokhtarian [26] found that travel attitudinal factors and

personality characteristics significantly influenced individual
vehicle type selections. Nurul Habib [14] examined the effects
of willingness to walk, walking trip propensity, and walking
distance on walking trip and indicated that young people
are less possible to walk and females are more possible to
walk. In particular, using advanced stated preferences survey
data, Kamargianni and Polydoropoulou [27] examined the
influence of teenagers’ attitudes towards walking and cycling
on mode choice behavior. It is found that willingness to walk
and to cycle has a positive effect on the choice of those
alternatives and a negative effect on the choice of a car.

With respect to the modeling methods, incorporating
the latent variable into the discrete choice model is widely
used. Though there is a growing literature on the influence
of latent variable on travel mode choice, limited efforts have
been made to capture the mediating role of the attitudes
to travel mode. Different to the traditional discrete choice
modeling approach, structural equation model (SEM) can
not only obtain the direct effect, but also gain the indirect
effect and total effect [28, 29]. As shown in Figure 1, 𝑋,
𝑌, and𝑀 are exogenous variable, endogenous variable, and
mediating variable, respectively. Assume that the direct effect
of exogenous variable 𝑋 on the endogenous variable 𝑌 is
𝛾, and the indirect effect of exogenous variable 𝑋 on the
endogenous variable 𝑌 is 𝛼 × 𝛽. Hence, the total effect of
exogenous variable 𝑋 on the endogenous variable 𝑌 is the
sum of direct effect and indirect effect (i.e., 𝛾 + 𝛼 × 𝛽). In
the previous studies, though the latent factors are considered
in the travel choice model, only the direct effects are taken
into accountwithout the indirect effect path. In this context, it
would lead to inaccurate results, especially when the signs of
the direct effect and indirect effect of the factor are opposite.

According to the literature, it is found that most existing
studies only used the objective variables to investigate travel
mode choice. A growing body of research is conducted to
account for the objective variables (e.g., sociodemographic,
modal attributes) and subjective variables (e.g., attitudes,
perceptions) simultaneously. However, limited studies have
been made on the influences of attitudes to walking and
cycling on commutemode choice.Moreover,most studies are
empirically examined in the western countries, while for the
eastern countries like China, where the urban development
level, traffic conditions, and living habits are quite different
from western countries, more attention should be obtained.
To fill up this gap, this paper focuses on examining the impact
of attitudes to walking and cycling on commutemode choice.
Using the survey data collected in China cities, an integrated
discrete choice model and the structural equation model are
proposed. By applying the hybrid choice model, not only the
role of the latent attitude played in travel mode choice, but
also the indirect effects of social factors on travelmode choice
are obtained.The comparison indicates that the hybrid choice
model outperforms the traditional model.

3. Modeling Approach

As a new kind of discrete choice models, hybrid choice
model (HCM) combines the discrete choice model and the
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latent variable model in one framework. The most general
framework has been proposed by Ben-Akiva et al. [30, 31] and
it consists of two components.Themeasurementmodel com-
ponent describes the relationship between the indicators and
its corresponding latent variable, while the structural model
component describes the complex relationships among the
exogenous variable and endogenous variable. In this paper,
we aim to examine the influences of objective variables and
psychological variables on choosing the modes of walking
or cycling to work. For this purpose, we construct the HCM
framework with a latent variable “attitude towards walking
or cycling.” To measure the latent variable, three attitudinal
indicators are used. The modeling framework is presented in
Figure 2.

For the HCM framework, the structural model and the
measurement model are described as follows.

Structural equations part:

𝑋∗𝑛 = 𝛾𝑋𝑛 + 𝜎𝑛, 𝜎𝑛 ∼ 𝑁 (0, 1) ,
𝑈𝑛 = 𝛽𝑛𝑋𝑛 + Γ𝑋∗𝑛 + 𝜀𝑛,

(1)

where𝑋∗ is the latent variable,𝑋𝑛 is the exogenous variable,
and 𝜎𝑛 is the random error term. 𝑈𝑛 is the utility of the
nonmotorized travel mode, and 𝜀𝑛 is the independently,
identically distributed (i.i.d.) extreme value. 𝛽𝑛, 𝛾, and Γ are
the estimated parameters.

Measurement equations part:

𝐼𝑛 = 𝛼𝑛 + 𝜆𝑛𝑋𝑛 + 𝜐𝑛,

𝑦𝑛 =
{
{
{
1, if 𝑈𝑖 = max (𝑈𝑗)
0, otherwise,

(2)

where 𝐼𝑛 is the indicator of the latent variable (𝑋∗), 𝜐𝑛 is the
random error term, and 𝑦 is a choice indicator, taking the
value one if the nonmotorized travel mode is chosen, and 0
otherwise. In this study, the maximum likelihood techniques
are used to estimate the model parameters. For the HCM
method, the likelihood function for a given observation is the
joint probability of observing the travel mode choice and the
attitudinal indicators that can be obtained as follows:

𝑓 (𝑦𝑛, ln | 𝑋𝑛; 𝛼, 𝛽, 𝜆) = ∫
𝑋∗
𝑃 (𝑦𝑛 | 𝑋𝑛, 𝑋∗; 𝛽)

⋅ 𝑓 (𝐼 | 𝑋𝑛, 𝑋∗; 𝛼) 𝑓 (𝑋∗ | 𝑋𝑛; 𝜆) 𝑑𝑋∗.
(3)

In order to examine the role of latent attitude variable
played in travel mode choice behavior, a comparison was
conducted between the traditional model and the proposed
model. Based on the hybrid choice model, the indirect
effects and total effects of social factors on travel mode
choice through the mediating latent variable are calculated.
Therefore, the intermediary nature of the attitudes to walking
and cycling on commute mode choice would be confirmed.

4. Data Sources and Description

4.1. Questionnaire Design. The survey questionnaire is
mainly composed of three parts, as shown in Table 1. The
first two parts are to collect the individual and household
characteristics (e.g., age, gender, education, occupation,
income, bus card ownership, driver license, household
children, bicycle ownership, and car ownership). The third
part aims to collect the respondents’ attitudes towards
walking and cycling. Considering the immeasurability of
subjective factors, three indicators were designed to measure
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Table 1: Objective variables used in models and description.

Variable name Variable description
Individual characteristics
Age 1 = below 35 years old; 2 = 35 to 55 years old; 3 = over 55 years old
Gender 1 = male; 2 = female
Education 1 = low (junior school); 2 = medium (junior college); 3 = high (bachelor, master, or Ph.D.)
Occupation 1 = government-related job; 2 = others
Income 1 = less than 2000 ¥; 2 = 2000–8000 ¥; 3 = more than 8000 ¥
Bus card 1 = individual with a bus card; 2 = without a bus card
Driver license 1 = individual with a driver license; 2 = without a driver license
Household characteristics
Household children 1 = household with one or more children; 2 = without children
Car ownership 1 = household with one or more cars available; 2 = without
Bicycle ownership 1 = household with one or more bicycles available; 2 = without
Mode choice
Mode choice 1 = walking and cycling; 2 = others

the respondents’ attitudes towards walking and cycling in this
study. The indicators are described as follows: nonmotorized
travel mode can help to improve environmental pollution
(𝐼1), walking or cycling to work can get physical exercise
and keep fit (𝐼2), and nonmotorized travel mode can satisfy
daily travel (𝐼3). Agreements or disagreements of all those
descriptions were measured by five-point Likert Scale:
disagree strongly, disagree a little, neither agree nor disagree,
agree a little, and agree strongly which were coded as 1, 2, 3,
4, and 5, respectively.

The survey was conducted in Zhenjiang city during
the year 2015 in China. Zhenjiang city is located in the
southwest of Jiangsu Province, the lower reaches of the
Yangtze River. With regard to the political status, economic
development, and city scale, Zhenjiang belongs to China’s
third-tier cities. The survey data used in this paper was
obtained from the OpenITS website by Jiangsu University. At
last, 2941 respondents completed the surveys, and 2660 valid
samples were selected. It is worth mentioning that nearly half
(41.7%) of the respondents live within five kilometers from
workplace. Generally speaking, there is a possibility for the
respondents to choose walking or cycling to commute. As
is well known, for the long-distance travel, it is more likely
to choose motorized travel modes to commute [6, 32]. For
the small cities like Zhenjiang, it is meaningful and valuable
to investigate the walking or cycling travel behavior. In this
study, considering the general travel distance of walking and
cycling, the respondents with more than five kilometers’
commuting distance were removed. Finally, 1110 respondents
were selected for further study.

4.2. Descriptive Statistics. In the final sample, 59.7% of the
respondents are males, and 40.3% are females. 74.3% of the
respondents are below 35 years old, 22.0% are between 35 and
55 years old, and 3.7% are above 55 years old. With regard to
the education level, 11.9% of the respondents are below junior
college level, 39.8% have undergraduate degrees, and 48.3%

have graduate degrees. In terms of the occupation, 8.0% of
the respondents are government staffs. As to the income,
40.8% of the respondents are low income people, 55.1% are
the middle-income group, and 4.1% are high-income group.
As for the household children, 49.3% of the respondents’
household have children and 50.7% of the respondents
have no kids. According to the survey results, 51.5% of the
respondents choose walking or cycling to commute. Figure 3
presents the respondents’ responses to the attitude towards
nonmotorized travel. Descriptive statistics of three indicators
of the latent variable are shown in Table 2.

5. Result Analysis

5.1. Model Fit. The model parameters were estimated using
the maximum likelihood method based on the𝑀-plus soft-
ware with 1,000 bootstrap draws. The model fit information
is listed in Table 3, indicating that the hybrid choice model
obtains a good fit [33].With regard to the internal consistency
of the indicators, as shown in Table 4, Cronbach’s alpha value
is larger than the threshold value of 0.60, indicating that
the selected indicators are reliable to measure the underlying
latent variable [34]. Meanwhile, for each indicator variable,
the factor loading coefficient is significant at the 99% level. In
other words, all the observed indicator variables contribute to
capture of the unobservable latent variable.

5.2. Modeling Results. Using the survey data collected in
China cities, a comparison between the traditional model
and the hybrid choice model is conducted. The estimation
results of both modesl are shown in Table 5. Comparing
the traditional model and the hybrid choice model, it is
obviously seen that the integrated model indeed provides
greater explanatory power with respect to the travel mode
choice, indicating that incorporating the latent variable into
the discrete choice model improved the overall fitness of
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Figure 3: Indicators of latent variable.

Table 2: Latent variable and indicators.

Indicators Indicator description Mean St. Dev.
𝐼1 Nonmotorized travel mode can help to improve environmental pollution 4.16 0.747
𝐼2 Walking or cycling to work can get physical exercise and keep fit 4.31 0.738
𝐼3 I would like to choose nonmotorized travel mode to satisfy daily travel 3.95 0.812
Note. 1 = disagree strongly, 2 = disagree a little, 3 = neither agree nor disagree, 4 = agree a little, 5 = agree strongly.

Table 3: Goodness-of-fit of model.

Indicators Description Values Cut-off value

𝜒2
Measuring the differences between the observed
covariance matrices and model-based covariance
matrices.

22.88
Smaller 𝜒2
shows better
model fit.

CFI Measuring noncenter parameter improvement. 0.97 >0.90
TLI Measuring the discrepancy between the observed

sample matrix and the theory matrix. 0.99 >0.90

RMSEA Measuring the difference of each degree of
freedom. 0.01 <0.05

SRMR Measuring the approximation error of each
degree of freedom. 0.01 <0.05

Note. CFI is Comparative Fit index; TLI is Tucker Lewis index; SRMR is Standardized Root Mean Square Residual; RMSEA is Root Mean Square Error of
Approximation.

Table 4: Factor loading coefficients for the indicators of the latent variable.

Indicators Attitude towards nonmotorized travel
Cronbach’s alpha Parameter t-stat

𝐼1
0.620

0.590 18.727
𝐼2 0.622 19.736
𝐼3 0.645 20.309

the model. Specifically, the likelihood ratio index improves
from0.313 to 0.364. Besides, the Akaike information criterion
(AIC) and adjusted Bayesian information criterion (BIC) of
the integrated model are lower [35]. And more importantly,
the influence of the latent attitude variable is positively
significant at the 90% level, indicating that the attitude to
walking and cycling plays a critical role in the nonmotorized

travel mode choice. From this point, this finding might be
very helpful to encourage the green modes [36].

As to the individual characteristics, there is no difference
between the male and female for the nonmotorized travel
mode choice. However, it is significantly related to the
factors of age, education, occupation, income, and household
children. Specifically, younger and older travelers are more
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Table 5: Estimation results for the traditional and the hybrid choice model.

Variables Traditional model Hybrid choice model
Parameter t-stat Parameter t-stat

Constant 0.547 4.433∗∗ 0.547 4.433∗∗
Household characteristics
Household children −0.058 −1.959∗ −0.058 −1.969∗∗
Bicycle ownership 0.243 8.444∗∗ 0.245 8.518∗∗
Car ownership −0.046 −1.471 −0.045 −1.431
Bus card −0.042 −1.445 −0.043 −1.485
Driver license −0.064 −2.105∗∗ −0.066 −2.148∗∗
Individual characteristics
Gender 0.016 0.573 0.013 0.489
Age

Age-1 0.115 3.368∗∗ 0.113 3.310∗∗
Age-3 0.059 2.086∗∗ 0.059 2.056∗∗

Education
Education-1 0.005 1.624 0.053 1.711∗
Education-3 0.089 2.780∗∗ 0.087 2.713∗∗

Government −0.054 −1.969∗∗ −0.056 −2.036∗∗
Income

Income-1 0.171 5.494∗∗ 0.165 5.259∗∗
Income-3 −0.011 –0.395 −0.013 −0.453

Latent variables
Attitude — — 0.056 1.673∗
Observations 1110 1110
LRI 0.313 0.364
AIC 8600.808 8267.361
Adjust BIC 8670.571 8311.986
Note. LRI is likelihood ratio index, LRI = 1 − (LL𝜅/LL𝜅0), and LL𝜅0 is the log-likelihood value when all the parameters are set equal to zero; AIC is Akaike
information criterion; BIC is Bayesian information criterion; ∗ indicates significant values at the 90% level; ∗∗ indicates significant values at the 95% level.

likely to choose the walking or cycling mode to commute
than middle-aged travelers. With respect to the educational
attainment, it is found that higher level and lower level of
them were both associated with a larger likelihood of choos-
ing the walking or cycling mode. In addition, as expected,
the people with low income tend to use the active travel
mode choices. Government-related people are less likely to
use the active travel mode choices. In terms of the household
characteristics, it is found that the people from the household
with children show less intention to choose the walking or
cycling mode to commute. This may be due to the fact that
it would be more convenient for parents to pick up their
children on the way from/to work. As expected, the people
owning a bicycle are more likely to choose active travel
mode to commute, while the factor of driver license has
a significantly negative effect. Therefore, in this context, in
order to promote the walking or cycling mode, it is a feasible
strategy to provide vast bicycles and improve the bike-sharing
service in China cities (e.g., Ofo, Mobike).

5.3. Indirect Effects and Total Effects. With the advantage of
hybrid choice model in mind, as displayed in Table 6, the
indirect effect and the total effect are also calculated. For the

model results, though the indirect effects of all the observable
variables are insignificant, they do have negligible influences
on the total final effects of the variables on walking or cycling
mode choice. The total effects are the outcome of the direct
effects and the indirect effects. Due to the mediating effect
of the latent variable, the effect of variables on the mode
choice may be strengthened or weakened [37]. As the model
results shown, the indirect effects of education and bicycle
ownership are negative, while the direct effects and the total
effects are both positive. Itmeans that the positive effect of low
level education and bicycle ownership are both weakened for
the intermediary role of the attitude to walking or cycling.
Therefore, the indirect effect of the factors on travel mode
choice cannot be ignored. Similar examples relate to the
factors of job type, children, bus card, and driver license.

6. Conclusions

Transport-related problems, such as automobile dependence,
traffic congestion, and greenhouse emissions, lead to a
great burden on the environment. In developing countries
like China, in order to improve the air quality, promoting
sustainable travel modes to reduce the automobile usage
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Table 6: Estimation results for the indirect and total effects of observed variables.

Variables
Walking and cycling

Indirect effect Total effect
Parameter t-stat Parameter t-stat

Gender 0.002 0.907 0.016 0.573
Age

Age-1 0.002 0.686 0.115 3.368∗∗
Age-3 0.001 0.394 0.059 2.086∗∗

Education
Education-1 −0.003 −0.931 0.050 1.624
Education-3 0.002 0.763 0.089 2.780∗∗

Government 0.002 0.766 −0.054 −1.969∗∗
Income

Income-1 0.006 1.396 0.171 5.494∗∗
Income-3 0.002 0.676 −0.011 −0.395

Household children 0.000 0.104 −0.058 −1.959∗∗
Bicycle ownership −0.002 −0.803 0.243 8.444∗∗
Car ownership −0.001 −0.500 −0.046 −1.471
Bus card 0.001 0.477 −0.042 −1.445∗∗
Driver license 0.001 0.507 −0.064 −2.105∗∗
Note. ∗ indicates significant values at the 90% level. ∗∗ indicates significant values at the 95% level.

is gradually recognized as an emerging national concern.
Though there are many studies related to the physically
active modes (e.g., walking and cycling), the research on the
influence of attitudes to active modes on travel behavior is
limited, especially in China. Hence, this paper focuses on
examining the impact of attitudes to walking and cycling on
commute mode choice.

Using the survey data collected in China cities, an
integrated discrete choice model and the structural equation
model are proposed. By applying the hybrid choice model,
not only the role of the latent attitude played in travel mode
choice, but also the indirect effects of social factors on travel
mode choice are obtained.The comparison indicates that the
hybrid choice model outperforms the traditional model.This
study is expected to provide a better understanding for urban
planners on the influential factors of green travel modes. For
this study, it should be noted that the built environment has
an important effect on travel mode choice [38]. However,
due to the availability of land use data, the built environment
measurements are not included in the model. For future
studies, it is necessary to incorporate the built environment
factors and attitudes into the travel behavior model.
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Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can
improve management efficiency through more targeted access to groups of interest and facilitate planning by more specific survey
design. This paper clustered 854,712 vehicles in a week using 𝐾-means clustering algorithm based on license plate recognition
(LPR) data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spatial variability and activity
patterns are used to identify homogeneous clusters. Then, Davies-Bouldin index (DBI) and Silhouette Coefficient (SC) are applied
to capture the optimal number of groups and, consequently, six groups are classified in weekdays and three groups are sorted
in weekends, including commuting vehicles and some other occasional leisure travel vehicles. Moreover, a detailed analysis of
the characteristics of each group in terms of spatial travel patterns and temporal changes are presented. This study highlights the
possibility of applying LPR data for discovering the underlying factor in vehicle travel patterns and examining the characteristic of
some groups specifically.

1. Introduction

The trip starting and ending time, travel distance, travel
frequency, activity duration, and some analogous features are
the typical form of vehicle travel behaviors. All these aspects
have a significant effect on the traffic condition in a direct
or indirect way [1, 2]. For example, the distribution of the
trip starting and ending time of all vehicles will decide the
peak-hour time. Better understanding of these characteristics
will be helpful to analyze the travel pattern and travel mode
of vehicles. Identifying homogeneous travel behavior groups
has been the research subject in several prior studies and the
travel behavior analysis has always attracted great interest of
transport authorities, since vehicle travel behavior has a vital
impact on strategic and operational decisions [3–5].

Clustering is one of themost importantmethods to count
and mine meaningful information in large amount of data
since understanding themain differences between groups can
contribute to a better understanding of their travel behaviors,
which can provide valuable information for transportation
planning [6]. Meanwhile, clustering vehicles based on their
travel characteristics is one of the vital methods for studying

the representativeness of specific groups among the whole
vehicle population and the travel profile of each group
provides an aggregated characterization for the vehicles of a
group as a whole [7]. It can also provide transportation plan-
ners with richer travel demand information for improving the
system performance or better assessing network investments.

In the field of transportation, clustering has been widely
accepted in dealing with big data and traffic problems [8, 9].
Reference [10] investigated the determination of historical
traffic patterns by means of Ward’s hierarchical clustering
procedure. It classifies the traffic patterns in highways with
the data collected by automatic vehicle identification (AVI)
system into four groups and the resultant weekday traffic pat-
terns can be used as input for macroscopic traffic models and
as a basis for traffic management. Moreover, when predicting
traffic flows based on historical data, a preclassification (e.g.,
holidays, Mondays, core weekdays, and Fridays) can be made
to guide the authorities, and these patterns can be used to
detect and replace erroneous data and to imputemissing data.

Besides, [11, 12] utilized the density-based clustering
algorithms to classify trajectories using GPS data. The study
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of trajectory data can reveal individual trajectory patterns,
understand the characteristics of human dynamics, and
thus support trajectory prediction, urban planning, traffic
monitoring, and so forth. The characteristics will be similar
inside each group and significantly different outside the
groups. According to the similarity, the individual similar
trajectory recognition can be achieved; and by clustering, the
abnormal trajectory mode detection can also be conducted.
Similarly, literature [13, 14] combined DBSCAN and SVM
(support vector machines) cluster algorithm to sort the GPS
trajectories to identify the activity stop locations, which has
significance in analyzing human urban mobility.

In the analysis of the time series characteristics of traffic
flow data [15], clusteringmethod is popular too. According to
the similarity of traffic flow characteristics, the traffic sections
are divided into different groups and in the literature [16];
performance of the proposed approach and the stability of
the clustering technique are evaluated using the extensive
simulation for different traffic densities.

Numerous researches concerning traffic and travel have
been conducted by previous studies but there are some
drawbacks at the same time. It is difficult to obtain the
large amount of data. The acquisition is mostly based on
artificial method but at the expense of consuming lots of
manpower and resources. Worse still, there are much error
and abnormities in the information usually; thus, the research
results always show lower reliability and higher deviation.

Recently, a number of well-established technologies for
collecting vehicle related data have emerged, including loop
detectors, GPS data, and probe car data [17, 18]. Loop
detectors have the merit that once they are installed, there
will be continuous record when every vehicle is passing the
monitored road section. However, the share of segments in
the network equipped with these sensors is typically low
and cannot represent the urban network as a whole, which
will leave the traffic conditions in most of the network
unknown. Dedicated probe vehicles, meanwhile, are used to
collect the travel time and other data for designated routes
in the network. Nevertheless, due to cost considerations, the
number of traffic studies with probe vehicles is typically small
and the number of vehicles involved is very few. Hence,
they can only cover a limited number of routes for a limited
duration of time.

A number of limitations mean that new sophisticated
methods are needed to process the data and generate
useful information, compared to traditional sensors [19].
Most recently, with the emerging technologies and advanced
devices, image recognition technology has been greatly
improved. License plate recognition (LPR) system provides
the opportunity to study in detail vehicle travel patterns.
Compared to manual data collection techniques, LPR pro-
vides lower marginal costs, more detailed and disaggregated
information, large sample size, and real-time data availability
[20, 21]. LPR data is mainly applied in LPR data is mainly
applied in solving three kinds of problems in the field of
transportation, that is, (1) road network state discrimina-
tion, (2) vehicle microscopic characteristics mining, and
(3) vehicle travel time/path estimation [22, 23]. Zhan et al.

[24] proposed a lane-based real-time queue length estima-
tion model applying the LPR data. By using ground truth
information of the maximum queue length from the city of
Langfang in China, the model is validated. In addition, a
novel trip route estimation method was given by researchers
to estimate the vehicle travel path [25]. Similarly, based on
LPR data, an approach for forecasting urban short-term
OD matrix which can be used to obtain the original OD
information was came up with, and then the OD amount
between the detection points can be inferred and finally
the OD information between fast track ramps is obtained
[26, 27]. All of that mentioned above has proved that the
massive amount of LPR data has been created and provides us
with rich information and thus can be an effective analytical
data source.

Methods for clustering are usually divided into two
categories, supervised and unsupervised. Supervised meth-
ods use the past data as training samples or previously
known outputs to create and learn a clustering rule that
allows the clustering of future or new observations [28].
Because the form of the data is not fitting for this study,
unsupervised methods are more applicable. Unsupervised
cluster algorithms include the hierarchical algorithms and
the partition algorithms. Hierarchical clustering algorithms
have high computational complexity and cost, limiting their
application to large-scale data sets and the shortcomings
and advantages of these algorithms will be explained in the
following paragraph.
𝐾-means clustering algorithm, which belongs to the

distance-based clustering algorithms, is not only the most
classic, but also the most widely used. It has the property of
rapid computing speed, easily explained principle, and high
efficiency. 𝐾-means clustering algorithm is tested using load
profiles of 100 residential smart meters collected over the
interval extending from July 20th until August 9th, 2009.
The method has shown high accuracy in dealing with traffic
problems, which proved its great applicability [29].

In this paper, data from LPR system in Shenzhen, China,
from November 4th to 10th, 2013, during seven days (a
week) in total are analyzed. Variables chosen for clustering
include the proportion of different starting/ending points,
maximum/minimum/average travel distance for one trip,
days of travel within a week, the number of trips per day,
the average start time of the first trip, the average end
time of the last trip, and activity duration [30]. Firstly, data
cleaning is conducted to remove the wrong and repeated
data.Then, deviation standardization is utilized to normalize
each value for eliminating the error caused by dimension
and considerable differences of magnitude. After preliminary
treatment, data is divided into two groups, namely, the
weekdays and weekends. Finally, to measure the optimal
number of clusters, Davies-Bouldin index (DBI) [31] and
Silhouette Coefficient (SC) [32] are employed.

In general, the purpose of this study is to classify vehicles
into several categories based on some variables and deter-
mine travel behavior consistency over time and space by
analyzing the vehicle temporal and spatial variability. It can
support the study of representing specific groups among the
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Networks
Detection points

Figure 1: Road network and distribution of LPR system in Shenzhen.

Table 1: Raw data sample.

Vehicle ID Detector ID Lane number Date and time
2a0adafb3bedf3ad09730c47e0b195b5 20400801 3 2013/11/04 23:00
686ded4bef182aeb03cf361eb6ac6f65 101A0753 2 2013/11/05 00:13
88765784c6cd4464ded7f2336c24eaf2 20602701 1 2013/11/06 14:26
14c397a9bc79e52854194e6c49a69b3e 30606705 2 2013/11/07 15:03
6c43c9bb61e730194de304f0ce9e99ae 206A0480 1 2013/11/08 09:21
fb567b73e8e3db9fa03a4d265b6bddbe 20605302 2 2013/11/09 04:18
45e8dca9594b91c5fdb40706b6f0abc7 10100210 3 2013/11/10 19:14

total population and help establish the predictive level of
vehicle trips.

The rest of the paper is organized in the following way.
Section 2 offers a brief description of data source. The
methodology is introduced in Section 3. Section 4 displays
the variables chosen for clustering. Section 5 shows the results
of the clustered data and Section 6 is the conclusion and
findings.

2. Data Description

2.1. Data Overview. The potential of LPR system has been
explored for planning, managing, and assessing the perfor-
mance of traffic systems. Further, data collected by these sys-
tems allows more comprehensive view of vehicle travel pat-
terns and travel behaviors.

2.1.1. Data Source. The LPR system in Shenzhen, China, cov-
ersmajority of parking lots and expressways for this city. Over

0.9 million vehicles are detected in a week and according to
Shenzhen Statistical Yearbook in 2013, the total number of
vehicles in Shenzhen is about 2.1 million, implying 42.86% of
vehicles are detected by the LPR system. After data cleaning,
there are still almost 128,000 recorded vehicles each day.
Figure 1 is the sketched network of Shenzhen, where the red
points represent the detectors installed on roads and the black
lines show the roads.

LPR detectors are mainly installed in the expressways of
the city unevenly, most of which are on the intersection or the
pedestrian bridge nearby. They are denser in the city center
area, while more are dispersed in the rest of the region. The
sample of raw data is given in Table 1.

It is worth noting that the detector ID has two types,
10100610 and 101A0753. If “A” is contained in the ID, the
detector is a parking lot.Otherwise, it represents a detector on
road. Table 2 shows the amount of detectors for each day from
November 4th to November 10th, 2013, for which more than
83% detectors are parking lots.
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Table 2: Amount of detection ID for each day.

