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White matter hyperintensities (WMH), also known as white matter osteoporosis, have been clinically proven to be associated with
cognitive decline, the risk of cerebral infarction, and dementia. The existing computer automatic measurement technology for the
segmentation of patients’ WMH does not have a good visualization and quantitative analysis. In this work, the author proposed a
new WMH quantitative analysis and 3D reconstruction method for 3D reconstruction of high signal in white matter. At first, the
author using ResUnet achieves the high signal segmentation of white matter and adds the attention mechanism into ResUnet to
achieve more accurate segmentation. Afterwards, this paper used surface rendering to reconstruct the accurate segmentation
results in 3D. Data experiments are conducted on the dataset collected from Shandong Province Third Hospital. After training,
the Attention-Unet proposed in this paper is superior to other segmentation models in the segmentation of high signal in
white matter and Dice coefficient and MPA reached 92.52% and 92.43%, respectively, thus achieving accurate 3D
reconstruction and providing a new idea for quantitative analysis and 3D reconstruction of WMH.

1. Introduction

The decline of cognitive function, the risk of cerebral infarc-
tion, and dementia seriously affect the health of modern
people. At present, there are many methods to predict cogni-
tive decline and cerebral infarction dementia. Qiao and
others believe that MMSE prediction plays an important role
in the early detection of Alzheimer’s disease. They use the
convolutional neural network to predict MMSE more effec-
tively [1]. Solovyev and others believe that the decline of
cognitive ability is related to Alzheimer’s disease and capil-
lary stagnation and the convolutional neural network should
be used to detect capillaries, which achieves good results [2].
In recent years, the quantitative analysis of white matter
hyperintensity (WMH) has attracted extensive attention.
White matter hyperintensities (WMH), also known as white
matter osteoporosis, are characterized by high signal in T2-
weighted magnetic resonance imaging (MRI) FLAIR or
T1W sequence images and fluid attenuation inversion recov-
ery sequences. The pathological changes are mainly non-

characteristic white matter injury, manifested as membrane
discontinuity, glial cell proliferation, white matter fiber
looseness, pale or swelling of myelin sheath, diffuse axonal
injury, and vacuole formation [3, 4]. It was confirmed by
the clinic that WMH is associated with cognitive decline,
risk of cerebral infarction, and dementia and with gait disor-
ders, balance disorders, and urinary incontinence. Except
that, studies have shown that more than 90% of people over
the age of 60 have white matter hyperintensities.

The existing WMH quantitative analysis methods at
home and abroad are semiautomatic measurement, and doc-
tors need to supervise the whole process. In addition, the
existing methods cannot directly display the reconstruction
effect and cannot well assist doctors in quantitative analysis.
Hernández et al. [5] proposed and evaluated the indicators
of white matter damage and realized the quantitative assess-
ment of WMH. Muhammad et al. [6] proposed a convolu-
tional neural network to segment conventional WMH and
achieved good results. Dadar et al. [7] used the machine
learning method to achieve the segmentation of WMH and
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reached the Dice coefficient of 0.84. However, the existing
computer automatic measurement technology for the seg-
mentation of patients’WMH does not have a good visualiza-
tion and quantitative analysis and the reconstruction has not
yet retrieved relevant reports.

Medical imaging equipment, such as CT and MRI, can
obtain two-dimensional digital tomography images of internal
organs of the human body but cannot display the three-
dimensional structure of objects. The 3D reconstruction tech-
nology in computer image processing and graphics can recon-
struct the 2D medical image sequence in 3D and can simulate
and display the 3D structure of organs. The human body is
scanned by medical scanning imaging equipment, and a con-
tinuous two-dimensional digital picture of the fault is
obtained, which is then fed into a computer and read. Feature
enhancement and segmentation were performed on the fault
sequence images. After that, the segmented region is used to
reconstruct the 3D image using the reconstruction algorithm.
How to conduct accurate segmentation and 3D reconstruction
of WMH is a problem that needs to be solved in this paper.

WMH accurate segmentation is the first step in 3D recon-
struction. At present, most of the segmentation methods tar-
geting the lesions are still in their infancy. Clustering method
is one of the most commonly used traditional segmentation
methods. It mainly realizes pixel clustering through the feature

similarity of the pixels in the target region. In addition, tradi-
tional methods such as the Bayesian classifier and support vec-
tor machine (SVM) are also commonly used in lesion
segmentation. However, the traditional methods of lesion seg-
mentation usually have the characteristics of complex training
and poor segmentation accuracy. With the development of
deep learning technology, it is often used in medical image
segmentation and detection and has achieved ideal results. In
2015, Long et al. [8] used the convolutional layer to extract fea-
tures and used the deconvolutional layer to decode the feature
image and restore it to the size of the input image, thus realiz-
ing image per-pixel classification. After the introduction of
FCN, a series of convolutional network structures have been
designed for image pixel classification, such as SegNet [9],
DeepLabv3 [10], and Unet [11]. These networks are structur-
ally composed of two parts, the coding layer and the decoding
layer, and the structure is clear and easy to understand.
Among them, Unet has been widely used in the segmentation
of medical lesions [12–16] and achieved good results. Extrac-
tion of lesion features is the basis of accurate segmentation.
VGG-16 [17] and GoogleNet [18] are commonly used lesion
feature extraction networks, but their redundant network layer
learns parameters that are not identity mapping, resulting in
network degradation, while ResNet [19] solves the above
model degradation problem by designing residual modules
and achieve better feature extraction.

The current 3D reconstruction methods are generally
divided into two kinds: surface rendering and volume ren-
dering. In this paper, 3D reconstruction of segmented
WMH is performed based on surface rendering. In the early
stage of medical scanning imaging equipment, the distance
between sections is relatively large and the slice-level surface
reconstruction is generally adopted. With the improvement
of medical scanning and imaging equipment technology,
surface reconstruction based on voxel appears. The isosur-
faces are extracted by some algorithms, and the isosurfaces
are drawn by constructing the geometric elements of the iso-
surfaces in the voxels. Yu [20] used 3D reconstruction
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: Res connect

: Copy & concatenate
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Figure 1: The model of Attention-Unet.
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Figure 2: Schematic diagram of moving the cube.
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technology to reconstruct traumatic atlantoaxial vertebra, so
as to better help doctors specify appropriate surgical
methods. He [21] reconstructed continuous heart tissue sec-
tions and realized virtual heart visualization.

In this paper, the improved Unet is used to segment the
WMH and the ResNet structure is added on the basis of
WMH. In addition, the attention mechanism of CBAM
[22] was added in this paper to achieve feature extraction
of WMH. In order to solve the ambiguity problem caused
by 3D reconstruction with the moving cube method, we
used the moving tetrahedron method for 3D reconstruction
of a series of segmented images. In this paper, the author
conducted data experiments on 23742 pathological images
of 100 patients in Shandong Province Third Hospital. The
location of the lesion was marked by a professional radiolo-
gist. According to the radiologist’s labeling, 702 CT images
with high white matter signal were selected. The data exper-
iments show that the segmentation network proposed in this
paper, compared with other popular segmentation networks,
has at least 0.01 Dice coefficient improvement, which also
provides the basis for accurate 3D reconstruction of
WMH. In addition, the effect of 3D reconstruction in this
paper is greatly improved compared with other methods.
Through literature analysis, this is the first attempt to carry
out accurate 3D reconstruction of WMH and provides a
new idea for quantitative analysis and reconstruction of
WMH.

2. Materials and Methods

2.1. Materials. The dataset in this paper was obtained from
Shandong Province Third Hospital, China, including 100
patients with a total of 23742 pathological images. The loca-
tions of lesions were marked by professional radiologists. In

this paper, 702 CT images with white matter hyperintensities
were selected according to the radiologist’s annotation. Due
to the high contrast between WMH and surrounding tissues,
FLAIR sequences have higher clarity and integrity compared
with T1W and T2W sequences. In this paper, most of the
DICOM images of high signal in white matter were selected
from FLAIR sequence and a few were selected from other
sequences.

In the experiment, the white matter hyperintensity data
is divided into the train set and test set according to the ratio
of 8 : 2. The train set is used for the training of white matter
hyperintensity image segmentation, and the test set is used
for segmentation test.

The accuracy of white matter hyperintensity reconstruc-
tion depends on the accuracy of segmentation. In this paper,
the author use histogram equalization to enhance white mat-
ter hyperintensity data. The segmentation accuracy of high
signal in white matter was greatly improved.

2.2. Methods

2.2.1. Model. The series of the Unet network is a kind of
image segmentation network based on the convolutional
neural network. Compared with the traditional full convolu-
tional neural network, Unet has been improved to achieve
full extraction of features through stronger connection
between layers, plus upsampling and downconvolution. To
better focus on dividing the area, ResUnet adds jump con-
nection on the basis of Unet to better improve the accuracy
of the deep convolutional neural network.

As shown in Figure 1, ResUnet is a U-shaped symmetri-
cal structure, with the convolution layer on the left and the
upper sampling layer on the right. Same as Unet, ResUnet
contains 4 convolution layers and the corresponding 4 upper
sampling layers and the feature map obtained from each
convolution layer will be connected to the corresponding
upper sampling layer, so that the feature map of each layer
can be effectively used in the subsequent calculation. The
corresponding upper sampling layer and convolution layer
are calculated with a convolution kernel of 3 × 3 size and
activated with ReLu. Among them, 4 convolution layers
are connected by a 2 × 2 maximum pool and 4 upper sam-
pling layers are upsampled by 2 × 2 convolution kernel. In
addition, ResNet adds jump connections in each convolu-
tion layer and upper sampling layer, which are shown in
Figure 1 as solid blue arrows. ResUnet with jump connection
has better segmentation effect, which has been verified in the

Figure 3: Schematic diagram of the quadrilateral surface.

Table 1: Results of each model experiment (mean ± s:d:%).

Method
Reference
module

Evaluation coefficient

ResNet CBAM Dice (%) MPA (%)

SegNet ✘ ✘ 87:43 ± 0:92 86:34 ± 0:58
DeepLabv3 ✘ ✘ 91:31 ± 0:67 90:65 ± 1:08
Unet ✘ ✘ 88:90 ± 0:43 86:26 ± 1:12
ResUnet ✔ ✘ 91:05 ± 0:37 90:81 ± 0:49
Attention-Unet ✔ ✔ 92:52 ± 0:16 92:43 ± 0:82
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experiment. In addition, this paper adds a CBAM attention
module after each convolution layer and upper sampling
layer, so that the network can obtain better segmentation
effect. CBAM is covered in more detail in the next section.
The white matter hyperintensity CT images enter the ResU-

net network, pass through multiple convolution layers and
upper sampling layers, and finally get the accurate segmenta-
tion results.

ResUnet uses the Dice loss function to achieve pixel-level
segmentation of high signal in white matter. Dice coefficient

Image

WMH-1

WMH-2

WMH-3

Grouth truth SegNet Unet ResUnet DeepLabv3 Attention-Unet

Figure 4: WMH segmentation effects of different models.

(a)

(b)

(c)

Figure 5: Segmentation and reconstruction renderings. (a, b) Are the results of segmentation of a group of WMH images. (c) Represents the
3D reconstruction result obtained from the segmented image.
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is derived from dichotomy and is essentially a measure of the
overlap of two samples. The Dice function is shown as
follows:

Dice = 2 ∣ A ∩ B ∣
∣A∣+∣B ∣

: ð1Þ

Among them, ∣A ∩ B ∣ represents the common elements
between set A and set B, ∣A ∣ represents the number of ele-
ments in the set A, and ∣B ∣ denotes the number of elements
in set B. In this paper, the original target and the segmented
target are overlapped at pixel level to obtain their Dice value.

2.2.2. CBAM Attention Mechanism. According to the exper-
imental results of Yu [20], sequential addition of channel
attention and spatial attention was carried out in this paper.
For channel attention, feature graphs generated at the last
layer will be maximized and average pored, to generate dif-
ferent spatial context descriptors Fc

max and Fc
avg. The descrip-

tor is then entered into the shared network MLP, and the
resulting eigenvectors are merged by a summation
operation.

The formula for channel attention is as follows:

C Fð Þ =
σ MLP AvgPool Fð Þ +MLP MaxPool Fððð Þð Þ
σ W1 W Fc

avg

� �� �
+W1 W0 Fc

maxð Þð Þ
� � , ð2Þ

in which σ represents sigmoid function, W0 and W1 are
weights in the MLP-shared network, where W0 ∈ℝC/r×C

andW1 ∈ℝC×C/r , and r represents the reduction rate, aiming
at reducing parameter calculation in the shared network.

For spatial attention, the formula is as follows:

S Fð Þ = σ f 7×7 AvgPool Fð Þ ; MaxPool Fð Þ½ �ð Þ� �
,

= σ f 7×7 Fs
avg ; Fs

max

h i� �� �
,

ð3Þ

in which σ represents sigmoid function and f 7×7 represents
convolution operation with a filter size of 7 × 7.

2.2.3. WMH Reconstruction. After accurate segmentation of
white matter hyperintensities, the segmentation images of
each group were reconstructed in 3D.

The Marching cubes algorithm is a classic algorithm
among surface rendering algorithms. It is a voxel level
reconstruction algorithm proposed by Lorense [23] in
1987, also known as the isosurface extraction algorithm.
The main idea of the moving cube algorithm is to approxi-
mate the isosurface by linear difference in a three-
dimensional discrete data field. In medical image segmenta-
tion and reconstruction, this isosurface is determined by
defining a threshold value. First, define the concept of a
“cell,” as distinct from a “voxel.” A voxel is a grid of eight
pixels arranged in sequence, and each voxel (except the
boundary) is shared by the eight voxels. There are three
kinds of vertex values in a volume element: above or equal

to the value is inside the surface, and below the value is out-
side the surface. Move the cube as shown in Figure 2.

As shown in Figure 2, lk and lk+1 represent two different
isosurfaces; (i, j, k) represent the vertices of voxels. There are
two possible states for one vertex of a voxel, so a voxel (8
vertices) has a total of 28 or 256 states, where the grayscale
value of a point within the voxel (as in Figure 2) can be cal-
culated using the trilinear interpolation equation (4).

f x, y, zð Þ = a0 + a1x + a2y + a3z + a4xy + a5yz + a6zx++a7xyz:
ð4Þ

a0 − a7 represent the gray value of the eight vertices of
the voxel; x, y, z represents the coordinate points in the
voxel; f ðx, y, zÞ represents the gray value of the points
(x, y, z) in the voxel. The 256 combinations can be reduced
to 128 combinations by reversing the symmetry (the
exchange of vertex 0 and 1 values in the boundary voxel).
By rotating the symmetry (the position of vertexes 0 and 1
is the same after the rotation of the boundary voxel), the
256 combinations can be reduced to 15 cases. Each state of
the volume element contains a number of three facets, and
the vertices of the triangular facets in the volume element
need to be calculated by linear interpolation according to
the value of the isosurface and the value of the two vertices
on the side.

In order to solve the problem of ambiguity in the con-
nection of triangular surfaces in the moving stereoscopic
method, this paper uses the moving tetrahedron method
[24, 25] to carry out 3D reconstruction. Compared with
the moving stereo method, the moving tetrahedron algo-
rithm is to divide the cube element in the moving cube algo-
rithm into tetrahedrons. There are many ways of splitting,
usually dividing into 5 tetrahedrons, and then constructing
isosurfaces in the tetrahedron. There are 24 and 16 combina-
tions in total. By inverting and rotating symmetry, only one
vertex in the boundary voxel is larger than the isosurface, so
the triangular surface is generated. If two vertices are larger
than the isosurface, a quadrilateral surface is generated, as
shown in Figure 3.

Figure 3 shows the schematic diagram of the moving tet-
rahedron method. The article uses the moving tetrahedron
method for 3D reconstruction of the white matter of the
brain and is able to achieve better modeling accuracy.

3. Results

3.1. Evaluation Metrics. In this paper, segmentation and 3D
reconstruction were performed on the white matter hyperin-
tensity (WMH) dataset. In order to assess the accuracy of 3D
reconstruction relative to the gold standard manual label, a
number of corresponding measures for various volumes
and spaces were used in this article, as no single measure
reflects all the required information about the quality of
the reconstruction. In this paper, Dice coefficient is mainly
used as the evaluation index of spatial correspondence of
each voxel between two segments. Dice coefficient can mea-
sure the similarity between WMH output from the
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segmented network and real samples. Among them, the Dice
coefficient value is between 0 and 1 and the larger the value
is, the closer the segmentation is to the real value. The Dice
coefficient formula is as follows:

Dice S, Yð Þ = 2 ∣ S ∩ Y ∣
∣S∣+∣Y ∣

: ð5Þ

Among them, the prediction result of the segmentation
network is ∣S ∣ and the real result is ∣Y ∣ . The intersection
of the two results is represented by ∣S ∩ Y ∣ . In addition, in
order to evaluate the accuracy of segmented pixels, MPA
(average pixel accuracy) is also used to analyze the experi-
mental results of the two types of pixels in the process of
WMH segmentation. The MPA value is also between 0
and 1. The higher the value, the higher the pixel accuracy.
MPA formula is as follows:

MPA = 1
ncl

〠
ncl

i=0

Pii

∑ncl
j=0Pij

: ð6Þ

The number of categories is expressed in ncl, the number
of correctly classified pixels is expressed in pii, and the pixels
with wrong classification are expressed in pij. In this paper,
different models are used for experimental comparison to
prove the effectiveness of the module added in this paper
for WMH segmentation. All models are trained on the
obtained WMH training set and evaluated on the verifica-
tion set.

3.2. Implementation Details Jinan Science and Technology
Bureau. For the sake of equality and comparison, all the real
tests are carried out on PyTorch codes. The actual training
was conducted on a Ubuntu 16.04 operating system with 6x
Intel(R) Core (TM) i7-7700 CPU, and a NVIDIA GeForce
RTX 2080 GPU was used for training. The image input size
of each network is 512 × 512 pixels. In addition, this paper sets
30 epoch for the training of each network model and sets the
initial learning rate of each model to 0.001. Unless otherwise
stated, all models use the same parameters.

3.3. Main Results. In this paper, MPA and Dice coefficients
are used as the evaluation indexes of the spatial correspon-
dence of each voxel between the two segmentations. Due
to the lack of WMH data, this paper uses TTA (test time
augmentation) to enhance the results of the test set and uses
the way of fivefold cross-validation. By observing the results
obtained by using the method in this paper, the effect of cor-
responding WMH reconstruction is evaluated. In addition,
in order to prove the effectiveness of the improvement of
the Unet model in this paper, an experimental comparison
was conducted on SegNet, DeepLabv3, and Unet.

The experimental results are shown in Table 1.
SegNet achieves aMPA of 86.34% and a Dice coefficient of

87.43% in the segmentation of white matter hyperintensity
intensity. Similarly, DeepLabv3 has a MPA of 90.65% and a
Dice coefficient of 91.31%, which is higher than SegNet, while
the Attention-Unet used in this paper has a Dice coefficient of

92.52%, which is higher than other flow line segmentation
models. In addition, compared with Unet, the residual module
and CBAM attention module added in this paper increase the
Dice coefficient by 2.15% and 1.47%, respectively. This is
enough to prove the accuracy of the segmentation method
used in this paper.

In order to better represent the content of the experimen-
tal results, the segmentation effects of five different models are
compared and the comparison effect is shown in Figure 4.

Among them, WMH segmentation and reconstruction
effects obtained by Attention-Unet and the moving tetrahe-
dron method are shown in Figure 5, where WMH is gener-
ated from the segmented images of this sequence.

4. Discussion

In this paper, an accurate 3D reconstruction of WMH is
attempted for the first time and a new idea for quantitative
analysis and reconstruction of WMH is provided. In order
to make the results of 3D reconstruction more accurate, this
paper proposes an attention-based model called Attention-
Unet. The model adds attention mechanism to achieve more
accurate white matter hyperintensity segmentation and
improve the accuracy of 3D reconstruction. The experimen-
tal results show that the Dice coefficient and MPA of the
model on WMH dataset are 92.52% and 92.43%, respec-
tively, which is better than the current popular segmentation
model, thus laying an important foundation for the realiza-
tion of accurate 3D reconstruction. In the following work,
the author will try to achieve accurate measurement of the
volume of 3D reconstruction of white matter hyperintensi-
ties, so that it can be applied to clinical work more quickly.
In the next work, we will refer to the following novel work
[26–32] to try to improve the accuracy of 3D reconstruction
of the WMH and the speed of segmentation.
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Computed tomography (CT) is a common modality for liver diagnosis, treatment, and follow-up process. Providing accurate liver
segmentation using CT images is a crucial step towards those tasks. In this paper, we propose a stacked 2-U-Nets model with three
different types of skip connections. The proposed connections work to recover the loss of high-level features on the convolutional
path of the first U-Net due to the pooling and the loss of low-level features during the upsampling path of the first U-Net. The skip
connections concatenate all the features that are generated at the same level from the previous paths to the inputs of the
convolutional layers in both paths of the second U-Net in a densely connected manner. We implement two versions of the
model with different number of filters at each level of each U-Net by maximising the Dice similarity between the predicted
liver region and that of the ground truth. The proposed models were trained with 3Dircadb public dataset that were released
for Sliver and 3D liver and tumour segmentation challenges during MICCAI 2007-2008 challenge. The experimental results
show that the proposed model outperformed the original U-Net and 2-U-Nets variants, and is comparable to the state-of-the-
art mU-Net, DC U-Net, and Cascaded UNET.

1. Introduction

The liver is the largest substantive organ of human body. It
maintains important life activities such as detoxification and
metabolism. Computed tomography (CT) is a common
modality to detect liver and liver lesions. Liver segmentation
is important for the formulation of treatment plan and for
the evaluation of the follow-up treatment effect. As themanual
segmentation is error-prone and time-consuming, automatic
liver segmentation methods have been extensively studied
[1–3].

Liver segmentation is still a challenging task, due to the
variability of organ’s shape and size and similar intensity
values among neighbouring organs and tissues, such as the
heart, the stomach, the kidneys, and the abdominal wall.
On the other hand, a liver has a crucial role in metabolic
processes; therefore, it is essential to perform a fast and accu-

rate diagnosis in case of any disease. Moreover, with the
improvement of different medical imaging techniques, the
focus is placed on the application of noninvasive diagnostic
methods, before performing a painful, invasive examination
(e.g., biopsy). Out of different liver pathologies, liver cancer
is the fifth most commonly occurring cancer in 2018
world-wide, according to the World Health Organisation
and others [4–7]. Therefore, a continuous effort is required
to develop efficient and automatic segmentation methods,
which may support the diagnostic process and facilitate the
treatment decision-making.

Liver segmentation task has been introduced as a chal-
lenge for many conferences, e.g., MICCAI 2007, MICCAI
2008, and ISBI 2017. During these challenges, 3Dircadb1
and LiTS datasets were introduced for training and
evaluation of the proposed approaches. The existing auto-
matic liver segmentation methods are divided into two
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categories: pixel- or image-based segmentation and learning-
based segmentation. Thresholding, region growing, edge
detection, and graph cut [8–10] are some of the commonly
used image-based segmentation methods, which directly
segment images by the grey level, texture, and gradient. Most
of them have low robustness, are prone to under or over seg-
mentation, and are sensitive to initial seed selection; there-
fore, a sophisticated preprocessing is required. Therefore,
in recent years, these methods are rarely applied to liver seg-
mentation alone, but are usually used as a postprocessing for
other methods.

The learning-based segmentation methods include sta-
tistical models, traditional machine learning methods, and
deep learning methods. Supervised learning methods with
pixel-wise binary classification usually performs better than
the image-based segmentation methods, e.g., statistical
models [11], active shape models (ASM), active appearance
models (AAM) [9], level set-based methods [12], and atlas-
based segmentation [13]. However, traditional machine
learning methods, e.g., support vector machines (SVM)
[14], and Adaboost [15], rely on extracting handcrafted
image features, which is not efficient and subject to human
bias. In contrast, deep learning methods extract image fea-
tures automatically based on large training dataset without
introducing human bias.

Convolutional neural networks have become the state-
of-the-art in many fields especially for medical image analy-
sis. U-Net was introduced in 2015 for the segmentation of
neuronal structures in electron microscopic stacks. It works
with binary crossentropy as a loss function for pixel wise
classification, and the energy function is computed by a
pixel-wise soft-max over the final feature map combined
with the crossentropy loss function [16]. 2-bridged U-Net
were proposed for prostate segmentation [17]. CNNs and
deep learning approaches are widely used for liver segmenta-
tion and require significant number of training samples and
preannotated masks as ground truth.

Segmentation processes are usually affected by the edge
of the object. Although the skip connections in the conven-
tional U-Net have effectively handled edge information to a
certain extent, there are still room for improvement with the
U-Net [18]. Firstly, the U-Net architecture duplicates low-
resolution information of features. After pooling (i.e., down-
sampling), low-resolution information of features passes on
to the convolution layer in the next stage. However, this
low-resolution information of features is transferred by the
skip connection of the U-Net as well. Duplication of low res-
olution information may then cause smoothing of the object
boundary information in the network, which is more critical
in the case of fuzzy object boundaries [19]. Another draw-
back of the U-Net architecture is that it may not sufficiently
estimate high level features for high-resolution edge infor-
mation of the input object. The U-Net use the skip connec-
tion to transfer high-resolution information; however, high
resolution edge information does not pass through any con-
volution layers during transfer by the skip connection. Thus,
higher level feature maps learned by the network do not con-
tain enough information of the high-resolution edges of the
input object. Consequently, in the conventional U-Net,

high-level features are extracted disproportionately from
low-resolution information [17, 20].

Many new models based on U-Net have been introduced
to overcome the drawbacks of the original U-Net [16]. Stacked
U-Net [21], V-Net [22], and bridged 2U-Net [23] are exam-
ples of the variants of the U-Net. Zhang and Xu [24] added
a separated path to extract the global features and local fea-
tures separately by reducing the number of convolutional
channels of the contraction and expansion paths. It has led
to a faster training process and improved the efficiency of
the convolution kernel feature extraction [24]. Whilst the
adjacent network with less number of parameters sped up
the training process, it has a limited accuracy [25]. U-Net
has also been integrated with other traditional registration
and segmentation techniques such as conditional random field
(CRF) to segment the liver tumour with limited number of
samples [26, 27]. Christ et al. [28] proposed a cascaded CNN
in 2Dwith a 3D dense CRF as a postprocessing step, to achieve
higher segmentation accuracy whilst preserving low computa-
tional cost and memory consumption. Albishri et al. [29] cas-
caded 2 U-Net, one for the liver and one for tumour
segmentation, with preprocessing Hounsfield units (HU)
and Contrast Limited Adaptive Histogram Equalization
(CLAHE). Liu et al. [30] proposed CR-U-Net, where the cas-
cade U-Net is combined with residual mapping, and the
second-level of cascade network is deeper than the first-level
to extract more detailed image features and adopted morpho-
logical algorithms as an intermediate-processing step to
improve the segmentation accuracy. Lu et al. [31] combined
a 3DCNNwith a Graph Cut (GC) algorithm for liver segmen-
tation. Wang et al. [32] transformed the Dicom image format
to Hounsfield Unit, then used a window of the specific HU for
the liver before training with CNNs. They replaced the convo-
lutional layers at each level with dense connection blocks
where each dense block contains 5 U-Nets of 2 levels. Zhou
et al. [33] combined U-Nets of varying depths into one ensem-
ble architecture where different U-Nets share the same
encoder but have separate decoders to encourage knowledge
sharing. However, such architecture still suffers from two
drawbacks. Firstly, the decoders are disconnected, and deeper
U-Nets do not offer a supervision signal to the decoders of the
shallower U-Nets in the ensemble. Secondly, the common
design of skip connections used in the U-Net is unnecessarily
restrictive, requiring the network to combine the decoder fea-
ture maps with only the same-scale feature maps from the
encoder.While striking as a natural design, there is no guaran-
tee that the same-scale feature maps are the best match for the
feature fusion.

Recently, residual mapping has been used in combina-
tion with image segmentation architectures, which is an
effective way to prevent overfitting and meanwhile to
improve accuracy. Milletari et al. [22] combine residual
learning with U-Net to construct V-Net for 3D image seg-
mentation. Bi et al. [34] proposed a cascaded deep residual
networks (ResNet) approach to segment the liver and liver
lesions. As preprocessing, it converts the images to HU
and applies data augmentation strategies including random
scaling, crops, and flips and used 3D CRF and multiscale
fusion for postprocessing. The network is pretrained firstly
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on the ImageNet dataset for parameter fine-tuning and is
further fine-tuned with the liver dataset. On the other hand,
Xu et al. [35] used HU as preprocessing and postprocessing
2D CRF and 3D CRF. ResU-Net added residual connections
to each skip connection of the basic U-Net structure. Liu
et al. [36] added attention block and residual block to the
decoder path of the U-Net with adaptive dice loss function.
It has helped increase the dice coefficient loss on LiTS data-
set from 0.8365 to 0.9692 with all the residual and attention
blocks. Seo et al. [20] included the residual path and a design
of object-dependent upsampling to U-Net structure. The
network avoids duplication of low-resolution information,
estimates higher level feature maps that better represent
high-resolution edge information of larger object inputs,
and learns to extract even higher level global features for
small object inputs. The testing accuracy on 3Dircadb data-
set is 96:01 ± 1:8%, marking a relatively superior perfor-
mance compared to other state-of-the-art.

The previously reviewed models can be categorized to
three categories based on the number of U-Nets and the type
of connections between the U-Nets. The first category con-
tains the models based on one U-Net, e.g., mUNet [20]
introduced a decovolutional block before the skip connec-
tion; [24] proposed an extra path for global feature extrac-
tion; residual U-Net [35] added residual connection
between each two consecutive layers; densely connected U-
Net [32] replaced the conv layer at each level to of the con-
traction path with dens block; [36] added attention module
to each level of the expansion path. The second category
contains the models that used 2 cascaded U-Nets, e.g., [28,
29] consist of two separated U-Net one for liver and one
for tumor segmentation, whereas [34] adds CRF as a post-
processing technique. The third category contains the
models that implemented 2 stacked U-Nets, e.g., [21] intro-
duced 2 stacked U-Nets with N cut loss function; CRUNet
[30] introduced 2 U-Nets with different depth and a mor-
phological technique as intermediate process between the
two; and [23] proposed one skip connection as a bridge
between the 2 U-Nets.

In comparison, we propose a 2 stacked U-Net model.
The model is not computationally expensive as it contains
smaller number of layers compared to the Dense U-Net
[32, 33] and less number of residual connections compared
to [35]. The proposed model introduces 3 types of skip con-
nections between the two U-Net in addition to the normal
skip connection in each U-Net, whilst the bridge U-Net
[23] used one bridge connection between the 2 U-Nets and
[21, 30] contains only the skip connections of the original
U-Net.

2. Materials and Methods

2.1. Data. 3Dircadb1 (3D Image Reconstruction for Com-
parison of Algorithm Database) is created by Hôpitaux Uni-
versitaires France as a public dataset for researchers in
medical image segmentation. The dataset is composed of
3D CT-scans for 20 patients with hepatic tumours in 75%
of cases. For each patient, there are number of CT scans in
addition to manually annotated mask for several structures

of interests, e.g., liver, left kidney, right kidney, and hepatic
tumours performed by clinical experts. All CT scans and
masks are in DICOM format with pixel size (512 × 512).
The total numbers of CT scans are 2823. We adopted two
augmentation techniques as in [37] to increase the number
of samples. After applying horizontal and vertical flipping
in addition to rotation with 15°, the total number of samples
increased to 112,920 images. 13% of the images are used for
testing while the remaining samples are divided into 75% for
training and 25% for validation. From patient’s point of
view, the images are divided into 14 patients for training, 4
patients’ data for validation, and 2 patients’ data for testing
(patients no. 5 and no. 20).

2.2. The Model. The proposed model extends the main fea-
ture of 2D U-Net [16] that concatenates the output of each
layer in the contracting path to the inputs of the layer on
the same level on the expansion pass to limit the effect of
the loss in the high level feature during the convolution
and pooling process. The model consists of two stacked U-
Net with total 4 paths, B1 and B2 are the contracting and
expansion path of the first U-Net while B3 and B4 are the
components of the second U-Net as in Figure 1. Each U-
Net consists of 4 levels at each path in addition to one level
to connect the contracting and expansion paths. The num-
ber of filters at the contracting path starts with 64 and is
increased by 200% for the next level until it reaches 1024 fil-
ter at level 5. As for the expansion path, the number of filters
is decreased by 50% as the level goes up, reaching the initial
64 filters at the topmost level. The input image size is of
256 × 256 pixels and is decreased by 50% after each level
on the contracting path due to the maxpooling process to
reach the minimum image size with 16 × 16 at level 5, then
start to increase by 50% with each level of upsampling on
the expansion path. The output feature maps have equal size
at each level on both U-Net paths as shown in Figure 2.

Each path consists of a series of layers to construct a
block at each level. The blocks on B1 follow the typical archi-
tecture of a convolutional network. It consists of two convo-
lutional layers with filter size 3 × 3 (unpadded convolutions),
each followed by an exponential ReLU (ELU) or rectified
linear unit (ReLU) at levels 4 and 5, a 2 × 2 max pooling
operation with stride 2 for downsampling, and ends with
dropout layer with 50% rate. After each block, the number
of feature channels will be doubled. The maxpooling and
dropout layers are excluded from the block at level 4. The
blocks in the expansion path (B2) consists of an upsampling
of the feature map followed by a 2 × 2 convolution (upcon-
volution) that halves the number of feature channels, a con-
catenation with the corresponding feature map from the
contracting path, and two 3 × 3 convolutions, each followed
by an ELU or ReLU and a dropout with 45% rate. The blocks
in B3 are similar to B1 except that the former starts with a
concatenation of the feature map from the corresponding
expansion path in B2 with the feature maps from the previ-
ous level in the contracting path in B3, then followed by sim-
ilar layers as in the blocks on B1 (i.e., Conv, Conv,
maxpooling, and dropout). The building blocks on B4 have
the same structure as B2 except that it concatenates 4 feature
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maps before applying the sequence of (Conv, Conv, and
Dropout). The first feature map that comes from the previ-
ous upsampled level in B4 will be concatenated with the fea-
ture maps at the corresponding levels from B1, B2, and B3.
At the final layer, a 1 × 1 convolution is used to map each
64-component feature vector to the 256 × 256 image mask
as shown in Figure 3.

2.3. Skip Connections. A model with 2 bridged U-Nets for
prostate segmentation [17] introduced a bridge to add the
output features from each level at the contracting path of
the first U-Net to the inputs of the expansion path of the sec-
ond U-Net at the same level (blue lines). Our modified
model introduces two new bridging connections. One bridge
concatenates the output of the expansion path of the first U-
Net (B2) to the inputs of the contracting path of the second
U-Net (brown lines). The second bridge concatenates the
output of B2 to the inputs of B4 (red lines). The final model
proposed in this research is a compound model that con-
tains all type of bridging connections. The novel architecture
has used all the previously generated feature maps from all
paths of the two U-Nets and concatenated them to the
inputs of the last expansion path. We hypothesize that by
concatenating all previously generated feature maps, the

proposed model can decrease the loss of both high-level
and low-level features (see Figure 3).

2.4. Feature Concatenation. There are two types of opera-
tions to combine the features through the bridge and skip
connections. Addition operator applies a pixel-wise summa-
tion operation and generates one layer for all the input
layers. Concatenation operator stacks all the feature maps
together along the feature map dimension with depth equal
to the number of input layers. We used concatenation with
all skip connections and bridge connections since concate-
nation operation increases the features space by combining
the high-level and low-level features. Therefore, the subse-
quent convolutional operation is able to learn new features
that are dependent on both high-level as well as low-level
features (see Figure 4).

In comparison, we created another version of the model
started with 32 filters applied on the first layer then
increased by 200% on the next level to reach 512 filters
applied at the deepest level.