Date Nov. 4 Nov. 5 Nov. 6 Nov. 7 Nov. 8 Nov. 9 Nov. 10
All detectors 918 942 936 934 933 910 873
Parking lots 759 783 777 775 774 751 717
On roads 159 159 159 159 159 159 156

There are three main types of parking lots, (1) residen-
tial parking lots (including residential and office buildings,
commercial places, and shared parking lots), (2) temporary
parking lots, and (3) public parking lots.The parking lots with
detection data account for about 20% of all the parking lots
in Shenzhen.

2.1.2. Data Cleaning. The data cleaning is conducted before
vehicle clustering and there are two main steps.

(1) Extract the Data by Day. The whole dataset is for seven
days (a week), which has been separated into seven files by
date thus each file contains the data of the same day.

(2) Verify the Original LPR Data
(1) Delete erroneous LPR data: there are two kinds of

erroneous data in our study: (a) the detected time of
the record is beyond the range of [0:00–24:00] and (b)
the latitude and longitude of the detection site of the
record are beyond the scope of Shenzhen.

(2) Remove duplicated LPR data records: if there are two
identical records, only one needs to be kept.

(3) Extract the trip chain in accordance with the defini-
tion of one trip: that is, the data has been processed
into the following form.

Vehicle a-time(1)- location(1), vehicle a-time(2)- location
(2),. . .,vehicle a-time(n)- location (n)
Vehicle b-time(1)- location (1), vehicle b-time(2)- location
(2),. . .,vehicle b-time(n)- location (n)

Based on the trip chain of the vehicles, all of the men-
tioned variables can be calculated, such as the trip starting
time, ending time, the whole activity duration, and the travel
distance.

2.2. Identification of Taxi. The purpose of this paper is to
cluster all the vehicles in the dataset according to some
temporal and spatial variables. Each group will have some
characteristics different from the other groups, so as to
explore vehicle travel patterns we may not know before. Traf-
fic researchers have always paid much attention to taxi, due
to its special travel mode. It has the following characteristics
[33]:

(1) There are no fixed route and running time.
(2) Operation is for 24 hours and can be located in any

place of the city.
(3) The origins and destinations of taxi are completely

determined by passengers.
(4) The operating routes are up to the driver, such as his

experience and hobbies.
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Figure 2: The distribution of number of trips for taxi in Shenzhen.

On account of these features, taxis are removed from the
dataset tomake sure the analysis in this paper is more specific
on noncommercial vehicles and the future research will focus
on the travel behavior of taxi.

Figure 2 shows the distribution of the number of taxi
trips in Shenzhen. There are over 70% of vehicles traveling
20–35 trips per day, and only 7% vehicles are traveling less
than 10 trips.Meanwhile, from the clustering result, the travel
frequency of nontaxis in a day is no more than 10 trips per
day. As a result, we removed vehicles whose travel frequency
exceeded 10 trips per day. Under such a definition, there may
be two inaccurate results: (1) nontaxis traveling more than 10
times a day were removed and (2) taxis traveling less than 10
times were still retained.

However, in the light of Shenzhen Statistical Yearbook in
2013, the number of taxis is around 17,000 in total, in which
less than 50% were detected by the LPR system. Thus, the
amount of these two kinds of vehicles will be no more than a
thousand, which appears insignificant when compared with
tens of thousands ordinary vehicles.

On the basis of the rule proposed above, almost 6,000
taxis for one day are removed from the dataset andwhen taxis
are removed, there are around 122,000 vehicles for each day
and 854,000 vehicles in a week.

3. Methodology

3.1. Clustering Methods. Clustering methods encompass sev-
eral techniques and algorithms used to group observations
based on similar qualitative or quantitative characteristics.
They are usually divided into supervised and unsupervised
clustering. Supervised methods require a training sample
which contains previously known information on each group
membership [34]. In accordance with the form of data in this
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Table 3: Advantages and disadvantages of some unsupervised algorithms.

Clustering
algorithm

Representational
algorithm Advantage Disadvantage

Hierarchical
algorithms

BIRCH
(1) No input parameters are required
(2) High scalability

(1) high computational complexity and cost;
(2) low efficiency in dealing with large-scale dataCURE

Chameleon
Partition
algorithms

𝐾-means (1) High efficiency in dealing with large-scale data
(2) Fast calculation speed

(1) dependent on initial center selection;
(2) uncertainty of category numberCLARANS

O1

D1(O2)

D2

The first record

The first record

The second record

The second recordThe last record

The last record

Figure 3: The relationship between the travel trajectory and the detection points.

study, the training sample is not available and there are no
previously known classes; unsupervised clustering method
is the best option. Unsupervised clustering methods aim at
categorizing the data objects without a training sample; the
goal is to find clusters based on similarities of the input data.
There are two main types of unsupervised clustering, the
hierarchical algorithms and the partition algorithms. Table 3
discusses the advantages and disadvantages of some unsuper-
vised algorithms [35].

3.2. 𝐾-Means Algorithm. As shown in Table 3, hierarchical
algorithms have been criticized for low robustness and high
sensitivity to noise and outliers. Since the assignment of an
object to a cluster is not iterative, hierarchical algorithms are
not able to correct potential misclassifications. On the con-
trast, partition algorithms optimize either a locally or a glob-
ally defined objective function to generate groups of obser-
vations so they are preferred in studies involving large-scale
dataset.
𝐾-means is chosen for this study as a computationally

efficient method, which is suitable for situations where all
variables are quantitative. It is easy to understand and apply
and thus is popular in dealing with the clustering problems.
The time complexity of 𝐾-means algorithm is close to linear,
is simultaneously suitable for mining large-scale data sets,
and is scalable. In this study, the variables used for clustering
are all quantitative and we have a large amount of data. So,

𝐾-means is chosen for this study. Nevertheless, the only dis-
advantage is the difficulty of choosing the number of clusters
and their dependency on the initialization scenario. For the
first drawback, it can be adjusted by repeated iterations to
find the optimal result. For the second one, we have tried
several cluster numbers and applied Davies-Bouldin index
(DBI) and Silhouette Coefficient (SC) to find the optimal
cluster number.

3.3. Criteria for One Trip. For the sake of turning the raw
data into the form of vehicle trips and the value of its
corresponding variables, the criteria for one trip should be
given firstly. Due to the inherent limitation of the LPR data,
only partial trajectory points of a vehicle can be obtained. As a
result, the realistic starting and ending points of a trip cannot
be speculated.

Figure 3 shows the travel trajectory of a vehicle in a brief
network, where the yellow curve represents the first trip of the
vehicle and the green one displays its second trip. In addition,
the blue short lines show the detecting points. It is definite
that the true trip starting time in origin 1 (𝑂1) is earlier than
the time of the first trip record, and the trip ending time in
destination 1 (𝐷1) is later than the time of the last record, as
well as the second trip or other trips of the vehicle.

Hence, deviation will exist in the value of some variables
inevitably. The average starting time of the first trip will be a
little later, and the average ending time of the last trip will be
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Table 4: The average number of trips for different thresholds.

Threshold (min) Number of trips Threshold (min) Number of trips
20 4.52 50 1.96
25 3.86 55 1.83
30 3.24 60 1.82
35 2.90 65 1.82
40 2.41 70 1.81
45 2.13 75 1.78
50 1.96 80 1.73

a little earlier. The whole activity duration will be longer and
the travel distancewill be shorter. However, themain purpose
of our study is to extract the travel characteristics of vehicles
instead of the estimation of the 𝑂𝐷 matrix; these errors are
offset in one direction for all vehicles; thus it may not have
a critical impact on the clustering result. From this point of
view, the definition of one trip is applicable. When applying
these values of variables in realistic transportation planning,
the deviation should be taken into account.

As mentioned, the “segmentation” refers to the interval
between two trips that is the interval of the last record of
the first trip and the first record of the second trip, which is
different from the vehicle’s accumulated travel time. In order
to find the optimal value of the segmentation, we have tested
the threshold.

Set AR to be the true threshold, BR to be the true number
of trips, 𝐴 to be the threshold that we will apply, and 𝐵 to be
the number of trips that we will calculate. If 𝐴 ≤ AR, then
𝐵 ≥ BR; if 𝐴 ≥ AR, then 𝐵 ≤ BR; only when 𝐴 = AR,
then 𝐵 = BR. Different thresholds ranging from 20min to
80min have been tested, and the average number of trips
under all circumstance is calculated.The result was illustrated
as Table 4.

When the threshold spans from 50min to 80min, the
value of number of trips has been moving towards stabiliza-
tion. It implies that the probability of trips to be not detected
in this interval is relatively small. Also, the interval of two
trips from LPR data is larger than the actual interval. Hence,
it is reasonable that one hour is chosen to be the threshold.

4. Clustering Variables

4.1. Spatial and Temporal Variables. To estimate homoge-
neous vehicle groups based on their travel patterns using any
clustering method, it is necessary to have input information
on travel behaviors. Travel patterns can be described by
looking at specific variables that together characterize each
vehicle’s travel routines [36]. The selected variables must
include those vehicles’ characteristics that make their travel
patterns distinct [37, 38]. A set of descriptive variables is
presented and vehicles are analyzed inweekdays andweekend
separately.

(1) The Proportion of Different Origins/Destinations.The per-
centage of different origins/destinations has the potential to
be a useful indicator of their mobility patterns. To illustrate,

vehicles with the same starting point for the first trip in a day
or the same ending point for the last trip in a day over a week
aremore likely to be commuters withwork or study purposes.
This variable is an indicator of spatial travel variability, which
could help to infer the vehicle travel predictability. For such
vehicles that traveled 3 days in weekdays, the percentage of
different origins for the first trip in a day is defined as follows:

0:The origins of the first trip in a day over the three days
are all the same.
1/3:There is one difference for the origins of the first trip
in a day over the three days.
2/3: There are two differences for the origins of the first
trip in a day over the three days.
1:The origins of the first trip in a day over the three days
are all different.

When the value is 0, the origins for one trip are all the
same in the days of travel, suggesting that the behavior of this
kind of vehicles hasmuch regularity. In contrast, if the value is
1, the origins for one trip are all different in the days of travel,
indicating the irregularity of the travel behaviors.

The calculation for percentage of different destinations
for the last trip in a day is defined in the same way, and for
vehicles in weekends the dealing method is comparable.

(2) Travel Distance. The geometric distance between the
origin and destination of one trip can show how accessible
activity locations are to a vehicle. Travel distance variability
among the trip of a vehicle can also demonstrate travel
flexibility and vehicle mobility around the city. The travel
distance variables adopted in this study incorporate the
maximum/minimum/average travel distance for one trip in
the whole week. For the lack of the track points, complete
travel trajectory of one trip for a vehicle cannot be obtained.
As a result, in this study, the distance of one trip for a vehicle is
defined as the exact distance between the start and end points
of one trip, which is calculated by the latitude and longitude
of the two points.

(3) Travel Frequency.The travel frequency of vehicles, that is,
tripsmade over a day/a week (or any other period) incarnates
the uncertainty of the travel for vehicles. There are two
descriptive variables, number of trips per day, which is the
number of complete trips performed on each day of the week
and days of travel, which is the number of days within the
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period of analysis; a vehicle has at least one trip in a day. For
vehicles in weekdays and weekends, the value of their travel
days in a week ranges from zero to seven.

(4)The Trip Start/Finish Time.The trip start/finish time could
give expression to the trip purpose and consistency of trip.
Volatility of the start time for the first trip and the finish time
for the last trip are crucial aspects when analyzing vehicle
travel patterns.

(5) Total Activity Duration. Activity refers to all those actions
vehicles perform when they are not traveling and in this
paper the time interval between the two adjacent trips is
defined as the protocol of activity duration.There is a mass of
activities purposes, business, work, study, and entertainment,
among others.The characteristics of the activity performed at
a destination may determine the vehicle’s travel decision and
the average activity duration of a vehicle in each day varies
from weekdays to weekends.

4.2. The Distribution of the Variables for All Vehicles

(1) Weekdays. Figure 4 illustrates the distribution of all the
temporal and spatial variables in weekdays which is a statis-
tical indicator of the whole vehicles.

In Figure 4(a), there is an obvious peak during the interval
of 8:30 am to 9:00 am, representing that the average trip start
time of vehicles is mostly focused between 8:30 am and 9:00
am, implying the morning peak hours. Figure 4(b) shows the
tendency of the average trip finish time and the majority of
the vehicles finish their trip at around 18:00 pm–19:30 pm,
which means the afternoon peak hour. Additionally, there is
also a large amount of vehicles that start their trip at 12:30
pm–13:30 pm.

For the number of trips per day in Figure 4(c), vehicles
traveling 1.5 trips/day occupy a high proportion and vehicles
traveling 3.5 trips/day, 2 trips/day, and 4 trips/day followed.
The result seems to be confused that vehicles traveling 1.5
trips/day (less than 2 trips/day) conquer such a high rate.
Probably, it is because the definition of one trip in the study
and the incomplete vehicle detection data.

Figure 4(d) demonstrates days of travel. Vehicles that only
travel one day in a week occupy a high rate. The activity
duration of most vehicles is within 11 h in Figure 4(e). Figures
4(f), 4(g), and 4(h) reflect the travel distance of vehicles. The
maximum travel distance of vehicles for one trip is almost
within 60 km, theminimum travel distance is less than 30 km,
and the average travel distance is within 40 km. At the same
time,we can see that, for the average travel distance of vehicles
for one trip, over 68% of trips are within 10 km.

According to Figures 4(i) and 4(j), for the percentage of
different starting or ending points, values 0 and 1 seize on a
high proportion. Value 0 means the starting/ending points of
each trip are identical, and the regularity is high. Analogously,
value 1 means that the starting/ending points of each trip are
all different, and irregularity is high.

(2) Weekends. For vehicles traveling in weekends, the dis-
tribution of their temporal indicators is basically similar to
the weekdays. For the value of both of the percentages for

different starting and ending points in weekends, value 0
takes up the highest ratio; in other words, these vehicles
travel with less regularity. Compared with the weekday
vehicles, they travel a relatively short distance; whether it
is the maximum travel distance, minimum travel distance,
or average travel distance, almost all are within 10 km and
relatively concentrated within 5 km.

5. Results and Discussions

The values of within-cluster variation and the DBI/SC are
shown as functions of the number of clusters in Figures 5(a)
and 5(b). A smaller value of DBI and a larger value of SC are
better. In Figure 5(a), when the cluster number is six, the value
of DBI is the smallest, and when it turns to seven, the value of
SC is the largest.The value of SC of seven groups is just a little
better than six groups but the value of DBI of six groups is
much better than seven groups. As a result, “six” is a relatively
better choice. In Figure 5(b) when the cluster number is
three, both values of SC and DBI are optimal; there is a
lowest point of DBI and a highest point of SC. So, the cluster
number for weekdays and weekends is selected as six and
three, respectively. The𝐾-means clustering method provides
not only information about each cluster’s core characteristics
but also information about the average characteristics of each
cluster. Tables 5 and 6 display the average values of each index
for each category in weekdays and weekends.

For Vehicles in Weekdays, Six Groups Are Clustered. The last
column of Table 5 illustrates the proportion of the total
number of each category. The smallest cluster contains 4.1%
of the vehicles in the sample, and the largest one accounts
for 33.7%. Groups 1 to 6 are identified as follows, long travel
distance vehicles, commuting vehicles, noon travel vehicles
with short travel distance, off-peak hour travel vehicles,
midnight travel vehicles, and peak-hour travel with short
activity duration vehicles, respectively.

Group 1 is inferred as long travel distance vehicle that
travels 1.82 days in a week and makes 2.13 daily trips. On
average, the first trip starting time of Group 1 is 10:14 am
and the last trip ending time is 19:02 pm. Additionally, the
travel behavior of this group is irregular because the trip
origins and destinations are all different. Besides, the total
activity duration of this group is about 7.41 hours, and the
travel distance of this group of vehicles is relatively long. The
maximum travel distance for one trip is 78.1 km on average.

Group 2 may be commuting vehicle, which travels 5.94
days of the week on average and makes 2.18 trips per day.The
first trip of the day starts at approximately 8:42 am and the last
trip of the day ends at 18:18 pm. The activity duration lasts
8.67 hours on average. Furthermore, the distance between
the origin and destination of their trips varies from 6.9 km
to 59.2 km, and their average travel distance is about 17.5 km
for one trip. The proportion of different starting and ending
points for Group 2 is 0.12 and 0.09, representing a high
regularity in the daily origins and destinations. All of these
features support the speculation of Group 2 to be commuting
vehicles.
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Figure 4: Continued.
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Figure 4: The distribution of variables in weekdays. (a) The average trip start time. (b) The average trip finish time. (c) Number of trips per
day. (d) Days of travel. (e) Total activity duration. (f) Maximum travel distance. (g) Minimum travel distance. (h) Average travel distance. (i)
The proportion of different staring points. (j) The proportion of different ending points.

Group 3 is defined as noon travel vehicle with short travel
distance. The first travel starts at 10:07 am and the last travel
ends at 15:14 pm; it only travels at noon. Moreover, Group 3
travels only 1.08 days in a week and 1.82 trips in a day, and the
activity duration is also short, only 4.02 hours on average.The
travel distance varies between 1.9 km and 3.5 km, dropping
in a short range and the travel origins and destinations are
almost different.

Group 4 is concluded to be off-peak hour travel vehicle;
the first trip of the day starts at 10:20 am and the last trip of the
day ends at 19:48 pm, which staggers the peak hours. There
are 1.82 days of travel in a week and 1.63 trips in a day and
the travel distance of Group 4 is similar to that of Group 3. In

particular, the maximum travel distance is only 2.9 km and
in accordance with the percentage of different starting and
ending points, the travel for Group 4 is not so regular too.

Unlike other groups, Group 5 may be midnight travel
vehicle, which has the most distinguish feature. Vehicles start
their travel at 0:40 am and the activity duration is around 17.14
hours. Besides, the number of travel times per day is 2.99,
which is also higher than others and the travel distance varies
between 4.8 km and 32.5 km. The origins and destinations
also have a certain degree of randomness.

Group 6 is defined as peak-hour travel with short activity
duration vehicle. It starts the first travel at 8:55 amandfinishes
at 6:11 pm. They travel 1.82 days in a week and 2.71 trips in a
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Figure 5: DBI and SC of weekdays and weekends. (a) Weekdays. (b) Weekends.

day and they have short activity duration. The travel origins
and destinations are not regular and they travel for 28.1 km in
average.

In general, the start time of the first trip and the end time
of the last trip for Group 2 are similar to those of Group 6,
both in the peak hour. Even so, the days of Group 6 traveling
in a week are less and its travel distance is much longer.
Comparing the characteristics of Group 2 with Group 6, we
can conjecture that Group 2 is commuting vehicles traveling
twice everyday andGroup 6may be vehicles commuting only
in part of the days in a week and consistent with activities
for leisure, recreational, or sporadic work in the rest days.
Moreover, Groups 2, 3, and 4 are the main composition of
traffic flow, taking up 79.1% of the whole vehicle population.
Group 4 is off-peak hour travel vehicle and there is no clear
travel purpose that could be inferred using only these travel
behavior characteristics. These clusters could be composed
of leisure travelers, visitors, or sporadic vehicles. They may
be vehicles coming out to pick up child or shopping nearby.
Group 5 has distinguishing features from others; they travel
only in the midnight; it is similar to taxi or online hailing
vehicles (i.e., Uber); the travel time,and travel purposes are
random and not sure.

For Vehicles in Weekends, Three Groups Are Clustered. The
characteristics of each group are shown in Table 6.

Group 1 is deduced as off-peak hour travel, where the
starting time of the first travel is 10:11 am and the trip ending
time is 19:30 pm. They travel 1.87 days in a week and 2.02
trips in a day. In addition, the average travel distance is
about 30.8 km and the similarity of the travel origins and
destinations is high. Combining with the travel frequency,
travel time, and travel distance of these vehicles, they may

live in the city center for work in the weekdays and during
weekends they may visit their parents or relatives in the
suburbs or have picnics to relax.

Group 2 is defined as afternoon travel with short activity
duration vehicle, which travels 1.27 trips per day and 1.66
days in a week. It travels in off-peak hour, which is 12:30
am and 16:18 pm, the travel distance is not long and the
activity duration is about 3 hours. Additionally, the origins
and destinations are relatively stable. Combined with all of
these features, group 2 tends to be vehicles going shopping or
leisure on weekends.

Group 3 may be peak-hour travel vehicle, the average
start time of the first trip is 7:42 am and the average finish
time of last trip is 18:50 pm and it only travels 2.11 days
in a week. The travel distance is as short as Groups 3 and
4 in weekdays. Vehicles in this group resemble commuting
vehicles in weekdays. This kind of vehicles may work only in
weekends, for example, people working for cram schools and
the like.

6. Conclusions

This paper shows that it is possible to analyze the travel char-
acteristics of vehicles and identify vehicle groups with similar
travel behavior using LPR data.Themain contribution of this
paper is summarized as follows:

(i) Six vehicle groups with similar travel characteristics
in weekdays and three groups in weekends are iden-
tified and the detailed behavior of each cluster is
presented.

(ii) Travel characteristics are studied by analyzing the
distribution of these variables and the values of each
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variable for each category. In addition, we defined
vehicle type for each group of vehicle, to identify
the commuting vehicle and other ordinary leisure
travel vehicles, and the clustering result can be used
in several aspects, such as

(1) policy making in vehicle classification manage-
ment;

(2) transport planning and vehicle travel forecast-
ing;

(3) urban traffic simulation and monitoring.

For example, with the clustering, we can effectively
extract the commuting travel vehicles which provide better
decision information for developing urban traffic demand
and managing policy by analyzing the spatial and temporal
distribution of its travel behavior. In addition, summarizing
the clustering result, there are almost 46% (type 3 and type 4)
off-peak hour travel vehicles traveling in short distance (less
than 3.5 km) in weekdays. Considering that the detectors are
mainly installed on expressways, we can guide these vehicles
to take arterial roads instead of expressways by implementing
some traffic management schemes during off-peak hour to
improve the level of services of arterial roads and finally
release the traffic pressure of off-peak hours on expressways.

In general, firstly, this study has shown that it is possible
to analyze the travel characteristic of vehicles and identify
vehicle groups with similar travel behavior using LPR data.
Besides, a study of the vehicles’ travel pattern can be per-
formed based on this study results and this information can
be used to preferably understand how the behavior of the
different groups affects the road system, the travel patterns,
and travel modes.

Secondly, from the standpoint of transportation plan-
ning, clustering vehicle travel patterns allow the analysis
of possible differences in level of service experienced by
different vehicle segments and the identification of potential
biases. It can also provide better understanding of how
changes in level of service affect different vehicles and how
they respond to those changes. Knowing themain differences
between groups can contribute to a better understanding of
the effect of disruptions on travel behavior.

Finally, the method displayed in this study is innovative
and practical which can be applied in several similar prob-
lems and researches. It highlights the potential of using LPR
data tomine underlying information of vehicles and the study
also reveals the importance of clustering vehicles based on
their characteristics.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was sponsored by National Natural Science
Foundation of China (71171147) and Fundamental Research
Funds for the Central Universities.

References

[1] W.Wenjing andG.Hongcheng, “Car and rail travelmode choice
behavior analysis,”Urban Transportation of China, vol. 3, pp. 11–
14, 2010.

[2] A. Chakirov and A. Erath, “Use of public transport smart card
fare payment data for travel behaviour analysis in Singapore,”
in Proceedings of the 16th International Conference of Hong Kong
Society for Transportation Studies, Hong Kong, 2011.

[3] L. Liu, A. Hou, A. Biderman, C. Ratti, and J. Chen, “Under-
standing individual and collective mobility patterns from smart
card records: a case study in Shenzhen,” in Proceedings of the
12th International IEEE Conference on Intelligent Transportation
Systems (ITSC ’09), pp. 842–847, St. Louis, Mo, USA, October
2009.

[4] T. H. Rashidi, A. Abbasi, M. Maghrebi, S. Hasan, and T.
S. Waller, “Exploring the capacity of social media data for
modelling travel behaviour: opportunities and challenges,”
Transportation Research Part C: Emerging Technologies, vol. 75,
pp. 197–211, 2017.

[5] E. Chung, “Classification of traffic pattern,” in Proceedings of the
10th World Congress on Intelligent Transport Systems, vol. 11, pp.
16–20, Madrid, Spain, 2003.

[6] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis, Edward
Arnold, London, UK, 2001.

[7] S. Hanson and J. Huff, “Classification issues in the analysis of
complex travel behavior,” Transportation, vol. 13, no. 3, pp. 271–
293, 1986.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323,
1999.

[9] H. Ling and W. Lingda, “Summary of clustering algorithms in
data mining,” Application Research of Computers, vol. 1, pp. 10–
13, 2007.

[10] W. Weijermars and E. Van Berkum, “Analyzing highway flow
patterns using cluster analysis,” in Intelligent Transportation
Systems, pp. 308–313, 2005.

[11] T. Li, T. Pei, Y. C. Yuan et al., “A summary for the classification of
pattern and application of human trajectory,” Progress in Geog-
raphy, vol. 33, no. 7, pp. 938–948, 2014.

[12] B. Zhang, Research on Taxi Trajectory Data Mining Based on
Cloud Computing, Xidian University, Xi’an, China, 2014.

[13] L. Gong, H. Sato, T. Yamamoto, T. Miwa, and T. Morikawa,
“Identification of activity stop locations in GPS trajectories by
density-based clusteringmethod combinedwith support vector
machines,” Journal of Modern Transportation, vol. 23, no. 3, pp.
202–213, 2015.

[14] L. Gong, H. Sato, T. Morikawa et al., “Activity stop and non-
activity stop identification in GPS trajectories utilizing density-
based clustering method and support vector machines,” in
Proceedings of the Transportation Research Board Annual Meet-
ing, 2015.

[15] X. Zhang and W. Guang, “Study on urban traffic road seg-
mentation based on cluster analysis,” Intelligent Transportation
Systems and Information Technology, vol. 9, no. 3, pp. 36–41,
2009.

[16] H. R. Arkian, R. E. Atani, and S. Kamali, “Cluster-based traffic
information generalization in vehicular ad-hoc networks,” in
Proceedings of the IEEE International Symposium on Telecom-
munications, pp. 197–207, 2014.

[17] E. Jenelius and H. N. Koutsopoulos, “Travel time estimation for
urban road networks using low frequency probe vehicle data,”



14 Journal of Advanced Transportation

Transportation Research Part B: Methodological, vol. 53, no. 4,
pp. 64–81, 2013.

[18] N. H. M.Wilson, J. Zhao, and A. Rahbee, “The potential impact
of automated data collection systems on urban public transport
planning,” in Schedule-Based Modeling of Transportation Net-
works, vol. 46, pp. 1–5, 2009.

[19] G. Leduc, “Road traffic data: collection methods and appli-
cations,” JRC Technical Notes, Working Papers on Energy,
Transport and, Climate Change 1, 2008.
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Countdown signal control is a relatively new control mode that can inform a driver in advance about the remaining time to
pass through intersections or the time needed to wait for other drivers and pedestrians. At present, few countries apply vehicular
countdown signals. However, in China, some cities have applied vehicular countdown signals for years, though it is unclear how
and how much such signals influence driving psychologies and behaviors compared with non-countdown signal controls. The
present work aims to clarify the impact of vehicular countdown signals on driving psychologies and behaviors on the cognitive
level. A questionnaire survey with 32 questions about driving psychologies and behaviors was designed, and an online survey was
conducted. A total of 1051 valid questionnaires were received. The survey data were analyzed, and the main results indicate that
most of the surveyed drivers prefer countdown signal controls and think that such controls can improve not only traffic safety
but also traffic operational efficiency. The surveyed drivers also think that countdown signal controls have an impact on driving
psychologies and behaviors and the survey results have demonstrated that the driving behaviors of female drivers surveyed are not
conservative under the clear conditions of green countdown signal control. Further studies and methods concerning the effects of
countdown signals on driving psychologies and behaviors are discussed.