2.5. Objective and Loss Function. In fact, the U-net, an end-
to-end segmentation network, is a classification of each
pixel. Most of the deep learning networks use the cross-

B1 B2 B3 B4 B1 B2 B3 B4B1 B2 B3 B4

Compound bridgeModified bridgeOriginal bridge

Figure 1: The architecture overview of the proposed 2 stacked U-Net main structure. B1 and B2 are contracting and expansion path for the
first U-Net while B3 and B4 are the contracting and expansion path of the second U-Net. The colored lines represent the bridging
connections between the different paths. Original, modified, and compound are three different structures of the bridging connections.
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32 × 32

256 × 256
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64 × 64

32 × 32

16 × 16

256 × 256

128 × 128

64 × 64

32 × 32

256 × 256

128 × 128
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contraction and expansion paths
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256 × 256

Figure 2: The proposed compound W-Net model structure. The model connects two U-Nets with 3 bridging connections (blue, red, and
brown) and one skip connection in each U-Net (dark blue).
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entropy as a loss function for pixel-wise classification to seg-
ment an image into different regions. However, the samples
in the dataset we use are only for liver area, and the ratio of
positive and negative samples is about 1 : 15, an extremely
uneven distribution. If crossentropy function is used in our
training process, the result will be biased towards the nega-
tive samples.

In view of the above, we implement the Dice loss, a loss
function based on Dice similarity coefficient (DSC). The
Dice similarity coefficient is a statistical metric that measures
the similarity between two sets of data. It has become one of
the broadly used metrics in the validation of image algo-
rithms as in

Dice = 2∗∣X ∩ Y ∣
Xj j+∣Y ∣

, ð1Þ

where X and Y are two sets of pixels of ground truth (masks)
and the predicted liver, respectively. ∣X ∣ is the number of
elements in set X. ∩ represents the set intersection. The loss
function LDice is the difference between the ground truth and
the predicted mask as in

LDice = 1 −Dice: ð2Þ

2.6. Training and Testing. The testing samples represent 13%
(14,560 images) of the total samples of 3Dircadb1, whilst the
remaining samples are divided into training and validation

with percentage 75% (74,680) and 25% (14,560). All models
trained for 10 epochs with learning rate 1e-5 using Adam
optimizer [38]. All training and testing images were scaled
from 512 × 512 to 256 × 256 due to the limitation of com-
puting resources. Training parameters are shown in Table 1.

During the testing phase, each model was evaluated with
two groups of data. Firstly, the models were tested using the
original testing data without applying any augmentation
technique (normal data). Secondly, the models were evalu-
ated using the data after augmentation including all verti-
cally and horizontally flipped images in addition to all 15°

step rotated images (augmented data). The results are shown
in Tables 2 and 3, respectively.

2.7. Hardware and Software. For training and testing, we
used Intel® Core™ i7-6700 CPU @ 3.40GHz×8, with 16GB
RAM and GPU GeForce GTX 1080/PCIe/SSE2 with 8GB
RAM. Our model was implemented using python 2.7.3, for
Keras 2.1.1, with TensorFlow 1.2.1, Theano 0.8 for Ubuntu
14.04.05.

3. Results and Discussion

We refer to the model by the number of filters at the deepest
level. For example, (compound-512) which represents the
compound model with filters starts with 32 and ends with
512 at the deepest level, whilst (compound1024) which rep-
resents the compound model with filters starts with 64 and

B2 B3 B4B1

Input

Concatenation and
up-sampling block (B4)

Concatenation and
down-sampling block (B3)

Output from
previous level

Output from B2Output from B1

Output from
previous level

Output

Concatenation and
down-sampling block (B2)

Output from previous level
Output from B3

Output from B2

Output from B1

DropoutConv layer Maxpooling

Figure 3: Detailed architecture of the model with the layers in each block for all branches B1, B2, B3, and B4.
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ends with 1024 at the deepest level. To compare our results
with the original U-Net [16] and 2-Bridged U-Net [17], we
conducted two groups of experiments based on the filter
structure of the base U-Net. The first group used base U-
Net with (32-➔512) while the second group used base U-
Net with (64➔1024).

The evaluation metrics of the medical image segmenta-
tion algorithms include but not limited to Intersection over
Union (IOU) or Jaccard index, Dice similarity coefficient
(DSC or Dice), precision, and recall. We use Dice to evaluate
and compare our approach with other related work because
it is the common metric for most of liver segmentation
methods [10, 19, 20, 24, 28–30, 32–36].

The results in Table 2 highlight the key findings. The
model U-Net-1024 recorded higher accuracy than U-Net-
512. The models based on the modified connections and
compound connections recorded higher accuracy than the
original connections with both structures 32-512 and 64-
1024. The models compound-512 and compound-1024
recorded the best accuracy over original and modified con-
nections for both filter structures 32-512 and 64-1024,
except that the modified model with 64-1024 recorded
higher accuracy than that of the models with 64-1024 filters
when testing with augmented data. Using the filter structure
64-1024 recorded higher accuracy over the filter structure
32-512 except for compound connections. The best overall
accuracy for testing with and without augmented data were
recorded for compound model using 32-512 filters structure
as shown in Figure 5.

The findings came in line with the main hypotheses that
by adding the high level feature-maps from the contraction
path of the U-Net to the feature-maps on the same level of
the expansion path will reduce the loss of the feature that
may be caused due to the convolution and pooling opera-
tions. The modified model and the compound models add
extra bridging connections from the first U-Net to the final
expansion path of the second U-Net and have shown better
performance over the original model. Although the original
2-bridged U-Net used filters structure 32-512, the results
show that using filter structure of 64-1024 recorded higher
accuracy because the number of training parameters is
higher than the parameters of the model with filters 32-512
for both original and modified models where only one skip

connection had been used to transfer the feature maps from
the first U-Net to the second U-Net. The compound model
has demonstrated that using two skip connections to trans-
fer the feature maps to the second U-Net doubles the size
of feature space at the second U-Net, enhances the model
performance, and decreases the need of increasing the num-
ber of filters to 64-1024 (Figure 5). On the other hand, when
the size of the feature space at the second U-Net is doubled
due to the compound connections, the number of learnable
parameters would also be doubled for all the deconvolu-
tional layers in the second U-Net. It has more significant
impact on the filter structure of 64-1024 than that of 32-
512. That is, the compound model with the filter structure
of 64-1024 is more likely to overfit than the compound
model with the filter structure of 32-512. This could explain
as to why the compound model with the filter structure of
32-512 had better testing performance in terms of the Dice
coefficient than the compound model with the filter struc-
ture of 64-1024.

The sample results in Figure 6 illustrated that using 64-
1024 filters with all models decreased the over segmentation
because the number of the high-level and low-level features
on the contracting path increased by 200% that will allow
the models to learn more global features. In case of the mod-
ified and compound, adding the extra skip connections that
concatenate all the previously generated features to the final
expansion path reduced the false positive and over segmen-
tation artefacts. Although a few images are segmented with
better accuracy using the modified model with 64-1024 fil-
ters (h column), the compound model in general recorded
the best accuracy with both filters’ structure.

Column b shows the results of liver segmentation using
the original structure of U-Net with 32-512 filters. The
results suffer from artefacts near the boundaries of the liver
because the loss in the global features during the downsam-
pling propagated to the following convolutional layers of the
next deeper levels. Similar loss happened due to the fusion of
the features on the expansion path which indicates that the
skip connections in the original U-Net is not enough to
overcome the features loss. The segmentation using the orig-
inal structure of the 2 Bridged U-Net enhanced the accuracy
for the images where the liver size is relatively smaller in
rows 1 and 2 at column c. On the other hand, the output
for the images where the liver size is larger have suffered
from oversegmentation because the skip connections from

Table 1: Model parameters for training.

Parameters Values

Image size 256 × 256
Number of epochs 10

Learning rate 1e-5

Filter size 3 × 3
Pooling size 2 × 2
Dropout rate contracting path 0.5

Dropout rate expanding path 0.4

Filters per layer Previous layer’s filters × 2Concatenation operation

Xn

X1

X2

X3

Y

Addition operation

Xn

X1

X2

X3

Y

Figure 4: The difference between concatenation and addition
operations.
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the expansion path at the first U-Net (B2) were concatenated
to the contracting path at the second U-Net only, whilst the
feature maps from (B1) were transferred directly to (B4)
only Figure 1 (original bridge). Column d illustrates the
improvement of the output and decreased the oversegmen-
ted artefacts because the skip connections of the modified
bridge model transferred the low-level features from (B2)
directly to be concatenated to the expansion path (B4) at
the second U-Net. The compound bridge results in column
(e) show the significant enhancement of the performance
for all images with small and large liver size because the con-
catenation of all output feature maps from all the previous
paths to the final expansion path of the second U-Net has
recovered the loss of the high-level and low-level features.
The accumulative residual connections increased the feature
space and allowed the model to learn more features by
concatenating all the previously generated high-level and
low-level feature maps from all the previous paths. Columns
(f, g, h, and i) show the results of the models using filter

structure 64-1024. Generally, the overall accuracy with 64-
1024 models is higher than the models with filter structure
32-515 because of the number of filters, and feature maps
generated are increased by 100%. In rare cases, the com-
pound model suffers from undersegmentation at some
images with small size liver rows 1 and 2 at column (i)
because the number of features transferred from the
previous paths to the final path is large and might contain
redundant features which increased the false negative for
the images with smaller liver size.

The results in Table 3 compared our models with the
state-of-the-art approaches that used the same dataset 3Dir-
cadb for liver segmentation. In this paper, we used 14
patients’ data for training and 4 patients’ data for validation
with 80 : 20 ratio and 2 patients’ data for testing. In [20], it
used 15 patients’ data for training and validation and 5
patients for testing; however, it did not specify which patient
numbers were used for testing. In [28], 15 patients’ data were
used for training and testing with 2-fold crossvalidation. In

Table 2: The accuracies of training, validation, testing using normal images, and testing using augmented images for all four types of models
(U-Net, original, modified, and compound) using both versions with (32➔ 512) and (64➔ 1024) filters structure. The accuracy represents
the value of Dice similarity coefficient.

Model
Filters Training Validation Testing

Dice Dice Normal data Dice Augmented data Dice

U-Net [16] 32-512 0.9650 0.9800 0.4649 0.6007

Bridge U-Net [17] 32-512 0.9755 0.7065 0.7321 0.6031

Our modified bridge 32-512 0.9785 0.6702 0.7912 0.6010

Our compound model 32-512 0.9752 0.9011 0.8988 0.9442

U-Net [16] 64-1024 0.9740 0.9150 0.5873 0.7593

Bridge U-Net [17] 64-1024 0.9738 0.8775 0.7989 0.7534

Our modified bridge 64-1024 0.9812 0.9250 0.8137 0.8368

Our compound model 64-1024 0.9812 0.9113 0.8303 0.7836

Table 3: Quantitative comparison between our models and other models using 3Dircadb dataset.

Model
Dice Testing
% Normal data Dice % Augmented data Dice %

U-Net [16] 46.49 60.07

Bridge U-Net [17] 73.21 60.31

Our modified bridge 79.12 60.10

Our compound model 89.88 94.42

U-Net [32] 92:6 ± 2:2
FCN-8 s [32] 92:1 ± 1:5
3D DSN [32] 92:8 ± 1:4
DecNet [32] 90:1 ± 1:0
FCN [32] 93.30

Cascaded UNet+CRF [32] 93.10

DCU-Net [32] 94:9 ± 2:0
mU-Net [20] 96:01 ± 1:8
UNET [28] 72.90

Cascaded UNET [28] 93.10

Cascaded UNET +3D CRF [28] 94.30
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Figure 5: The accuracies in percentage for trading, validation, and testing using normal data and testing using augmented data for all
models’ structure (U-Net, original bridge, modified bridge, and compound bridge) with both filter structures (32 ➔ 512) and (64➔ 1024).
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Figure 6: Comparison of testing results. (a) Ground truth, (b) U-Net, (c) bridged 2U-Net, (d) our modified stacked U-Net, (e) our
compound 2U-Net. All (b–e) with filter structure 32-512. All (f–i) with filter structure 64-1024.
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contrast, [32] did not mention any details about the data
splitting approach for training, validation, and testing. We
used the mean values of the Dice of all the tested images as
the accuracy without calculating the STD or tolerance as
the way the results were presented in [24, 28].

Christ et al. [28] proposed a cascaded CNN for liver and
lesion segmentation with preprocessing the image to convert
it to HU values and postprocessing in 2D with a 3D dense
conditional random field (CRF) approach. Although their
recorded results exceeded the U-Net performance with
94.30%, our compound model outperformed their results
with 94.42%. Wang et al. [32] converted the DICOM images
to Hounsfield Unit, then used a window of the specific HU
for the liver. Replacing the Conv layers at each level with a
dense connection blocks significantly increased the number
of layers, and the network ended up similar to 5 dense
blocks; each block contains 5 U-Nets of 2 levels. Their model
is very complicated and computationally expensive with very
large number of layers and connections. It is not clear if the
stated results were based on testing with 3Dircadb dataset or
LiTS as the model was tested on both datasets. It is evident
that our compound model outperformed all the bench-
marked models stated in [32]. The performance of the pro-
posed compound model is comparable to that of the
densely connected U-Net (DC U-Net). Seo et al. [20]
included the residual path and a design of object-
dependent upsampling to U-Net structure. The network
tried to avoid duplication of low-resolution information by
adding block or residual layers on the skip connection while
it used only one U-Net.

The original architecture of the U-Net model [16] was
reimplemented for comparison purpose in this paper as it
was the case in [28, 32]. Note that Wang et al. [32]
applied preprocessing technique to convert the Dicom
images into Hounsfield Unit (HU) to prevent the loss of
information when the whole image pixel values are scaled
into the range 0-255. Specifically, the raw CT slices are
windowed to a Hounsfield Unit range of -100 to 400
HU to neglect organs and tissues that are not of interest.
Christ et al. [28] followed the same preprocessing tech-
nique and additionally applied histogram equalization for
contrast enhancement followed by augmenting the images
to increase the number of samples using translation, rota-
tion, and adding Gaussian noise. On the contrary, we did
not use any preprocessing techniques but directly con-
verted the Dicom images to pixel values within the range
0-255. Furthermore, whilst [28] used 15 out of 20 patients’
data for training, validation, and testing with 2-fold cross-
validation, we used 14 patients’ data for training, 4
patients’ data for validation, and 2 patients’ data for test-
ing. Our testing data might be not included in the 15
patients’ data used in [28]. On the other hand, Wang
et al. [32] did not mention the methods that used for data
splitting. Hence, it explains the discrepancy between the
results of our implementation of the U-Net and the results
presented in [24, 28].

Our training and testing data were rescaled to 256 × 256
which is 50% of the size of the original images. While [20]
used the original image size 512 × 512, [28] and [32] did

not mention if they used the original data size or rescaled
it. Although scaling the images to smaller size might cause
the loss of some features, our proposed models outper-
formed most of the other models in terms of Dice coefficient
(see Table 3). We also plan to work with original image size
512 × 512 in the future for potentially more accurate liver
segmentation.

Our approach did not apply any preprocessing tech-
nique to the images but directly normalized the DICOM
images’ pixel intensity to the range 0-255. It thus pro-
duced different pixel intensity mapping for the liver
region because 3Dircadb1 database contains DICOM
image with various HU range. Effectively, the variations
of the pixel intensity for the liver region act as an image
augmentation technique. Note that image augmentation
techniques, such as adding noises to image intensity
values amongst others, have been shown to be very useful
for deep learning based models. We have compared our
results with methods that applied image calibration or
windowing process based on Hounsfield Units [28, 32].
Our results are comparable or better in terms of the Dice
coefficient. We plan to add preprocessing step that
includes windowing process in our future work to com-
pare its effectiveness with the models that do not apply
the windowing process.

Although 3D CNNs can process volumetric information,
they have some disadvantages. Due to the increased dimen-
sion, 3D CNNs require higher computational cost. Besides,
the large number of parameters may result in higher risk
of overfitting, especially when encountering small datasets.
Moreover, the GPU requirement of 3D CNNs is impracti-
cally expensive, which hinders their further clinical applica-
tion. Our model is implemented based on 2D U-Net
architecture where each CT slice is treated as input image
that is independent of other slices. The proposed model
has much lighter computational cost but higher inference
speed. In our future work, the information between adjacent
slices could be taken into consideration.

4. Conclusions

In this paper, we proposed a novel segmentation method,
and the experimental results show that stacking two U-
Nets and adding three bridging connections from the first
U-Net to the second U-Net can significantly improve the
accuracy of liver segmentation. The accumulative approach
of concatenating the feature maps from the previous layer
with all the previously generated features at the same level
from all the previous paths of the 2 stacked U-Nets signifi-
cantly reduced the loss of global features and low level fea-
tures during the pooling and upsampling and
outperformed most of the recent approaches. The model
results are robust against noise as it did not use any prepro-
cessing or postprocessing. Our model used augmentation
techniques to overcome the shortage of the medical data
with manually annotated masks, and it showed a significant
improvement in the performance when testing with the aug-
mented data.
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1. Introduction

Early detection of cancer plays a vital role in the healthcare
industry because when abnormal tissue or cancer is found
early, it is easy to plan successful treatment [1, 2]. If cancer
spreads to neighbor cells, it is challenging to treat, and
survival chances are much lower. Many machine learning
techniques were developed to detect cancer at early stages
[3, 4]. Still, a tool with more accuracy and less processing
time is needed. This research is aimed at detecting cancer
irrespective of its types by combining two imaging modali-
ties, such as CT/PET or MRI/SPECT, which provides better
accuracy than existing methods. Finally, the concept is
extended to cancer classification to predict the tumor type,
whether it belongs to benign or malignant tumors [5, 6].
While there are many studies in image fusion for the visual
enhancement of images, very few types of research focus
on the influence of image fusion in other applications such
as image classification. The role of image fusion in remote
sensing is significant, and almost every recent sensor devel-
opment for earth applications considers channels with
different spatial resolutions [7, 8]. Image fusion improves
the information content by combining two or more images
using a specific algorithm [3]. A case study on the influence
of image fusion approaches on classification accuracy for
remote sensing applications is more relevant to this research
work. They took Landsat 7 ETM+ image for the analysis.
They analyzed various image fusion approaches such as
adaptive image fusion (AIF), wavelet-based fusion, multisen-
sor multiresolution fusion technique (MMT), principal com-
ponent analysis (PCA), hue saturation-value transform
(HSV), and Brovey method of fusion. The fusion results
were employed for maximum likelihood classifier, object-
based classification, and support vector machine classifier
[9]. The Brovey Transform (BT) was created to visually
boost contrast between the image histogram’s low and high
ends. BT produce the spectral degradation, which should
not be employed if the original scene radiometry must be
preserved. Brovey Transform resulted in low dynamic range
resultant image and significant misclassification detected
when using pixel-based classifiers. HSV fusion was not
assigning the discrete classes from the training dataset.
Another method called principal component analysis
performed better because of its capability of separately high-
and low-frequency parts of an image. MMT fusion tech-
nique produced “Speckle” noise in the classification, which
results in poor edge detection. They concluded in the case
study that wavelet transform-based fusion improves the clas-
sification accuracy, and they recommended the classification
application. Wavelet transforms are used to portray abrupt
peaks and discontinuities. Wavelet transform has a number
of drawbacks, including shift sensitivity and directional
selectivity [10, 11].

The research on the effects of image fusion algorithms
on classification accuracy in remote sensing applications
was conducted. They took Quickbird-02 panchromatic and
multispectral images over the city of Wuhan (China) and
analyzed the effects of fusion on unsupervised ISODATA
(iterative self-organizing data analysis) classifier accuracy.

They considered eight image fusion techniques and analyzed
the effects of fusion on improving classification accuracy.
They found that the high pass filter-based fusion method
performs worst because of its injection of high-frequency
information [12]. They concluded that the region-based
image fusion method improves the accuracy of the classifier.
Even though colour distortion occurs, the contrast of the fused
image is higher, which is very helpful in interpretation and
classification, and they recommended a region-based fusion
technique for classification application. Region-based image
fusion has several advantages over pixel-based image fusion
methods, such as being less susceptible to noise, more resilient,
and avoiding misregistration, but it is also more difficult.

Kumar et al. have proposed a novel MSLN-CNNmethod
to solve the HSI classification problems, multilayer spatial-
spectral feature fusion and sample augmentation with local
and nonlocal constraints (MSLN-CNN). The authors make
full use of complementary spatial-spectral information
among different layers, and compared with other deep learn-
ing models, CNN has two unique structures: local connec-
tion and weight sharing. The representative classifiers
include k-nearest neighbors, logistic regression, support
vector machine (SVM), sparse representation-based classifi-
cation, and extreme learning machine [13, 14]. Among these
classifiers, SVM seeks to separate the samples with different
classes. Finally, the authors concluded that MSLN-CNN
could achieve end-to-end classification by optimizing multi-
layer spatial-spectral feature fusion jointly. It is a promising
method to deal with the overfitting problem by considering
local spatial and nonlocal spectral constraints.

Chandran et al. have developed an approach for fusing
features obtained from multisensor compressive measure-
ments for spectral image classification. This fusion method
merged the components extracted from data captured by
sensors that satisfy the Nyquist–Shannon sampling theorem.
They developed a low-resolution feature as degraded
versions of the high-resolution features [15]. Also, they
formulated an inverse problem that aims at estimating
high-resolution characteristics, including both a sparsity-
inducing term and a total variation (TV) regularization term
to exploit the correlation between neighboring pixels of the
spectral image. Therefore, they improved the performance
of pixel-based classifiers. Besides, they introduce the mathe-
matical model of the high-resolution features. This model
describes the relationship between the high-resolution
elements and the spectral image under test. The authors
described an algorithm based on the alternating direction
method of multipliers (ADMM) for solving the fusion prob-
lem. The proposed feature fusion approach is tested for two
CSI architectures: three-dimensional coded aperture snap-
shot spectral imaging (3D-CASSI) and colored CASSI (C-
CASSI). Finally, they compared the proposed feature fusion
method concerning state-of-the-art feature extraction and
fusion techniques which improves the accuracy and robust-
ness to noise [16, 17]. They concluded that the ADMM algo-
rithm performs better when compared to existing methods.
Because of its fast convergence speed in many applications,
the ADMM technique has sparked a lot of academic atten-
tion in recent years.
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Most of the related research was attempted only in
remote sensing, focusing on medical imaging applications.
Based on the above literature, many researchers reported
that image fusion could improve image quality, and no
research analyzes with experiment results. This research
work shows how image fusion improves the visual quality
of medical images and how these images further improve
classification accuracy with experiment results. This research
work combines brain tumor images from MRI and SPECT
modalities using the discrete cosine transform (DCT)
method. The magnetic resonance interference (MRI) imag-
ing technique can produce incredibly detailed diagnostic
images of most of body’s major organs and tissues that other
imaging techniques cannot. Because MRIs do not involve
radiation, they are safe for children and pregnant people to
undergo. The SPECT (single-photon emission computed
tomography) imaging technology can be used to determine
whether or not there is enough blood flow to various parts
of the brain. SPECT scans can be used to acquire data on
changes in brain function as a result of disease. Benefits of
two imaging modalities can be attained in a single image
when these two modalities are merged. The fused image pro-
vides more information to the doctors than the individual
input images. Apart from that, when compared to individual
input images, the number of features or attributes recovered
from fused images is higher. As a result, cancer classification
will be more precise, allowing doctors and other health care
providers to better plan therapy for their patients. In order
to combine MRI and SPECT images, discrete cosine
transform-based image fusion technique has developed with
improved fusion parameters such as peak signal to noise
ratio (PSNR), structural similarity index measure (SSIM),
and normalized correlation (NC). High values of PSNR in
dB, SSIM in %, and NC in % indicates improved fusion
between two images. This proposed DCT-based fusion tech-
nique provides high PSNR, SSIM, and NC which is used for
fusing MRI and SPECT images in this research work.

Three classifiers, namely, support vector machine, K
-nearest neighbour classifier, and decision tree classifiers,
are used in this research work to classify the brain tumour
images into benign or malignant classes. The performance
of these classifiers is measured and compared based on accu-
racy, precision, recall, specificity, and F1 score. In order to
analyze the effect of image fusion, the experiment results
are compared with the result obtained when MRI input
image alone was used, SPECT input image alone was used
for classification. Algorithms of all these three classifiers
are explained in the “Research Methods” section, and the
performance metrics are explained in the next section.

2. Research Methods

The proposed brain tumour classification model is shown in
Figure 1.The input images such as MRI and SPECT images
are collected from http://kaggle.com for analysis. Image
registration was applied to input images before applying
the image fusion method. Image fusion using discrete cosine
transform was developed, and fused images were obtained.
Thirty features were extracted from fused images, and they

were given as input to three classifiers. Classifier’s perfor-
mance is measured using accuracy, precision, recall, specific-
ity, and F1 score. These results were compared with the
classifier results when features extracted from individual input
images were given to the classifiers. High values of perfor-
mance metrics indicate the better performance of classifiers.

2.1. Preprocessing of Brain Tumour Images. The visual qual-
ity of input medical images such as MRI and SPECT images
are improved by applying contrast limited adaptive histo-
gram equalization (CLAHE) technique [18, 19]. Instead of
operating on entire image pixels, CLAHE operates only on a
small region of the image called tiles [20, 21]. Image registra-
tion needs to be applied before applying the image fusion
technique. A parametric transformation Tað:Þ is applied to
the target image tomaximize the similarity between the target
image and the reference image to make it similar to Ir [22].
The optimization target can be represented as in Equation (1).

Ta :ð Þ = arg max ρ Ir,ð Ta Itð Þ: ð1Þ

Various steps involved in image registration include sim-
ilarity measure, point detection and extraction, applying
image descriptors, point selection, pattern matching, image
resampling, and compositing [23].

2.2. Image Fusion Using Discrete Cosine Transform. Fusion
can be performed in spatial or frequency-domain methods,
and DCT belongs to the frequency domain category. When
DCT is applied to input images, it decomposes the images
into DCT coefficients, and in the transform domain, the
fusion rules are applied [24–26]. After applying inverse
DCT, a fused image is obtained in the spatial domain [27,
28]. Input images such as MRI and SPECT images are
applied with discrete cosine transform, which provides
DCT coefficients, and averaging fusion rule is applied in
the frequency domain, which provides fused DCT coeffi-
cients. Inverse discrete cosine transform is applied on fused
DCT coefficients to obtain fused images at spatial domain
[25, 29–32]. Image fusion using discrete cosine transform
is shown in Figure 2.

Discrete cosine transform of two-dimensional image
Xðn1, n2Þ of size M ×N is represented by Equation (2).
Here, M represents number of rows in an image, and N
represents number of columns in an image.

X k1, k2ð Þ = 〠
M−1

n1=0
〠
N−1

n2=0
x n1, n2ð Þ cos π 2n1 + 1ð Þk1

2M

� �
cos

π 2n2 + 1ð Þk2
2N

� �
,

ð2Þ

where n1, n2 are the spatial domain coordinates and k1, k2
are the frequency domain coordinates.
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Similarly, inverse discrete cosine transform of two-
dimensional image X ðk1, k2Þ of sizeM ×N is represented by

X k1, k2ð Þ = 〠
M−1

k1=0
〠
N−1

k2=0
x k1, k2ð Þ cos π 2n1 + 1ð Þk1

2M

� �
cos

π 2n2 + 1ð Þk2
2N

� �
,

ð3Þ

where k1 ranges from 0 to M − 1 and k2 ranges from N − 1.

2.3. Support Vector Machine Classifier. SVM classifiers are
supervised learning methods that are used for regression
and classification.

The SVM classifier can maximize the geometric margin
and minimize the classification error, and hence, the SVM
classifier can also be called maximum margin classifiers

[33–40]. SVM classifiers are not biased by outliers and not
sensitive to overfitting but they are not suitable when huge
number of features used and for nonlinear problems.

Let us consider a dataset ðA1, B1, ::An, BnÞ, where ðA1,
A2::AnÞ is the set of the input variable, ðB1, B2::, BnÞ is the
output variable, and ‘C’ is the intercept, then the SVM clas-
sifier is given as in

SVM = 〠
i

m=1
βm −

1
2

〠
i

m,n=1
bmbnC am, anð Þβmβn, ð4Þ

where m = 1, 2, 3⋯ :i and C = bmβm + bnβn.

2.4. K-Nearest Neighbour Classifier. K-nearest neighbor clas-
sification is more suitable for large datasets, and it takes
more computation time for testing than training the dataset.
The K-nearest neighbor classification technique is the most
straightforward technique that provides good classification
accuracy and stability [41, 42]. The K-NN algorithm is based
on distance functions such as Manhattan, Minkowski, Tani-
moto, Jaccard, Mahalanobis, and Euclidean distance in
which Euclidean distance is more common [43, 44]. It is
mathematically given in

d a, bð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m

i=1
bi− aið Þ2

s
, ð5Þ

where
a, b = Two points in Euclidean distance
ai, bi = Euclidean Vectors
m = m-space.
Even though the KNN classifier runs slowly, its compu-

tational power is more. KNN algorithm consists of the train-
ing phase and testing phase. Features or attributes are stored
during the training phase, and while in the testing phase, the
features from testing images are compared with stored
features, and the class will be determined [45].

K-NN algorithm consists of the following steps:
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Feature
extraction Classifiers

Performance metrics
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Figure 1: Proposed fusion-based brain tumor classification model.

MRI
image

DCT

Low High Low

Fusion rules

IDCT

Fused image

High DCT
coefficients

Fused
coefficients

DCT

SPECT
image

Figure 2: Discrete cosine transform-based image fusion
methodology.
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(1) Determine suitable distance metrics like Euclidean
distance

(2) Store all the training datasets in the training phase

(3) During the testing phase, compute the distances
between the new feature and stored features

(4) The correct classification access given in the test
phase is used to assess the correctness of the
algorithm

2.5. Decision Tree Classifier. A decision tree is a supervised
learning technique that can be used for both regression
and classification problems, but it is mainly used for classifi-
cation problems. Decision tree classifiers are appropriate for
both linear and nonlinear systems; however, they are ineffec-
tive when dealing with limited datasets. In a decision tree
classifier, overfitting is a common occurrence. Nodes in the
tree-like structure represent the features of a dataset,
branches represent the decision rules, and leaf node repre-
sents the output [46, 47]. The decision trees usually resemble
human thinking ability; hence, it is easy to understand. The
algorithm starts at the root node and compares the attributes
of root nodes with attributes of record nodes. Based on the
comparison, it jumps to the next node. Many algorithms
are proposed for learning decision tree from a given dataset,
but commonly, ID3 algorithm is preferred due to its simplic-
ity for implementation [48–51]. ID3 algorithm is a top-
down greedy search of possible branches, and it uses
information gain and entropy to build the tree.

The HðYÞ Shannon entropy of a random discrete vari-
able Y with possible Y1, Y2 ⋯ :Yn and probability mass
function PðYÞ is defined as in

H Yð Þ = −〠
n

i=1
P yið Þ log2P yið Þ: ð6Þ

Entropy is equal to zero for a completely homoge-
neous dataset, and entropy is equal to one of the datasets
equally divided. A branch with entropy more than one
needs splitting.

2.6. Experimental Setup. MATLAB version 2021 software is
used for this research work. Proposed work consists of steps
such as preprocessing, image fusion, feature extraction, and
image classification. For preprocessing using CLAHE,
DCT-based image fusion technique and feature extraction
MATLAB script have developed, and result is obtained.
For testing with different classifiers and analysis, MATLAB
inbuilt classification learner application is used. The result
which obtained feature extraction is stored in excel file,
and this file is directly given as input to classification learner
application in order to analyze the effect of image fusion on
SVM, K-NN, and decision tree classifiers.

3. Results and Discussion

3.1. Comparison of Our Method with KNN Classifier and
Decision Tree Classifier. Input images such as brain tumors
from CT modality and SPECT modality are shown in
Figures 3(a) and 3(b), respectively. A converted grayscale
image of SPECT image is shown in Figure 3(c). After apply-
ing with CLAHE for image enhancement and registration,
the two input images are applied with DCT-based image
fusion technique and the resultant fused image Figure 3(d).

Two hundred MRI images and 200 SPECT images are
fused, providing 200 fused images. Features such as radius,
area, perimeter, texture, smoothness, compactness, concave
points, and concavity are considered, and thus, six features
in total are extracted from fused images and individual input
images such as MRI and SPECT images. A scatter plot rep-
resenting some of the features is shown in Figure 4. These
features are given as input to SVM, KNN, and decision tree
classifiers, and the results are compared to identify the best
classifier for brain tumor detection.

The performances of classifiers are measured using
accuracy, precision, recall, specificity, F1 score, confusion
matrix, and ROC curve. The confusion matrix typically
consists of four different results, namely, true positive
(TP), false positive (FP), true negative (TN), and false
negative (FN). Performance measures of classifiers are
described in this section.

3.2. Accuracy. The accuracy of the classifier is defined as the
ratio of total number of correct predictions to the total

(a) (b) (c) (d)

Figure 3: (a) Input image-1 (MRI-brain tumor. (b) Input image-2 (SPECT-brain tumor. (c) Converted grey scale image of input image-2.
(d) Fused image (MRI-SPECT).
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Figure 4: Continued.
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number of predictions. Accuracy is defined in Equation (7),
as shown below.

Accuracy =
TP + TN

TP + TN + FN + FP
: ð7Þ

3.3. Precision. The precision of the classifier is defined as the
correct prediction ratio to the actual prediction of brain
tumor cases represented

Precision =
TP

TP + FP
: ð8Þ

3.4. Recall. Recall of the classifier is defined as the ratio of
correctly predicted brain tumor cases to overall brain tumor
cases, including nonbrain tumor cases. The recall is defined
in

Recall =
TP

TP + FN
: ð9Þ

3.5. Specificity. The specificity of the classifier is defined as
the ratio of correctly identified nonbrain tumor cases to neg-
ative brain tumor cases, which is represented as in

Specificity =
TN

TN + FP
: ð10Þ

3.6. F1 Score. It is the measure of average between precision
and recall of classifiers defined in

F1 Score =
Precision × Recall
Precision + Recall

: ð11Þ

3.7. Confusion Matrix. The performance of the classifier in
matrix form is given by the confusion matrix of the predic-

tion model. It consists of correctly identified brain tumor
cases, missclassified brain tumor results, correctly identified
nontumor cases, and missclassified nonbrain tumor cases.

3.8. Receiver-Operating Characteristic (ROC). The ROC
curve graph graphically illustrates the performance of the
classifier. This graph shows the relationship between the
actual positive rate and the false-positive rate.

Extracted features from fused images are tabulated and
plotted using parallel coordinates plot as shown in Figure 5.

The confusion matrix of the SVM classifier, K-NN clas-
sifier, and decision tree classifier is shown in Figures 6(a)–
6(c), respectively. Performance measures such as accuracy,
precision, recall, specificity, and F1 score for SVM, KNN,
and decision tree classifiers are tabulated in Table 1.

The classifiers are stored with extracted feature values
during training phase. During testing phase, classifiers are
tested with different input images. Initially, the classifiers
are tested with cancerous input images. If the classifier pre-
dicts the cancerous image output correctly, this condition
can be taken as true positive (TP) but if it is wrongly predict
as noncancerous image, then the condition is known as false
positive (FP). When the classifiers are tested with noncan-
cerous input images, if the classifier predicts the noncancer-
ous image output correctly, this condition can be taken as
true negative (TN) but if it is wrongly predict as cancerous
image, then the condition is known as false negative (FN).
Based on this TP, FP, TN, and FN values obtained from
confusion matrix as shown in Figures 6(a)–6(c), the perfor-
mance measures of classifiers are calculated using Equations
(7) to (11) and tabulated as shown in Table 1.

From tabulated results, it is inferred that the SVM classi-
fier provides high accuracy, precision, recall, specificity, and
F1 score parameters and thus performs better than K-NN
and decision tree classifier.
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Figure 4: (a) Scatter plot representation of mean perimeter and mean area. (b) Scatter plot representation of mean smoothness and mean
compactness. (c) Scatter plot representation of standard error mean concavity and standard error mean concave points. (d) Scatter plot
representation of worst symmetry and worst fractal dimension.
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The performance of classifiers can also be predicted
using the response of the ROC curve based on the value
of the area under the curve. The area under curve values
of the SVM, KNN, and decision tree classifier is 0.994,
0.932, and 0.921, as shown in Figures 7(a)–7(c). From
observation, it is noted that the SVM classifier gives the
maximum area under the curve value of 0.994, which indi-
cates the better performance of the classifier over the other
two classifiers.