1. Introduction

While intersections are part of the road system, they are far
more complex than the segments connecting them [1, 2].
Driving psychologies and behaviors at road intersections are
considerably different compared to those at road sections.
According to the control mode, there are two kinds of road
intersections: unsignalized and signalized. In recent years,
countdown signalized intersections have appeared in some
countries or areas. Compared to traditional non-countdown
signals, countdown signals can inform a driver in advance
about the remaining time to pass through intersections or
the time needed to wait for other drivers and pedestrians.
Countdown signals can be divided into vehicular count-
down signals and pedestrian countdown signals. Vehicular
countdown signals further include green, red, and yellow
countdown signals.

Out of more than 200 countries, only a few use count-
down signal controls at road intersections, such as China,
Thailand, India, Singapore, Malaysia, the United States, and
theUnitedKingdom.Of these countries, only a small number
allow pedestrian countdown signals to be used at road inter-
sections, such as theUnited States andBritain. In otherwords,
few countries currently use vehicular countdown signals.
The object of this study is to focus on vehicular countdown
signals.

China, as one of the pioneer countries, is playing a leading
role in the use of vehicular countdown signals. However, no
specific manuals or standards are available for guiding the
usage of vehicular countdown signals in China [3–5]. There-
fore, Chinese local governments encounter difficulties in
making a clear decision on extending the application of vehic-
ular countdown signals. Traffic engineers and researchers
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have different opinions on the application of vehicular count-
down signals. Some support the use of countdown signal con-
trols and consider such controls as capable of improving traf-
fic operational efficiency by taking full advantage of the signal
time. Others are opposed to the application of countdown
signal controls and are concerned about the possibility of
such controls increasing traffic crashes and having a negative
impact on traffic safety [6].

In theory, vehicular countdown signals are different com-
pared to non-countdown signals and should have an impact
on driving psychologies and behaviors. However, to date, it
is unclear how and how much vehicular countdown signals
influence driving psychologies and behaviors compared with
non-countdown signal controls. To answer these questions,
the present study explored the influence of vehicular count-
down signals from two aspects of driving psychologies and
behaviors based on a questionnaire survey. The survey con-
sisted of 32 questions related to vehicular countdown signals.

2. Literature Review

This paper focuses on vehicular countdown signals (hereafter
referred to as countdown signals in the following text unless
specified otherwise). To date, countdown signal control, as a
new traffic controlmode of signalized intersections, is applied
in China, Singapore, Thailand, Malaysia, India, and other
countries. Lum and Halim conducted a before-and-after
study by observing driver reactions at a signalized intersec-
tion with a green signal countdown display (GSCD) installed
[7].Thefinding revealed that the number of red-light running
violations is significantly mitigated at the initial period after
installing the GSCD. However, the effectiveness of the device
tends to dissipate over time, with the number of violations
bouncing back to almost the same level as before GSCD.
Ibrahim et al. introduced countdown timers installed at some
intersections in Kuala Lumpur, Malaysia [8]. The impact
of countdown timers on driving behaviors and intersection
approach headways was studied by comparing three intersec-
tions with countdown timers with three intersections lacking
countdown timers. The result indicated that the countdown
timers have a significant impact on headways but a little
impact on the initial delay. Limanond et al. studied how
countdown timers affect the queue discharge characteristics
of throughmovements during the green phase at a signalized
intersection in Bangkok, Thailand [9]. They pointed out that
the countdown timers had a significant impact on the start-up
lost time at the intersection under study, but the effect on the
saturation headway was negligible. Chiou and Chang investi-
gated the impact of GSCD and red signal countdown display
(RSCD) on driver behaviors in Taiwan [10]. The results
showed that GSCD can reduce the late-stopping ratio, but it
increases the likelihood of rear-end crashes. Although RSCD
can effectively reduce the start-up delay, saturated headway,
and cumulative start-up delay, it cannot significantly improve
intersection safety in the long term. Sharma et al. presented
the usage of countdown timers at signalized intersections in
India [11]. The study conducted a before-and-after analysis
by comparing predata with postdata collected at a selected
intersection in Chennai. The results reflected that the time

information provided at the beginning of the green light
(end of the red light) can enhance efficiency and reduce
start-up lost time but increase red-light running violations.
Papaioannou and Politis found that the percentage of early
start violations at the intersection with SCD was 24%, where
the percentage for intersections without SCD was less than
1% [12]. Devalla et al. found that GSCD is linked with fewer
red light violations (RLVs) cycles, a lower mean number of
RLVs per RLV cycle, higher vehicular speeds during the phase
transition at different locations upstream to the stop line, a
higher number of speeding cars, and higher stop line crossing
speeds during amber [13]. Islam et al. found a reduction in
start-up lost time at signalized intersections when a red signal
countdown timer is present [14].

In China, Wang and Yang conducted a preliminary anal-
ysis on the traffic signal countdown by conducting a survey
of 337 drivers regarding driver attitudes and behaviors on
the green signal countdown in Longyan City, Fujian province
[15]. The study advised that the countdown signal should
be set cautiously. Wu et al. (2009) focused on the driver’s
decision-making process at countdown signalized intersec-
tions [16]. A logistic model was adopted to build the model
of behavior decision at countdown signalized intersections
based on vehicle types and speed. Zhang et al. conducted a
survey on the countdown signal and collected 200 question-
naires from drivers and pedestrians at four intersections in
Wanzhuang, Beijing City [17]. The results showed that the
drivers and pedestrians sampled had a preference for the
countdown signal. Qian and Han preliminarily studied the
influence of green signal countdown on traffic safety through
a questionnaire investigation of 390 drivers [18]. The finding
indicated that the green signal countdown is good for neither
traffic safety nor traffic operational efficiency. Thus, the
green signal countdown should be used cautiously. Ma et al.
conducted a field observation to obtain critical parameters
related to drivers and vehicles at two similar intersections,
one with GSCDs and the other without GSCD, in Shanghai
City, China [19]. They found that GSCD increased the traffic
capacity at the sampled intersection and significantly reduced
the number of red-light running violations. Qian carried
out an eight-question driver behavior survey of 390 drivers
regarding the red signal countdown to analyze driver behav-
iors [20]. Long et al. studied the impact of the countdown
timer on driver behaviors after the yellow onset and found
that the countdown timer influences drivers stopping or pass-
ing through the intersection [21]. Additionally, a correlation
exists between the countdown timer and red-light running
violations. Huang et al. found that although GSCD stimu-
lates the drivers in dilemma zones to choose to cross the
intersection during amber, which produces a higher RLR
risk compared with SCD and GSFD, the intersection with
GSCD has the lowest RLR violations due to its strong positive
effect in cutting down the range of dilemma zones [22]. Li et
al. comparatively analyzed drivers’ perception-reaction time
(PRT)with andwithout a countdown timer based on theRGB
color model and found that the drivers’ PRT was decreased
from 2.12 s to 1.48 s with countdown signals [23]. Pan et al.
attempted to find effects of the end of a green signal count-
down on drivers’ behaviors when they drive vehicles through
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intersections based on the data of vehicle position, time, and
speed at the entrance of intersections [24]. Fu et al. char-
acterized and modeled driver’s brake perception-reaction
time (BPRT) to yellow signal at signalized intersections with
and without countdown timer and found an increase in
driver’s BPRT because countdown timer may induce risky
driving behaviors [25]. Pan et al. did an interesting study
demonstrating that the value of a driver’s car has influence on
driving behaviors at countdown signalized intersections [26].

As introduced above, three methods are commonly used
to study the effects of countdown signals on drivers, includ-
ing survey, video, and observation in the field. Evaluating
the existing studies through questionnaire survey method
revealed that the questionnaires are not designed comprehen-
sively enough, because these only involve a part of driving
behaviors and do not investigate driving behaviors from the
psychological aspect.

3. Method

3.1. Design of Questionnaire. Considering the complexity of
driving psychologies and behaviors and the new mode of
countdown signal controls, the questionnaire was designed
to fully reflect the common and individual characteristics of
the driving psychologies and behaviors involving the aspects
listed as follows:

(1) Gender: male and female drivers may have signif-
icantly different attitudes toward countdown signal
controls

(2) Age: age refers to the length of time that one has
existed. It is an important indicator to reflect the
differences in driving psychologies and behaviors of
different age groups

(3) Driving experience: driving experience is used to
examine the differences of driving psychologies and
behaviors for drivers with different driving experi-
ences

(4) Specific questions associated with driving psycholo-
gies and behaviors on the countdown signal controls

3.2. Online Questionnaire Survey. The designed question-
naire was released and conducted by a professional survey
website in China. A total of 1051 valid questionnaires were
received.

4. Analysis of Survey Results

The survey results were classified and analyzed to indicate
the general understanding of drivers and their psychological
characteristics, as well as the behavioral characteristics of
different types of drivers surveyed.

4.1. Basic Characteristics of Drivers Surveyed. The character-
istics of gender, age, and driving experience for the surveyed
drivers are shown in Table 1.

Table 1 shows that the majority of respondents were
young drivers and that moremale drivers than female drivers

Table 1: Characteristics of drivers surveyed.

Questions Options Proportion
(%)

(1) Gender (A) Male 62.32
(B) Female 37.68

(2) Age

(A) Younger than 25 years old 16.94
(B) 25–30 years old 37.68
(C) 31–40 years old 22.07
(D) 41–50 years old 16.46
(E) 51–60 years old 5.80
(F) More than 60 years of age 1.05

(3) Driving experience

(A) 0–3 years 36.06
(B) 4-5 years 26.17
(C) 6–10 years 20.36
(D) More than 10 years 17.41

responded to the survey. The drivers surveyed below the age
of 40 accounted for 76.69%, indicating that young drivers
use the Internet more widely in China. For driving age, the
drivers with no more than three years of driving experience
accounted for 36.06%, which is consistent with the rapid
increase of the number of Chinese drivers in the last three
years.

4.2. Attitudes and Understanding of Drivers on Countdown
Signal Controls. Six questions, questions (4) to (9), were
designed to evaluate the attitudes and understanding of
drivers on countdown signal controls. The survey data were
analyzed, and the results are summarized in Table 2.

Table 2 shows that the majority of the surveyed drivers
felt easier driving vehicles on roadway sections than at
intersections; they especially felt nervous at unsignalized
intersections. Most drivers also supported setting up count-
down signal controls, which they considered to be beneficial
to driving behavior decisions. Even more drivers thought
that countdown signal controls can be conducive to improve
traffic safety and traffic operational efficiency. In addition, the
proportion of aggressive drivers is not high from the drivers
surveyed.

4.3. Attitudes and Understanding of Drivers on Green Count-
down Signal Controls. Questions (10)–(15) were designed
to investigate driver attitudes on green countdown signal
controls and to contrast the behavior of “race against time”
at the end of the green light at countdown signal and non-
countdown signal control intersections. The analysis results
for questions (10)–(13) are shown in Table 3.

According to Table 3, the surveyed drivers who supported
the setup of green countdown signals accounted for the
majority of respondents. The proportion of drivers who
regarded the green countdown signal as having an impact on
driving behaviors reaches up to 92.30%. With regard to the
display modes of the green countdown, 55.19% of the sur-
veyed drivers selected the partial countdown.
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Table 2: Attitudes and understanding of surveyed drivers on countdown signal controls.

Questions Options Proportion (%)

(4) Which kind of city road conditions do you find the least
stressful? [single choice]

(A) Roadway section 80.21
(B) Signalized intersection 13.42
(C) Unsignalized intersection 6.37

(5) What are your attitudes regarding the setting of countdown
signal controls at intersections? [single choice]

(A) Support 81.83
(B) Do not support 12.18
(C) Does not matter 5.99

(6) If countdown signals are set up at intersections, do you think
it will help drivers make behavioral decisions? [single choice]

(A) Helpful 84.87
(B) Not helpful 11.61
(C) Does not matter 3.52

(7) Do you think what kind of signal controls more conducive to
traffic safety? [single choice]

(A) Countdown signal controls 76.88
(B) Non-countdown signal controls 23.12

(8) Do you think what kind of signal controls more conducive
to traffic operational efficiency? [single choice]

(A) Countdown signal controls 88.39
(B) Non-countdown signal controls 11.61

(9) You think your own driving behavior tends to [single choice]
(A) Aggressive 15.43
(B) Conservative 55.90
(C) Neutral 28.67

Table 3: Attitudes of surveyed drivers on green countdown signal controls.

Questions Options Proportion (%)

(10) Do you support setting up a green
countdown signal at intersections? [single
choice]

(A) Support. 80.02
(B) Do not support. 17.89
(C) Does not matter. 2.09
(D) Others. 0.00

(11) If the green countdown signal control
is set up at intersections, what kind of
impact will this have on you? [single
choice]

(A) Through the countdown signal, I can see the green
time decreasing. Thus, I accelerate to pass through the
intersection as fast as possible in this phase, thereby
increasing my chances of red-light running.

23.98

(B) Through the countdown signal, I can see the green
time decreasing. Thus, I can control vehicle speed
better, which reduces my chances of red-light running.

68.32

(C) Neither the countdown signal nor the
non-countdown signal has an impact on me. 6.76

(D) Others. 0.95

(12) Which of the following control
modes of green countdown is better?
[single choice]

(A) The countdown from the beginning to the end of
the overall period of green light is better. 44.81

(B) Beginning to show the countdown 30 s before the
end of the green light is better. 10.37

(C) Beginning to show the countdown 20 s before the
end of the green light is better. 19.31

(D) Beginning to show the countdown 10 s before the
end of the green light is better. 25.50

(13) When a green light changes to a red
light, which transition do you think is
more reasonable? [single choice]

(A) Non-countdown green→ yellow→ red. 13.99
(B) Countdown green→ yellow→ red. 47.86
(C) Non-countdown green→ countdown green→
yellow→ red. 28.83

(D) Non-countdown green→ countdown green→ red. 9.32
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Table 4: Behaviors of surveyed drivers on the green signal coming to an end in the two cases.

Questions Options

(14) At countdown signalized intersections, what will
you do when you approach the intersection stop line,
see the green countdown coming to an end and the
yellow light starting at once? [single choice]

(A) Accelerate and pass the stop line before the end of
the green countdown or before the end of the yellow
light.
(B) Decelerate and make sure to stop before the stop
line prior to the end of the yellow light.
(C) Maintain the original speed; if I cannot stop safely
in front of the stop line, then I will pass the stop line
before the end of the yellow light.
(D) Others.

(15) At non-countdown signalized intersections, when
you approach the intersection stop line, see the green
light is changing yellow light, how do you do? [single
choice]

(A) Accelerate and pass the stop line before the end of
the yellow light.
(B) Decelerate and make sure to stop before the stop
line prior to the end of the yellow light.
(C) Maintain the original speed; if I cannot safely stop
in front of the stop line, and then pass the stop line
before the end of the yellow light.
(D) Others.
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Figure 1: Comparison of driving behaviors before the end of the
green light at two types of intersections.

Questions (14)-(15) and their options are described in
Table 4, and the comparative analysis is shown in Figure 1.

In comparison with non-countdown signalized intersec-
tions (Figure 1), more drivers would like to accelerate passing
through intersections while the green light time shifts to the
yellow light time at green countdown signalized intersections.
However, the difference is not significant. More drivers
surveyed agreed with option B at non-countdown signalized
intersections than at countdown signalized intersections.The
result shows that driving behaviors are more adventurous at
countdown signalized intersections than at non-countdown
signalized intersections.

4.4. Driver Attitudes and Behaviors on Red Countdown Signal
Controls. Questions (16)–(24) were designed to investigate
the attitudes and possible driving behaviors of drivers on red
countdown signal controls. The analysis results for questions
(16)–(19) are shown in Tables 5 and 6. Table 5 summarizes
the questions on attitudes and behaviors on red countdown

signal controls. Table 6 presents the questions on turning off
engines while waiting for the green signal.

Table 5 reveals that most of the drivers surveyed are sup-
portive of red countdown signal controls, and 66.51% of the
surveyed drivers considered red countdown signal controls
as having an impact on driving behaviors. The proportion of
drivers (52.05%) who preferred overall countdowns is close
to the proportion of drivers (47.95%) who selected partial
countdowns. For question (19), 19.79% of the drivers would
accelerate passing through the intersection, which is a very
dangerous behavior.

At signalized intersections, the reckless behavior of a
driver is largely constrained by other drivers or vehicles.
Therefore, the behavior of the first driver in a certain lane is
focused on. In Table 6, for question (20), 79.82% of the sur-
veyed drivers would engage the engine gear in advance and
accelerate to start once the green light changes.This behavior
may cause traffic accidents in conflict directions with vehicles
or delayed pedestrians. However, from another angle, it can
improve traffic operational efficiency. Regarding question
(21), 77.38% of the surveyed drivers who would turn off their
engines while waiting would start the engines in advance and
then accelerate tomove while changing to the green light. For
question (22), 58.33% of the drivers surveyed would turn off
their engines while waiting when the waiting time is longer
than 30 s, which reflects the driver’s awareness of conserving
energy and reducing exhaust emissions. Question (23) shows
that the main causes for not turning off engines at red count-
down signalized intersections are feelings of inconvenience
and concerns about fuel consumption when restarting the
engine. Question (24) indicates that the main causes for not
turning off engines are feelings of inconvenience and having
no idea of how soon the red light will be over. Note that
some questions have a plurality of possible causes or choices;
therefore, the percentage sum of multiple-choice questions
may be greater than 100%. The calculation principle is the
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Table 5: Attitudes and behaviors of surveyed drivers on red countdown signal controls.

Questions Options Proportion (%)

(16) Do you support setting up a red countdown signal
at intersections? [single choice]

(A) Support. 79.64
(B) Do not support. 14.65
(C) Does not matter. 4.85
(D) Others. 0.86

(17) If red countdown signal controls are set up at
intersections, what kind of impact will this have on
you? [single choice]

(A) Through the countdown signal, I can know the
remaining time of the red light, be ready to drive, and
accelerate to pass through the intersection.

36.44

(B) Through the countdown signal, I know the
remaining time of the red light and can decide whether
or not to turn off the engine according to the remaining
time, thereby reducing fuel consumption.

30.07

(C)Through the countdown signal, I can know the
remaining time of the red light, and thus reduce the
anxiety of waiting for a red light.

29.97

(D) Either countdown or non-countdown has no
impact on me. 3.52

(18) Do you think which of the following control modes
of red countdown is better? [single choice]

(A) The countdown from the beginning to the end of
the overall period of red light is better. 52.05

(B) Beginning to show the countdown 30 s before the
end of the red light is better. 12.94

(C) Beginning to show the countdown 20 s before the
end of the red light is better. 10.47

(D) Beginning to show the countdown 10 s before the
end of the red light is better. 24.55

(19) If you happen to approach an intersection at
normal speed and no other vehicles are in front of your
vehicle, that is to say, your vehicle is the first vehicle in a
certain lane, if you find the red countdown is coming to
end, what will you do? [single choice]

(A) Accelerate into the intersection. 19.79
(B) Decelerate into the intersection. 56.99
(C) Maintain the original speed and enter the
intersection. 21.03

(D) Others. 2.19

number of times an item is selected divided by the number
of drivers surveyed.

4.5. Analysis of Red-Light Running Behaviors and Other Risk
Behaviors. Questions (25)–(29) were designed to investigate
driving behaviors on red-light running, sudden acceleration,
sudden braking, and so on. Question (25) and its options are
described in Table 7, and the results are shown in Figure 2.

Question (25) indicates that the proportion of drivers
who would intentionally run a red light at countdown
signalized intersections is 12.33% (Figure 2). Their main
reason for running a red light is to rush through intersections
within a very short time, even though the drivers may be well
aware of the remaining green light time. In addition, 24.63%
of the surveyed drivers revealed good driving behaviors by
not running a red light.

Question (26) was designed to correspond to question
(25). Its options are described in Table 8, and the results are
shown in Figure 3.

Question (26) reflects that cases of red-light running at
non-countdown intersections caused by not knowing the
time the yellow light will appear and by the sudden transition
of yellow light account for a large proportion (63.6%) of the
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Figure 2: Distribution of reasons for running a red light at
countdown signalized intersections.

drivers surveyed (Figure 3). Some drivers even attributed
their red-light running to the lack of countdown signals. Red-
light running that resulted from inattention still accounts for
approximately one-third of the total (29.83%).

Question (27) and its options are described in Table 9,
and the statistical results are illustrated in Figure 4. Effective
countermeasures to reduce red-light running are installing
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Table 6: Behaviors on whether engines should be turned off while waiting for the green light.

Questions Options Proportion (%)

(20) At countdown signalized intersections, if you do
not turn off the engine while waiting, assuming your
vehicle is the first vehicle in a certain lane, when you see
the red countdown is coming to end, what will you do?
[single choice]

(A) Engage the engine gear in advance, and then
accelerate to pass through the intersection when the
green light begins.

44.62

(B) Engage the engine gear in advance, slowly glide, and
then accelerate to pass through the intersection when
the green light begins.

35.20

(C) Continue to wait until the green light begins, and
then engage the engine gear to pass through the
intersection.

18.93

(D) Others. 1.24

(21) At countdown signalized intersections, if you turn
off the engine while waiting, assuming your vehicle is
the first vehicle in a certain lane, when you see the red
countdown is coming to end, what will you do? [single
choice]

(A) Start the engine in advance, engage the engine gear
beforehand, and then accelerate to pass through the
intersection when the green light begins.

46.01

(B) Start the engine in advance, engage the engine gear
beforehand, slowly glide, and then accelerate to pass
through the intersection when the green light begins.

31.37

(C) Start the engine in advance, continue to wait until
the green light begins, and then engage the engine gear
to pass through the intersection.

20.53

(D) Continue to wait until the end of the red light, start
the engine, and then engage the engine gear to pass
through the intersection.

2.09

(E) Others. 0

(22) At countdown signalized intersections, you will
turn off the engine to wait at how many remaining
seconds of the red countdown? [single choice]

(A) 30–39 s. 5.33
(B) 40–49 s. 5.71
(C) 50–59 s. 6.95
(D) 60–69 s. 20.36
(E) >70 s. 19.98
(F) Never turn off the engine. 41.67

(23) At red countdown signalized intersections, when
you meet a red light but do not turn off the engine to
wait, what are the causes? (Drivers who will turn off
their engines do not need to reply to the question.)
[multiple choices]

(A) Turning off and restarting the engine is
inconvenient. 65.75

(B) Turning off and restarting the engine will consume
more fuel. 48.72

(C) Turning off and restarting the engine will increase
the wear of the vehicle. 27.69

(D) Others. 7.33

(24) At non-countdown signalized intersections, when
you meet a red light but do not turn off the engine to
wait, what are the causes? (Drivers who will turn off
their engines do not need to reply to the question.)
[multiple choices]

(A) Turning off and restarting the engine is
inconvenient. 57.66

(B) Not knowing how much time of the red light is left. 54.52
(C) Turning off and restarting the engine will increase
the wear of the vehicle. 29.59

(D) Others. 7.71

Table 7: Reasons for running a red light at countdown signalized intersections.

Questions Options

(25) At countdown
signalized intersections,
what are your reasons for
running a red light?
[multiple choices]

(A) Inattention, not intentionally running a red light.
(B) In a hurry, intentionally running a red light.
(C) Intending to pass through the intersection before the end of the green countdown or
the end of the yellow light, but runs a red light.
(D) Others.
(E) Never runs a red light.
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Table 8: Reasons for running a red light at non-countdown signalized intersections.

Questions Options

(26) At non-countdown
signalized intersections,
what are your reasons for
running a red light?
[multiple choices]

(A) Inattention, not intentionally running a red light.
(B) Not knowing the time that the yellow light will appear, not intentionally
running a red light.
(C) Transition of the yellow light is too sudden, and I cannot brake to stop before
the stop line, not intentionally running a red light.
(D) In a hurry, intentionally running a red light.
(E) Others.
(F) Never runs a red light.

Table 9: Measures for reducing the chances of running a red light.

Questions Options
(27) Which of the
following measures do
you think can reduce the
chances of running a red
light? [multiple choices]

(A) Install automatic facilities to capture the behavior of red-light running (e.g., electronic police, camera, etc.).
(B) Install countdown signal lights.
(C) Strengthen education on traffic safety, and raise awareness on traffic safety.
(D) Others.
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Figure 3: Distribution of reasons for running a red light at non-
countdown signalized intersections.
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Figure 4:Distribution ofmeasures to reduce the chances of running
a red light.

automatic-capture facilities, enhancing education, and set-
ting up countdown signal lights based on the degree of
influence.

Questions (28)-(29) and their statistical results are shown
in Table 10. The proportion of acceleration at the end of the
green light at countdown signalized intersections is 26.07%
more than that at non-countdown signalized intersections.
The key factor is the existence of the countdown signal.

For sudden braking, the possibility of occurrence at non-
countdown signalized intersections is higher than that at
countdown signalized intersections. Regardless of whether
a driver is at countdown signalized intersections or at non-
countdown signalized intersections, sudden braking will
increase while the yellow light starts.

4.6. Attitudes and Understanding of Drivers on Display Modes
of Countdown Signals. Questions (30)–(32) were designed
to investigate the attitudes of drivers on the display modes
of countdown signals. The statistical results are shown in
Table 11.

According to Table 11, most of the surveyed drivers
selected the mode of countdown display with overall lights
(red, green, and yellow). Nearly half of the surveyed drivers
considered the red countdown light to be beneficial in
improving traffic operational efficiency.

4.7. Cross-Analysis of Typical Questions. The psychological
and behavioral characteristics of drivers are closely related to
the driver’s gender, age, and driving experience. The cross-
analysis between gender and attitudes toward countdown
signals is carried out based on questions (1) and (7) of the
survey data. The analysis results shown in Table 12 indicate
that the majority of male and female drivers supported the
setting up of countdown signal controls, and male drivers are
more inclined to support countdown signal controls.

The cross-analysis between gender and behaviors before
the end of the green countdown is conducted based on
questions (1) and (14), as listed in Table 10. Table 13 shows
that the proportions of male and female drivers are very close
in decelerating to stop by the end of the green countdown.
Compared with the male drivers, the surveyed female drivers
were also more likely to accelerate passing through the stop
line by the end of the green countdown or by the end of
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Table 10: Risky driving behaviors at different intersections.

Questions Options Proportion (%)

(28) What kind of signal controls make
you inclined to accelerate to pass through
an intersection? [single choice]

(A) Countdown signal control, the green countdown is coming to an end. 61.75
(B) Non-countdown signal control, the green light is flashing. 35.68
(C) Others. 2.57

(29) What kind of signal controls that
make you incline to urgently decelerate?
[single choice]

(A) Countdown signal control, the green countdown is coming to an end. 19.31
(B) Countdown signal control, the yellow countdown begins to counting. 27.40
(C) Non-countdown signal control, the green light is flashing. 21.50
(D) Non-countdown signal control, the yellow light is starting. 30.73
(E) Others. 1.05

Table 11: Attitudes and understanding of surveyed drivers on the display modes of countdown signals.

Questions Options Proportion (%)

(30) Do you think it is reasonable to show only
the red countdown, but not the yellow and
green countdowns? [single choice]

(A) Reasonable. 23.69
(B) Unreasonable. 65.37
(C) Does not matter. 10.94

(31) If you answered “Reasonable” in question
(30), what are the reasons? [multiple choice]

(A) It is not easy to lead to red-light running at the end of the
green light. 85.82

(B) It allows the drivers waiting for the red light to be prepared
to start in advance, which is conducive to traffic operational
efficiency.

47.76

(C) Others. 5.33

(32) If you answered “Unreasonable” in
question (30), what are the reasons? [multiple
choice]

(A) It is easy to lead to red-light running at the end of the green
light. 67.46

(B) It allows the drivers waiting for the red light to be prepared
to start in advance, which may result in a traffic accident,
especially with no vehicle waiting for the red light in a certain
lane.

46.81

(C) Others. 3.62

Table 12: Cross-analysis between gender and attitudes toward countdown signals.

𝑋
𝑌

(A) Support (B) Do not support (C) Does not matter (D) Others Total
(A) Male 87.75% 6.84% 0.85% 4.56% 100%
(B) Female 76.12% 16.42% 3.48% 3.98% 100%

Table 13: Cross-analysis between gender and behaviors before the end of the green countdown.

𝑋

𝑌

(A) Accelerate and pass the
stop line before the end of
the green countdown or

before the end of the yellow
light

(B) Decelerate and make
sure to stop before the stop
line before the end of the

yellow light

(C) Maintain the original
speed; if I cannot safely stop
in front of the stop line,
then pass stop line before
the end of the yellow light

(D) Others Total

(A) Male 18.23% 62.96% 14.25% 4.56% 100%
(B) Female 20.40% 61.69% 10.95% 6.97% 100%

the yellow light, indicating that female drivers may not be
conservative about the behavior in question.

The cross-analysis between gender and behaviors while
the green light is turning into the yellow light at non-
countdown intersections is conducted based on questions (1)

and (15), as shown in Table 14. According to the results, at
non-countdown intersections, for the option “accelerate and
pass the stop line before the end of the yellow light,” male
drivers are more aggressive than female drivers. In compari-
sonwith question (14), the female drivers surveyedweremore
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Table 14: Cross-analysis between gender and behavior before the end of the green light at non-countdown signalized intersections.

𝑋

𝑌

(A) Accelerate and pass the
stop line before the end of

the yellow light

(B) Decelerate and make
sure to stop before the stop
line before the end of the

yellow light

(C) Maintain the original
speed; if I cannot safely
stop in front of the stop

line, then pass the stop line
before the end of the yellow

light

(D) Others Total

(A) Male 19.09% 67.24% 10.83% 2.85% 100%
(B) Female 4.98% 75.62% 13.93% 5.47% 100%

conservative in the condition of uncertain remaining time
than male drivers.

5. Conclusion and Discussion

According to the analysis results of the survey, several
conclusions can be drawn. (1) Most of the surveyed drivers
preferred countdown signalized intersections and tended
to select the mode of countdown display of overall lights
(red, green, and yellow). (2) Most of the drivers considered
countdown signal controls as capable of improving not only
traffic safety but also traffic operational efficiency, which is
consistent with the findings from earlier studies [17, 19] but is
contrary to the studies in [18, 20]. (3) Regardless of whether
green countdown or red countdown controls are set up, most
of the drivers considered countdown signal controls as having
an impact on driving psychologies and behaviors. However,
the impact may not be conducive to improve traffic safety.
(4)The proportion of drivers intentionally running red lights
is relatively small at countdown signalized intersections or
non-countdown signalized intersections. However, the time
by the end of the green signal and at the onset of the yellow
signal is the key time of red-light running at both types of
intersections. According to the survey results, the installation
of an automatic-capture system to catch traffic violations is
conducive to reduce the occurrence of red-light running.
(5) Female drivers are traditionally viewed as having more
conservative driving behaviors compared with male drivers.
However, the analysis results indicate that the driving behav-
iors of female drivers surveyed are not conservative under
clear green countdown conditions. Nevertheless, female
drivers are very conservative under non-countdown condi-
tions, which confirms the general psychological characteris-
tics indicating that males are more adventurous than females
under unknown conditions.

Driving psychologies and behaviors are complex phe-
nomena. To further study the effects of countdown signals
on driving psychologies and behaviors, several ways may be
recommended: (1) using professional equipment to collect
indicator parameters of driving psychologies and behaviors
at countdown and non-countdown signalized intersections
with actual traffic conditions and then analyzing the data; (2)
at countdown signalized or non-countdown signalized inter-
sections, observing or photographing driving behaviors and
then analyzing the behaviors; and (3) using a more scientific

comparison and analysis of data obtained by different meth-
ods to draw reasonable conclusions.
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In recent years, an innovative public transportation (PT) mode known as the customized bus (CB) has been proposed and
implemented in many cities in China to efficiently and effectively shift private car users to PT to alleviate traffic congestion and
traffic-related environmental pollution. The route network design activity plays an important role in the CB operation planning
process because it serves as the basis for other operation planning activities, for example, timetable development, vehicle scheduling,
and crew scheduling. In this paper, according to the demand characteristics and operational purpose, a methodological framework
that includes the elements of large-scale travel demand data processing and analysis, hierarchical clustering-based route origin-
destination (OD) region division, route OD region pairing, and a route selection model is proposed for CB network design.
Considering the operating cost and social benefits, a route selection model is proposed and a branch-and-bound-based solution
method is developed. In addition, a computer-aided program is developed to analyze a real-world Beijing CB route network design
problem. The results of the case study demonstrate that the current CB network of Beijing can be significantly improved, thus
demonstrating the effectiveness of the proposed methodology.

1. Introduction

With the rapid increase in urbanization, many Chinese cities
are facing problems associated with urban environments,
such as increased traffic congestion, serious environmental
pollution, and extreme energy deficiencies. Furthermore,
with the gradual increase in the standard of living of urban
residents, existing public transportation (PT) has not satisfied
the travel demands of passengers, is unable to encourage
private car passengers to switch travel modes, and has
been unable to improve PT at attractive rates. Therefore,
customized buses (CBs) have been established across China
as an innovative mode of PT services. Network planning
is a major component of CB systems. The rationality and
proportionality of network planning play a vital role in the
entire CB operational system. Therefore, scientific and sys-
tematic research onCBnetwork planningmust be conducted.
Scientific and reasonable network planning can maximize
the use of CB resources, satisfy the travel demands of most

passengers, and improve the service quality of CBs while
reducing operating costs for CB operators and improving
the attractiveness of CBs. Therefore, the study reported in
this paper has great significance for effectively encouraging
private car owners to change travel modes, ease traffic
congestion, and mitigate the problems of air pollution.

Since the CB concept was first introduced, scholars have
conducted a considerable amount of research, the majority of
which remains theoretical in nature. In addition, less specific
methods have been used for CB research. Kirby and Bhatt [1]
analyzed ten specific CB cases and discussed the potential
impact of CBs, including easing urban traffic congestion,
environmental pollution, and energy consumption.They also
developed guidelines for CB passenger recruitment, network
planning, operation scheduling, and fares. In addition, the
authors in [2] discussed the seven main features of CBs that
assured successful operation, such as having more than 50
same points and ends on the long-distance lines, an organi-
zation for operations management, constantly adjusting the
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lines and scheduling to meet demands, and guaranteeing
seats with personalized service. At the time, the customized
services were provided by small, private organizations, which
faced such problems as increased numbers of commuters,
difficulties in the management of operations, and a lack of
security and funds for expansion. Therefore, better services
could not be provided to passengers. For those reasons, Bautz
[3] proposed CBs as a part of urban PT. They compared
the cost of CBs to those of different operating modes, and
concluded that, compared with private operation organiza-
tions, the encouragement and coordination by governmental
operations organizations can maximize the benefits of cus-
tomized PT.McCall [4] analyzed commuter buses that had 47
lines and provided service to more than 2,000 commuters in
Ventura, Los Angeles, and Orange Counties. The commuter
bus network was a business model whereby the local private
sector did not accept subsidies and had only slightly longer
travel times than travelling by private car but had consid-
erably lower travel costs than private cars. The successful
operation of the commuter buses played a critical role in
reducing environmental degradation, but the majority of the
PT system required high subsidies for normal operations.
McKnight and Paaswell [5] comprehensively analyzed the
Chicago CB network. Their results showed that the scope of
the Chicago CB service was small, and the main role was to
ease peak rail transport travel. A series of steps to expand the
PT market were proposed by them. First, the cause of CB
travel demand was determined. Then, methods to meet the
demands of commuter travel were established using a chart
analysis and market research. At the same time, the paper
changed rail operations, which were scheduled to support
the development of the CBs. Shaheen et al. [6] reviewed the
CB development process after the car-sharing concept was
proposed and summarized the advantages of CBs: passengers
could save costs, and society could reduce the demand for
parking spaces and wasted resources. They also suggested
that the future development trend of CBs was a constant
expansion of the scope of services and the use of more
advanced booking technology. Chang and Schonfeld [7] con-
structed mathematical models for custom transit fixed-route
buses and conventional flexible lines. The vehicle size and
service space were based on an optimization of the decision
variables and total system cost.The objective was tominimize
the combination of operational costs and user costs. Martin
and Shaheen [8] suggested that passengers encouraged to
participate in a car-sharing service could generate significant
traffic, land use, and social and environmental benefits,
including a reduction in the total number of kilometers of
vehicular travel and carbon dioxide emissions. Their study
focused on the impact of car sharing on greenhouse gas
emissions through theoretical and methodological systems.
Potts et al. [9], who studied CB services in the United States
andCanada for nearly a decade, proposed different CBmodes
that were applicable to large, medium, and small cities and
rural areas. His research provided guidance on whether and
how to open CB lines, combined with the practical situations
of CB operators in different areas. Duncan [10] stated that
car-sharing services have been vigorously developed in the
United States in recent years. Such services enable sustainable

development for an urban transportation system but also
could bring greater benefits to cities. The most effective way
to increase car-sharing functions was cost savings. Based
on the quantification and comparison of the potential cost
savings of different travel modes, the car-sharing services
are the most cost-effective ones. El Fassi et al. [11] noted
that CB operator organizations must continue to improve
reticle layouts and increase station capacities tomeet growing
passenger demands. In addition, policy makers often saw
a loss of resources, time, and market share if they made
decisions based solely on experience. Thus, providing deci-
sion support to policy makers based on a discrete simulation
event was proposed. Such decision support could optimize
the network, maximize passenger satisfaction, and minimize
the number of buses. De Lorimier and El-Geneidy [12]
used a multilevel regression analysis method to determine
the factors that influenced the effectiveness of decisions to
use vehicles based on the CB system in Montreal, Canada.
That method provided a reference for building or expanding
PT networks for CB operators. Nair and Miller-Hooks [13]
constructed a balanced network model to determine the
optimal configuration of a CB system. Passengers could take
the nearest bus according to their demands. The operator
must determine the optimal location of the station, the
number of buses, and the station capacity to maximize
benefits. Le Vine et al. [14] studied two CB modes: point to
point and round trip. This paper suggests that the number of
prospective subscribers to a point-to-point CBs in London
is between three and four times as large as the comparable
number for round-trip CBs. Point-to-point CBs could be
used as an alternative to PT, and round-trip CBs could
be used as a complement to a point-to-point CB. Liu and
Ceder [15] studied the developmental background of Chinese
CBs, analyzed China CB network planning and operation
processes, and summarized the advantages anddisadvantages
of CBs and trends in its development in China. In addition,
their studies provided a reference for CB operators for policy
formulation and academic research.

Compared with the number of studies focusing on the
theory of CB, there have been relatively fewCB network plan-
ning studies. However, there has been increasing research
on conventional bus network planning theory and methods.
Lampkim and Saalmans [16] studied a specific case. That
paper better optimized the entire PT system and achieved
more efficient resource utilization by redesigning the net-
work, determined departure frequencies, and developed
better timetables and vehicle scheduling than the previous
network plan. Ceder and Wilson [17] summarized different
bus network planning methods and proposed an easier
implementation method in combination with the advantages
of a previous method. That paper considered the interests
of passengers and operators and presented the design of
a new transit network algorithm. Baaj and Mahmassani
[18] combined artificial intelligence methods and a genetic
algorithm to solve the problem of bus network planning.
Tom and Mohan [19] used the operators’ cost and total
passenger travel time as a total system cost and objective
function. First, a series of candidate paths were established.
A genetic algorithm was then used to select the line with
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minimum cost and determine the departure frequency. Jerby
and Ceder [20] proposed that the reasonable planning of a
subway PT network could attract passengers to PT. Their
method was based on a situation in which a large number
of passengers used private cars to travel to a subway transfer
station, which caused traffic congestion and a subway station
parking space overload. Based on the Rome PT network,
Cipriani et al. [21] used a parallel genetic algorithm to solve
a complex network topological structure, multimode PT
system, large-city PT network planning problem with the
characteristics of multi-to-multi bus travel demands. Nikolić
and Teodorović [22] used the artificial bee colony algorithm
to design a PT network that minimized the total travel
time of passengers, maximized passenger satisfaction, and
minimized total passenger transfer times as the objective
function. Badia et al. [23] studied the PT network planning
method of a radial network city.The size of the center area and
the departure interval were decision variables. In addition,
the operating cost and minimum passenger cost were the
objective functions for the preferred line.

In the research of bus data processing methods, there
have been relatively few CB data processing methods studies.
However, there has been increasing research on conventional
bus data processingmethods. Trépanier et al. [24] presented a
model to estimate the destination location for each individual
boarding a bus with a smart card. Experiments carried
out with a database programming approach showed that
the data must be thoroughly validated and corrected prior
to the estimation process. Li [25] investigated statistical
inference for a transit route O-D matrix using on-off counts
of passengers, created aMarkov chainmodel, and inferred the
unknown parameters of the Markov model using Bayesian
analysis. After that, Ma et al. [26] developed a Markov chain
based Bayesian decision tree algorithm to extract passengers’
origin data from recorded SC transaction information. Using
the time invariance property of the Markov chain, the
algorithm was further optimized and simplified to have a
linear computational complexity. Munizaga and Palma [27]
presented a methodology for estimating a public transport
OD matrix from smartcard and GPS data for Santiago of
Chile, obtained detailed information about the time and
position of boarding public transportation, and generated an
estimation of time and position of alighting for over 80% of
the boarding transactions.Ma et al. [28] proposed an efficient
and effective data-mining procedure that models the travel
patterns of transit riders in Beijing of China and identified
the transit riders’ trip chains based on the temporal and
spatial characteristics of their smart card transaction data. In
addition, Ma and Wang [29] attempted to develop a data-
driven platform for online transit performance monitoring
andMa et al. [30] developed a series of data-mining methods
to identify the spatiotemporal commuting patterns of Beijing
public transit riders.

A review of the related literature on CB research demon-
strates that CB research has placed more emphasis on the
theoretical and practical significance of CBs. Relatively less
research has been performed on CB network planning, but
there are more references to conventional bus network plan-
ning theory. However, as an innovative PT mode, CB has its

own characteristics. This paper proposes an area clustering
algorithm based on the travel demands of passengers because
CBs currently lack network planning and the CB resource
allocation efficiencies are not high. A multiobjective integer
programming model is established in combination with the
background and significance of CB and comprehensively
consideringCBoperating costs, environmental costs, and tra-
ffic congestion costs. Based on the actual CB travel demands
in Beijing, this paper reports a case study and demonstrates
the rationality and effectiveness of the proposed method.The
results of this research provide a newmethod for CB network
planning that will be useful for guiding practical efforts.

The remainder of this paper is organized as follows. In
Section 2, the details of the proposed CB network planning
method based on area division are proposed. The specific
content of the method is described in Section 3. The method
is demonstrated through a case study in Section 4. The sum-
mary of this paper, limitations, and next steps are discussed
in Section 5.

2. Details of the Proposed CB Network
Planning Method

CB network planning differs from conventional bus network
planning in that it is a bottom-up activity based on travel
demand. A travel demand survey of passengers is the most
important data source for CB network planning, which
provides the most important data base for CB network plan-
ning. CB travel demand surveys are typically questionnaires
provided on the Internet. The contents of the questionnaire
are mainly focused on passengers’ trip ODs, travel times, and
travel purpose. CB provides travel services for passengers
based on their travel demands. Therefore, an analysis of
passenger travel demand is key to the operation of CBs.

In this paper, considering CB network planning and
using concept from a point-to-line layout into a network,
the original (O) and destination (D) areas of a line are first
divided according to the travel demands of passengers. The
operating line scheme is then determined according to the
model solution, all operation lines are laid out, and the final
CB network is determined.

In this paper, in combination with the conventional bus
and existing CB network planning experience, a CB network
planning method is proposed based on area division. The
specifics of this method are as follows.

(1) Large-Scale Travel Demand Data Processing. A travel
demand survey was the basis of the transportation planning
and provided comprehensive and accurate data for trans-
portation planning. CB travel demand surveys are typically
questionnaires provided on the Internet. Because CB opera-
tions are based on the actual travel demands of passengers, it
is important to determine passengers’ trip ODs, travel times,
and travel purpose. The passengers’ travel demand data were
analyzed, and the collected data were quantified to provide
data support for network planning.

(2) CB Line OD Area Division. CB operators do not use
bus stops.The lineODarea division is a component of the line
and is an important part of network planning. The number
of area divisions decreases with increases in the radius of
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(1) Large-scale travel demand data processing

(2) CB line OD area division

(4) Establish line selection model

(3) CB line OD area pairing

Quantitative dataRaw data

The radius of area division

Initial path set

Line OD area

Travel demand OD table
The line length constraint

The standard of CB line Final CB network scheme

Input Planning activity Output

operations

Figure 1: CB network planning process.

the line OD area division, which can effectively reduce the
operating costs; however, it is difficult to attract passengers
because passengers’ walking distance is increased. On the
contrary, reductions in the radius of the line OD area division
can increase operating costs and lead to losses. These two
conditions are not conducive to the long-term development
of CBs. This paper divides the CB line OD area according to
the passengers’ position distribution using an area division
algorithm, which places similar demands on an area and
establishes a reasonable radius that the line OD area must
cover. Passengers board the bus at the origin area stops and
exit at the destination area stops, which can prevent halfway
stops. This scheme will satisfy the demands of large numbers
of passengers, make full use of resources, and effectively
reduce companies’ operating costs.

(3) CB Line OD Area Pairing. After the line OD area is
determined, different CB lines can be established by pairing
the OD areas. Using travel demand data processing, travel
demand OD tables can be developed based on the line OD
area. By deleting lines that do not conform to the distance
constraint, the initial path set can be determined and the OD
table can be updated.

(4) Establish the Line Selection Model. The objective of
CB operations is to provide a comfortable and rapid riding
environment for passengers, ease urban traffic congestion,
and solve the problem of air pollution. These factors are
regarded as the standard of CB line operations.The operating
lines and CB network scheme were determined in this study
by constructing an objective function for minimizing the
sum of the operating, environmental, and traffic congestion
costs and using the linear programming method to obtain

a solution. The CB network planning process based on area
division is shown in Figure 1.

3. CB Network Planning Method

3.1. Large-Scale Travel DemandData Processing. Quantitative
data related to CB network planning can be obtained by
sorting and calculating a series of raw data collected from
the demand survey; these data can provide data support for
the planning method. First, according to the passenger OD
survey, the latitudes and longitudes of the passenger ODs can
be determined. The latitude and longitude coordinates are
then translated into planar coordinates using software so that
the Euclidean distance between the origins and destinations
of each demand can be calculated. Finally, the coordinates are
marked on the diagram.

3.2. CB Line OD Area Division. Area division algorithms
primarily include hierarchical clustering and K-means clus-
tering, and the choice of algorithm is based on the purpose
and application of the data analysis [31].The𝐾-means cluster
method needs to set a parameter in advance, indicating
the number of classes. Besides, the result is sensitive to
the initial core of the data. In the clustering process of CB
travel demand, the number of classes is unknown, and the
initial core is selected randomly. Agglomerative hierarchical
clustering is based on the bottom-up strategy, it aggregates a
given data set according to the distance measurement criteria
between categories until a certain condition is satisfied.Thus,
the agglomerative hierarchical clustering method is more
suitable for the CB travel demand clustering.
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Agglomerative hierarchical clustering is based on the
bottom-up strategy. First, each object is treated as a category,
the distance between the objects is calculated, and the initial
distance matrix is obtained. Two categories of minimum
distances between categories are merged into one category,
and the distances between the new category and all other
categories are recalculated.The previous step is repeated, and
the categories become increasingly larger until all objects are
merged into a single category or a certain end condition is
satisfied. According to the different distance measurement
criteria between categories, hierarchical clustering can be
divided into 4 types: (1) the average distance method, (2)
the minimum distance method, (3) the maximum distance
method, and (4) the barycenter method. Considering the
actual definition of the distance between categories, the
maximum distance method was selected as the distance
measurement criteria for the hierarchical clustering. The
distance between the two points that are most distant in the
two categories is expressed as the distance between the two
areas, which is formulated in (1). When the distance between
the two areas is less than the maximum distance, the two
categories are combined into a single category.

𝐷 (𝐴, 𝐵) = max
𝑖∈𝐴,𝑗∈𝐵

√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2, (1)

where 𝐴, 𝐵 are the sets of points that belong to categories𝐴 and 𝐵, respectively, 𝑥𝑖, 𝑦𝑖 are the horizontal and vertical
coordinates of the points that belong to category 𝐴, respec-
tively, 𝑥𝑗, 𝑦𝑗 are the horizontal and vertical coordinates of the
points that belong to category 𝐵, respectively, and 𝐷(𝐴, 𝐵) is
the distance between categories 𝐴 and 𝐵.

In this paper, the data set was initially divided using
hierarchical clustering. Then, a hierarchical clustering tree
was generated, the maximum distances between the cat-
egories were used to determine the number of categories𝑚, the data points were divided into 𝑚 categories, and the
area division scheme was determined. Additional details are
provided below.

(1) By collecting the travel demand data, the origin
address set and the destination address set can be obtained.
Based on the plane coordinate set of the origins and desti-
nations determined by processing the travel demand data in
Section 3.1, the points of the origin and destination sets are
marked on the diagram.

(2) The distance between all the points in the origin
set and destination set is separately calculated, and the two
data sets based on the maximum distance measurement
criteria are then separately classified. Two categories that are
separated by a distance less than the maximum distance are
combined into a large category until all points are merged
into a single category, and the hierarchical clustering tree is
generated.

(3) According to expert opinion or practical experience,
the area division radius can be determined. In addition,
the maximum distance between the categories also can be
determined. In this way, the number of categories 𝑚 is
determined according to the maximum distances between
the categories.

r R = 3r

1.5−0.5 0 0.5 1−1−1.5

1.5

1

0.5

0

−0.5

−1

−1.5

Figure 2: Diagram of the method for determining the area division
radius.

(4) The two data sets are classified separately according
to the number of categories 𝑚 in the last step. Each category
represents an origin area or destination area. The centroid
coordinates of each origin area and each destination area can
be calculated using (2). The centroid is then marked on the
diagram, and the final area division scheme is determined.

(𝑋𝑚, 𝑌𝑚) = (∑𝑛𝑖=1 𝑥𝑖𝑛 , ∑𝑛𝑖=1 𝑦𝑖𝑛 ) , (2)

where 𝑋𝑚, 𝑌𝑚 are the horizontal and vertical coordinates of
the centroid of category 𝑚, respectively, 𝑥𝑖, 𝑦𝑖 are the hori-
zontal and vertical coordinates of a certain point belonging to
category 𝑚, respectively, and 𝑛 is the total number of points
in category𝑚.

If there are an excessive number of stops in the CB OD
areas, the time spent at the stops will be excessively long,
which will increase the passenger travel time. Therefore,
considering the passengers’ walking distances, the radius of
the area division cannot be overly large. However, operating
costs will increase if the radius of area division is overly
small. Therefore, the radius of the CB area division should
be reasonably selected. The method for determining the
area division radius is shown in Figure 2. The large circle
represents a category that is an OD area, whereas the small
circle represents the coverage of a stop in the OD area. The
radius 𝑟 of the small circle indicates the passengers’ walking
distances, which are between 500 and 1,000m. No more than
7 stops in an area are appropriate. If the 7 stops are distributed
in the area and guarantee the maximum areal coverage, an
area coverage radius 𝑅 of 3𝑟 can be obtained. Therefore, the
area coverage radius is 1.5 to 3 km. Then, the range of the
maximum category distance is the diameter of the circle,
which is 3 to 6 km. The reasonable value of the maximum
category distance is typically determined based on the actual
situation, which includes the city scale, number of buses,
operating scale, and number of commuters.

3.3. CB Line OD Area Pairing. After the line OD area is
determined, different CB lines can be constituted by pairing
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the OD areas. Assuming that there are 𝑚 origin areas and𝑛 destination areas, 𝑚 × 𝑛 bus lines can be connected by
pairing. Each path from the origin area to the destination
area is represented as a bus line. The travel demand data
corresponding to those𝑚×𝑛 lines are processed. By taking the
number of people from the 𝑖 origin area to the 𝑗 destination
area as the OD quantity of this line, the travel demand OD
table can be determined by integration. Each cell in the
demandOD table represents the travel demand of a line from
an origin area to a destination area.

CBs can reduce passengers’ commuting transfer and
travel times and reduce travel costs to attract private car pas-
sengers. If the passenger travel distance is short, traditional
buses can satisfy the passenger travel demand at a low price
and high non-bus stop rate. If the passenger travel distance is
long, the CB can effectively reduce transfer times. In Beijing,
the round-trip travel cost of a 20 km indicates that CB costs
are 30% of the cost of travelling by private car and 15% of
the cost of taking a taxi. Thus, CBs can effectively reduce the
travel costs of private car passengers. Therefore, the distance
from the origin area to the destination area, which is also the
line, should not be overly short. In this paper, the distance
between the origin area clustering center and the destination
area clustering center is represented as the line length. The
length of each line 𝑙𝑏 is given by a logistic function:

𝑙𝑏 = √(𝑋𝑖 − 𝑋𝑗)2 + (𝑌𝑖 − 𝑌𝑗)2, (3)

where 𝑙𝑏 is the length of each line, 𝑏 = {1, 2, . . . , 𝑚 × 𝑛},𝑋𝑖, 𝑌𝑖 are the horizontal and vertical coordinates of the origin
area centroid, respectively, 𝑖 = {1, 2, . . . , 𝑚}, 𝑋𝑗, 𝑌𝑗 are the
horizontal and vertical coordinates of the destination area
centroid, respectively, and 𝑗 = {1, 2, . . . , 𝑛}.𝑙𝑏 should not be less than the minimum line length
constraint:

𝑙𝑏 ≥ 𝑙min, (4)

where 𝑙min is the minimum line length.
In this paper, the minimum line length was set to 𝑙min =8 km. An initial path set 𝐿0 = {𝑙1, 𝑙2, . . . , 𝑙𝑘} is formed by all𝑘 lines that satisfy the minimum line length constraint. After

determining the initial path set, the travel demand OD table
should be updated. If the line is not included in the initial path
set, the value of the line travel demand is then changed to 0.

3.4. Establishing the Line Selection Model. The main consid-
erations of CB operations are passenger comfort, economical
operation, and social benefits. Because the aforementioned
area division algorithm has been designed to ensure that pas-
sengerwalking distances are not overly long, the line selection
model in this section mainly considers the remaining two
aspects: economical operation and social benefits.The opera-
tion of aCBwill increase the operating costs of a company, but
with the CB operations, the company can attractmore private
car passengers who choose CB, which will reduce vehicle
pollution emissions and ease traffic congestion. Therefore,
there is a certain contradiction between operating costs and

social benefits in CB operations. In this section, considering
those two aspects, a CB line selection model that is based on
total cost is established. By solving the model, the directions
of the CB lines and the number of buses used in each line that
minimize the total cost of a single line can be determined.

The model is established based on the following assump-
tions:

(1) Passengers travel by either bus or car.
(2) The linear distance between the origin area clustering

center and destination area clustering center is repre-
sented by the CB line length.

(3) Each line uses the same CB vehicle.

The target function presented in this paper consists
of three parts. The first is the company’s operating cost,
including the CB operating cost per kilometer and fixed cost
(including drivers’ and conductors’ salaries, management
fees, and maintenance fees).The second is the environmental
pollution cost, including the pollution cost of CBs and car
emissions. The third is road congestion cost, including the
additional time cost to passengers who travel by CB and by
car because of traffic congestion.

The company’s operating cost is determined using the
following logistic function:

𝑍1 = 𝑐𝐺𝑚 × ⌈𝑛𝐺𝑖𝛼𝐺 ⌉ × 𝑙𝑖 + 𝑐𝐺𝑜 × ⌈
𝑛𝐺𝑖𝛼𝐺 ⌉ , (5)

where 𝑍1 is the total operating cost, 𝑐𝐺𝑚 is the fuel cost
per kilometer per vehicle, 𝑐𝐺𝑜 is the fixed operating cost per
vehicle per day, 𝑙𝑖 is themileage per line, 𝑖 = {1, 2, . . . , 𝑘}, 𝑛𝐺𝑖 is
the number of people travelling by CBs on each line, 𝛼𝐺 is the
maximum load capacity per CB vehicle, and ⌈𝑛𝐺𝑖/𝛼𝐺⌉ is the
number of CB vehicles on each line calculated by rounding
up.