3.9. Comparison of Our Method with Features Extracted
From MRI Image Alone Given as Input to Classifiers. Fea-
tures are extracted from 200 samples of MRI images
collected from the medical database, and these features are
given as input to SVM, KNN, and decision tree classifiers.
The results of classifiers are tabulated in Table 2.

From tabulated results, it is inferred that SVM classifier
when fused images are considered for feature extractions
provides an accuracy of 96.3%, the precision of 97.5%, recall
of 95.12%, specificity of 97.13%, and F1 score of 96.29%.
These five parameters are high values and thus perform bet-
ter than SVM, K-NN, and decision tree classifiers when MRI
image alone is considered for feature extraction.

3.10. Comparison of Our Method with Features Extracted
From SPECT Image Alone Given as Input to Classifiers. Fea-
tures are extracted from 200 SPECT images collected from a
medical database, and these features are given as input to
SVM, KNN, and decision tree classifiers. The results of clas-
sifiers are tabulated in Table 3.

From tabulated results, it is inferred that SVM classifier
when fused images are considered for feature extractions

provides an accuracy of 96.8%, the precision of 97.5%, recall
of 95.12%, specificity of 97.13%, and F1 score of 96.29%.
These five parameters are high values and thus perform bet-
ter than SVM, K-NN, and decision tree classifiers when
SPECT image alone is considered for feature extraction.

3.11. Comparison of Our Method with SVM, KNN
Classifier, and Decision Tree Classifier In Terms of
Consumed Time. In this test, we compare the implementa-
tion time of our proposed method and SVM, KNN, and
decision tree classifiers when features from SPECT image
alone are given as input to classifiers, and the obtained
result is shown in Table 4.

Ten independent experiments are taken on PC with Intel
Core 3 processor and PC with Celeron 3.06G/1G processor,
and the average time is calculated. From the tabulated
results, it is observed that the proposed SVM classifier when
features from fused images are given as input to classifier
consumes longer time, almost 420 seconds, to execute the
results, whereas SVM, KNN, and decision tree classifiers
when features from SPECT image alone given as input to
classifier consume 128, 160, and 180 seconds, respectively.
The existing methods involve steps like preprocessing, fea-
ture extraction, segmentation, and classification, whereas
the proposed method involves steps like preprocessing,
image fusion, feature extraction, segmentation, and classifi-
cation. Because of the additional step involved, the proposed
method consumes more time to execute the results when
compared to existing research methods. The experiment
results of the proposed method are compared with relevant
literature and presented in Table 5.

Figure 5: Parallel coordinates plot of features extracted from malignant type tumor.
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Figure 6: (a) Confusion matrix of the SVM classifier. (b) Confusion matrix of the K-NN classifier. (c) Confusion matrix of the decision
tree classifier.

Table 1: Performance measures of SVM, KNN, and decision tree classifiers when features extracted from fused images are given as input.

S. no. Classifier name TP FP TN FN Accuracy Precision Recall Specificity F1 score

1 SVM 195 5 190 10 96.8 97.5 95.12 97.43 96.29

2 K-NN 186 14 187 13 93.3 93 93.46 93.03 93.23

3 Decision tree 181 19 182 18 90.8 90.5 90.95 90.54 90.72
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Table 2: Performance comparison of proposed method and SVM, KNN, and decision tree classifiers when MRI image alone given as input.

S. no. Classifier name TP FP TN FN Accuracy Precision Recall Specificity F1 score

1 SVM (proposed) 195 5 190 10 96.8 97.5 95.12 97.43 96.29

2 SVM 190 10 186 14 94 95 93.21 94.89 94.09

3 K-NN 180 20 181 19 90.25 90 90.45 90.04 90.20

4 Decision tree 174 26 172 28 86.50 87 86.86 86 87

Table 3: Performance comparison of proposed method and SVM, KNN, and decision tree classifiers when SPECT image alone given as
input.

S. no. Classifier name TP FP TN FN Accuracy Precision Recall Specificity F1 score

1 SVM (proposed) 195 5 190 10 96.8 97.5 95.12 97.43 96.29

2 SVM 192 8 188 12 95 96 94.11 95.91 95.04

3 K-NN 182 18 185 15 91.75 91 92.38 91.13 91.68

4 Decision tree 178 22 179 21 89.25 89 89.44 89.05 89.21
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Figure 7: (a) ROC curve of the SVM classifier. (b) ROC curve of the KNN classifier. (c) ROC curve of the SVM classifier.
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4. Conclusion

Brain tumor images from MRI and SPECT modalities are
considered and applied with CLAHE method to preprocess
the images, and then, DCT-based fusion technique was
applied to obtain fused images. Features from fused images
are extracted and inputted to SVM, KNN, and the decision
tree classifier. SVM classifier provides the maximum accu-
racy of 96.8%, precision of 97.5%, recall of 95.12%, sensitiv-
ity of 97.43%, and F1 score of 96.29%, which is higher when
compared to SVM, KNN, and decision tree classifier when
features from either MRI or SPECT image is alone given as
input to classifiers. As this research involved image fusion
and preprocessing feature extraction and image classifica-
tion, it took a long time to execute the results compared to
conventional cancer classification models. These novel
fusion-based AI algorithms can be more suitable for person-
alized medicine. In the future, transform-based image fusion
approaches such as Curvelet transform and Shearlet trans-
form can be applied to input images, and the classification
performance can be measured.
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Objective. Based on resting-state functional magnetic resonance imaging (rs-fMRI), to observe the changes of brain function of
bilateral uterine points stimulated by electroacupuncture, so as to provide imaging basis for acupuncture in the treatment of
gynecological and reproductive diseases. Methods. 20 healthy female subjects were selected to stimulate bilateral uterine points
(EX-CA1) by electroacupuncture. FMRI data before and after acupuncture were collected. The ReHo values before and after
acupuncture were compared by using the analysis method of regional homogeneity (ReHo) of the whole brain, so as to explore
the regulatory effect of acupuncture intervention on brain functional activities of healthy subjects. Results. Compared with
before acupuncture, the ReHo values of the left precuneus lobe, left central posterior gyrus, calcarine, left lingual gyrus, and
cerebellum decreased significantly after acupuncture. Conclusion. Electroacupuncture at bilateral uterine points can induce
functional activities in brain areas such as the precuneus, cerebellum, posterior central gyrus, talform sulcus, and lingual gyrus.
The neural activities in these brain areas may be related to reproductive hormone level, emotional changes, somatic sensation,
and visual information. It can clarify the neural mechanism of acupuncture at uterine points in the treatment of reproductive
and gynecological diseases to a certain extent.

1. Introduction

Functional magnetic resonance imaging (fMRI) technology
is a new noninvasive, nonradioactive, and multiangle
method to detect local brain functional activities. FMRI
technology has made many achievements in the study of
brain functional changes and has been gradually applied to
the study of the mechanism of acupuncture and moxibus-
tion in recent years [1, 2]. Uterine acupoint (ex-ca1) is one
of the odd acupoints outside the meridian. It has the effects
of warming the uterus and regulating menstruation, promot-
ing qi and relieving pain, raising Yang, and lifting depres-
sion. It is widely used to treat gynecological diseases such
as irregular menstruation, dysmenorrhea, infertility, and
uterine prolapse [3]. Because it is located in the less abdo-

men and is outside the uterus, it is also the main acupoint
for regulating the uterus [4]. However, at present, there are
few studies on the effective mechanism of uterine acupoints
in the treatment of gynecological diseases. Therefore,
through functional magnetic resonance imaging technology,
we preliminarily explore the effect of electroacupuncture
stimulating bilateral uterine acupoints on brain function,
so as to provide imaging basis for further exploring the
mechanism of acupuncture and moxibustion.

2. Materials and Methods

2.1. Observation Object. Through the official account of
WeChat, the public health volunteers were recruited openly.
Inclusion criteria were as follows: (1) age 20-40 years; (2)

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 4295985, 5 pages
https://doi.org/10.1155/2022/4295985

https://orcid.org/0000-0003-3722-4318
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4295985


female, all right-handed; (3) no history of mental or nervous
system diseases; (4) menstruation is generally normal; (5) no
drug-taking history and acupuncture treatment history
within the first two weeks of participating in this project;
and (6) those who sign the informed consent form. Exclu-
sion criteria were as follows: (1) those with contraindications
to MRI scanning, such as foreign bodies such as metal
products, cardiac pacemakers, and metal dentures (which
cannot be removed), those with claustrophobia, or those
who cannot accept MRI scanning for other reasons; (2)
pregnant and lactating women; (3) have a history of alcohol
or drug abuse; and ④ those with contraindications to acu-
puncture and moxibustion. This study was approved by the
ethics committee of the Third Hospital of Shandong Prov-
ince (ethics No.: kyll-2021038). All volunteers were
informed of the whole experimental process and signed
informed consent.

2.2. Electroacupuncture Stimulation Method. Volunteers lie
flat on the treatment bed and expose their small abdomen.
Huatuo brand disposable acupuncture needle of 0:25 ∗ 40
mm is selected as the needle. After routine disinfection of
acupoints, the needle is directly inserted into the skin for
about 25mm. After needling qi, connect the Huatuo brand
electroacupuncture instrument to both uterine points; select
continuous wave, frequency 1Hz; and keep the needle for
20min. All 20 volunteers were operated by the same acu-
puncturist. FMRI scans were performed before and after
acupuncture.

2.3. MRI Scanning Program and Parameters. The Philips
Ingenia 3.0T MRI scanner of our hospital was used to collect
data with 16-channel head neck combined coil, with anti-
noise earplugs inside and sponge outside. Before examina-
tion, the subjects lay flat on the examination bed and had a
full rest to eliminate psychological factors such as fear and
anxiety. Keep the head still during the examination, wear
eye masks, and guide the subjects to relax, not fall asleep,
and not do any thinking activities.

Before acupuncture treatment, subjects with intracranial
organic lesions were excluded by routine sequence MRI
scanning. The scanning sequence included T1WI, T2WI,
FLAIR, and DWI. Then, 3D structure data acquisition and
finally rs-fMRI (FE-EPI sequence) scanning were done,
scanning parameters:TR = 2000ms,TE = 30ms,FA = 90
°,FOV = 220mm × 220mm,matrix = 64 × 64
,number of layers = 24,layer thickness = 3
mm,thickness interval = 1mm; a total of 180 time points
were collected. After acupuncture treatment, 3D structural
data and RS fMRI were collected.

2.4. fMRI Image Processing. In order to reduce the impact of
data acquisition error on subsequent analysis results, DPABI
software based on MATLAB 2018b platform is used in this
project to preprocess the collected MRI data. The prepro-
cessing steps include eliminating the first 10 scanning time
points, time horizon correction, and head movement correc-
tion (excluding subjects with average head movement
amplitude > 1mm or rotation parameter > 1° in the X-, Y-,

and Z-axes). The corrected data will be registered on the
EPI template for spatial standardization, and the fMRI
image will be resampled with the size of 3mm × 3mm × 3
mm voxel. The 24 friston head movement parameters, cere-
brospinal fluid, white matter, and whole brain mean signals
were removed as covariates. A band-pass filter with a filter-
ing range of 0.01-0.1Hz was used to eliminate the impact
of noise caused by subjects’ physiological activities such as
breathing and heartbeat on the research results.

2.5. Statistical Analysis. After fMRI data preprocessing,
DPARSF, SPM8, and other toolkits based on MATLAB plat-
form were used for whole brain regional homogeneity
(ReHo) analysis. ReHo analysis can consider local spatial
and temporal information at the same time [5]. Kendall con-
cordance coefficient (KCC) can be used to explain the voxel
consistency of brain functional regions in different time
series. The Kendall harmony coefficient is used to measure
the ReHo value. By calculating the time series consistency
(KCC value) between each voxel in the brain and its adjacent
26 voxels, the ReHo diagram of the whole brain of each sub-
ject can be obtained [6]. Then, the whole brain is averaged;
that is, the ReHo value of each voxel is divided by the whole
brain ReHo mean to achieve standardization. In order to
further reduce noise and improve signal-to-noise ratio,
Gaussian smoothing kernel with half height and width of
6mm is used for spatial smoothing. The ReHo values of
the two sets of subjects were statistically analyzed by paired
t-test to obtain the different brain regions before and after
acupuncture. Gaussian random field theory (GRF) is used
for multiple comparison correction.

3. Research Results

A total of 20 female healthy subjects were included in this
study, and all completed fMRI scanning before and after
acupuncture. Using the method of ReHo analysis to analyze
the fMRI data, it was found that the ReHo values of the left
precuneus lobe, left central posterior gyrus, calcarine, left
lingual gyrus, and cerebellum induced by electroacupunc-
ture at uterine point were significantly lower than those
before acupuncture. After GRF correction (voxel P < 0:05,
cluster P < 0:05), there was significant difference (see
Table 1 and Figure 1 for details).

4. Discussion

Acupuncture and moxibustion are more and more recog-
nized by the medical community, and the mechanism of
acupuncture and moxibustion is also being explored. With
the development of science and technology, fMRI is a new
imaging method in recent years. It has the unique advan-
tages of no radiation, no bone artifacts, and multiparameter
imaging. It has become one of the hotspots of acupuncture
research. The principle is mainly to observe the change char-
acteristics of image signal intensity according to the change
of blood oxygen level by calculating the ratio of oxygenated
hemoglobin to deoxyhemoglobin and the change of relative
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concentration of deoxyhemoglobin, combined with the
paramagnetic characteristics of deoxyhemoglobin [7].

ReHo is a method for measuring similarity or coherence
in voxel analysis of the whole brain. This method has been
used to explain the relationship between neurovascular cou-
pling and task activation [8], as well as the functional regu-
lation of cognitive changes in subjects in a resting state [8].
However, there are few studies on the changes of ReHo in
brain region caused by acupuncture. In this study, we found
that acupuncture at uterine point can inhibit the neural
activities of the precuneus, cerebellum, talform sulcus, lin-
gual gyrus, and posterior central gyrus. In a previous study,
Lin et al. reported that the higher the ReHo value, the stron-
ger the synchronization of local neuronal activities, which is
a compensatory response to metabolic abnormalities and
blood flow changes related to adverse clinical outcomes
[9]. Their results suggest that the reduction of ReHo may
have a protective effect. In this study, we found that electro-

acupuncture at uterine points can reduce ReHo values in
brain regions such as the precuneus lobe in healthy subjects.
However, whether electroacupuncture at uterine point has
neuroprotective effect needs further study.

Precuneus is considered to be one of the important
regions related to emotion, cognition, and memory and
related to mental disorders. It participates in the distributed
network of cortical and subcortical regions and integrates
self-generation and external information [10]. The precu-
neus can produce significant neural changes to inconsistent
stimulation information [11]. The nerves distributed at uter-
ine points have the same part as the ganglion segments of
female reproductive organs such as the uterus, and studies
have proved that acupuncture can cause changes in sex hor-
mones [12]. Therefore, we speculate that the reduction of
ReHo in precuneus is related to sex hormone fluctuations
and emotional changes. The regulatory effect and clinical
efficacy of acupuncture and moxibustion also show that acu-
puncture and moxibustion can maintain internal balance.
Therefore, we speculate that the potential mechanism of
acupuncture at uterine points in the treatment of gynecolog-
ical and reproductive diseases may be related to the neural
activity of precuneus, regulate the changes of female emo-
tion, and restore the normal level of hormone.

As we all know, the basic function of the cerebellum is
to maintain postural balance and coordinate random move-
ment. Studies have also shown that the cerebellum plays a
potential role in many functions such as cognition and
emotion [13]. The literature suggests that [14] the cerebel-
lum has a wide impact on the emotion, pain, and other
negative emotions of female patients with premenstrual
anxiety. Some scholars have found that [15], in patients
with premenstrual syndrome, bilateral cerebellar falff
decreases, and acupuncture at Sanyinjiao can induce bilat-
eral cerebellar falff to increase. This study also proves that
electroacupuncture at bilateral uterine points can affect
the ReHo value of the cerebellum. Therefore, we believe
that acupuncture at uterine points can regulate the activity
of the cerebellum and then affect the changes of women’s
emotion and cognition.

The posterior central gyrus belongs to the parietal lobe,
also known as the somatosensory center, and is part of the
pain matrix. It may play a key role in regulating pain percep-
tion, including pain localization and pain intensity recogni-
tion. Ke et al. [16] reported that ReHo increased due to

Table 1: Different brain regions before and after acupuncture intervention.

Brain region Hemisphere Condition
MNI

Cluster size Peak t
X Y Z

Precuneus
Left After acupuncture < before acupuncture -27 -66 48 456 -5.3196

Posterior gyrus

Calcarine Bilateral
After acupuncture < before acupuncture 0 -93 0 327 -5.7168

Lingual gyrus Left

Cerebellum Bilateral After acupuncture < before acupuncture -6 -72 -18 357 -5.4967

MNI: Montreal Neurological Institute, Montreal Institute. The cluster of precuneus also includes functional brain areas such as the central posterior gyrus and
superior parietal lobule. The cluster of the talform sulcus also includes functional brain regions such as the lingual gyrus, middle occipital gyrus, and inferior
occipital gyrus.

RL

–20 mm –12 mm

–5 –4 –3 –2 –1 0

–4 mm 4 mm 12 mm

–48 mm –44 mm –40 mm –36 mm –32 mm

Figure 1: Different brain regions before and after acupuncture
intervention.
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adaptive neuronal changes caused by long-term pain stimu-
lation and biological response. Electroacupuncture at bilat-
eral uterine points can reduce the ReHo value of the
posterior central gyrus. We speculate that electroacupunc-
ture at bilateral uterine points can affect the pain regulation
function of the posterior central gyrus to a certain extent,
which may be the effective mechanism of acupuncture at
uterine points in the treatment of dysmenorrhea.