The environmental cost is given by the following logistic
function:

𝑍2 = 𝑐𝑎 (𝑊𝐺𝑎 × ⌈𝑛𝐺𝑖𝛼𝐺 ⌉ × 𝑙𝑖 +𝑊𝐶𝑎 × ⌈
𝑛𝐶𝑖𝛼𝐶 ⌉ × 𝑙𝑖) , (6)

where 𝑍2 is the total environmental pollution cost, 𝑐𝑎 is the
environmental pollution cost per unit of pollution, 𝑊𝐺𝑎 is
the pollutant emissions per bus per kilometer, 𝑊𝐶𝑎 is the
pollutant emissions per car per kilometer, 𝑛𝐶𝑖 is the number
of people travelling by car on each line, 𝛼𝐶 is the average load
capacity per car, and ⌈𝑛𝐶𝑖/𝛼𝐶⌉ is the number of cars on each
line calculated by rounding up.

The traffic congestion cost is the additional time cost
incurred by all passengers because of the change in the
number of buses and cars on the road, which is formulated
as

𝑍3 = 𝑐𝑠 (( 𝑙𝑖
V𝐺𝑠

− 𝑙𝑖
V𝐺
) × 𝑛𝐺𝑖 + ( 𝑙𝑖

V𝐶𝑠
− 𝑙𝑖
V𝐶
) × 𝑛𝐶𝑖) , (7)

where 𝑍3 is the total congestion cost, 𝑐𝑠 is the value per unit
of time, V𝐺𝑠 is the average running speed of the bus in the case
of exclusive bus lanes and traffic congestion, V𝐺 is the average
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running speed of buses during normal running, V𝐶𝑠 is the
average running speed of cars in the case of traffic congestion,
and V𝐶 is the average running speed of cars during normal
running.

In summary, the objective function𝑍 of the line operating
standard model can be determined using the linear weighted
sum of the three parts as

min 𝑍 = 𝜔1𝑍1 + 𝜔2𝑍2 + 𝜔3𝑍3, (8)

where 𝑍 is the total cost of a single line and 𝜔1, 𝜔2, 𝜔3 are
the operating, environmental, and traffic congestion cost
weights, respectively.

The decision variables of the line selection model in
this paper are the number of commuters who travel by
customized bus and the number of commuters who take a
private car, respectively, represented by 𝑛𝐺𝑖 and 𝑛𝐶𝑖. Actually,
in this paper, the total travel demand on each line is known;
thus 𝑛𝐺𝑖 and 𝑛𝐶𝑖 should satisfy the following constraints:

𝑛𝐺𝑖 + 𝑛𝐶𝑖 = 𝑛𝑖, (9)

𝑛𝐺𝑖, 𝑛𝐶𝑖 ∈ 𝑁, (10)

where 𝑛𝑖 is the travel demand on each line and𝑁 is the natural
number set.

Equation (9) specifies that the sum of the numbers of
people who are travelling by CBs and by car is equal to the
travel demand on each line. Equation (10) specifies that the
number of people who are travelling by CBs and by car is a
natural number.

3.5. Model Solution. Solving the CB line selection model is
essentially an integer programming problem and a discrete
optimization problem. The purpose of the problem is to
find a solution that conforms to the objective function
from a limited number of possible scenarios. The optimal
solution can be obtained by comparing the objective func-
tion value and using an enumeration method. However, in
practical problems, the solution space is large and consumes
large amounts of computational time and memory. Integer
programming optimization methods for solving research
problems are also gradually maturing with the development
of optimization theory. At present, the branch-and-bound
method, cutting-plane method, tabu search, and genetic
algorithms are commonly used methods. In this paper, the
branch-and-boundmethod [32] was used to solve the CB line
selection model, and the final network operation scheme was
obtained using a computer.

Integer programming is a branch of linear program-
ming. If the integer constraint is removed, integer program-
ming is transformed into linear programming. This linear
programming problem is called the linear programming
relaxation problem of integer programming, and all the
feasible solutions of the integer programming problem are
included in the linear programming relaxation problem. If
the solution of the linear programming relaxation problem
is expressed as 𝑍0, the optimal integer solutions that have
been found are expressed by𝑍𝑖, the optimal integer solutions
are expressed by 𝑍∗, the lower bound is expressed by 𝑍𝑙,

and the upper bound is expressed by 𝑍𝑢. For the objective
function minimization problem, the optimal integer solution
must satisfy

𝑍𝑙 = 𝑍0 ≤ 𝑍∗ ≤ 𝑍𝑖 = 𝑍𝑢. (11)

The branch-and-bound method is based on the above
relationship. The method begins by solving the linear pro-
gramming relaxation problem. The feasible region of the
linear relaxation problem is then decomposed into smaller
subdomains (branches). The next step is to continuously
update the upper and lower bounds by finding better integer
solutions, which are obtained by the branches together. This
approach can accelerate convergence, simplify the operation,
and cause the lower bound to be equal to the upper bound. In
thismanner, the optimal solution of the integer programming
is obtained [33]. The algorithm steps are as follows.

Step 1. The linear relaxation problemof integer programming
is solved by removing the integer constraints. If there is no
feasible solution, then the integer programming problem has
no optimal solution, and the procedure is stopped. If an
integer solution is obtained, then the solution is the integer
programming optimal solution 𝑍∗, and the procedure is
stopped. If a noninteger solution is obtained, then the solu-
tion is taken as the lower bound of the integer programming
problem, the upper bound is expressed by infinity, and the
processing continues to Step 2.

Step 2. Choose any variable that does not meet the integer
criteria 𝑛𝐺𝑖 or 𝑛𝐶𝑖 𝑖 = 1, 2, . . . , 𝑘 from the solution of the linear
relaxation problem. Its value is 𝑏𝑖. Using [𝑏𝑖] represents the
largest integer one that does not exceed 𝑏𝑖. Next, twomutually
exclusive inequality constraints, 𝑛𝐺𝑖 ≥ [𝑏𝑖] + 1 and 𝑛𝐺𝑖 ≤ [𝑏𝑖]
(𝑛𝐶𝑖 ≥ [𝑏𝑖] + 1 and 𝑛𝐶𝑖 ≤ [𝑏𝑖]), are constructed. The two
constraints are added to the linear relaxation problem, two
subproblems can be obtained, and the optimal solution can
be sought. The smallest result can then be found from the
obtained optimal solutions and is used as a new lower bound𝑍𝑙. Finally, the greatest value of the objective function from
each subproblem consistent with integer conditions is found
and used as a new upper bound 𝑍𝑢.
Step 3. For the subproblems with nonfeasible solutions and
integer solutions, the downward branch is not continued
downward and the node is closed. For the subproblems
with noninteger optimal solutions, determine whether the
optimal value is greater than the upper bound of 𝑍𝑢. If the
optimal value is greater than or equal to 𝑍𝑢, stop the branch;
otherwise, branch out and repeat Step 2 until all the nodes are
closed. Optimal integer solutions can be obtained at this time
with 𝑛𝐺𝑖∗ and 𝑛𝐶𝑖∗ (𝑖 = 1, 2, . . . , 𝑘), and the optimal value is𝑍∗ = 𝑍𝑢 [34].

The flowchart of branch-and-bound method is shown in
Figure 3.

Using the branch-and-boundmethod to solve the CB line
selection model, the numbers of people travelling by CB and
car on each line can be obtained. If the number of people
travelling by CB is zero, the line is not running; otherwise,
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Figure 3: The flowchart of branch-and-bound method.

the line is operating, and the required number of vehicles is
computed according to the travel demand of passengers.

4. Case Study

In this section, Beijing CB network planning is employed as a
case study. The optimization scheme for Beijing CB network
planning can be determined using the CB network planning
method introduced in this paper. The CB network planning
method introduced in this paper was proven to be applicable

and effective compared with the current status of Beijing CB
network planning.

4.1. Large-Scale Travel Demand Data Processing. The travel
demands of passengers were collected using an Internet
survey. A total of 15,000 morning peak travel passenger
demands for CBs were collected fromAugust 2015 toNovem-
ber 2015. Each travel demand includes a passenger’s trip
origin and destination. According to the passenger travel
demand address data, the origin address and destination
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Figure 4: Scatterplot of the passenger trip origins.
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Figure 5: Scatterplot of the passenger trip destinations.

address of every passenger were stored as text documents
or EXCEL documents. The documents then were imported
into the XGeocoding software program and saved, and
parsingwas initiated. Parsing batch queried the longitude and
latitude coordinates of every passenger OD, and the latitude
and longitude coordinates of the passengers’ locations were
stored in text format. Subsequently, the text documents were
imported into the COORD coordinate conversion software
program, which can transform the latitude and longitude
coordinates into plane coordinates that can be easily used to
calculate the point-to-point distances. Because the passenger
OD coordinate values are large numbers, for convenience,
the coordinates of Tiananmen were used as the origin of
the coordinates, the Tiananmen coordinates were subtracted
from all the coordinates, and the origin and destination
demands of the passengers thenweremarked separately using
MATLAB software. The passenger trip origins are shown by
green points in Figure 4. The passenger trip destinations are
shown by red points in Figure 5.

In Figure 4, the range in the distribution of the CB
passenger trip origins was wide and concentrated in a large
residential zone. However, the passenger trip destinations
were mainly concentrated in a large business zone centered
on Tiananmen with a radius of 10 km, as shown in Figure 5.
The characteristics of the morning peak travel demand in
Beijing City is an agglomeration from rural areas to the
urban area, and the travel distances were long. Therefore, the
operation of the CB in Beijing City can effectively ease traffic
congestion and reduce travel time.

4.2. Line OD Area Division Based on Hierarchical Cluster-
ing. From the processing results of the passenger travel

demand data in Section 4.1, all ODs were classified using
hierarchical clustering according to the maximum distance
measurement criteria. In this paper, considering the walking
cost of passengers, the passenger walking distance should
not exceed 800m. The area coverage radius was 2.5 km,
and the maximum category distance was 5 km. Thus, when
the maximum distance between two categories was less
than 5 km, the two categories were combined into one
category. The final results yielded 84 origin categories and
67 destination categories. The hierarchical clustering tree
was then built to represent the clustering results vividly. The
origin hierarchical clustering tree is shown in Figure 6. The
destination hierarchical clustering tree is shown in Figure 7.
In the figure, the distance between categories is represented
by the vertical coordinates, the category is represented by the
horizontal coordinates, and the number on each horizontal
coordinate represents the travel demands that are clustered
by this category.

According to the results, the origin and destination were
classified using hierarchical clustering. The passenger plane
coordinate data for each category were stored as an array.
Using (2), the centroid coordinates of each category were
calculated, and they are marked on the diagram. The origin
clustering results are shown in Figure 8. The destination
clustering results are shown in Figure 9. In the diagram,
the points in different colors represent the passenger travel
demand points in different categories. The crosses represent
the centroids of the categories. In the origin hierarchical
clustering diagram, each category represents an origin area,
and each centroid represents the center of an origin area. In
the destination hierarchical clustering diagram, each category
represents a destination area, and each centroid represents the
center of a destination area.

4.3. Determination of the Initial Path Set. Based on the
hierarchical clustering results of the origin and destination
areas presented in Section 4.2, approximately 5,628 CB lines
were obtained by pairing the OD areas. A travel OD demand
table was obtained by processing the travel demand data
corresponding to the 5,628 lines. In addition, the lengths
of the lines were the distances between the centroids of the
origin and destination areas. In the travel OD demand table,
each cell indicates the travel demand of a line from an origin
area to a destination area. In the line length table, each cell
indicates the length of a line.The names of the origin area and
destination area were derived from the centroid coordinates
of each area using COORD and an XGeocoding software
transformation.

In this paper, the minimum length of the line operation
was determined to be 𝑙min = 8 km. According to the line
length constraint, a total of 233 lines that did not satisfy the
line length constraint were deleted, and the 5,395 lines that
satisfied the line length constraint were used as the initial line
set. Using the initial path set, the travel demandOD table was
updated, a total of 1,973 travel demands were removed, and
13,321 travel demands remained.

4.4. Model Solution and Scheme Determination. Based on
the travel OD demand and line length of each line, the
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Figure 6: Origin hierarchical clustering tree.

36 57 41 42 53 62 21  4 26 50 33 56  5 46 45 58 43 64 48 67 59 11 47 18 20 22 23 16  8 34 30 49 28 63 39 65 66  1  2 10 40  7  9 14 61  6 15 17 32 44 51 19 37  3 27 55 24 12 35 31 60 29 52 13 38 25 54

Category

D
ist

an
ce

 b
et

w
ee

n 
ca

te
go

rie
s (

m
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

×10
4

Figure 7: Destination hierarchical clustering tree.
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Figure 8: Origin hierarchical clustering diagram.
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Figure 9: Destination hierarchical clustering diagram.
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Figure 10: Planning line diagram for the Beijing CB network.

final operating scheme for the Beijing CB network was
solved using MATLAB according to the line selection
model in Section 3.4 and the branch-and-bound method in
Section 3.5. The related parameters are as follows: the fuel
cost per kilometer per vehicle 𝑐𝐺𝑚 = 2.1, the fixed operating
cost per vehicle per day 𝑐𝐺𝑜 = 350 [35], the environmental
pollution cost per unit of pollution 𝑐𝑎 = 3.3 [36], the unit time
value 𝑐𝑠 = 36, the maximum load capacity per CB vehicle𝛼𝐺 = 30, the average load capacity per car 𝛼𝐶 = 2, the
pollutant emissions per bus per kilometer 𝑊𝐺𝑎 = 1.2, the
pollutant emissions per car per kilometer 𝑊𝐶𝑎 = 0.4 [37],
the average running speed of bus in the case of bus lanes and
road congestion V𝐺𝑠 = 28, the average running speed of buses
during normal running V𝐺 = 35, the average running speed
of cars in the case of road congestion V𝐶𝑠 = 26, the average
running speed of cars during normal running V𝐶 = 46 [38],
the weight of operating cost 𝜔1 = 0.3, the weight of the
environmental cost 𝜔2 = 0.4, and the weight of congestion
cost 𝜔3 = 0.3.

According to the 15,000CBmorning peak travel demands
of passengers, approximately 123 CB lines were found using
the CB network planningmethod introduced in this paper. In
addition, the operating kilometers totaled 2,708.3 km, which
required 183 CBs with 30 seats, each of which served 5,009
passengers. The specific line distribution range is shown in
Figure 10. In the figure, the green crosses represent the CB
origins, the red crosses represent the CB destinations, and the
connecting lines between them represent CB operating lines.

4.5. Comparison and Evaluation. In reality, using the approx-
imately 100,000 CB morning peak travel demands of pas-
sengers from September 2013 to November 2015, the Beijing
CB company designed a total of 92 morning peak lines. By
comparison, in this paper, a total of 15,000 CB morning peak
travel demands of passengers were collected from August
2015 to November 2015, and a total of 123 morning peak lines
were designed by using the method proposed in this paper.
TheODdistributions of the current andplanning schemes are
compared in Figures 11 and 12. The contrast figure of the CB
origin distribution is shown in Figure 11. The contrast figure
of the CB destination distribution is shown in Figure 12. In
the figure, the black crosses represent the current stations,
and the green crosses represent the planning stations. In
addition, in combination with the current planning line
diagram of the CB and the planning line diagram of the
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Figure 11: Contrast figure of the CB origin distribution.
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Figure 12: Contrast figure of the CB destination distribution.

CB determined using this paper’s method, it was found that
the planning scheme generated using the method of this
paper was basically consistent with the current scheme. This
shows that the method proposed in this paper is feasible and
effective for solving CB network planning problems.

Figure 11 illustrates that the origins of the planning and
current schemes were concentrated in large residential areas,
such as Tongzhou, Huilongguan, and Fengtai, whereas the
distribution of the planning scheme was more balanced and
the stations had a wider coverage. Figure 12 illustrates that
the destinations of the planning and current schemes were
concentrated over a range that included Tiananmen as its
center and had a radius of 10 km, which included the China
World Trade Center, Finance Street, and Zhongguancun. In
contrast, the station coverage range of the planning scheme
was smaller than that of the current scheme.

CB is a new public transportation mode without transfer
based on travel demands of passengers.TheCB operating line
is the shortest line between origin area stops and destination
area stops. CB network evaluation differs from conventional
bus network evaluation but also has some similar places
as conventional bus. In this paper, the following evaluation
indexes are established to evaluate the service level of CB
network.

(1) The site coverage rate 𝛾 is the proportion of CB site
areal coverage in the total areal coverage of travel demand,
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Table 1: Beijing CB network evaluation index contrast.

Current scheme Planning scheme
The number of lines 92 123
The total length of lines 1412.44 km 2708.30 km
The average line distance 15.35 km 22.02 km
The number of vehicles 192 241
The site coverage rate 23.38% 32.71%
The average load factor 72.53% 77.05%
The service rate 30.17% 37.60%

that is, the proportion of the areal coverage of all original
area in the total areal coverage of travel demand, which is
formulated in

𝛾 = ∑𝑚𝑖=1 𝑠𝑖𝑆𝐶 × 100%, (12)

where 𝑠𝑖 is the areal coverage of each original area, 𝑖 ={1, 2, . . . , 𝑚}, and 𝑆𝐶 is the total areal coverage of travel
demand.

(2) The average load factor 𝜆 is the proportion of the
number of people travelling by CBs in the maximum number
of passengers provided by CBs, which is formulated in

𝜆 = ∑𝑘𝑖=1 𝑛𝐺𝑖
∑𝑘𝑖=1 𝑏𝑖 × 𝛼𝐺 × 100%, (13)

where 𝑏𝑖 is the number of vehicles of each line, 𝑖 = {1, 2, . . . , 𝑘}.
(3) The service rate 𝜑 is the proportion of the number

of people travelling by CBs in the total travel demand of
passengers, which is formulated in

𝜑 = ∑𝑘𝑖=1 𝑛𝐺𝑖𝑁 × 100%, (14)

where𝑁 is the total travel demand of passengers.
The comparative results of the specific network evaluation

index are listed in Table 1. Compared with the current
network scheme, the travel demand data used by the planning
scheme were smaller. However, the total number of lines,
total length of the operating lines, and number of people
being served were greater. Thus, the planning scheme placed
more emphasis on the passenger service rate. In addition,
the average line distance of the current scheme was 15.35 km,
and the planning scheme was 22.02 km, demonstrating that
the planning scheme lines mainly served passengers who
travelled medium and long distances.

From the perspective of the company’s operations, 192
vehicles are used in the current scheme, with an average load
factor of 72.53%; in contrast, 241 vehicles are used in the plan-
ning scheme, with an average load factor of 77.05%. Although
the average load factor cannot reflect the actual operational
situation, as long as the planning is scientific and reasonable
regarding the stops and timetable, the actual average load
factor should be equal to the numerical value. Therefore, the

×10
4

×10
4

−6

−4

−2

0

2

4

6

Y
 (m

)

−2 0 2 4 6−4
X (m)

(a)

×10
4

×10
4

−6

−4

−2

0

2

4

6
Y

 (m
)

−2 0 2 4 6−4
X (m)

(b)

Figure 13: Contrast figure of the CB original stations’ areal coverage.
(a) Current original stations’ areal coverage. (b) The planning
original stations’ areal coverage.

planning scheme can optimize the allocation of resources and
effectively reduce the operating company’s costs.

The coverage radius for each traffic zonewas set to 2.5 km,
and the site coverage rate for the original traffic zone was
calculated.The contrast in the original stations’ areal coverage
for the current and planning schemes is shown in Figure 13.
Combined with Table 1 and Figure 13, the station distribution
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of the planning scheme was more balanced, and the site
coverage rate was considerably higher. Therefore, the CV
network can more effectively encourage private car owners
to change travel modes, ease traffic congestion, and solve the
problem of air pollution.

In summary, combined with the actual operational status
of the Beijing CB network and the comparison results, a more
scientific and reasonable network scheme can be obtained
using the method presented in this paper. Compared with
the current scheme, the planning scheme canmore effectively
provide services to passengers, save operating costs, and
create positive social benefits.

5. Conclusions

This paper presented the status of research on CB network
planning methods. On that basis, combined with conven-
tional bus and existing CB network planning experience, a
CB network planning method based on area division was
proposed. The method uses ideas from a point-to-line layout
into a network. First, the line OD area is divided according to
the passenger travel demand; O and D of line OD represent
the passenger’s trip origin and trip destination, respectively.
Second, the operating line scheme is determined according to
the solution of the model, all operating lines are laid out, and
the final CB network is determined. The results of this paper
advance the theoretical research on CB network planning
and provide a precise and efficient technical method for CB
operators who are planning networks. The following aspects
should be investigated further to optimize and improve the
methods proposed in this paper.

(1) A major feature of CBs is that they have exclusive
bus lane rights. When the traffic is highly congested in the
morning and evening peak periods, exclusive bus lanes can
ensure the effectiveness of the running time and improve the
punctuality. In this paper, the line layouts did not consider the
specific paths of each line. A straight line between the origin
and destination was used as a line, and the important role of
exclusive bus lanes in the layout of CB lines was neglected.
In future research, the layout of exclusive bus lanes should be
considered.

(2) In this paper, a line operation model based on oper-
ating cost and social benefits was proposed. The main aspect
of the model is the determination of the parameter values of
various influencing factors and quantitativemethods. By con-
sulting various references to determine the parameter values,
the parameters values achieved good results in the study case
demonstration. However, whether those parameters values
are applicable to all cities and how to assign the weight ratio
of each factor should be considered in future research.

(3) In this paper, the vehicle standard was 30 seats.
In future research, the vehicle standard should be chosen
according to the line travel demand, which can improve the
use efficiency of CB vehicles.
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Wide-ranging applications of road traffic detection technology in road traffic state data acquisition have introduced new challenges
for transportation and storage of road traffic big data. In this paper, a compression method for road traffic spatial data based on
LZW encoding is proposed. First, the spatial correlation of road segments was analyzed by principal component analysis.Then, the
road traffic spatial data compression based on LZW encoding is presented.The parameters determination is also discussed. Finally,
six typical road segments in Beijing are adopted for case studies. The final results are listed and prove that the road traffic spatial
data compression method based on LZW encoding is feasible, and the reconstructed data can achieve high accuracy.

1. Introduction

The advent of big data brings unprecedented opportunities
as well as challenges, especially in the field of transportation
and traffic engineering [1, 2]. With the rapid development
of science and technology, the intelligent transportation
system (ITS) has developed continuously, and its applications
have become wide ranging. The ITS system can accomplish
the tasks of road traffic data acquisition, processing, and
transportation. Besides, it can complete the job of traffic
state analysis, route guidance, and traffic control. As various
road traffic detection systems are adopted in the road traffic
field, the collected road traffic state data increase and become
massive.This serious situation introduces a challenge for real-
time transmission, storage, and guidance of massive road
traffic data. Thus, it is necessary to find an efficient approach
to compress real-time traffic states data which can save much
storage space as well as providing some other applications
[3]. And the compression method of road traffic states data
has deeply promoted the managements for transportation
administrators. Besides, useful compression method of road
traffic data can also be applied to transportation research
fields, and some inspirations may occur to the researchers.

The essence of road traffic state data compression is to repre-
sent the signal information with less data. Through effective
compression and reconstruction, traffic data transmission
and storage can be achieved [4–6].

In recent years, a great many of data compression
methods have been explored in traffic and transportation
fields. With the popularity of machine learning and data
mining study among practitioners and researchers, some
road traffic compression methods are presented. Due to
the multidimensional and multigranularity characteristics of
traffic and transportation big data, PCA method realizes the
compression of road traffic states data through reducing the
dimensions of original data [7]. As an emerging technology,
compression sensing has also been used in data compression
due to its superiority. Compression sensing breaks through
traditional Nyquist sampling theorem restricts and can col-
lect and compress data simultaneously. Making use of the
redundancy characteristics of road traffic states, compression
sensing technology achieves the estimation [8] and com-
pression [9–11] of road traffic states data. Since the road
traffic states data possess the spatial-temporal correlation
and similar characteristics, Xiao et al. presented a spatial-
temporal model based on road traffic data compression and
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decompression technology of 2D discrete wavelet transfor-
mation, realizing the denoising compression of ITS system
[12]. Ou et al. proposed road traffic volume data compression
based on artificial neural network [13].

Some modified and improved methods also fill the
compression gap. The embedded devices in motor vehicles
also generate abundant data for researches to investigate the
compression of road traffic states data [14]. Making use of
the GPS positioning data produced by the mobile devices
of travelers, Ma et al. presented a differential preprocessing
method, and a dynamical Huffman algorithm was adopted
to compress GPS positioning data [15]. Wang et al. put
forward an encoding algorithm with self-adaptive switching
mode according to specific format [16]. Hou presented a
stop-wave mode based on the concept of the compression
factor and its differential equation [17]. Song et al. proposed
a hybrid spatial compression algorithm and error bounded
temporal compression algorithm to compress the spatial
and temporal information of trajectories, respectively [18].
However, many researches do not have a common baseline
for their performance analysis and provide the infrastructure
to operate on a publicly available dataset.

The existing road traffic data compression methods
mainly focus on the compression of road traffic network
data. However, in recent years, limited literature has been
written on the road traffic spatial data compression methods
of different road segments on similar time nodes. Some
literatures on predictions are investigated temporally and
spatially in recent years.The studies are not only in road traffic
field, but also in the field of transportation.

The travel needs and travel routes of traffic participants
exhibit certain regularity; thus, the road traffic spatial states
of different road segments on similar time nodes represent
strong relationships. That is, the changing curve of road
traffic spatial state on different road segments on similar time
nodes possesses some similarity. The correlation presents
great probability for the compression of road traffic spatial
data. Thus, based on the spatial correlation characteristics
of the road traffic states, the road traffic spatial data on
different road segments on similar time nodes are extracted
for compression. LZW inherits the merits of LZ77 and LZ78
on compression efficiency and speed. Besides, the method
easily achieves good performance. Thus, the LZW encoding
is introduced in the study. Based on the spatial correlation of
road traffic, a compression method of road traffic spatial data
based on LZW encoding is proposed in this paper.

In this study, a compressionmethod of road traffic spatial
data based on LZW encoding is proposed to compress the
road traffic spatial states data under the same time intervals,
realizing efficient transmission and storage as well as display.
The useful compression of road traffic states data can be
efficiently used into feature extraction and traffic states
prediction. Multivariate time series analysis is similar to the
proposed method, which can take into consideration both
spatial and temporal correlations. In our study, we used
the spatial correlation characteristics of road traffic states to
compress the states data. The aims of the two studies are
different.

Some motivations are explained here. Although the pro-
posed compression method of our study is tested on the road
traffic states data, it is also very useful for transportation
management aswell as transportation prediction. Besides, the
compression can be also used for feature extraction, which
can be applied to evaluate the traffic running states.

Based on the characteristics of road traffic flow, the PCA
method can be used to analyze the correlation of spatial
road segments [19, 20]. Then, the spatial road segments are
selected to extract the data for compression. The spatial road
segments denote the different road segments; the data on
these segments are extracted on the spatial road segments at
the same time intervals.

The contributions of the proposed algorithm are three-
fold:

(1) The PCA method was introduced to the algorithm to
select the road segments with spatial correlation.

(2) A novel road traffic spatial data compression algo-
rithm based on LZW encoding was proposed to
construct the difference data on selected spatial road
segments under the same mode.

(3) The proposed algorithm could determine the optimal
parameters in the training process based on spatial
historical data and base data on road traffic states.

The rest of this paper is organized as follows. The mod-
eling methodology of the proposed algorithm is discussed
in Section 2. In Section 3, parameter determination of the
road traffic spatial data compression study based on LZW
encoding is presented. The experiment results are shown in
Section 4.The conclusion and direction for future studies are
discussed in Section 5.

2. Compression Algorithm of Road Traffic
Spatial Data Based on LZW Encoding

2.1. Framework of the Algorithm. The process of compression
and reconstruction of road traffic spatial data is shown in
Figures 1 and 2, respectively. First, the PCAmethod was used
to select the road segments with the characteristics of spatial
correlation.The road traffic spatial data under the samemode
on different road segments were acquired to construct the
reference sequences of road traffic characteristics. Based on
the analysis of spatial correlation, the base road segment
was selected and the data on which were regarded as spatial
base data. Second, the historical data on other spatial road
segments under the same mode was extracted as training
data. The optimal threshold of road traffic spatial difference
data was determined based on road traffic spatial base
data under the same mode. Third, real-time spatial data on
other road segments under the same mode were acquired
as experimental data and the road traffic spatial difference
data were acquired on the basis of road traffic spatial base
data under the same mode. Finally, the compression and
reconstruction of road traffic spatial difference data were
achieved through LZW encoding and decoding technology,
respectively.
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Figure 1: The process of road traffic spatial data compression based on LZW encoding.