The calcarine sulcus and lingual gyrus are located in the
visual cortex and play an important role in vision [17]. In
addition, the study of Rehbein et al. [17, 18] also proved that,
at the neural level, the increase of estradiol level was related
to the decreased activation of the right lingual gyrus and left
calcarine sulcus. In the present study, visual structures were
involved in electroacupuncture at uterus points, suggesting
that uterus points may be related to the treatment of visual
impairment. Therefore, we speculated that electroacupunc-
ture of bilateral uterine acupoints interferes with the changes
of talus sulcus and lingual gyrus, thus improving the level of
estradiol, which may be the neuroimaging mechanism of
uterine acupoints for the treatment of reproductive diseases.

In conclusion, electroacupuncture at bilateral uterine
points can affect the neural activities of brain areas such
as the precuneus lobe, cerebellum, posterior central gyrus,
talform sulcus, and lingual gyrus, which may be related to
the fact that acupuncture at uterine points can regulate the
level of reproductive hormone, emotional changes, and
somatic sensation, so as to clarify the neural mechanism
of acupuncture at Zigong point in the treatment of repro-
ductive and gynecological diseases to a certain extent.
However, further experiments are needed to prove
whether this is related and consistent with the brain effect
of acupuncture at uterine points under pathological condi-
tions. In addition, the sample size of this study is too
small, and only 20 volunteers were recruited. Although
the number of participants is no less than that in previous
similar studies [19–21], we believe that the number of vol-
unteers in fMRI research is more than 20, which may
obtain more convincing evidence. These problems will be
solved in our future research.
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Dental caries is a prevalent disease of the human oral cavity. Given the lack of research on digital images for caries detection, we
construct a caries detection dataset based on the caries images annotated by professional dentists and propose RDFNet, a fast
caries detection method for the requirement of detecting caries on portable devices. The method incorporates the transformer
mechanism in the backbone network for feature extraction, which improves the accuracy of caries detection and uses the
FReLU activation function for activating visual-spatial information to improve the speed of caries detection. The experimental
results on the image dataset constructed in this study show that the accuracy and speed of the method for caries detection are
improved compared with the existing methods, achieving a good balance in accuracy and speed of caries detection, which can
be applied to smart portable devices to facilitate human dental health management.

1. Introduction

Dental caries is a prevalent disease of the human oral cavity
that has a great impact on human quality of life. Data from
the National Health and Nutrition Examination Survey,
2011–2012, showed that among children aged 2–8 years,
37% had dental caries in their primary teeth. Among adoles-
cents aged 12–19 years, the prevalence of dental caries in
permanent teeth was 58%. Approximately 90% of adults
aged ≥20 years had dental caries [1]. Therefore, the detection
of dental caries can provide reliable clinical reference to doc-
tors and effectively avoid the onset or the further severity of
dental caries, which is of great significance to improving the
quality of human life.

With the advances of deep-learning methods in com-
puter vision, many such methods have been applied to caries
detection to improve the accuracy of detection and relieve
the dentists’ workload. For example, Suryani et al. [2] used
mask R-CNN to detect objects in dental panoramic X-ray
images, which saved time and improved the quality of den-
tists’ diagnoses by automatically detecting panoramic X-ray
images. Majanga et al. [3] proposed a deep learning-based

technique for dental caries detection named blob detection.
The proposed technique automatically detects hidden and
inaccessible dental caries lesions. The process of detection
and classifying dental caries achieved the results of 97%
and 96% for the precision and recall values, respectively.
The above methods for caries detection are mainly based
on X-ray images. However, the X-ray images must be cap-
tured and acquired by professional equipment and special-
ized technicians, which is expensive and cumbersome. It
has become increasingly easy to acquire digital images due
to the popularity of portable devices and the development
of biological storage technology [4]. Caries detection
becomes quicker and more convenient based on these digital
images, making it possible to conduct detection anytime and
anywhere. Therefore, the use of digital images for caries
detection has become a new demand in human dental health
management.

Saini et al. [5] used digital images of dental caries for
early classification and prevention of dental caries. They
used four convolutional neural networks including
ResNet50, all of which achieved good classification accuracy.
However, their study only classified the images of caries
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without detecting the type of caries and lesion area. To our
knowledge, no study has been conducted on the detection
of dental caries based on digital images, mainly because of
the lack of large-scale digital image datasets of annotated
dental caries. Caries detection is an object detection task,
and the popular object detection algorithms are all super-
vised deep-learning methods, which require a large amount
of annotated data to train the model. The caries images must
be annotated by professional dentists, which is troublesome
and laborious. Our research group has accumulated a large
number of caries images annotated by professional doctors
during the preliminary research process. To address the
problem of the lack of a digital image dataset of dental caries,
we performed data cleaning and image enhancement opera-
tions based on the aboveannotated images of dental caries.
We deleted the low-quality images in the dataset and further
enhanced and expanded the images to build the annotated
dataset for dental caries detection. Meanwhile, we here pro-
pose use of the RDFNet model (rapid network with deep fea-
tures for dental caries detection) based on the single-stage
deep-learning detection method YOLOv5s to detect dental
caries in digital images. Since the caries parts of the images
in the dataset are dark and their features are not obvious,
RDFNet incorporates the transformer mechanism in the
backbone to better extract the complex features of tooth
decay and improve the accuracy of detection. To run the car-
ies detection algorithm on portable devices and improve the
inference speed, the RDFNet model uses the FReLU activa-
tion function to activate the complex visual-spatial informa-
tion of the images to meet the demand of computing speed.

Overall, the main contributions of this paper are the
following.

(1) A caries image dataset is constructed, and all images
are annotated by professional dentists.

(2) The transformer mechanism based on the original
YOLOv5 backbone network is incorporated to better
extract the complex features of dental caries.

(3) The FReLU activation function is adopted to activate
the complex visual-spatial information of the images,
which improves the inference speed of the model.

2. Related Works

2.1. Medical Image Object Detection. Object detection is a
computer technology related to computer vision and image
processing for detecting specific classes of semantic objects
(e.g., people, buildings, or cars) in images and videos, which
has promising applications in areas such as video security
and autonomous driving, among others [6]. Medical images
are mainly used to help doctors to make judgments about
medical information. Their production has grown exponen-
tially due to the increase of image acquisition devices and
advances in camera technology. In recent years, with the
continuous development and progress in medical technol-
ogy, modern hospitals have used medical images to predict
the intensity of patients’ diseases. Medical object detection
based on deep learning has gradually become a current

research hotspot. In 2020, Tavakoli et al. [7] used a deep-
learning method to detect microaneurysms in retinal images.
The experimental results showed that the accuracy of micro-
aneurysm detection was approximately 90%, and the perfor-
mance of the method using top-hat preprocessing was
greater than 80%. During the COVID-19 epidemic, Loey
et al. [8] used ResNet50 and YOLOv2 for medical mask-
wearing detection. Their proposed model consists of two
parts, a deep transfer-learning model based on ResNet50
for feature extraction and a YOLOv2 framework for medical
mask detection, achieving a best detection accuracy of 81%.

2.2. X-Ray Image-Based Caries Detection. X-ray images are
widely used in stomatological research because they show
the full details of the teeth and gums. At present, most of
the caries detection methods are carried out using X-ray
images. Relevant studies have used the method of caries seg-
mentation to detect caries in X-ray images and achieved
good accuracy. Rad et al. [9] proposed a caries segmentation
and recognition method that uses integral projection tech-
nology to extract local feature mapping information of teeth.
Lakshmi et al. [10] segmented dental X-ray images using a
deep convolutional neural network (CNN) to predict caries
in dental images. Both methods demonstrated high accuracy
on caries X-ray image datasets. Some studies, such as that of
Suryani et al. [2], have also directly used deep-learning
methods for caries detection and identification, which saved
time and process steps and improved the simplicity of the
method.

2.3. Transformer. The transformer network is a well-known
and efficient deep-learning model proposed by Google in
2017 [11]. The basic version of transformer is based on the
attention mechanism and consists of a decoder and encoder.
This structure was originally proposed in the sequence-to-
sequence model of machine translation [12]. Currently,
transformer has been widely used in natural language pro-
cessing [11], computer vision [13–15], medical disease
detection [16], etc. The transformer structure mainly utilizes
the self-attention mechanism [11] to extract intrinsic fea-
tures and has shown great potential in various fields.

Transformer has received significant attention in the field
of object detection due to its advantageous capability in extrac-
tion of intrinsic features. There are two main categories of
transformer-based object detection, a transformer-based set
prediction for detection and a transformer-based backbone
for detection. DEtection TRansformer (DETR) [13] is a typ-
ical example of the first category. A clear disadvantage of this
category is the high training cost and poor detection accu-
racy for small objects. The second type of method takes the
transformer structure as a part of the backbone network of
common detection methods and has achieved good perfor-
mance [17].

3. Materials and Methods

3.1. Dental Caries Annotation Dataset Construction. During
preliminary research conducted by our research group, a
large number of caries images annotated by professional
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doctors have been accumulated, but two types of problems
exist in the original images. First, there are some low-
quality images. The image acquisition equipment contains
different models of cameras, smartphones, etc., and the
acquired images exhibit large variability in pixels, size, and
resolution. Some of the images contain not only the oral part
but also the actual living environment of users. Second, some
noise exists in the acquired images, and the lighting and con-
trast in the images are significantly different.

To address the problem of low-quality images in the
original data, we conducted data cleaning on the original
images, manually selecting and removing unreasonable
labels and low-quality pictures one by one according to the
annotations in the dataset and only keeping the high-
quality images with clear and correct annotations. Then,
7.6% of the original caries images were removed, and a total
of 4,277 high-quality caries images were obtained. To
address the noise problem in the data, we performed image
enhancement operations, e.g., adjusting brightness and con-
trast, random flipping, and randomly adding noise to the
images, to improve the robustness of the model. Specifically,
the images in the dataset have been flipped according to 50%
probability, and in the process of image flipping, horizontal
and vertical flipping were performed separately according
to 50% probability. For each image, the brightness, contrast,
and saturation were adjusted separately with 33.3% probabil-
ity. We added noise to the images with 30% probability, and
in the process of adding noise, Gaussian, pepper, and salt noise
were separately added with 33.3% probability. At the end of all
operations, a total of 8,554 images were obtained, including
the processed and original images, which realizes the enhance-
ment and expansion of the dataset.

After preprocessing the original data, the labeled dental
caries instances were divided into three different categories,
i.e., mild, moderate, and severe dental caries according to
the clinical manifestations of dental caries at different stages,
clinical diagnoses of patients in the hospital, and practical
experience of the dentists. The statistics of caries instances
for each category are shown in Table 1.

3.2. RDFNet. Given the lack of research on digital images for
caries detection, the RDFNet model, based on YOLOv5s,
which is inspired by the YOLO [18] series algorithm, taking
the characteristics of real-time and accuracy into account, is
proposed in this study.

The structure of RDFNet is shown in Figure 1. The
model contains backbone, neck, and prediction modules.

3.2.1. Overview. The backbone module is used to perform
the extraction of caries features. Among them, focus [19] is

a slicing operation that can replace convolution and reduce
the loss of feature information caused by convolution.
C3Modified is a convolution module activated by the FReLU
function that is used to extract complex visual-spatial infor-
mation of caries images. SPP [20] is a spatial feature pyramid
pooling structure that can expand the perceptual field, fuse the
local and global features, and enrich the information of the
feature map. To better extract the depth features of dental car-
ies, RDFNet adds an improved transformer-encoder module
after the original SPP structure, which is used to increase the
network’s ability to extract dental caries features.

The neck module is used to fuse feature maps of different
sizes as well as extract high-level semantic features. The
module uses the structure of feature pyramid network
(FPN [21]) and path aggregation network (PAN [22]), where
FPN is performed top-down, the predicted feature maps are
obtained by passing fusion of information through upsam-
pling, and PAN is performed bottom-up to obtain the feature
pyramids. Feature fusion is performed using top-down as well
as bottom-up approaches, thus reducing information loss. To
better extract the high-level semantic features of caries images,
in this study, the improved C3Modified convolutional module
is adopted in the neck module.

The prediction module uses the high-level semantic fea-
tures generated by the neck module to classify and regress
the class and location of objects. It consists of three detection
heads to detect large, medium, and small objects, which is a
good way to overcome the shortcomings of the single-stage
detection method with low detection accuracy for small tar-
get objects.

3.2.2. Feature Extraction Module Integrated with
Transformer Structure. Since transformer has strong extrac-
tion capability for complex features, the feature extraction
module shown in Figure 2 is proposed based on trans-
former’s structure.

To extract features better, we perform stacking of three
transformer encoders. In our experiments, we remove the
original normalization layer from the transformer encoder
in order to simplify the model.

We fed the feature map into this structure for the extrac-
tion of deep features. The attention values of the different
heads were calculated separately and then concatenated.
The calculation formulas for calculating the value of multi-
head attention are

MultiHeadAttention Q, K , Vð Þ = Concat head1,⋯, head4ð Þ,
headi = Attention QWQ

i , KW
K
i , VW

V
i

� �
:

ð1Þ

The formula for calculating the value of attention is

Attention Q, K , Vð Þ = soft max
Q × KT

ffiffiffiffiffi
dk

p × V

 !
, ð2Þ

where dk denotes the input dimension, and Q, K , and V
denote the query, key, and value matrices, respectively. Q,

Table 1: Statistics of caries instances in the dataset constructed in
the present work.

Categories Total number Percentage

Mild caries 5,570 38.1%

Moderate caries 4,370 29.9%

Severe dental caries 4,670 32.0%
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K , and V in the multihead self-attention mechanism in this
modular structure have the same values, which are the
values of the input feature maps.

3.2.3. Improved Convolutional Module for Extracting
Complex Visual-Spatial Information. Ma et al. [23] identi-
fied spatially insensitiveness in activations as the main
obstacle impeding visual tasks from achieving significant
improvements in vision tasks and proposed a new visual
activation function, i.e., FReLU, based on that. Inspired
by the ability of FReLU to capture complex visual-spatial
information, in the present work, we used the FReLU acti-
vation function to improve the original convolution mod-
ule. The structure of the improved convolution module is
shown in Figure 3.

We adopted max ð∗Þ as the nonlinear function and spa-
tial context for each pixel as the condition part. A parametric
pooling window was used to create spatial dependency.

f xc,i,j
� �

=max xc,i,j, T xc, i, jð Þ� �
,

T xc,i,j
� �

= xωc,i,j • pωc :
ð3Þ

Here, xc,i,j is the input pixel of the nonlinear activation
f ð⋅Þ on the c th channel at the two-dimensional spatial posi-
tion ði, jÞ. The function Tð⋅Þ denotes the funnel condition,
xωc,i,j a kh × kw parametric pooling window centered on xc,i,j,
pωc the coefficient on this window that is shared in the same
channel, and ð⋅Þ dot multiplication.

Image

640⁎640⁎3 320⁎320⁎32 80⁎80⁎128 40⁎40⁎256 20⁎20⁎512
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Figure 1: RDFNet structure.

Features

Multi-head
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Linear

Concat
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Figure 2: Feature extraction module integrated with transformer
structure.
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4. Results and Analysis

4.1. Experimental Settings. The dataset of digital images con-
structed in the present work was used in the experiments,
with 8,554 caries images divided into training, verification,
and test sets according to the ratio of 7 : 2 : 1. The numbers
of images in the training, verification, and test sets are
5,987, 1,711, and 856, respectively. To improve the detection
accuracy and model robustness, we combined all caries
instances in the dataset into one category and detected the
caries of this category.

The model was trained using the Pytorch deep-learning
framework on an NVIDIA GeForce RTX 3090 graphics card
with 24GB of RAM. The model training parameter settings
are shown in Table 2.

4.2. Evaluation Criteria. We used three measurements to
evaluate the models, namely, accuracy P, recall R, and aver-
age precision mAP@0:5. The calculation formulas are
defined as follows:

P = TP
TP + FP

, ð4Þ

R =
TP

TP + FN
, ð5Þ

mAP@0:5 =
∑n

1
Ð 1
0p rð Þdr
n

threshold = 0:5ð Þ: ð6Þ

In formulas (4) and (5) TP, FP, and FN represent true
positive, false positive, and false negative, respectively.

In formula (6), n denotes the number of classes, pðrÞ is
the curve between recall and accuracy, and threshold is the
Intersection over Union (IoU) threshold of the ground-
truth and predicted boxes.

We used frames per second (FPS), i.e., the number of
pictures that can be processed per second, as the evaluation

criteria of the model detection speed. The calculation for-
mula is defined as follows:

FPS =
frameNum
elapsedTime

, ð7Þ

where frameNum denotes the total number of pictures that
need reasoning, and elapsedTime denotes the total elapsed
time of the reasoning process (seconds).

4.3. Comparison with Existing Methods. Six deep learning
models, i.e., YOLOv5s, YOLOv5m, YOLOv5l, YOLOv3-
tiny [24], faster R-CNN [25], and mask R-CNN [26], were
used to facilitate separate comparisons with RDFNet, and
the experimental results are shown in Table 3. YOLOv5s,
YOLOv5m, and YOLOv5l are different improved versions
of YOLOv5, and the number of modules and parameters
of all three is in the form of incremental increase.
YOLOv3-tiny removes some feature layers from YOLOv3
[27] and keeps only two independent prediction branches.
Compared with YOLOv3, YOLOv3-tiny has faster comput-
ing speed. Faster R-CNN integrates feature extraction, pro-
posal extraction, bounding box regression, and
classification in a single network, which has improved the
comprehensive performance of the model, especially the
detection speed. Mask R-CNN is improved from faster R-
CNN by adding a branch of prediction segmentation mask.

As can be seen from the table, the results of the RDFNet
method in accuracy and average precision are significantly
better than those of the region proposal-based methods,
i.e., faster R-CNN and mask R-CNN, but the experimental
recall results are the opposite. This is because, at the early
stage of dental caries, the difference between lesion and
background images is small, and the region proposal-based
methods divide the background, etc. into recognition targets
when proposing regions, which leads to the reduction of rec-
ognition accuracy of the model and to the recall rate deviat-
ing from the normal range. Region proposal-based methods
take a significant amount of time in proposing regions and
thus are slightly inferior to the single-stage object detection
methods in terms of recognition speed. However, faster R-
CNN effectively improves the speed of proposing regions
by using region proposal networks instead of the previous
selective search method, resulting in a large improvement
in the performance of the model, especially in detection
speed, and thus the best detection speed was achieved in
the experiments.

Input

ConV ConV

BN

SiLU SiLU

Concat

FReLU

BN ×3

Figure 3: Improved convolution module structure.

Table 2: Training parameter settings for proposed method.

Parameter Value Parameter Value

Input size 640 Epoch 80

Initial learning rate 0.001 Decay 0.0005

Momentum 0.937 Batch size 32

Optimizer
Steepest
gradient
descent

Multiscale
training

False
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In the experiments described herein, YOLOv5s,
YOLOv5m, and YOLOv5l did not differ significantly in
accuracy, average precision, and recall, but YOLOv5s
showed the best results in terms of detection speed. This is
because YOLOv5s has a smaller number of parameters com-
pared to YOLOv5m and YOLOv5l; so, the model has a bet-
ter detection speed overall. Meanwhile, there was no
significant difference in other evaluation criteria, indicating
that the feature extraction of the model tends to saturate.
Because caries in all images are small, this results in limited
features extracted by the model, which affects the perfor-
mance of the method. This situation is not related to the
improvement of model complexity and the number of
parameters. The detection speed of the RDFNet method is
maintained at the same level as in YOLOv5s. This is because
the transformer mechanism effectively captures the deeper
features in the caries images, while the FReLU activation
function accelerates the speed of detection. From the above
experimental results, it can be seen that the RDFNet method
can effectively improve the accuracy of caries detection while
maintaining a fast detection speed, achieving a good balance
between accuracy and speed.

4.4. Ablation Study. To verify the effectiveness of each part of
the model, a series of ablation experiments were designed
and conducted; the experimental results are shown in
Table 4.

4.4.1. Transformer Mechanism. It can be seen that in the
ablation experiments, the accuracy of RDFNet without
incorporating the FReLU function was improved by 1.6%
compared with RDFNet without incorporating the FReLU
function and transformer mechanism. This is because the
transformer mechanism extracts deeper features in the
image, and these features effectively improve the perfor-
mance of the model. The accuracy and average precision of
RDFNet are improved by 5% and 1.7%, respectively, com-
pared with RDFNet without incorporating the transformer
mechanism. The comparison of the results also proves that
the transformer mechanism can effectively enhance the
model’s ability to extract features and improve accuracy.

4.4.2. FReLU Function. RDFNet without incorporating
transformer mechanism improved the recall rate by 1.6%,
and the detection speed was also improved compared with
RDFNet without incorporating the transformer mechanism

and FReLU function. This is because the FReLU activation
function accelerates the convergence speed of the model
and improves its prediction efficiency, while the FReLU acti-
vation function can also affect the feature extraction of the
model and reduce the missed detection rate. Comparison
of the experimental results of RDFNet with and without
incorporating the FReLU function show that the RDFNet
method alone outperforms the former in all evaluation cri-
teria, which also further verifies the accuracy of the above
conclusions.

4.5. Comparison of Test Results. To test the caries detection
effect of RDFNet, six annotated images were randomly
selected in the caries test dataset and compared with the pre-
diction results of the model, arranged according to the real
annotated caries images at the top and the prediction results
of RDFNet at the bottom. The arrangement is shown in
Figure 4.

From the overall view of the six images, the detection
result of the six images is satisfying. In Figure 4(a), the lesion
area of caries is accurately located. For caries with no obvi-
ous characteristics in Figure 4(c) and caries with a small
lesion area in Figure 4(e), both instances of caries can still
be accurately detected, indicating that RDFNet can effec-
tively detect the caries position in the images. Figure 4(f) is
the image after horizontal flipping; brightness, contrast,
and saturation adjustments; and the addition of noise based
on the original image. A good detection result is achieved,
indicating that RDFNet has good robustness and can cope
with more complex application scenarios.

However, errors and omissions are also evident in the
test results. In Figures 4(b) and 4(d), some caries in of the
image are not detected correctly because they are not partic-
ularly obvious compared with other caries, and there is
insufficient illumination near caries, which leads to the
omission. In Figure 4(e), there is insufficient illumination
inside the oral cavity and the inner part of the cavity is dark,
resulting in incorrect detection of dental caries by RDFNet.

5. Discussion

The objectiveness of this study is to construct a dataset of
digital images of dental caries annotated by professional
doctors and propose an end-to-end detection method
RDFNet for the detection of dental caries.

Therefore, the main contributions of this paper are as
follows: a caries dataset annotated by professional dentists
was constructed. The RDFNet method is proposed to
achieve fast and accurate detection of caries images. In
the analysis in the previous section, we can find that the
transformer mechanism effectively extracts the feature of
dental caries, which is an important reason for RDFNet
to prevail. And the FReLU activation function is added
to the convolutional module to improve the convergence
speed of the model, which makes up for the decrease of
the model running speed after the transformer mechanism
is added.

The limitation of this study includes that the method
does not work well when the internal illumination of oral

Table 3: Comparison between RDFNet and other object detection
methods. The italic value indicates the top performance.

Methods P mAP@0.5 R FPS

YOLOv5s 0.597 0.552 0.578 20.12

YOLOv5m 0.608 0.556 0.585 18.94

YOLOv5l 0.606 0.563 0.582 17.98

YOLOv3-tiny 0.589 0.5 0.566 22.74

Faster R-CNN 0.421 0.421 0.825 23.14

Mask R-CNN 0.42 0.42 0.824 17.89

RDFNet 0.623 0.569 0.579 20.24
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Table 4: Results of RDFNet ablation experiments. The italic value indicates the top performance, and “w/o” indicates “without.”

Methods P mAP@0.5 R FPS

RDFNet w/o transformer and FReLU 0.597 0.552 0.578 20.12

RDFNet w/o FReLU 0.613 0.554 0.578 20.19

RDFNet w/o transformer 0.573 0.552 0.604 20.56

RDFNet 0.623 0.569 0.579 20.24

(a) (b)

(c) (d)

Figure 4: Continued.
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image is insufficient, and the detection accuracy and speed
are improved compared with the original method, but the
detection speed is not the fastest among all comparison
methods. Hence, future work will concentrate on how to fur-
ther improve the running speed of the model and improve
the performance of the model on images with insufficient
illumination.

Since the proposed method has only been validated in an
experimental setting, we plan to deploy the model to various
devices, including personal computers, smartphones, and
embedded devices, in the future. We expect that the method
will be applied in subsequent industrial applications and
become fundamental for oral care devices, such as smart
toothbrushes with caries detection, to promote human den-
tal health.

6. Conclusions

Aimed at the problem of a lack of research on caries detec-
tion methods based on digital images, we construct a caries
image dataset annotated by professional dentists and pro-
pose a caries detection method, i.e., RDFNet, according to
the requirements of performing caries detection on portable
devices. Based on the original YOLOv5s backbone network,
this method integrates the transformer mechanism to extract
features, improving the detection accuracy. The FReLU acti-
vation function is used to activate the complex visual-spatial
information of the image, which accelerates the reasoning
speed of the model. RDFNet method can effectively improve
the accuracy of caries detection while maintaining a fast
detection speed at the same time. In the future, the RDFNet
method will be applied to various devices for dental caries
detection and promote human dental health.
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Deep learning (DL) is a branch of machine learning and artificial intelligence that has been applied to many areas in different
domains such as health care and drug design. Cancer prognosis estimates the ultimate fate of a cancer subject and provides
survival estimation of the subjects. An accurate and timely diagnostic and prognostic decision will greatly benefit cancer
subjects. DL has emerged as a technology of choice due to the availability of high computational resources. The main
components in a standard computer-aided design (CAD) system are preprocessing, feature recognition, extraction and
selection, categorization, and performance assessment. Reduction of costs associated with sequencing systems offers a myriad
of opportunities for building precise models for cancer diagnosis and prognosis prediction. In this survey, we provided a
summary of current works where DL has helped to determine the best models for the cancer diagnosis and prognosis
prediction tasks. DL is a generic model requiring minimal data manipulations and achieves better results while working with
enormous volumes of data. Aims are to scrutinize the influence of DL systems using histopathology images, present a
summary of state-of-the-art DL methods, and give directions to future researchers to refine the existing methods.

1. Introduction

Cancer is defined as abnormal cell growth that arises from
any body organ. In essence, further growth of the cells in
these organs is saturated. These silent and saturated cells
are increased at a rapid rate till either their removal through
a physical procedure such as surgery, medication, use of hor-
monal therapy, or radiation therapy or their disappearance
on their own naturally. The natural disappearance of cancer
cells can happen in cancers related to kidney or melanomas.
These cells can be screened using tools such as colonoscopy
or pap smear examination or using mammograms. There

are more than 150 different kinds of cancer, and there is a
lack of strategies to cure them in their early stages. Cancer
stem cells are an effective way to form stromal cells thus pav-
ing a way for the cure of cancers. Apart from stem cells,
WNT16B protein also increases resistance against cancer
along with chemotherapy. Therapies such as laser therapy
and cryotherapy are some of the most vibrant approaches
to treat cancer. Some of the most prevalent types of cancers
worldwide include lip, oral cavity, breast and cervical, and
thyroid cancers. On the other hand, rare cancers such as
osteosarcoma, Ewing’s sarcoma, male breast cancer, gastro-
intestinal stromal tumors, chondrosarcoma, mesothelioma,
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adrenocortical carcinoma, cholangiocarcinoma, kidney
chromophobe carcinoma, pheochromocytoma and paragan-
glioma, sarcoma, and ependymoma made up more than 20%
of cancer cases and are rare types of cancers [1–4].

Cancer is a disease of genes. The process of replication,
mitosis, and bombardment by oxygen cells bring continuous
changes in normal and cancer cells. This process begins at
the birth of a cancer cell and goes on till death. During this
process, cancer cell gains mass using stromal support cells,
immune cells, and endothelial cells. These cells become a
part of cancer mass due to factors like stress ligands and
antigens. Other emblems of cancer-based cellular stress are
proteotoxicity, metabolic changes, and displaced acids of
nucleotides. Another pattern of genes that drive them is
chromosomes. They are drivers of a cell’s nucleus. The
human body has around 20,000 genes in somatic cells, and
their study known as cytogenetics has seen large strides of
progress over the past several decades where it is now possi-
ble to build a 3D model of chromosomes [5–7].

Sugar is an important constituent of tumor cells that
fuels the rapid growth of these cells. They are an important
part of the diet of cancer cells, and their growth ensures
the formation of new clones. Bacteria and microbial cells
colonize the human body. Microbial cells are estimated to
be as abundant as human cells, yet their genome is roughly
100 times the human genome, providing significantly more
genetic diversity. Helicobacter pylori, Chlamydia trachoma-
tis, Salmonella enterica serovar typhi, Fusobacterium nucle-
atum, enterotoxigenic Bacteroides fragilis, Koribacteraceae,
etc., are some of the most prominent bacteria that are
associated with cancer. Apoptosis and necroptosis are two
avenues of programmed cell death [8–10].

Cancer has long inspired fears. In the distant past,
physicians related depression or melancholic humour to
cancer’s pathogenesis. It was believed that melancholy could
give rise to a tumor as people attributed their cancer to
sadness. Recently, inflammation and nonspecific immune
activation are found to be key factors in the pathophysiology
of depression related to cancer. Urban centers are at an
increasing risk of cancer-related risks due to factors like
nutrition; infections such as sea turtle fibropapillomatosis
and feline immunodeficiency virus; urban chemical pollu-
tion such as carcinogens, polychlorinated biphenyls, gluta-
thione, and urethane-induced adenomas; light and noise
pollution such as suppression of pineal melatonin produc-
tion; changes in survival; and life history strategies [11–13].

Deep learning (DL) has seen phenomenal growth in
recent years in the use of artificial intelligence allowing
complex computational models to represent abstractions
gathered from data with wide applications in speech
processing, visual processing, and other domains. These
methods work by discovering fine structures in large and
often complex datasets using a backpropagation algorithm.
Compared to DL, conventional methods such as machine
learning-based methods have limitations in processing natu-
ral data in its basic form without preprocessing [14].

Convolutional Neural Networks (CNNs) are DL systems
equipped with the power to learn invariant features. CNNs
have filter banks, feature pooling layers, batch normalization

layers, dropout layers and dense layers that work in har-
mony to create patterns for different object recognition tasks
such as detection, segmentation, and classification. CNNs
have multilevel hierarchies where the distribution of inputs
changes during the process of training. Preprocessed inputs,
such as those obtained through the process of whitening,
etc., are highly desirable to obtain better performances
across tasks [15]. CNNs have many different variants such
as those offering shorter connections, for example, DenseNet
architecture, which offer advantages in terms of feature cir-
culation and offer substantial reduction in hyperparameters
to build efficient architectures [16]. The focal and nonfocal
electroencephalogram signals in tunable Q-factor wavelet
transform domain have been investigated and identified
with the help of feature selection and neural network
methods [17]. A recent study concerning the low-density
parity-check (LDPC) codes for Internet of things networks
has been conducted via a novel technique for obtaining the
first two minima of check-node update operation of the
min-sum-LDPC decoder [18]. In addition, a review of future
robust networks including various scenario for 6G has been
discussed in [19].

Other types of CNN architectures that have gained pop-
ularity in recent years are ResNets, Xception, and GoogLe-
Net architectures. The need for these networks arises due
to degradation in performances across tasks when the net-
work is getting deeper, the need for multiscale processing,
and the search for better architectures with less number of
parameters [20–23].

Another issue that holds considerable importance in DL
is the ability of an architecture to store information over
extended time intervals. One solution proposed for this
problem is Long Short-Term Memory (LSTM). LSTM archi-
tecture works by enforcing consistent error flow that is non-
global in space and time through states of specialized
units [24].

Another idea worth mentioning in DL is the notion of
transfer learning. In transfer learning, features extracted
from deep CNNs are repurposed to new and novel tasks.
The need arises because generic tasks may differ by a wide
margin from the original tasks due to which there may be
insufficient labelled or other data to train or adapt a DL
architecture to new tasks. Using transfer learning, features
can be adapted to have sufficient generalization expression
using simple techniques reliably [25–27].

Finding better architecture design parameters for DL
models is a problem worth considering. Reinforcement
learning methods can help in this task. An inspirational
example is NASNet architecture that uses a number of dif-
ferent network topologies to find repeated motifs that can
be combined in series to handle inputs of varying spatial
dimensions and depth [28, 29].

This paper presents an overview of DL methods for the
task of cancer diagnosis, prognosis, and prediction. The
aim is to highlight the differences between different model
constructions and to provide limitations and future perspec-
tives for further exploration of this exciting domain.

The rest of the paper is organized as follows. Section 2
presents the gist behind the selection of studies that are
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made a part of this survey article. Section 3 presents an over-
view of publically available datasets for cancer research
followed by the description of current applications of DL in
cancer diagnosis, prognosis, and prediction tasks in Section
4. Section 5 presents the discussion covering limitations of
the existing methods, perspectives, and some directions for
future work. Finally, Section 6 concludes this work and pro-
poses avenues for further research in this domain.

2. Methodology

The criterion used for the selection of articles for this mini-
review was language and authenticity of electronic sources.
Articles written only in English language are made a part
of this survey due to wide recognition of English as the lan-
guage of scientific and biomedical domains. Years of sources
of articles considered for this study range between 1997 and
2020. We used PubMed, Web of Science, IEEE Xplore, and
Science Direct platforms to conduct the research. The search
terms used were diagnosis of cancer, prognosis of cancer,
prediction of cancer using DL, and transfer learning models.

3. Publically Available Datasets for Cancer
Research Using DL Methods

In this section, we will provide a brief description of publically
available datasets for cancer studies. We will briefly describe
The Cancer Genome Atlas (TCGA) database, Rotterdam
tumor bank, Study to Understand Prognoses and Preferences
for Outcomes and Risks of Treatment (SUPPORT), Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC), MITOS-ATYPIA-14 dataset, Tumor Prolifera-
tion Assessment Challenge (TUPAC) 2016 dataset, INbreast
database, Lung Image Database Consortium and Image Data-
base Resource Initiative (LIDC-IDRI) datasets, Lung Nodule
Analysis (LUNA16) dataset, Breast Cancer Histopathological
Image Classification (BreakHis) dataset, 2015 Bioimaging
breast histology classification challenge, Cancer Metastases
in Lymph Nodes Challenge breast cancer metastasis detection
(CAMELYON) dataset, PatchCamelyon dataset, 2018 Inter-
national Conference on Image Analysis and Recognition
(ICIAR) dataset, MITOS12 dataset, Leukemia microarray
gene data, Gene Expression Omnibus repository, BioGPS data
portal, The Cancer Imaging Archive (TCIA), Genomic Data
Commons (GDC), Therapeutically Applicable Research to
Generate Effective Treatments (TARGET), 1000 Genomes
Project, Kvasir dataset, University of California Santa Barbara
Bio Segmentation Benchmark (UCSB-BB) dataset, and the
Multimodal Brain Tumor Image Segmentation Benchmark
(BRATS) dataset.

(1) TCGA Database. Beginning in 2006, TCGA is a
result of a joint partnership between the National
Cancer Institute and the National Human Genome
Research Institute characterizing over 20,000 pri-
mary cancer and matched normal samples span-
ning 33 cancer types such as acute myeloid
leukemia, adrenocortical carcinoma, breast lobular
carcinoma, and uveal melanoma. The total number

of cases in this database is approximately 11,125. It
also contains cases of rare types of cancers. This data-
base is available at https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/
tcga (accessed on September 24, 2021).

(2) Rotterdam Tumor Bank. This dataset [30] is com-
prised of 2982 primary breast cancer patients of
whom 1546 are positive cases, i.e., they had the dis-
ease. Different factors such as estrogen receptors,
progesterone receptors, hormonal treatment, num-
ber of positive lymph nodes, differentiation grade,
and tumor size characterize this dataset. An R pack-
age of this dataset can be accessed at https://stat
.ethz.ch/R-manual/R-devel/library/survival/html/
rotterdam.html (accessed on September 24, 2021).

(3) SUPPORT Database. This database [31], gathered
with the support of five teaching hospitals in the
United States, is comprised of 9105 adults with an
overall 6-month mortality rate of 47%. Subjects are
recruited in twophases. Phase I recruited 4301patients
while phase II recruited 4804 patients. In phase II, the
intervention group has 2652 subjects while the control
group has 2152 subjects. Patients are diagnosed with
one of nine life-threatening diagnoses.