Table 1: Road traffic characteristics reference sequence information chart.

Reference sequence ID Mode Road segment ID Time Road traffic state parameters

Table 2: Road traffic characteristics reference sequence description
chart.

Reference sequence ID Reference sequence name Description
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Figure 2: The process of road traffic spatial data reconstruction
based on LZW decoding.

2.2. Acquisition of Road Traffic Spatial Base Data

2.2.1. Selection of Road Segments with Correlation Based on
PCA Method. Road traffic flows possess the characteristics
of periodicity, similarity, correlation, and so on. The road
traffic flows of spatial road segments indicate a strong
spatial correlation. Thus, the PCA method was used in this
study to select the road segments with the characteristics of
correlation.

PCA is a multivariate statistical method that eliminates
the correlation among the variable indicators. 𝑛-dimensions
of road traffic state data can be effectively reduced to two
dimensions, which can be illustrated in a 2D figure. Taking
advantage of these characteristics, the related road segments
can be selected. The process has been described in previous
studies [19, 20].

2.2.2. Division of Road Traffic Running Modes. The road
traffic running modes can be divided into two levels: the
road network level and road segments level. Assuming that
the running modes division identification of road network
level and road segments level can be divided into 𝑔 and ℎ

submodes, respectively, the road traffic running modes can
be divided into 𝑔×ℎmodes in total.Themodes can be shown
as 𝑀𝑜𝑑𝑒 = {𝑀11,𝑀12, . . . ,𝑀𝑔ℎ}. 𝑔 and ℎ can be determined
by the road traffic running modes division identification.
The running modes division identification of road network
mainly refers to the impact factors of road traffic running
modes on different dates. The road traffic running modes
division identification of road segments refers to the influence
factors of the road traffic running modes of the specific
condition of the road segments, which can be illustrated as
in Figure 3.

2.2.3. Construction Design of Road Traffic Characteristics
Reference Sequences. Assuming the collection period of road
traffic state data was Δ𝑡, then time format of road traffic
information template can be illustrated as in Figure 4. The
table format of the road traffic characteristics reference
sequence can be described as in Tables 1 and 2.

Let 𝑝 + 1 denote the total number of selected road
segments, which can be described as follows:

𝐿 = [𝐿1 𝐿2 ⋅ ⋅ ⋅ 𝐿𝑝+1] , (1)

where 𝑝 + 1 is the number of spatial road segments; 𝐿 𝑖 (1 ≤𝑖 ≤ 𝑝 + 1) denotes the 𝑖th road segments; 𝐿 represents the set
of selected road segments with correlation.

Based on the correlation of road traffic spatial data, the
base road segment is acquired to extract the road traffic data
as road traffic base data. The road traffic data on other 𝑝
spatial road segments are extracted as historical data and real-
time data.

2.3. Optimal Threshold Determination of Road Traffic Dif-
ference Data. The data on other spatial road segments are
extracted as training data. Under 𝑀𝑔ℎ mode, the road traffic
spatial difference data under the same mode are acquired
based on road traffic spatial base data to conduct the
threshold processing. Through LZW encoding, the optimal
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Figure 4: The time format of road traffic characteristic reference
sequence.

threshold is identified.Themain expressions can be described
as follows:

𝑆𝑖 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)
= 𝑆𝑇𝑖 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) − 𝑆𝐵 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ,
𝑒𝑖 (𝑚,𝑀𝑔ℎ)
= [𝑆𝑖 (Δ𝑡,𝑀𝑔ℎ) 𝑆𝑖 (2 ∗ Δ𝑡,𝑀𝑔ℎ) ⋅ ⋅ ⋅ 𝑆𝑖 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)] ,
ℎ𝑒𝑖 (𝑚,𝑀𝑔ℎ)

= {{{
0, 𝑒𝑖 (𝑚,𝑀𝑔ℎ) < 𝐸𝑖 (𝑚,𝑀𝑔ℎ)
𝑒𝑖 (𝑚,𝑀𝑔ℎ) , 𝑒𝑖 (𝑚,𝑀𝑔ℎ) > 𝐸𝑖 (𝑚,𝑀𝑔ℎ) ,

𝑝𝑒𝑖 (𝑛,𝑀𝑔ℎ) = 𝑤 (ℎ𝑒𝑖 (𝑚,𝑀𝑔ℎ)) ,
𝑝𝑒𝑖 (𝑛,𝑀𝑔ℎ) = [𝑆𝑖 (1,𝑀𝑔ℎ) 𝑆𝑖 (2,𝑀𝑔ℎ) 𝑆𝑖 (𝑛,𝑀𝑔ℎ)] .

(2)

The characteristics are described in Table 3.
Based on the formulas of (2), the optimal threshold of

difference data can be identified.

2.4. Road Traffic Spatial Data Compression Based on
LZW Encoding

2.4.1. Acquisition of Road Traffic Spatial Difference Data. The
spatial data on other road segments were extracted as real-
time data. Under 𝑀𝑔ℎ mode and based on the spatial base
data, the road traffic difference data were acquired. The main
expressions can be described as follows:

𝑀𝑆𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 𝑆𝑀𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) − 𝑆𝐵 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , (3)

𝑒𝑟𝑟𝑗 (𝑚,𝑀𝑔ℎ) = [𝑀𝑆𝑗 (Δ𝑡,𝑀𝑔ℎ) 𝑀𝑆𝑗 (2 ∗ Δ𝑡,𝑀𝑔ℎ) ⋅ ⋅ ⋅ 𝑀𝑆𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)] . (4)

The characteristics are described in Table 4.

2.4.2. Road Traffic Spatial Difference Data Compression Based
on LZW Encoding. LZW encoding is a lossless compression
method based on dictionary coding. By constructing a string
table, the long code word is presented by a shorter code
word to realize data compression. The string and code

word are gradually built, and the string table is constructed
dynamically. The string table is constantly improved and is
greater in comparison with the latter string and string table.
The created string table does not need to be stored along with
the data. In the decompression process, the same string word
can still be reconstructed.Thus, the compression radio can be
improved by another step.
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Table 3

Δ𝑡 The collection period of road traffic state data(𝑚 ∗ Δ𝑡) The𝑚th period collection of road traffic state data, 0 ≤ 𝑚 ≤ 𝑁𝑁 The number of daily collected road traffic data𝑖 The 𝑖th road segment under𝑀𝑔ℎ mode𝑆𝑇𝑖 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The road traffic data on 𝑖 road segment at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode𝑆𝐵 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The road traffic data onbase road segment at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode

𝑆𝑖 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The road traffic difference data between the training data on 𝑖 road segment and the base data on base road
segment at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode

𝑒𝑖(𝑚,𝑀𝑔ℎ) The road traffic difference data between the training data on 𝑖 road segment and the base data on base road
segment at Δ𝑡 to (𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

ℎ𝑒𝑖 (𝑚,𝑀𝑔ℎ) The road traffic difference data between the training data on 𝑖 road segment and the base data on base road
segment after threshold processing Δ𝑡 to (𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode𝐸𝑖 (𝑚,𝑀𝑔ℎ) The threshold of road traffic difference data at Δ𝑡 to (𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

𝑝𝑒𝑖(𝑛,𝑀𝑔ℎ) The data on the difference data between 𝑖 road segment and base road segment after LZW encoding at Δ𝑡 to(𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

𝑆𝑖 (𝑛,𝑀𝑔ℎ) The 𝑛th data on the difference data between 𝑖 road segment and base road segment after LZW encoding at Δ𝑡 to(𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

𝑚 The number of difference data between 𝑖 road segment and base road segment before LZW encoding at Δ𝑡 to(𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

𝑛 The number of difference data between 𝑖 road segment and base road segment after LZW encoding at Δ𝑡 to(𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

Table 4

𝑗 The 𝑗th road segment, 1 ≤ 𝑗 ≤ 𝑝 + 1𝑆𝑀𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The real-time data on 𝑗 road segment at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode𝑀𝑆𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The difference data on 𝑗 road segment and base road segment at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode

𝑒𝑟𝑟𝑗 (𝑚,𝑀𝑔ℎ) The road traffic difference data between the real-time data on 𝑗 road segment and the base data on base road
segment at Δ𝑡 to (𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ mode

Based on LZW encoding, the road traffic spatial data
compression can be achieved. The best threshold of the dif-
ference data between 𝑖 road segment and base road segment
can be introduced into the difference data on the 𝑗 road

segment and the base road segment under the same 𝑀𝑔ℎ
mode. Combining the LZW encoding, the difference data
compression of 𝑗 road segment and base road segment can be
realized. The main expressions can be described as follows:

ℎ𝑒𝑟𝑟𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = {0, 𝑒𝑟𝑟𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) < 𝐸𝑜𝑝𝑡 (𝑀𝑔ℎ)𝑒𝑟𝑟𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , 𝑒𝑟𝑟𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) > 𝐸𝑜𝑝𝑡 (𝑀𝑔ℎ) ,
ℎ𝑒𝑟𝑟𝑠𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = [ℎ𝑒𝑟𝑟1 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ℎ𝑒𝑟𝑟2 (Δ𝑡,𝑀𝑔ℎ) ⋅ ⋅ ⋅ ℎ𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)] ,
𝑝𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 𝑤 (ℎ𝑒𝑟𝑟𝑠𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)) ,
𝑝𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = [𝑀𝑆1 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) 𝑀𝑆2 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ⋅ ⋅ ⋅ 𝑀𝑆𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)] .

(5)

The characteristics are explained in Table 5.
The compression radio is 𝑝/𝑝.

2.5. Road Traffic Spatial Data Decompression Based on LZW
Decoding. Based on LZW decoding technology, the data
reconstruction of difference data between 𝑝 road segments
and base road segment can be realized. Combining the base

data, the decompression of 𝑝 road segments real-time data
can be achieved. The main expressions are as follows:

𝑑𝑝𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 𝑤 (𝑝𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)) ,
𝐶𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)

= 𝑆𝐵 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) + 𝑑𝑝𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ,
(6)
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Table 5

𝐸𝑜𝑝𝑡(𝑀𝑔ℎ) The optimal training threshold

ℎ𝑒𝑟𝑟𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The difference data between the real-time data on 𝑗 road segment and the base data on base road segment after
threshold processing at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode

𝑚 The number of difference data between 𝑗 road segment and base road segment before LZW compression at Δ𝑡
to (𝑚 ∗ Δ𝑡) time intervals under𝑀𝑔ℎ modeℎ𝑒𝑟𝑟𝑠𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The road traffic difference data set of 𝑝 road segments at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode𝑃𝑒𝑟𝑟𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The set of difference data on 𝑝 road segment after LZW encoding at (𝑚 ∗ Δ𝑡)moment under𝑀𝑔ℎ mode𝑝 The number after LZW encoding at (𝑚 ∗ Δ𝑡)moment𝑀𝑆𝑗(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) The 𝑗th data on difference data after LZW encoding at (𝑚 ∗ Δ𝑡) time moment under𝑀𝑔ℎ mode

where 𝑤 denotes the LZW decoding; 𝑑𝑝𝑒𝑟𝑟𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)
denotes the spatial difference data on 𝑝 road segments after
LZW decoding at (𝑚 ∗ Δ𝑡) moment under 𝑀𝑔ℎ mode; and𝐶𝑆𝑀𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) denotes the reconstructed road traffic
real-time data on 𝑝 road segments at (𝑚∗Δ𝑡)moment under𝑀𝑔ℎ mode.

3. Parameter Determination

In the process of road traffic spatial data compression based
on LZW encoding, the following parameters were involved:𝑆𝐵(𝑚∗Δ𝑡), 𝑆𝑇𝑖(𝑚∗Δ𝑡),𝐸𝑖(𝑚∗Δ𝑡),𝑝𝑒𝑟, 𝑒𝑟𝑟𝑖(𝑚∗Δ𝑡), 𝑛, where𝐸𝑖(𝑚 ∗ Δ𝑡) can be acquired by 𝑆𝐵(𝑚 ∗ Δ𝑡) and 𝑝𝑒𝑟, 𝑛, and𝑒𝑟𝑟𝑖(𝑚∗Δ𝑡) can be acquired by 𝑆𝐵(𝑚∗Δ𝑡), 𝑆𝑇𝑖(𝑚∗Δ𝑡), and𝐸𝑖(𝑚 ∗ Δ𝑡). Parameter settings here are only concerned with
the effect analysis of the road traffic spatial data compression
based on LZW encoding. Separately analyzing the effect of
each parameter on the accuracy of the algorithm cannot
guarantee an optimal algorithm because these parameters
influence the accuracy of the algorithm in different ways. All
of the parameters in the road traffic spatial data compression
results should be considered when conducting the algorithm
analysis.

The compression ratios are introduced to measure the
effect of parameters on the precision of the algorithm. The
main expression can be described as follows:

𝐶𝑅𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 𝐶𝑀𝑎 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)𝐶𝑀𝑏 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , (7)

where 𝐶𝑅𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) denotes the compression ratio of𝑝 road segment at (𝑚 ∗ Δ𝑡) moment under 𝑀𝑔ℎ mode;𝐶𝑀𝑎(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) denotes the number of road traffic data
before compression at (𝑚 ∗ Δ𝑡) moment under 𝑀𝑔ℎ mode;
and 𝐶𝑀𝑏(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) denotes the number of road traffic
data after compression at (𝑚∗Δ𝑡)moment under𝑀𝑔ℎmode.

Different (𝑆𝐵(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ), 𝑆𝑇𝑗(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ), 𝑝𝑒𝑟) cor-
responds to different NMAE. Thus, the following expression
is reasonable:

𝐶𝑅𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)
= 𝑓 (𝑆𝐵 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , 𝑆𝑇𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , 𝑝𝑒𝑟) . (8)

That is, a certain distribution relationship 𝑓 exists
between (𝑆𝐵(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ), 𝑆𝑇𝑗(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ), 𝑝𝑒𝑟) and

Table 6: The road segments information.

Road segment ID Road segment name
HI3009b Xiao Jie Bridge East to Bei Xiao Jie Bridge

HI3008b Bei Xiao Jie Bridge to Yong He Gong
Bridge

HI7058b Yong He Gong Bridge to Capital Library
HI7036b Capital Library to An Ding Men Bridge

HI7057b An Ding Men Bridge to Zhong Lou
North Bridge

HI7056b Zhong Lou North Bridge to Gu Lou
Bridge

𝐶𝑅𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ). The process of finding the maximum𝐶𝑅𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) that corresponds to (𝑆𝐵(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ),𝑆𝑇𝑗(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ), 𝑝𝑒𝑟) is training optimal parameters. Thus,
the following model can be obtained:

min 𝑓 (𝑆𝐵 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , 𝑆𝑇𝑗 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) , 𝑝𝑒𝑟)
𝐶𝑅𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 𝐶𝑀𝑎 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)𝐶𝑀𝑏 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) .

(9)

Finally, the value of (𝑆𝐵(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ), 𝑆𝑇𝑗(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ),𝑝𝑒𝑟) can be determined through statistical analysis of the
reconstructed results of road traffic state.

4. Experiments

4.1. Data Acquisition

4.1.1. Road Segment Acquisition. The proposed compression
algorithm is conducted with the road traffic spatial relevant
data; thus, the selected data must exhibit the characteristics
of spatial correlation. The road segments will be briefly
explained here. The types of the road segments are express
ways, the wide of which is similar. First, the volume data
on six typical road segments in Beijing were adopted in the
present study. The specific road segments were determined
in Table 6.

Five days (June 11, 18, 19, 25, and 26 in 2011) of road traffic
data were extracted to construct the reference sequences
of road traffic characteristics. The road traffic state data
collection interval is 2min. As the correlation of road
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Table 7: The cross correlation of the road segment.

Road segment HI3009b HI3008b HI7058b HI7036b HI7057b HI7056b
HI3009b 1 0.9218 0.9286 0.9289 0.9087 0.8349
HI3008b 0.9218 1 0.9645 0.9330 0.9011 0.8310
HI7058b 0.9286 0.9645 1 0.9285 0.8915 0.8294
HI7036b 0.9289 0.9330 0.9285 1 0.9107 0.8676
HI7057b 0.9087 0.9011 0.8915 0.9107 1 0.8199
HI7056b 0.8600 0.8616 0.8655 0.8676 0.8398 1

segments mentioned in the literatures [19, 20], the first two
principal components can reflect most of the information of
road traffic state. Based on PCA method, we can find that
four road segments, HI3009b, HI3008b, HI7058b, HI7036b,
exhibited strong correlation that can be determined by cross
correlation.

The volume data on the six road segments from June 11,
2011, were extracted to determine the spatial correlation. The
cross correlation is shown in Table 7. According to the table,
the correlation of all road segments can be determined.

As shown in Table 7, the cross correlations between
HI3008b and the other three road segments (HI3009b,
HI7058, and HI7036b) were greater than 0.9. Thus, the
HI3008b road segment served as the base road, and its
collected data were considered as the base data. The volume
data on the four road segments were selected for the case
study to prove the performance of the proposed algorithm.
This can be explained by the following reasons.

The change regularity of volume is mainly determined
by the regularity of people’s origin-destination (OD) travel.
But for different date, people travel OD changes randomly.
The travel on weekends has a comparative regularity. Thus,
four days (June 18, 19, 25, and 26 on 2011) of road traffic
data on spatial road segments were extracted to construct the
reference sequences of road traffic characteristics.

4.1.2. Data Instruction. The collected road traffic data on the
HI3009b, HI7058b, andHI7036b road segments from June 11,
2011, were considered as training data to conduct algorithm
parameter settings. Under the same mode, the collected road
traffic data on the HI3009b, HI7058b, and HI7036b road
segments from four other days were regarded as real-time
data to validate the proposed algorithm.

4.2. Results. The road traffic spatial volume data compression
results based on LZW encoding on the HI3009b, HI7058b,
and HI7036b road segments are illustrated in Figures 5–16.

The running time is provided here, which can indi-
rectly reflect the calculation speed of the proposed method.
Through several times testing, the average running time is
approximate to 0.45. From the running time, we can see that
the proposed method is simple and practicable.

The statistical reconstructed results of spatial volume data
based on LZW encoding on HI3009b and HI7058b road
segments from June 18, 19, 25, and 26, 2011, are illustrated in
Tables 8 and 9, respectively. CR, AE, marerr, and 𝜎 denote
the compression ratio, mean absolute error, absolute relative
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Figure 5: HI3009b on June 18, 2011.

Table 8: Reconstructed results on HI3009b road segment.

Date 18 19 25 26 Average
CR 11.08 9.73 10.14 8.67 9.91
AE 11.24 11.28 14.14 11.92 12.15
marerr 12.42 14.82 14.09 13.81 13.79𝜎 13.93 13.41 15.12 14.00 14.12

Table 9: Reconstructed results on HI7058b road segment.

Date 18 19 25 26 Average
CR 16.74 16.00 15.65 11.80 15.05
AE 6.65 6.93 6.83 7.41 6.96
marerr 6.87 7.67 7.07 8.51 7.53𝜎 8.65 9.33 8.87 9.79 9.16

error percentage, and error standard deviation, respectively.
Average denotes the mean value of the four indicators. CR
is described in (7). AE, marerr, and 𝜎 can be described as
follows:

𝐴𝐸 = 1𝑝
⋅ ∑
𝑝

𝐶𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) − 𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ,
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Figure 6: HI3009b on June 19, 2011.

𝑚𝑎𝑟𝑒𝑟𝑟 = 1𝑝
⋅ ∑𝑝 𝐶𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) − 𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ,

𝜎 = √∑𝑝 (𝑦𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) − 𝑒𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ))𝑝 − 1 ,
(10)

where

𝑦𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 𝐶𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ)
− 𝑆𝑀𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ,

𝑒𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) = 1𝑝∑
𝑝

𝑦𝑝 (𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) ,
(11)

where 𝑦𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) denotes the error data between the
original real-time data and the reconstructed real-time data
on 𝑝 road segments at (𝑚 ∗ Δ𝑡) moment under 𝑀𝑔ℎ mode;𝑒𝑝(𝑚 ∗ Δ𝑡,𝑀𝑔ℎ) denotes the mean error at (𝑚 ∗ Δ𝑡)moment
under𝑀𝑔ℎ mode.

4.3. Sensitive Analysis. A sensitivity analysis is the study of
how the uncertainty in the output of a mathematical model
or system (numerical or otherwise) can be apportioned
to different sources of uncertainty in its inputs [21]. In
Section 4.2, four road segments are selected, and HI3008b is
used for training and the others are used for testing. To test
the effect of data size on the compression and reconstruction
results, a sensitive analysis is urgently needed. Since the
proposed algorithm is applicative for big data in road traffic
transportation data, a sensitive analysis is also required to test
the feasibility for little and medium-size data. The data size
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Figure 7: HI3009b on June 25, 2011.
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Figure 8: HI3009b on June 26, 2011.

can be indicated by the collecting time. Thereby, a sensitive
analysis is conducted through testing the compression and
reconstruction results indicators under different collecting
time, that is, CR, AE,marerr, and 𝜎.

The process of parameters determination is performed
in Section 3, but the optimal parameter is determined
under fixed collecting time. For different collecting time, the
optimal parameters will be different. Thus, collecting time is
considered as a variable to test compression results. Besides,
in this process, we also follow the rule in (9).

Here, a brief data declaration is provided. In Section 4.1,
one-day collected data (720) are used for experiment. To
test the feasibility of the proposed method, we calculate
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Figure 9: HI7058b on June 18, 2011.

the experimental index under different collecting time on
HI7058b. This may be regarded as a test bed. The sensitive
analysis can be seen in Tables 11–14.

From the sensitive analysis results shown in Tables 11–14,
we can see that the compression ratio of big-size data is
relatively greater than little and medium-size data. And AE,
marerr, and 𝜎 are all less than 10. The results show that the
proposed algorithm is feasible.

A comparison is also provided here. PCA method is
a famous data compression method; thus, we compare the
proposedmethod with PCAmethod.We compare the recon-
struction indicators on on June 19, 2011. The specific results
are shown in Table 15.

From Table 15, we can see that the CR of LZW encoding
is dramatically greater than that of PCA. The AE, marerr,
and 𝜎 of PCA and LZW are very similar. The comparison
proves that the performance of the proposed method is
comparatively better.

4.4. Analysis of Experiment Results. Based on the experiment
results conducted in Section 4.2, the following analyses are
presented:

(1) From Tables 8–10, the following results can be
obtained:
For the reconstructed volume data, the average
compression ratios are 9.91, 15.05, and 5.94 for the
HI3009b, HI7058b, and HI7036b road segments,
respectively; the average mean absolute error rates
are 12.15, 6.96, and 10.32 for the HI3009b, HI7058b,
andHI7036b road segments, respectively; the average
absolute relative error percentages are 13.79, 7.53, and
12.00 for the HI3009b, HI7058b, and HI7036b road
segments, respectively; the average error standard
deviations are 14.12, 9.16, and 13.37 for the HI3009b,
HI7058b, and HI7036b road segments, respectively.
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Figure 10: HI7058b on June 19, 2011.
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Figure 11: HI7058b on June 25, 2011.

Table 10: Reconstructed results on HI7036b road segment.

Date 18 19 25 26 Average
CR 6.32 5.71 6.43 5.29 5.94
AE 9.61 9.76 10.73 11.19 10.32
marerr 11.10 12.11 12.02 13.25 12.00𝜎 12.33 12.65 13.85 14.64 13.37

As the statistical data show, we can find that the
performance of the HI7058 road segment is better
than that of theHI3009b andHI7036b road segments.
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Figure 12: HI7058b on June 26, 2011.

2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

140

160
HI7036b on June 18, 2011

Real-time volume
Reconstructed volume

Hour

Vo
lu

m
e

Figure 13: HI7036b on June 18, 2011.

(2) The road traffic spatial volume compression ratio for
the HI7058b road segment is higher than that for the
HI3009b and HI7036b road segments.

The main reason is that the cross correlation of road
traffic spatial volume for HI7058b is higher than that
for HI3009b and HI7036b. From Table 7, a similar
conclusion can be reached. Consequently, the volume
compression ratio for the HI7058b road segment is
higher than that for the other two road segments.

(3) The precision of the reconstructed results of volume
for the HI7058b road segment is higher than that for
the other two road segments.
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Figure 14: HI7036b on June 19, 2011.
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Figure 15: HI7036b on June 25, 2011.

From Figures 5–16, we can get that the precision
and stability of the reconstructed volume data for
the HI7058b road segment is higher than those for
the HI3009b and HI7036b road segments based on
LZW encoding. The phenomenon is mainly caused
by the cross correlation between the base volume
data and real-time volume data on base road segment
and other spatial road segments, respectively. From
Table 7, similar conclusions can be reached.

(4) Some peak points are missing and the phenomenon
can be described by the following reason.
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Table 11: The sensitive analysis results on June 18 on HI7058b.

Data size 180 (0:00–6:00) 360 (0:00–12:00) 540 (0:00–18:00) 720 (0:00–24:00)
CR 5.45 10.29 14.21 16.74
AE 4.09 5.92 6.35 6.65
marerr (%) 9.92 8.13 7.24 6.87𝜎 5.43 7.90 8.40 8.65

Table 12: The sensitive analysis results on June 19 on HI7058b.

Data size 180 (0:00–6:00) 360 (6:00–12:00) 540 (12:00–18:00) 720 (0:00–24:00)
CR 3.00 10.59 15.00 16.00
AE 3.84 6.16 6.45 6.93
marerr (%) 10.98 9.14 7.86 7.67𝜎 4.79 8.51 8.74 9.33
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Figure 16: HI7036b on June 26, 2011.

The road traffic data at the peak points has a sudden
change compared to the data on the base road seg-
ment. In the feature extraction process, the features
are extracted based on the threshold processing of the
difference data. If the features needed to be retained,
we can shift down the threshold. In the reconstruction
process, the peak points can be retained at the cost
of compression ratio. From the reconstructed results
shown above, the peak points are sustainable.

(5) Several errors occur in the road traffic state recon-
struction of this algorithm.
The errors are mainly caused by the following two
reasons:

(1) Obtaining the corresponding road traffic spatial
states with a perfect match based on LZW
encoding is difficult because of the limitations
of the road traffic running characteristics.

(2) The parameters exhibit a certain deviation.
Determining the optimal parameters is irregular
because they vary for different road traffic state
datasets. The selected optimal parameters are
determined based on the historical road traf-
fic state data. Therefore, the current optimal
parameters are approximately different from the
historical optimal parameters.

5. Conclusions

An effective road traffic data compression algorithm can
boost the data transportation and storage effectiveness of
a road traffic system. The PCA method can be used to
select the road traffic segments with strong correlation. Based
on the spatial correlation of the road traffic spatial data,
this study proposes a road traffic spatial data compression
algorithm that uses LZW encoding.The contributions of this
study can be effectively used for the road traffic spatial data
compression of different road segments. Besides, the high
spatial correlation roads are selected by PCA, which can also
be used in transportation research. Further, the compression
method canmotivate some interesting ideas in transportation
research field as well.

For the road segments with high spatial correlation, the
proposed algorithm performs effectively. According to the
reconstructed results of the HI3009b and HI7036b road
segments, the algorithm is sensitive for correlation. The
stronger the correlation is, the better the performance of
the algorithm is. Thus, to ensure improved performance,
the cross correlation should be greater than 0.95. Then, the
expected compression ratio can be obtained.

Considering the remarkable performance of the proposed
algorithm, we will explore the traffic state compression based
on the spatial-temporal correlations in our next study.
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Table 13: The sensitive analysis results on June 25 on HI7058b.

Data size 180 (0:00–6:00) 360 (0:00–12:00) 540 (0:00–18:00) 720 (0:00–24:00)
CR 3.27 10.59 12.86 15.65
AE 4.19 5.92 6.43 6.83
marerr (%) 10.00 8.16 7.22 7.07𝜎 5.26 7.76 8.39 8.87

Table 14: The sensitive analysis results on June 26 on HI7058b.

Data size 180 (0:00–6:00) 360 (0:00–12:00) 540 (0:00–18:00) 720 (0:00–24:00)
CR 2.09 4.86 15 11.80
AE 4.29 6.51 7.32 7.41
marerr (%) 11.70 9.60 9.03 8.51𝜎 5.60 9.14 9.84 7.79

Table 15: The indicators results of PCA and LZW encoding on June 19, 2011.

Road segment CR AE marerr 𝜎
PCA LZW PCA LZW PCA LZW PCA LZW

HI3009b 2.01 9.73 7.43 11.28 8.10 14.82 9.94 13.43
HI7036b 2.01 5.71 9.43 9.76 13.31 12.11 11.82 12.65
HI7058b 2.01 16.00 7.15 6.93 7.30 7.67 9.23 9.33
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A route choice predictionmodel is proposed considering the connected vehicle guidance characteristics.This model is proposed to
prevent the delay in the release of guidance information and route planning due to inaccurate timing predictions of the traditional
guidance systems. Based on the analysis of the impact of different connected vehicle (CV) guidance strategies on traffic flow, an
indexes system for CV guidance characteristics is presented. Selecting five characteristic indexes, a route choice prediction model
is designed using the logistic model. A simulation scenario is established by programming different agents for controlling the flow
of vehicles and for information acquisition and transmission.The prediction model is validated using the simulation scenario, and
the simulation results indicate that the characteristic indexes have a significant influence on the probability of choosing a particular
route. The average root mean square error (RMSE) of the prediction model is 3.19%, which indicates that the calibration model
shows a good prediction performance. In the implementation of CV guidance, the penetration rate can be considered an optional
index in the adjustment of the guidance effect.

1. Introduction

The connected vehicle (CV) guidance system is a new type
of guidance system. This system realizes dynamic vehicle
guidance by utilizing connected vehicle technologies. Based
on the vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), and vehicle-to-smart terminal (V2T) technologies, the
CV guidance system facilitates dynamic guidance for road
network flow using real-time traffic information. Traditional
guidance systems have several shortcomings such as the delay
in the release of guidance information and route planning
due to inaccurate timing predictions. The CV guidance
overcomes these shortcomings and enhances the spatial-
temporal guidance efficiency in road networks.

The United States (US), the European Union (EU), and
Japan have conducted a study on dynamic route guidance
using connected vehicle (CV) technologies; these countries
have launched their own application projects, including
Connected Vehicle [1], AERIS [2], DRIVE C2X [3], and
Smartway [4]. These projects have helped improve the trav-
elling efficiency of the road network, propose many road
guidance theories and methods, and conduct corresponding

field applications [5–8] by applying the CV technologies
to dynamic route guidance. Recently, Beijing, Shenzhen,
and Chongqing also have applied the concept of wireless
communication to dynamic route guidance [9, 10].

Over the years, many researchers have paid attention to
the theory and algorithm of route guidance and proposed
various optimization algorithms to analyze their impact on
the road network flow [11]. Some intelligent algorithms for
route guidance have been proposed, such as the Dijkstra
algorithm [12], Floyd algorithm [13], A∗ algorithm [14],
genetic algorithm [15], neural network algorithm [16], and
ant colony optimization [17]. Su et al. [18] proposed a
multiobjective and multipath optimization selection method
based on the genetic algorithm. The algorithm can pro-
vide several alternative routes and satisfies drivers’ varying
preferences. Furthermore, travelling fitness functions were
designed to provide better multiroute selection. A dynamic
route guidance method based on the real-time forecast of
traffic information was proposed to solve the problem of
seeking answers ineffectively in a route guidance algorithm.
This method combined the neural network algorithm and
the genetic algorithm, and the proposed method improved
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the computation efficiency and solution quality [19]. Yang
[20] analyzed the major factors that influence the choice of
optimal route and then provided an improved K-optimal
chaos ant colony algorithm. The results of a simulation
experiment showed that the algorithm has much higher
capacity for global optimization and can use the basic ant
colony algorithm to optimize the route choice. Introducing
the idea of depth parameter, Lee and Kim [21] combined the
Dijkstra algorithm and A∗ algorithm to propose a hybrid
route guidance algorithm. Experimental results indicated
that the algorithm reduced the computation cost considerably
compared to the costs involved in traditional searching
algorithms.

Nowadays, scholars have begun to study route guid-
ance in a connected vehicle (CV) environment. Tian et
al. [22] presented a real-time route guidance system based
on CV technologies, and simulation results showed that
better routes are found using the V2V and V2I technologies.
Paikari et al. [23] realized CV guidance by developing a
V2V and V2I application interface (API). Experimental
results demonstrated that the extended simulation system
can handle the load of urban freeways and reduce crash
risks. Chim et al. [24] proposed a navigation scheme in the
CV environment using anonymous credentials and limited
jurisdiction, and they addressed the security requirements
associated with CV guidance. Vreeswijk et al. [25] proposed a
CV guidance strategy based on travelling bounded rationality
degree. The results showed that the proposed strategy can
effectively reduce the total travel time and realize the goal
of system optimal guidance. Genders and Razavi [26] used
V2V communication to share warning information about the
work zone to nearby vehicles, and a dynamic route guidance
algorithm was proposed. The results showed that the CV
penetration rate of less than 40% contributes to a safer traffic
network for vehicles in the work zone. In general, these
studies cannot comprehensively reflect the impact of the
CV guidance characteristics on route choice, although the
penetration rate was considered.

Existing route guidance research mainly focuses on route
guidance algorithms [16, 17, 27–29], guidance strategy [30–
32], and system design [33] using traditional data detectors.
CV technologies allow for some innovative means for data
acquisition, and many scholars have attempted to study the
dynamic route guidance models in a CV environment [32,
34, 35]. Several studies have even considered the influence
of CV characteristics, such as penetration rate [24, 26, 36–
38]. However, existing research does not provide a detailed
analysis of the CV guidance characteristics. Therefore, this
paper presents a CV guidance algorithm based on the
proposed CV guidance characteristic indexes. A simulation
experiment is conducted to analyze the prediction accuracy.

2. Prediction Model

In a CV environment, travellers receive traffic guidance
information using V2V and V2I technologies and select the
optimum route according to the guidance strategy. Different
guidance strategies have different effects on the flow distribu-
tion of a road network. Figure 1 shows the guidance effect of

A

B

C

D

F

G

H

E

Arrival flow

Departure flow
Guidance strategy 2

arrival flow

Guidance strategy 3
arrival flow

Time

Guidance strategy 1
arrival flow

Tr
affi

c v
ol

um
e

ts tcvs tcve t1 t2 te

Tc
Tr

Tt

Figure 1: Impact of CV guidance strategy on traffic flow. 𝑡𝑠—start
time of traffic congestion; 𝑡cvs—start time of CV guidance strategy3; 𝑡cve—end time of CV guidance strategy 3; 𝑡1—end time of CV
guidance strategy 2; 𝑡2—end time of guidance strategy 1; 𝑡𝑒—end
time of congestion.

different guidance strategies in a CV guidance environment.
The guidance information from the variable message signs
(VMS) is received during traffic congestion on a route to
reduce the arrival flow. The arrival flow is shown by the line
representing guidance strategy 1 in Figure 1. Considering
the large delay in information release, the guidance effect
has not been exhibited well. Using the V2V technology, the
guidance information is transmitted in time, and the arrival
flow is shown by the line representing guidance strategy 3
in Figure 1. However, guidance strategy 3 might generate
surplus capacity, as indicated by the area of the triangle EFG.
Hence, this guidance strategy is not a good option and the
optimal option would be guidance strategy 2. Therefore, a
reasonable guidance strategy can be obtained by adjusting the
CV guidance characteristics, such as the penetration rate.

The CV guidance characteristics have a direct impact
on the guidance effect. The characteristic indexes for CV
guidance features are shown in Figure 2.

In this study, five characteristic indexes were chosen as
the variables for analysis: compliance rate (CR), following
rate (FR), penetration rate (PR), release delay time (DT), and
congestion level (CL). CR is the ratio of vehicles with CV
ability to comply route adjustments to all vehicles with CV
ability. FR refers to the ratio of vehicles without CV ability
following to adjust the route because of the influence of the
leading vehicle changing the route to vehicles without CV
ability. PR refers to the proportion of vehicles with CV ability
to all vehicles. DT refers to the interval from the generation
of traffic information to the reception of traffic information
by the vehicle. CL is an important index for evaluating the
flow operation states of the road network, and the duration
of congestion caused by an accident vehicle is used as an
alternative variable in this paper.

To study the influence of the CV guidance characteristic
indexes on route choice behavior, the route choice model was
established using the logistic model. Utility refers to a metric
that should be maximized to satisfy travellers’ demands, such
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Figure 2: Indexes system for CV guidance characteristics.

as travel time. The logistic model is based on the utility
maximization theory, which states that all vehicles will always
choose the route with maximum utility during the route
selection process. The utility is represented by the following
equation:

𝑈𝑗 = 𝑁∑
𝑛=1

𝛽𝑛𝑗𝑥𝑛𝑗 + 𝛽0, (1)

where Uj is the utility of the choice route j, xjn is the
explanatory variable for the characteristics index 𝑛 of the
choice route j, 𝛽nj is the coefficient of xjn, and 𝛽0 is a constant.

In a CV environment, origin-destination (od) pairs have
r (𝑟 ≥ 2) routes. The route choice model is

𝐺𝐿od
𝑗
= ln(𝑃od𝑗𝑃od𝐽 ) = 𝛽

od
𝑗 +∑
𝑛

𝛽od𝑗𝑛𝑥𝑗𝑛,
𝑗 = 1, 2, . . . , 𝑟 − 1,

(2)

where 𝐺𝐿od
𝑗
is the utility of the choice route 𝐿od𝑗 relative to the

reference route 𝐿od𝐽 (𝑗 ̸= 𝐽); 𝑃od𝑗 and 𝑃od𝐽 are the probabilities
of the choice routes𝐿od𝑗 and𝐿od𝐽 , respectively.𝛽od𝑗 is a constant;
𝛽od𝑗𝑛 is the coefficient of the explanatory variable 𝑥𝑗𝑛; 𝑥𝑗𝑛 is
the explanatory variable for the characteristic index n of the
choice route j in a CV environment.

Based on (2), assuming 𝑃od𝑗 /𝑃od𝐽 = 𝑒𝐺𝐿od𝑗 and ∑𝑟−1𝑗=1 𝑒𝐺𝐿od𝑗 =∑𝑟−1𝑗=1 𝑃od𝑗 /𝑃od𝐽 = 𝑦, the route choice probability in a CV
environment is as follows:

𝑃od𝑗 = 𝑒
𝐺
𝐿od
𝑗

1 + 𝑦 . (3)

3. Model Validation

To verify the effectiveness of the route choice model, a simple
road network scenario is designed, which includes three
routes and four 3-way intersections, as shown in Figure 3. In
the initialization stage, vehicles with connected vehicle ability
(CVs) and vehicles without connected vehicle ability (non-
CVs) are arranged in the road network. Car-Agent is used to
control the vehicles’ traffic behaviors, such as car following
and lane changing by programming the agents using the
EstiNet tool. The Roadside Unit (RSU) at an intersection is
used to collect the traffic volume entering the intersection
and transmit the volume to the Central-Roadside Unit (C-
RSU) in real time. The C-RSU is responsible for receiving
the volume from the downstream intersections; it calculates
the shortest route using the Bureau of Public Roads (BPR)
impedance function. To generate the traffic congestion, a
broken vehicle (BV) was set on route 1. During the simulation
stage, all vehicles, including CV and Non-CV, choose the
shortest route to travel depending on the real-time traffic
information obtained throughV2V andV2I communication.
When the simulation starts, the BV sends the accident infor-
mation to the C-RSU. Meanwhile, the C-RSU broadcasts the
real-time traffic information to all vehicles. CVs will choose
the shortest route to travel according to the CV guidance
information, and non-CVs will choose their routes to travel
based on their own reasonable judgment. For example, these
non-CVs may change their initial route following the leading
vehicles depending on the FR.

The basic parameters of the simulation are listed in
Table 1.The total number of vehicles including CVs and non-
CVs is 100 vehicles, which is represented by the parameter of
number of vehicles.
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Table 1: Basic parameters of the simulation.

Parameters Values Parameters Values
Simulation time (s) 1800 Number of intersections 4
Number of vehicles 100 Number of road sections 12
Maximum velocity (m/s) 18 MAC communication protocol IEEE802. 11p
Acceleration velocity (m/s2) −4 to 1 CL (s) 300/500
Transit power (m) 1000 PR (%) 25/50/75/100
Number of lanes 2 CR (%) 25/50/75/100
Lane width (m) 3.5 FR (%) 0/10/20/30
Vehicle type Passenger car unit DT (s) 0/120/180

Using the CV guidance scenario, the five characteristic
indexes with their corresponding values were selected for
simulation. 312 simulation experiments were carried out, and
the experimental samples were divided into 200 calibration
samples and 112 test samples. Using the calibration samples
and considering route 3 as the reference choice route, the
multinomial logit model is used to obtain the coefficients of
variables. The calibrated results are as follows:

𝐺𝐿1 (𝑥) = 1.608PR + 2.006CR + 1.881FR
− 0.085CL (0) + 0.280DT (0)
+ 0.114DT (1) − 3.582,

𝐺𝐿2 (𝑥) = 3.143PR + 3.494CR + 3.737FR
− 0.413CL (0) + 0.487DT (0)
+ 0.126DT (1) − 7.046.

(4)

In the next section, the test samples are used to evaluate
the performance of the proposed route choice model and
analyze the impact of the five characteristic indexes on the
route choice.

4. Results Analysis

To verify the effects of CV guidance, the results of sample1 (without guidance) and sample 2 (with guidance) were
compared, and the results are listed in Table 2. With CV
guidance, the average travel time on the entire road network
decreased by 20.31%. The volume distribution ratios in route
2 and route 3 gradually tend to balance one another in the CV
guidance environment, as shown in Figure 4.

The PR is one of the most important characteristic
indexes, which determines the proportion of CVs. Figure 5
illustrates the impact of the PR on the probability of the
route choice in a CV guidance environment. The figure
also illustrates that a higher proportion of CV vehicles will
choose route 2 and route 3 as the PR increases. Finally,
the distribution of volume will even out when the PR is
approximately 100%. This may be because more CVs will
follow the guidance information to choose the optimal route
2 to travel when route 1 is blocked owing to an increase in the
PR.With an increase in the impedance of route 2, the CVwill
choose route 3 to travel.

Figures 6(a) and 6(b) show the impact of different CR and
FR values on the choice probability of route 2 and route 3 in
a CV guidance environment. With an increase in the FR, the
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Table 2: Distribution of volume and average travel time for different routes.

Flow distribution ratio (%) Travel time (s)
Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Mean

Sample 1 87 8 5 1325.19 1076.73 1004.92 1289.30
Sample 2 11 43 46 1006.22 1055.50 1006.37 1027.48
Savings 87.36% ↓ 81.40% ↑ 89.13% ↑ 24.07% ↓ 1.97% ↓ 0.14% ↑ 20.31% ↓

Without CV guidance route 1
With CV guidance route 1
With CV guidance route 2
With CV guidance route 3
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Figure 4: Volume distribution of each route in CV guidance
environment.
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Figure 5: Impact of different PR values on probability of route
choice.

choice probability of route 2 and route 3 increases steadily.
On the other hand, the index CR has a more obvious impact
on the probability of route choice. Overall, an increasing
number of vehicles will choose a detour as the FR and CR
increase when route 1 is blocked, and the traffic impedance
values of route 2 and route 3 gradually reach a state of
equilibrium. Figure 6 indicates that the indexes FR and CR
have a significant influence on the probability of route choice,
which is consistent with the theoretical expectations.

Using the test samples, a calibration model is employed
to predict the vehicles’ route choice considering the impact
of the five characteristic indexes, and the prediction accuracy
is analyzed using the root mean square error (RMSE). The
prediction results of the calibration model are presented
in Table 3. It is shown in the table that the prediction
accuracy of the route choice ranges from 2.40% to 4.52%
for different values of the five characteristic indexes. The
prediction accuracy of the calibrationmodel is high for all PR
values, while the index of the CR has a significant influence
on the prediction accuracy of the calibration model, which
shows relatively big fluctuation. Overall, the average RMSE
of the calibration model is 3.19%, which indicates that the
calibration model shows a good prediction performance.

The following section will analyze the impact of the five
characteristic indexes on the prediction accuracy. Figure 7
shows the influence of the indexes FR, CR, and FR on the
prediction accuracy of the calibration model. It is concluded
from Figure 7 that the prediction accuracy decreases initially
and then increases with an increase in the values of FR,
CR, and FR. A reasonable prediction accuracy is obtained
when the values of PR, CR, and FR are 50%, 50%, and 10%,
respectively.

Figure 8 shows the influence of the indexes CL and DT
on the prediction accuracy. The RMSE of the calibration
model decreases with an increase in the value of the CL.This
might be explained by a more stable route choice behavior
in congestion states, and the calibration model has a higher
prediction accuracy of route choice. When the value of the
CL is 500 s, the model has a smaller RMSE, which indicates
that the calibrationmodel exhibits better prediction in a con-
gested environment.The RMSE of the calibration model inc-
reases with an increase in the value of the DT, which shows
that the delay in the release of traffic information has a nega-
tive effect on the prediction accuracy.Thismight be explained
by a more confused route choice behavior for a bigger release
delay time, and the calibration model has a lower prediction
accuracy of route choice.The real-time release of the CV gui-
dance information helps the vehicles choose a suitable route
to avoid traffic congestion.

5. Conclusion

A route choice model was proposed considering the char-
acteristics of CV guidance; this model was validated using
the EstiNet simulation tool. The effect on CV guidance was
statistically analyzed, and the impact of the five characteristic
indexes on the prediction accuracy of the calibration model
was studied. The simulation results showed that the indexes
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Figure 6: Influence of different FR and CR values on route choice probability of routes 2 and 3.
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Table 3: Influence of CV characteristics indexes on prediction accuracy.

CL (s) 300 500 — —
RMSE 3.23% 3.15% — —
DT (s) 0 120 180 —
RMSE 2.89% 3.06% 3.64% —
PR (%) 25 50 75 100
RMSE 2.96% 2.62% 3.93% 3.61%
CR (%) 25 50 75 100
RMSE 2.88% 2.40% 3.18% 4.52%
FR (%) 10 20 30 40
RMSE 3.08% 2.49% 3.30% 3.84%
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PR, FR, and CR had a significant influence on the probability
of route choice, which was consistent with the theoretical
expectations. Overall, the average RMSE of the calibration
model was 3.19%, which indicates that the calibration model
exhibits a good prediction performance. In the implementa-
tion of CV guidance, the PR can be considered an optional
index to adjust the guidance effect.

There are several considerations for future research
works. First, the route choice model will be calibrated
and validated through a field experiment to provide better
understanding of the benefit of CV guidance. Second, more
characteristic indexes will be considered in the design of the
route choice model in a CV environment.
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Transit accessibility is an important measure on the service performance of transit systems. To assess whether the public transit
service is well accessible for trips of specific origins, destinations, and origin-destination (OD) pairs, a novel measure, the Trip
Coverage Index (TCI), is proposed in this paper. TCI considers both the transit trip coverage and spatial distribution of individual
travel demands. Massive trips between cellular base stations are estimated by using over four-million mobile phone users. An easy-
to-implement method is also developed to extract the transit information and driving routes for millions of requests. Then the trip
coverage of each OD pair is calculated. For demonstrative purposes, TCI is applied to the transit network of Hangzhou, China.The
results show that TCI represents the better transit trip coverage and provides a more powerful assessment tool of transit quality of
service. Since the calculation is based on trips of all modes, but not only the transit trips, TCI offers an overall accessibility for the
transit system performance. It enables decision makers to assess transit accessibility in a finer-grained manner on the individual
trip level and can be well transformed to measure transit services of other cities.

1. Introduction

Public transportation plays an important role in solving traf-
fic problems in urban cities. It is well recognized among trans-
portation planners that transit accessibility is an important
measure of the service performance. The Transit Capacity
andQuality of ServiceManual summarized spatial, temporal,
information, and capacity availability factors of public transit
systems [1]. A major concern in the public transit sector has
been the adequate assessment of access to transit services.
Measures of transit accessibility are important in assessing
existing transit services, allocating investments, and making
decisions on the land development [2]. Transit accessibility
has been one of the key indicators of transit planning,
performance evaluation, and quantification of the level of
service. Transit system planners design the layout of transit
lines and stops to improve accessibility and enhance the
transit attractiveness. One of the recent research concerns
is the extent to which public transit systems enable the less
privileged population of privately nonmotorized travelers
to access the systems more conveniently, efficiently, and
comfortably [3]. To achieve this objective, the first question

we need to answer is: How to assess accessibility of public
transit for trips in a network with spatially and temporally
nonuniform travel demands?

As shown in Table 1, modeling public transit accessibility
has attracted numerous research efforts in the past decades,
primarily including the evaluation of the spatial coverage
[4–6], temporal coverage [7–10], and trip coverage [11–13].
Since passengers’ departure time varied according to their
own need, Owen and Levinson calculated continuously in
time for the evaluation of transit systems rather than at a
single of a few departure times [14]. On the other hand,
more and more research combined the spatial coverage and
temporal coverage to assess transit accessibility. For instance,
Mavoa et al. combined public transit, walking accessibility
index, and transit frequency to calculate accessibility at the
parcel level [15]. Mamun et al. combined the spatial coverage,
temporal coverage, and trip coverage to measure public
transit performance [16]. El-Geneidy et al. incorporated both
travel time and transit fares to determine whether people
residing in socially disadvantaged neighborhoods [17].

Based on the literature review it is evident that (1) most
assessment models belong to the physical location-based
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Table 1: Summary of transit accessibility measures.

Category Measure description Application Reference

Physical access to
transit

Proximity to transit stops in
time or distance

Measuring accessibility for
local transit operators in

London

Hillman and Pool
[5]

Quarter-mile buffers
around transit routes

Transit coverage in the
Queen Anne Community

of Seattle
Nyerges [6]

Pedestrian average and
maximum walking distance

to transit stops

Three neighborhood plans
for a 23.3 ha site

Aultman-Hall et al.
[4]

Accessibility to
destination

Travel-impedance
measurements (e.g., travel
distance, time, or cost)

Mass/light rapid transit
systems in Singapore Liu and Zhu [11]

Public transport relative
accessibility percentage

(transit catchment area and
population by transit

within 60min)

90 sites in the south east of
England

Gent and Symonds
[12]

Transit accessibility index
(TAI) and transit

dependence index (TDI)

TransCAD-based transit
accessibility measure
(TAM) software tool

Bhat et al. [13]

Temporal
accessibility

Span and headway of
transit service and

time-of-day distribution of
travel demand

Numerical illustration Polzin et al. [7]

Space-time accessibility
measures with

opportunities and human
activity-travel behavior

Commercial and industrial
land parcels of Portland
Metropolitan Region,

Oregon

Kim and Kwan [8]

Dynamic activity
opportunities that can be

reached within a
prespecified time limit with
known transit schedules

Southern California
Association of

Governments megaregion
Lei et al. [9]

Rate of access poverty
among population

Regional transportation
plan scenarios from the San

Francisco Bay Area

Golub and Martens
[10]

proximity analysis, while few studies take into account the
transit coverage of individual travels in a real-world large-
scale network; (2) most of the existing transit accessibility
measures account for the spatial and temporal coverage,
while very few studies consider the trip coverage; (3) the
accessibility metrics produced by most existing tools are
therefore static in the sense that they describe the transit
system but consider less the temporal variability of individual
travel demands. To assess whether the public transit service
is well accessible for trips of specific origins, destinations, and
origin-destination (OD) pairs, a public transit accessibility
measure coping with the trip coverage is needed to provide
a more reasonable assessment of transit quality of service.

There are some reasons for the gap of the previous studies.
In the past, multiple sources of data required to evaluate
transit accessibility considering individual travel demands
are difficult to collect and consequently extensive efforts are
required in order to obtain the useful data. In particular,

it is difficult to measure real-world travel demands due to
the small amount of household survey data in the past. In
addition,many surveys are zone based and unable to describe
individual travel behavior. In some cases, public transit
operational data (e.g., stops, routes, schedules, frequencies,
and hours of operation)may be hard to access and data fusion
could become uneasy due to their inconsistent formats in the
time scale and data particle size [18].

Fortunately, the recent advent of data collection technolo-
gies, for example,mobile phone signaling data and automated
vehicle location, has shifted a data-poor environment to a
data-rich environment and offered opportunities to conduct
comprehensive transit system performance evaluation. For
example, cell phone signaling data have emerged to be
a widely used resource to measure both individual travel
behavior and network demand, for example, individual
human mobility patterns [19, 20], estimation of OD matrices
[21], and OD trip purposes [22]. On the other hand, more
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Mobile phone data

Trips between base
stations

Traffic demand
between base stations

Internet map service

Driving routes
information of trips

Transit routes
information of trips

Transit trip coverage

Traffic analysis zone

Trip Coverage Index

Base station
information

TAZ and BS
comparative table

Figure 1: Estimation framework of TCI.

and more web map service data become readily available
for public use, for example, Google Maps APIs [23], Baidu
Map API [24], and AMAP Open Platform [25], which can
provide massive on-demand transit trip planning services in
real time. Ma and Wang developed a data-driven platform
for online transit performance monitoring using automated
fare collection and automated vehicle location [26]. Ma et al.
developed a series of data mining methods to identify the
spatiotemporal commuting patterns of public transit riders
using one-month transit smart card data [27].Therefore, new
accessibility indicators taking into account individual trips
will definitely provide a more powerful tool.

This paper is aimed at presenting a new public transit
quality of service measure, the Trip Coverage Index (TCI),
which takes into account both the trip coverage for transit
systems and the spatial distribution of heterogeneous and
dynamic individual travel demands. The TCI provides a
quantitative measure of transit accessibility on the basis of
massive trips collected from mobile phone data. The transit
accessibility information is extracted from the Baidu Map
with the Python code implementation, for example, the access
to transit facilities, transit routes (shortest in time/length and
alternatives), transit on-vehicle time, and OD connectivity.
The novel measure of transit service performance fills the
research gap that the conventional spatial coverage index
does not consider the coverage to individual trips or the
percentage of travel demands that can be served by the transit
systems.

The rest of the paper is organized as follows: Section 2
presents the methodological approach to the trip coverage
analysis, which is different from the conventional spatial
coverage of transit services. In Section 3, an illustrative and

tractable numerical example is employed to present how to
calculate TCI and compare it with the conventional measure
of spatial coverage. Section 4 shows the field data utilized in
this paper and presents results of a real-world city-wide case
study that applies TCI to the transit network of Hangzhou,
China. Finally, Section 5 concludes the paper and outlooks
the future research.

2. Methodology

In this part, we first propose a new method to acquire the
transit route information for millions of trips determined
from the mobile phone data automatically based on online
map and programing; then a new public transit quality of
service measure (TCI) is proposed considering the access
to transit facilities, transit routes information, driving routes
information, and OD connectivity. The development of the
proposed TCI requires several steps and the framework is
shown in Figure 1. The first step is to acquire travel flows
between cellular base stations using mobile phone data.
Second, the information of transit services and driving routes
between each OD pair is then extracted by accessing the
onlinemap service formillions of times.Third, the transit trip
coverage from base station m to base station 𝑛 is estimated
based on the data retrieved from the online map. Fourth,
TCI from Zone 𝑖 to Zone 𝑗 is estimated using the transit trip
coverage and travel demand between the base stations. Each
of the key procedures of the transit accessibility assessment
will be presented in the following sections.

2.1. Trip Estimation. In this section, we introduce the mobile
phone data and present the methods used to determine trips
from the mobile phone data.
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2.1.1. Mobile Phone Signing Data. The dataset used in this
study consists of two tables in the database: one is the base
station table and the other is the anonymous table of mobile
phone records.Themobile phone record is generated when a
device connects to the cellular network in any of the following
cases:

(i) when the phone makes or receives a call;

(ii) when the phone sends or receives a message;

(iii) when the phone is switched on or off;

(iv) when the user moves from one base station to
another; or

(v) when the system sends the periodic location update
request on the phone, for example, 2 h.

The mobile phone signaling data contain Call Details
Records (CDR), which were previously utilized to estimate
OD demands in numerous related studies [19–22]. Each
record of the mobile phone signaling data contains an
anonymous user ID, base station ID, and timestamp at the
instance of the phone communication with the base station.
The base station table contains the base station ID, longitude,
and latitude.There aremore than 52 thousand of base stations
in the urban area of Hangzhou, China. The average covering
radius of each base station is less than 100m.

2.1.2. Determining Trips. In order to infer trips from the
mobile phone signaling data, the first step is to filter out noise
resulting from one base station to another.The call balancing
is conducted by themobile service provider, which creates the
appearance of false movements, and distinguishes users’ stay
locations.Once the stay locations are determined, we evaluate
the trips as paths between a user’s consecutive locations. To
achieve this, we estimate the trips by employing themethod of
usingmobile phone traces data [20].The estimation is carried
out as follows:

(i) Each mobile phone signaling record 𝑅𝑖(𝑘) is charac-
terized by a position 𝑝𝑖(𝑘) expressed by latitude, lon-
gitude, and a timestamp 𝑡𝑖(𝑘) for the 𝑘th observation
of a given anonymous user 𝑖.

(ii) Then the signaling records are connected into a
sequence of records {𝑅𝑖(1), 𝑅𝑖(2), . . . , 𝑅𝑖(𝑛)} accord-
ing to their time series.

(iii) If the signaling record series {𝑅𝑖(𝑞), 𝑅𝑖(𝑞 + 1), . . . ,
𝑅𝑖(𝑧)} satisfy the criteria, (I) 𝑡𝑖(𝑧) − 𝑡𝑖(𝑞) > Δ𝑇; (II)
max{𝑝𝑖(𝑗), 𝑝𝑖(𝑘)} < Δ𝑆, ∀𝑞 ≤ 𝑗, 𝑘 ≤ 𝑧, which mean a
user should stay in an area with the radius Δ𝑆 (set as
200m) over a certain time intervalΔ𝑇 (set as 30min).
Then the points {𝑅𝑖(𝑞), 𝑅𝑖(𝑞 + 1), . . . , 𝑅𝑖(𝑧)} are fused
together by selecting the point with the longest stay
time as the stay location.

(iv) We evaluate paths between a user’s stay locations at
consecutive points, and the stay locations are assumed
to be trip origins or destinations.

2.2. Extracting Transit Routes from an Online Map

2.2.1. Online Map Service. Calculating the trip coverage indi-
cators requires a database with transit data such as the transit
network, road network, operational transit information, and
bus stops. Based on those data, we know how many transit
lines serve the trips from base station m to n and how large
the distance is from base station m to n by transit line l
and other associated information. Some literatures collected
data based on Google Transit or GTFS (General Transit
Feed Specification), a supplemental service to Google maps
[3, 9, 18]. In those studies, the public transit network in a GIS
format and the road network data were required, however,
which were difficult to acquire as the data might be from
different sources and difficult to use since the data must share
the same coordinate, scale, context, and so forth [18].

More and more online map services provide path nav-
igation in China, for example, Baidu Map and AMAP. If
the user selects the transportation mode, enters the origin
and destination, and chooses a departure time on the map
website, it will return the route planning information includ-
ing the trip distance, trip time, and suggested routes from
the origin to destination. Some online map services provide
open resources to developers, which are mostly in the form
of the Application Programming Interface (API). The API
is a set of predefined user applications and the operating
system’s function, bymeans of which programmers can easily
achieve the underlying operating system feature development
or packages. Launched in April, 2010, Baidu Map API [24]
not only includes the basic interface to build maps, but also
provides information such as local search, route planning,
and other data services, through which we can acquire the
route information of trips. However, since it needs to search
the transit route information for millions of trips completed
by over 4millionmobile phone users for a week inHangzhou,
it is impossible to manually acquire such huge information.

As shown in Figure 2, we propose a new method to
acquire the transit route information for millions of trips
automatically. The trip database stores millions of trips on a
local computer server (each trip includes origin/destination
geolocations and departure and arrival time). The Python
code extracts one piece of trip data andmakes an API request
to the Baidu Map server via HTTP for the transit route data
and the server will return data in the form of XML or JSON
after it queries the back-end database. After that we call JSON
parsing functions [28] and store the result to the database.

2.2.2. Transit Routes Data. The response of the transit route
information from the Baidu Map API contains fruitful
information and we just extract the useful information for
assessing transit accessibility, for example, the taxi route
information and bus route information. An example of
response is shown in Table 2. The status code indicates
whether the online service returns valid results, 0 means a
correct record, and 1 means invalid information. The taxi
route information includes the taxi distance of the trip, taxi
travel time, and monetary costs. The bus route information
is much more complicated. There may be several suggested
bus schemes per trip and several segments per bus scheme.
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Figure 2: Web scraping of transit information.

Table 2: A sample of the transit route information from the Baidu Map API.

Status 0 0: correct record
1: error record

Taxi Taxi distance (m) 4,540 Travel distance by
car

Taxi travel time (s) 503 Travel time by car

Bus scheme 1

Total distance (m) 4,584 Full trip distance
Total travel time (s) 2,276 Full trip travel time

Scheme type 1

1: shortest time
scheme

2: least transfers
3: least walking

Segment1 type 5 5: walk
Segment1 diatance

(m) 311 Walk distance

Segment2 type 3 3: bus
Segment2 diatance

(m) 3523 In-bus distance

Segment3 type 5 5: walk
Segment3 diatance

(m) 750 Walk distance

Bus scheme 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Second best
scheme

In addition, the segment type code means the travel model
(e.g., 5 for walking, 3 for bus).

Generally, there are three segments per scheme in a direct
transit route without transfer, which means that the trip
distance 𝑑𝑚,𝑛,𝑙 from origin base station𝑚 to destination base
station 𝑛 by taking transit line 𝑙 consists of the access distance
by walking, in-vehicle distance by bus, and egress distance by
walking, given by

𝑑𝑚,𝑛,𝑙 = 𝑑𝑎𝑚,𝑛,𝑙 + 𝑑in-vehicle + 𝑑𝑒𝑚,𝑛,𝑙. (1)

2.3. Trip Coverage Index. The conventional evaluation cri-
terion for the transit service includes the transit spatial

coverage area, which is usually estimated using the buffer area
covered by the transit route or by the area within a walking
distance threshold of a transit stop or transit route [1]. The
walking distance threshold is modified for various features,
for example, the percent elderly in the population and street
connectivity [29]. It is commonly accepted by transit planners
and researchers that bus transit users are willing to walk up
to 1/4 mile (400m) to reach their nearest transit stop [30–33].
The government agencies and researchers of China use 500m
as the buffer radius to evaluate the transit serving area [34,
35]. The sensitivity of the walking distance threshold will be
analyzed in Section 4. In the context of transit, a traveler may
transfer from one bus route to anther and continue to reach
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his/her destination. According to Modesti and Sciomachen
[36], more than two times of transfers in a transit trip are
generally intolerable for transit users, such that two transfers
can be chosen as the maximum value allowed per trip.

Based on the aforementioned idea, this paper presents
the binary connectivity parameter (𝛾𝑚,𝑛,𝑙) to indicate whether
two regions are connected by transit services. Here we only
consider walking to reach the transit station and other
options such as bike, park, and ride have not been considered.
For any trip from base station 𝑚 to 𝑛, if (1) there exists
a transit line 𝑙 that connects the two regions; (2) both the
access and egress distances are smaller than the preselected
walking distance threshold; and (3) the transfer count 𝑘𝑚,𝑛,𝑙 is
less than the transfer tolerance threshold N, then the binary
connectivity parameter 𝛾𝑚,𝑛,𝑙 is 1; and 0, otherwise.The binary
connectivity parameter is given by

𝛾𝑚,𝑛,𝑙 =
{
{
{
1, 𝑑𝑎𝑚,𝑛,𝑙 ≤ 𝑑0, 𝑑𝑒𝑚,𝑛,𝑙 ≤ 𝑑0, 𝑘𝑚.𝑛.𝑙 ≤ 𝑁,
0, otherwise,

∀𝑙, 𝑚, 𝑛.
(2)

The research concern is the extent of the efficiency and
attractiveness of the public transport system compared to
private cars. As is known to all, there are many factors that
may influence the travel mode choice such as travel time,
transit distance, transit fare car parking fare, and weather.
However, this paper is not concerned with individual travel
mode choice behavior but provides the trip-level assessment
of transit accessibility, so we just take into account the travel
time and travel distance. On the other hand, the developed
index (i.e., TCI) is applied to assess accessibility of public
transit for all trips, not only those currently or likely to be
using transit and no matter whether he/she owns cars or
not. Instead, they can rent a car or take a taxi to reach
the destination for those have no access to personal car.
Therefore, the trip coverage from base station 𝑚 to 𝑛 served
by the transit line 𝑙, that is, TC𝑚,𝑛,𝑙, is measured by the ratio of
the driving distance to the transit distance from base station
𝑚 to 𝑛 by transit line 𝑙 and the ratio of the total travel time by
driving to the total travel time by transit line 𝑙, given by

TC𝑚,𝑛,𝑙 = 𝛼 𝑑𝑚,𝑛
𝑑𝑚,𝑛,𝑙 + (1 − 𝛼)

𝑇𝑚,𝑛
𝑇𝑚,𝑛,𝑙 , 0 ≤ 𝛼 ≤ 1, (3)

where the weighting factor 𝛼 can be determined according to
the preference on travel distance or travel time by decision
makers. The default value is 0.5.

Considering theremay be serval transit lines or no transit
lines serving the trip, we select themaximumvalue between 0
and TC𝑚,𝑛,𝑙 multiplied by the binary connectivity parameter
𝛾𝑚,𝑛,𝑙 as the trip coverage score TC𝑚,𝑛 for the OD pair in the
network, given by

TC𝑚,𝑛 = max {𝛾𝑚,𝑛,𝑙 ⋅ TC𝑚,𝑛,𝑙, 0} , (4)

where the trip coverage score TC𝑚,𝑛 takes into account the
OD pairwise transit accessibility which is rarely considered
by previous studies.

There are some short trips, of which the distance is shorter
than the walking distance threshold. In other words, it is
unnecessary to take bus for this trip. Sowhen calculating TCI,
we only consider the trips with a distance longer than twice
of the service access distance threshold, that is, 1,000m.

The spatial relationship between TAZs and base stations
(BSs) can be obtained by the ArcGIS spatial analysis toolbox.
The TAZ-BS membership table can be obtained, which is the
foundation of calculating TCI fromTAZ 𝑖 to 𝑗.TCI fromTAZ
𝑖 to 𝑗 is defined as the weighted average trip coverage score
(TC𝑚,𝑛) by the travel demand, given by

TCI𝑖,𝑗 =
∑𝑝𝑚,𝑛∈{𝑑𝑚,𝑛>2𝑑0} TC𝑚,𝑛 ⋅ 𝑝𝑚,𝑛

∑𝑝𝑚,𝑛∈{𝑑𝑚,𝑛>2𝑑0} 𝑝𝑚,𝑛
. (5)

TCI can be used to quantify the coverages of origin TAZ
𝑖 and destination TAZ 𝑗, given by

TCI𝑖 =
∑𝑗 TCI𝑖,𝑗 ⋅ 𝑝𝑖,𝑗

∑𝑗 𝑝𝑖,𝑗
,

TCI𝑗 =
∑𝑖 TCI𝑖,𝑗 ⋅ 𝑝𝑖,𝑗

∑𝑖 𝑝𝑖,𝑗
,

TCI = ∑𝑖∑𝑗 TCI𝑖,𝑗 ⋅ 𝑝𝑖,𝑗
∑𝑖∑𝑗 𝑝𝑖,𝑗

.

(6)

3. An Illustrative Numerical Example

This section provides a tractable numerical example to
illustrate the application of TCI to the assessment of transit
accessibility. As shown in Figure 3, we consider a road
network of four zones served by three transit lines, and each
line has four stops. The dashed circles represent 500-meter
buffers around each transit stop.

Table 3 shows the travel demands between base stations
and the trip coverage results for the trips. Columns 4 and 5
of Table 3 show which TAZs base stations𝑚 and 𝑛 belong to,
respectively. Column 6 provides the number of transit lines
serving the OD pair. Columns 7–13 present the transit route
information which can be obtained from the online map for
a real-world network. The binary connectivity parameter for
each transit line estimated by (2) is shown in Column 14.

The illustrative numerical example helps understand the
difference between the proposed measure and the conven-
tional spatial coverage measure. There are two lines and two
bus stops serving BS1, while there is only one transit line and
one bus stop serving BS2. At the same time, there are two bus
lines serving trips of BS1–5 and only one bus line serving trips
of BS2–5. It is reasonable to expect a higher level of transit
coverage for BS1–5 than that of BS2–5. However, for trips of
BS1–5, 𝑑𝑒𝑚,𝑛,𝑙 of both line 1 and line 2 (see Column 11 in bold
in Table 3) exceed the preselected distance threshold (500m),
and the binary connectivity parameters for both lines are
zero, whichmeans no buses can offer services to trips of BS1–5
given the stop buffer distance threshold.

Column 15 shows the trip coverage of different OD
pairs, that is, TC𝑚,𝑛 estimated by (3)-(4). For BS1–6, TC1,6 is
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Figure 3: An illustrative road and transit networks.

Table 3: Trip coverage calculation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BS𝑚 BS𝑛 𝑃𝑚,𝑛 Zone 𝑖 Zone 𝑗 Bus line 𝑑𝑚,𝑛 𝑇𝑚,𝑛 𝑑𝑎𝑚,𝑛,𝑙 𝑇𝑚,𝑛,𝑙 𝑑𝑒𝑚,𝑛,𝑙 𝑑in veh 𝑑𝑚,𝑛,𝑙 𝛾𝑚,𝑛,𝑙 TC𝑚,𝑛
1 2 0 1 2 NA NA NA NA NA NA NA NA NA NA
1 3 4 1 3 1 1400 613 300 1225 400 2100 2800 1 0.500
1∗ 5∗ 8∗ 1∗ 4∗ 1/2∗ 3700 1245/1353 300/250 2125/2178 700/1100 4500/3300 5500/4650 0/0 0.000
1∗ 6∗ 3∗ 1∗ 4∗ 1/2∗ 3300 1566/1227 300/200 1875/1470 450/450 4500/3300 5250/3950 1 0.835
2 1 1 2 1 NA 2600 NA NA NA NA NA NA 0 0.000
2 3 12 2 3 3 3400 1198 300 1550 300 3800 4400 1 0.773
2 5 8 2 4 3 1400 827 300 975 450 900 1650 1 0.848
3 1 7 3 1 1 1400 613 400 1225 300 2100 2800 1 0.500
3 2 15 3 2 3 3400 1198 300 1550 300 3800 4400 1 0.773
3 5 2 3 4 3 3200 1293 300 1475 450 2900 3650 1 0.877
5∗ 1∗ 3∗ 4∗ 1∗ 1/2∗ 3700 1873/1695 1100/700 2279/1800 250/300 4500/3300 5850/4300 0/0 0.000
6∗ 1∗ 8∗ 4∗ 1∗ 1/2∗ 3300 1580/1311 450/450 1893/1571 300/200 4500/3300 5250/3950 1 0.835
6 2 8 4 2 3 1600 945 450 975 300 900 1650 1 0.970
6 3 3 4 3 3 2600 1236 450 1475 300 2900 3650 1 0.712
Note: NA = not applicable.

calculated as follows and other OD pairs can be calculated in
the same way:

TC1,6 = max {𝛾1,6,1 ⋅ TC1,6,1, 𝛾1,6,2 ⋅ TC1,6,2, 0}

= max {1 × (0.5 × 3300
5250 + 0.5 ×

1566
1875) , 1

× (0.5 × 3300
3950 + 0.5 ×

1227
1470) , 0} = 0.835.

(7)

Table 3 shows that driving distances of BS1–3 and BS2–5
have the same value of 1400m, but the transit route distance
of BS1–3 is longer than that of BS2–5, whichmeans the transit
route of BS1–3 makes a detour and the connectivity level is
lower than that of BS2–5 (see Columns 7, 13, and 15 in bold
in Table 3). This situation is embodied in the calculation of
TC𝑚,𝑛.

Finally, TCI from TAZ 𝑖 to 𝑗 should incorporate the trip
coverage with the travel demand of the trip. TCI for TAZ 1 to
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Table 4: TCI and travel demand (in brackets).

Origin Destination
1 2 3 4 TCI𝑖

1 NA 0.000 0.500 0.228 0.300
(0) (4) (11) (15)

2 0.000 NA 0.773 0.848 0.765
(1) (12) (8) (21)

3 0.500 0.773 NA 0.877 0.702
(7) (15) (2) (24)

4 0.607 0.970 0.712 NA 0.753
(11) (8) (3) (22)

TCI𝑗
0.536 0.841 0.706 0.526 0.658
(19) (23) (19) (21) (82)

Note: NA = not applicable.

4 can be calculated according to (5) and the results are shown
in Table 4.

TCI1,4 =
TC1,5 ⋅ 𝑝1,5 + TC1,6 ⋅ 𝑝1,6

𝑝1,5 + 𝑝1,6
= 0 × 8 + 0.835 × 3

8 + 3 = 0.228.
(8)

The TCI𝑖 for TAZ 1 as the origin can be calculated by

TCI1 =
∑𝑗 TCI1,𝑗 ⋅ 𝑝1,𝑗

∑𝑗 𝑝1,𝑗
= 0.5 × 4 + 0.228 × 11

4 + 11
= 0.300.

(9)

Similarly, other TCI𝑖 and TCI𝑗 can be obtained. Results
of the trip coverage as well as the travel demand of each
OD pair are shown in Table 4. It has been realized that the
trips in the opposite direction have the same trip coverage
scores as Table 3, for example, trips of BS1–6 and BS6–1
(see italic rows in Table 3) and trips of BS1–3 and BS3–
1. This is because the bus lines are set two ways in this
numerical example. However, the zone-to-zone TCIs in the
opposite directions show different scores, for example, TCI1,4
and TCI4,1 highlighted in Table 4. Recalling the contents
indicated by asterisk of Table 3, we find that the demands
from Zone 1 to Zone 4 and from Zone 4 to Zone 1 are
different in opposite directions, which means the transit
system covering more travel demands has a higher value of
TCI.

TCI also offers a way to quantify the transit service level
of OD pairs that require a transfer between transit lines.
Equation (3) can be improved by considering the transfer
distance 𝑑transfer and transfer travel time 𝑇transfer, given by

TC𝑚,𝑛,𝑙 = 𝛼 𝑑𝑚,𝑛
∑𝑙 𝑑𝑚,𝑛,𝑙 + 𝑑transfer

+ (1 − 𝛼) 𝑇𝑚,𝑛
∑𝑙 𝑇𝑚,𝑛,𝑙 + 𝑇transfer

, 0 ≤ 𝛼 ≤ 1.
(10)
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Figure 4: Layout of transit and the average base station coverage
radius in terms of TAZs in Hangzhou, China.

The spatial coverage is the proportion of the area served
by transit stops, which can be calculated by the Transit
Capacity and Quality of Service Manual [1]. This method
uses a buffer (set as 500m) around each stop to define the
spatial coverage of bus services. Table 5 shows the zonal data
of the spatial coverage calculations and the corresponding
TCI results. The buffer area for each stop is calculated using
the ArcGIS toolbox and the overlapped buffers are calculated
only once. The results show that the spatial coverage of Zone
1 is much higher than that of Zone 2, while the TCI of Zone 1
is lower than that of Zone 2, which are highlighted in Table 5.

4. Case Study

4.1. Study Area and Data. In this section, TCI is applied
to a case study in Hangzhou, China, to assess the transit
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Table 5: Zonal data of spatial coverage and TCI.

Zone, 𝑖 Zone area (km2) Bus stop buffer (km2) Spatial coverage TCI𝑖 TCI𝑗
1 0.880 0.680 0.773 0.300 0.536
2 1.026 0.283 0.275 0.765 0.841
3 1.650 0.807 0.489 0.702 0.706
4 1.026 0.503 0.490 0.753 0.526

OD trips
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Figure 5: Desire lines of OD trips during the AM peak hours.

accessibility. Hangzhou is the capital and most populous
city of Zhejiang Province, China. As shown in Figure 4,
the study area contains the Shangcheng District, Xiacheng
District, Jianggan District, Binjiang District, Xihu District,
Gongshu District, and part of Xiaoshan District. The study
area is 955 km2, and it contains 540 TAZs with 4.43 million
residents. As shown in Figure 4, there are 912 transit lines and
18,508 transit stops in the transit network of Hangzhou.

The mobile phone signaling data used in this study
consist of two tables, that is, the base station table and the
anonymous mobile phone records table collected from 4.17
million mobile phone users in Hangzhou over one month
between August and September, 2015. The position accuracy
of a trip is determined by the coverage radius of base stations.
There are 41,823 base stations in the 540 TAZs, and the
average BS coverage radius for each TAZ is shown in Figure 4.
Results show that the average coverage radius of 90% base
stations is less than 100 m.The remaining 10% are distributed
in less populated areas such as the mountainous and wetland
areas shown in Figure 4.

The study time periods are AM peak hours (7:00–9:00)
and PM peak hours (17:00–19:00). After processing the
mobile phone signaling data using the method proposed in

Section 2.1, we obtain 2,816,910 trips in AM peak hours and
2,756,187 trips in PM peak hours on September 8, 2015, a
regular working day. The desire lines of trips are shown in
Figure 5. The average trip distance is 5.68 km and more than
50% of the trips are less than 3 km.

We also obtain spatial and temporal distributions of the
population density using the trip information, for example,
origin, destination, and timestamp. As shown in Figure 6,
the population distribution is dispersed before 7:00 and
after 20:00 and is aggregating during working hours. These
observations are consistent with the daily experience.

4.2. Results. Combining both the mobile phone data and
transit information extracted from the online map service,
we are able to calculate the TCI for different time of day. The
analytical results are as follows: the distribution of TCI𝑖 in the
AM peak hours and PM peak hours are shown in Figures
7(a)-7(b). We can see a totally different picture of TCI𝑖 in
the AM peak hours as compared to that in PM peak hours,
which indicates that some of the TCI𝑖 vary during different
periods while the transit routes and departure interval are
the same, which is similar to the findings of [37]. Based
on those pictures, we should have different principles and
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Figure 6: Spatiotemporal distributions of population density using mobile phone signaling data (September 8, 2015).

strategies in terms of deploying our bus-related resources and
services. Most of the TCI𝑖 in the AM peak hours are higher
than those in the PM hours according to Figure 7(c) and the
outliers show that TCI𝑖 of some TAZs significantly vary with
time periods and different travel demands. Transit operators
should reschedule transit routes in a dynamic manner to be
more consistent with travel demands.

As shown in Figure 8, results are compared with the
spatial transit coverage during the AM and PM peak hours,
respectively. TCI𝑖 of TAZs is a skewed distribution, and most
of the TCI𝑖 is lower than 0.5, which means the transit system
provides a poor coverage for the travel demand, while the
spatial transit coverage calculated by the buffermethod shows
higher scores in both peak hours, which means most of
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Figure 7: Distributions of TCI of TAZs during peak hours (𝑑 = 1000m, 𝛼 = 0.5).

the population can access to the bus stops in the walking
threshold. The comparison between TCI𝑖 and the spatial
transit coverage shows the bus stops which can be accessed
in the walking threshold may not lead travelers to their
destinations by transit services.

In order to further explore the sensitivity of the walking
distance threshold, acceptable times of transfer, and the
weighting factor 𝛼, we summarize the statistics of TCI in
terms of these factors in Figure 9. As shown in Figure 9(a), as
the walking distance threshold rises from 500m to 900m, the
TCI of whole network rises significantly; then it slows down
after the walking distance threshold is longer than 900m,

which means that transit operators could gain more trip
coverage by improving bus services for those travel demands
that the walking distance is under 900m.

As the acceptable transfer times increase from 0 to 2,
the TCI increases both during the AM peak hours and PM
peak hours, which is comparable with experience.The results
suggest that increasing the transit route crossings would
provide a better transit service.

We also explore the interaction between the weighting
factor 𝛼 and TCI. The larger value of 𝛼 is, the more weight
of travel distance is considered in the TCI. Figure 9(c) shows
that TCI increases with 𝛼 in all transfer scenarios, which
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Figure 8: Comparison of TCI𝑖 with the spatial transit coverage during AM and PM peak hours (𝑑 = 1000m, 𝛼 = 0.5).

means TCI is sensitive to ratio of the bus travel time and the
driving time. So we should promote the travel time reliability
of buses to provide a better transit service.

5. Conclusions

In this paper, the novel TCI is proposed for measuring
transit connectivity and accessibility. It is built on the existing
transit service measures and allows us to analyze the transit
connectivity and accessibility for massive trips between the
origin and destination, as well as the transit coverage from or
to a TAZ. This paper is among the first attempts considering
the connectivity of trips from point to point and real-
world complicated travel demand in a large-scale urban area.
The TCI developed in this paper provides the capability to
quantify the level of accessibility of the transit system and
vary the assessment of transit accessibility with the temporal
and spatial change of travel demands.

This paper also presents an easy-to-implement method
to acquire the transit route information for millions of
trips based on the online map. Since the data is acquired
automatically using computer programming, it is possible to
easily construct the data repository and analyze large public
transit networks.

TCI can be applied to all trips, not only those currently
or likely to be using transit, such that TCI is demonstrated as
an overall measure of transit accessibility and can be used to
measure how the transit system reaches its target, which is to
provide services for more potential users.

Through the case study of Hangzhou, we find that fluc-
tuations in the travel demand in different time periods make
TCI distributing diversely across the city, whichmeans transit
operators should reschedule transit routes in a dynamic way
to be consistent with travel demands. The sensitivity analysis
is performed to determine how the walking distance thresh-
old, times of transfer, and the weighting factor would impact

the network-wide TCI. The results can provide operators
targeted measures to improve transit services.

Notations

𝑑0: Service access distance threshold
𝑑𝑚,𝑛: Distance from base station𝑚 to 𝑛 by car
𝑇𝑚,𝑛: Travel time from base station𝑚 to 𝑛 by car
𝑑𝑚,𝑛,𝑙: Total distance from base station𝑚 to 𝑛 by

transit 𝑙
𝑘𝑚,𝑛,𝑙: Transfer count from base station𝑚 to 𝑛 by

transit 𝑙
𝑇𝑚,𝑛,𝑙: Total travel time from base station𝑚 to 𝑛

by transit 𝑙
𝑑𝑎𝑚,𝑛,𝑙: Access distance from base station𝑚 to 𝑛

by transit 𝑙
𝑑𝑒𝑚,𝑛,𝑙: Egress distance from base station𝑚 to 𝑛

by transit 𝑙
𝑖: Origin traffic analysis zone (TAZ)
𝑗: Destination TAZ
𝑙: Transit line
𝑚: Origin base station
𝑛: Destination base station
𝑝𝑚,𝑛: Travel demand from base station𝑚 to 𝑛
𝑝𝑖,𝑗: Travel demand from TAZ 𝑖 to 𝑗
TC𝑚,𝑛,𝑙: Trip coverage from base station𝑚 to 𝑛 by

transit 𝑙
TC𝑚,𝑛: Trip coverage from base station𝑚 to 𝑛
TCI𝑖,𝑗: Trip coverage index from TAZ 𝑖 to 𝑗
TCI𝑖: Trip coverage index of origin TAZ 𝑖
TCI𝑗: Trip coverage index of destination TAZ 𝑗
TCI: Trip coverage index of a transit network
𝛾𝑚,𝑛,𝑙: Binary connectivity parameter, 1 if a

transit line 𝑙 connects the trip from𝑚 to 𝑛
with 𝑑𝑎𝑚,𝑛,𝑙 and 𝑑𝑒𝑚,𝑛,𝑙 smaller than 𝑑0; 0
otherwise.
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Figure 9: Sensitivity analysis for transit network.
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