(4) METABRIC Dataset. This dataset [32] is comprised
of 2509 primary breast tumor subjects with 548
matched normal subjects. There are 2506 breast
cancer subjects and 3 breast sarcoma subjects. Sub-
jects with breast invasive ductal carcinoma are the
most frequently occurring in this dataset while
subjects of metaplastic breast cancer and breast
angiosarcoma are the least frequently occurring clas-
ses. In total, there are eight classes of cancer subjects.
This dataset is available at https://www.cbioportal
.org/study/summary?id=brca_metabric (accessed on
September 24, 2021).

(5) MITOS-ATYPIA-14 Dataset. This dataset contains
histological images of breast cancer for the detection
ofmitotic cells and for the evaluation of nuclear atypia
score for the prognosis of breast cancer. These
annotations are provided by two senior and three
junior pathologists. The dataset provides samples of
haematoxylin and eosin-stained slides with the size
of 1539 × 1376 pixels at 20x and 40x magnification
levels. For every slide, the pathologists selected several
frames at ×10 magnification which are further subdi-
vided into four frames at ×20magnification which are
further subdivided into four frames at ×40 magnifica-
tion. Evaluation metrics for mitosis are the number of
detected mitosis, number of true positives, number of
false positives, number of false negatives, sensitivity,
precision, and F1-value. This dataset is available at
https://mitos-atypia-14.grand-challenge.org/Home/
(accessed on September 24, 2021).

(6) TUPAC 2016 Dataset. This dataset [33] provides a
way to predict tumor proliferation scores from
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whole-slide images. The challenge dataset is made up
of 500 training and 321 testing breast cancer histology
whole-brain slides. This dataset is designed to fulfill
three purposes. The first one is to predict mitotic
scores while the second one is to predict gene
expression-based proliferation scores. A third task
was later added to the challenge for mitosis detection.

(7) INbreast Dataset. This breast cancer dataset [34]
has a total of 115 cases and is made up of full-
field digital mammograms. The number of images
of these cases is 410. In these 115 cases, 90 cases
are from women with both breasts affected while
25 cases represent mastectomy patients. Several
types of lesions such as masses, calcifications, asym-
metries, multiple findings, normal, and distortions
are included. Eight cases also have images acquired
at different timings.

(8) LIDC-IDRI Database. Initiated by the National
Cancer Institute (NCI), this dataset [35] of Com-
puted Tomography (CT) scans contains 1018 cases
of three categories: nodule ≥ 3mm, nodule < 3mm,
and nonnodule ≥ 3mm. A two-phase image annota-
tion process was performed by four experienced tho-
racic radiologists. The goal of this dataset is to
identify as completely as possible all lung nodules in
each CT scan. This dataset is available at https://
wiki.cancerimagingarchive.net/display/Public/LIDC-
IDRI#1966254194132fe653e4a7db00715f6f775c012
(accessed on September 24, 2021).

(9) LUNA16 Dataset. Collected from the LIDC-IDRI
dataset, the LUNA16 [36] dataset is designed for
the detection of pulmonary nodules from CT scans.
The scans where slices were thicker than 2.5mmwere
excluded. It facilitates lung nodule segmentation by
providing the option of multiple candidates per nod-
ule. In total, this dataset includes 888 CT scans. Irrel-
evant findings that were not made a part of this
dataset include nonnodules, nodules < 3mm, and
nodules annotated by only 1 or 2 radiologists. This
dataset is available at https://luna16.grand-challenge
.org/Data/ (accessed on September 24, 2021).

(10) BreakHis Dataset. This dataset [37] of breast cancer
subjects contains 9109 microscopic images. These
images of tumor tissue are collected from 82 sub-
jects at four different magnification levels which
are 40x, 100x, 200x, and 400x. It contains 2480
benign and 5429 malignant samples. These samples
are stored in PNG format. The resolution of each
sample is 700 × 460 pixels, 3-channel RGB with
eight-bit depth in each channel. This database
resulted from the collaboration of the P&D Labora-
tory Pathological Anatomy and Cytopathology,
Parana, Brazil, and Laboratory of Vision, Robotics,
and Imaging, Federal University of Parana, Brazil.
Benign tumors are slow-growing and remain local-
ized to a region while malignant tumors can spread

to distant regions and possess the ability to destroy
adjacent structures which may cause death. This
dataset is available at https://web.inf.ufpr.br/vri/
databases/breast-cancer-histopathological-database-
breakhis/ (accessed on September 24, 2021).

(11) 2015 Bioimaging Breast Histology Classification
Challenge Dataset. This dataset [38] of breast cancer
subjects has four classes which are normal, benign, in
situ carcinoma, and invasive carcinoma. It has high-
resolution, uncompressed, and annotated H&E stain
slides. The images have a resolution of 2040 × 1536
pixels. It supports both image and patch-wise classi-
fication tasks. This dataset is available at https://
rdm.inesctec.pt/dataset/nis-2017-003 (accessed on
September 24, 2021).

(12) CAMELYON Dataset. This dataset [39] is designed
for breast cancer metastasis detection and classifica-
tion in whole-slide images of histological lymph
nodes. It facilitates patient-level analysis by combin-
ing the assessment of several lymph node slides into
one outcome for direct deployment in a clinical set-
ting which will facilitate pathologists while at the
same time reducing the subjectivity in diagnosis. It
contains 1399 unique whole-slide images of lymph
nodes which have a slide-level label indicating
whether it contains no metastases, macrometastases,
micrometastases, or isolated tumor cells. In addition,
the dataset has detailed contours drawn by experts
for all metastases in 209 whole-slide images. This
dataset is available at https://camelyon17.grand-
challenge.org (accessed on September 24, 2021).

(13) PatchCamelyon Dataset. This dataset [40] contains
histopathologic scans of breast cancer lymph node
sections. Each image in this dataset is annotated
with a label to indicate the presence of metastatic
tissue. It contains 327,680 color images with a reso-
lution of 96 × 96 pixels. It is trainable on a single
GPU. For size comparisons, it is bigger than
CIFAR10 and smaller than the ImageNet dataset.
This dataset is available at https://www.tensorflow
.org/datasets/catalog/patch_camelyon (accessed on
September 24, 2021).

(14) 2018 ICIAR Dataset. This dataset is composed of
haematoxylin and eosin-stained breast histology
microscopy and whole-slide images. The images are
labelled as normal, benign, in situ carcinoma, or
invasive carcinoma. There are a total of 400 micros-
copy images with 100 images per class stored with
.tiff extension. The microscopy images are color
images with a dimension of 2048 × 1536 pixels. The
whole-slide images are color images with a dimen-
sion of 42113 × 62625 pixels and are stored in .svs
format with pixel-wise labels. This dataset is available
at https://iciar2018-challenge.grand-challenge.org/
Dataset/ (accessed on September 24, 2021).
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(15) MITOS12 Dataset. This dataset [41] contains 50
breast cancer biopsy slides at a 40x magnification
level with more than 300 mitoses in these slides.
The dimensions of these images are 2084 × 2084
pixels and 2252 × 2250 pixels. This dataset is helpful
with mitotic count to estimate the aggressiveness of
the breast tumor. This dataset is available at http://
ludo17.free.fr/mitos_2012/dataset.html (accessed on
September 24, 2021).

(16) Leukemia Microarray Gene Data. This dataset [42]
contains gene expression data from 60 bone marrow
samples of patients belonging to acute lymphoblastic
leukemia, acute myeloid leukemia, chronic lympho-
cytic leukemia, chronic myeloid leukemia, and
healthy bone marrow. Microarray technology has
been instrumental in genome-wide expression studies
especially as the knowledge of metazoan genomes is
improving. Further information about this dataset is
available at https://www.bioconductor.org/packages/
devel/data/experiment/manuals/leukemiasEset/man/
leukemiasEset.pdf (accessed on September 24, 2021).

(17) Gene Expression Omnibus Repository. This reposi-
tory [43] provides comprehensive sets of microarray,
next-generation sequencing, and other genomic data
to facilitate research in different types of cancers.
Further information about this repository is available
at https://www.ncbi.nlm.nih.gov/geo/ (accessed on
September 24, 2021).

(18) BioGPS Data Portal. This portal [44] supports eight
species which are humans, mouse, rat, fruitfly,
nematode, zebrafish, thale-cress, frog, and pig to
facilitate research in genes. Many different kinds
of cancers are supported such as lung cancer, breast
cancer, esophageal cancer, thyroid cancer, pancre-
atic cancer, colorectal cancer, and colon cancer.
This portal is available at http://biogps.org/#goto=
welcome (accessed on September 24, 2021).

(19) TCIA. This service [45] provides deidentification
and hosting of a large archive of medical images
of cancer for public access using different modali-
ties such as Magnetic Resonance Imaging (MRI),
CT, and digital histopathology. It also provides
supporting data such as patient outcomes, treat-
ment details, and genomics. This service is available
at https://www.cancerimagingarchive.net (accessed
on September 24, 2021).

(20) GDC. This portal provides genomic, clinical, and
biospecimen data for different types of cancers such
as bone marrow, breast, eye, skin, lung, liver, and
nervous system. It supports cancer research initia-
tives such as TCGA and TARGET. This portal is
available at https://gdc.cancer.gov (accessed on
September 24, 2021).

(21) TARGET. This program provides vast amounts of
genomic data to estimate molecular alterations in

childhood cancers. The goal is to use data for the
development of effective, less toxic therapies. It drives
research in acute lymphoblastic leukemia, acute
myeloid leukemia, kidney tumors, neuroblastoma,
osteosarcoma, etc. Further information is available
at https://ocg.cancer.gov/programs/target# (accessed
on September 24, 2021).

(22) 1000 Genomes Project. The aim of this project [46]
is to find common genetic variants by taking
advantage of developments in sequencing technol-
ogy. It helps in sequencing a large number of people
to provide a comprehensive resource on human
genetic variation. Cell lines and DNA are available
for all 1000 Genomes samples. These samples are
completely anonymous with no associated medical
data. Further information about this project is
available at https://www.internationalgenome.org/
1000-genomes-summary (accessed on September
24, 2021).

(23) Kvasir Dataset. This dataset [47] is accessible at
https://dl.acm.org/do/10.1145/3193289/abs/ (accessed
on September 24, 2021). It is designed to facilitate
research in gastrointestinal (GI) tract cancer. The
initial dataset consists of 4000 annotated images
belonging to 8 classes with 500 images per class. The
anatomical landmarks are Z-line, pylorus, and cecum,
while the pathological finding includes esophagitis,
polyps, and ulcerative colitis. Resolution of images
ranges from 720 × 576 up to 1920 × 1072 pixels. This
dataset continues to play an important role in deep
learning research.

(24) UCSB-BB Dataset. This dataset [48] contains images
of human,monkey, and cat species at subcellular, cel-
lular, and tissue levels with resolutions ranging from
300 × 200 to 1024 × 1024 pixels. There are 58 images
of breast cancer belonging to malignant/benign clas-
ses in humans with sizes of 896 × 768 and 768 × 512
at the cellular level associated with ground truth data.
This dataset is available at https://bioimage.ucsb.edu/
research/bio-segmentation (accessed on September
24, 2021).

(25) BRATS Dataset. This dataset [49] is composed of
clinical and synthetic images. The clinical data has
65MRI scans of low- and high-grade glioma patients.
Four MRI contrasts which are T1, T1c, T2, and
FLAIR are represented by clinical data. The synthetic
data has 35 high-grade and 30 low-grade glioma sub-
jects. It is aimed at facilitating segmentation of
tumors and patient survival through prediction and
differentiation between tumor recurrence and pro-
gression. This dataset is available at https://www
.med.upenn.edu/cbica/brats2020/ (accessed on Sep-
tember 24, 2021).

Table 1 displays a summary of the databases/service-
s/projects to facilitate cancer research covered in this section.
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Table 1: Summary of the datasets for cancer research.

Dataset/service/project Link Type(s) of cancer(s) Description

TCGA database
https://www.cancer.gov/aboutnci/organization/ccg/

research/structural-genomics/tcga
Multiple

33 cancer types, total no. of cases
is 11125

Rotterdam tumor bank
https://stat.ethz.ch/R-manual/R-devel/library/survival/

html/rotterdam.html
Breast cancer

2982 primary breast cancer
patients; 1546 are positive cases

SUPPORT database [31] Multiple
9105 adults, an overall 6-month

mortality rate of 47%

METABRIC dataset
https://www.cbioportal.org/study/summary?id=brca_

metabric
Breast cancer

2509 primary breast tumor
subjects, 548 matched normal

control subjects

MITOS-ATYPIA-14
dataset

https://mitos-atypia-14.grand-challenge.org/Home/ Breast cancer
Resolution of 1539 × 1376 pixels
at 20x and 40x magnification

levels

TUPAC 2016 dataset [33] Breast cancer
500 training and 321 testing
breast cancer histology whole-

brain slides

INbreast dataset [34] Breast cancer
Total of 115 cases and 410

images

LIDC-IDRI database
https://wiki.cancerimagingarchive.net/display/Public/

LIDCIDRI#1966254194132fe653e4a7db00715f6f775c012
Lung cancer

CT scans of 1018 subjects, three
categories (i) nodule ≥ 3mm, (ii)

nodule < 3mm, and (iii)
nonnodule ≥ 3mm

LUNA16 dataset https://luna16.grandchallenge.org/Data/ Lung cancer
888 CT scans, facilitates
segmentation studies

BreakHis dataset
https://web.inf.ufpr.br/vri/databases/breast-
cancerhistopathological-database-breakhis/

Breast cancer

9109 microscopic images; four
different magnification levels
which are 40x, 100x, 200x, and
400x collected from 82 subjects

2015 Bioimaging
Breast Histology
Classification
Challenge

https://rdm.inesctec.pt/dataset/nis-2017-003 Breast cancer

Four classes which are normal,
benign, in situ carcinoma, and
invasive carcinoma; resolution

of 2040 × 1536 pixels

CAMELYON dataset https://camelyon17.grand-challenge.org Breast cancer

Facilitates patient-level analysis;
1399 unique whole-slide images;
no metastases, macrometastases,
micrometastases, and isolated

tumor cells

PatchCamelyon dataset
https://www.tensorflow.org/datasets/catalog/patch_

camelyon
Breast cancer

327,680 color images with
resolution of 96 × 96 pixels;
bigger than CIFAR10 and

smaller than ImageNet dataset

2018 ICIAR dataset https://iciar2018-challenge.grand-challenge.org/Dataset/ Breast cancer

Represent normal, benign, in
situ carcinoma, and invasive
carcinoma; 400 microscopy

images with 100 images per class

MITOS12 dataset http://ludo17.free.fr/mitos_2012/dataset.html Breast cancer
50 biopsy slides; 40x

magnification level; more than
300 mitoses

Leukemia microarray
gene data

https://www.bioconductor.org/packages/devel/data/
experiment/manuals/leukemiasEset/man/leukemiasEset

.pdf

Bone marrow
cancer

60 bone marrow samples; acute
lymphoblastic leukemia, acute
myeloid leukemia, chronic

lymphocytic leukemia, chronic
myeloid leukemia, and healthy

bone marrow
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4. Current Applications of Deep Learning in
Cancer Diagnosis, Prognosis, and Prediction

In this section, we will discuss some current research trends
in the domain of DL for cancer diagnosis, prognosis, and
prediction tasks. We will cover techniques for the prognos-
is/prediction of tumors, breast cancer, and other types of
cancer. In addition, we will also cover techniques for the seg-
mentation/detection of breast cancer and other types of can-
cer. Furthermore, we will cover different methods for the
classification of breast cancer and other types of cancer.
We will also cover techniques for the classification, segmen-
tation, and detection of brain tumors. Figure 1 shows
histopathological views of some of the cancer subtypes that
will be covered in this review article.

4.1. Prognosis/Prediction of Tumors, Breast Cancer, Skin
Cancer, Head and Neck Cancer, Brain Cancer, Liver
Cancer, Colorectal Cancer, Ovarian Cancer, and Other
Types of Cancer. Petalidis et al. [50] reported a gene expres-
sion dataset for astrocytic tumors. They employed an
Artificial Neural Network (ANN) algorithm to combine sig-
natures from histopathological subclasses of these tumors in
order to address the need for proper grading of these
tumors. In this study, they found 59 genes which belong to

three classes, namely, angiogenesis, lower-grade astrocytic
tumor discrimination, and cell differentiation. They further
report that these tumor subtypes have very high prognostic
value, and they are missing in other studies reported in the
literature. Finally, they report 11 classifiers that used genes
to differentiate among primary/secondary subtypes of glio-
blastomas. They used a custom as well as independent data-
set reporting accuracy of 96.15% to identify correct classes
for these subtypes. Chi et al. [51] use morphometric features
to compare prediction outcomes on two different breast can-
cer datasets. They report successful predictions with good
and bad prognostic values. Here, good means that prognosis
stands valuable even after five years while bad suggests less
than five years. The authors in [52] conducted experiments
in female breast carcinoma patients using a DL approach.
They did prediction using a Cox regression model and gene
expression datasets. They called their approach Survival
Analysis Learning with MultiOmics Neural Networks
(SALMON). They report that performance of SALMON is
improved when more data is used to combine and simplify
cancer biomarkers and gene expressions to enable prognosis
prediction. Shimizu and Nakayama [53] conducted experi-
ments to identify breast cancer genes for prognosis predic-
tion using The Cancer Genome Atlas (TCGA) database.
They identified 184 genes using artificial intelligence (AI),

Table 1: Continued.

Dataset/service/project Link Type(s) of cancer(s) Description

Gene Expression
Omnibus repository

https://www.ncbi.nlm.nih.gov/geo/ Multiple

Provides comprehensive sets of
microarray, next-generation

sequencing, and other genomic
data

BioGPS data portal http://biogps.org/#goto=welcome Multiple
Supports eight species including
humans; supports different types

of cancers

TCIA https://www.cancerimagingarchive.net Multiple

Supports a large number of
modalities; supports data such as
patient outcomes, treatment

details, and genomics

GDC https://gdc.cancer.gov Multiple
Provides genomic, clinical, and

biospecimen data

TARGET https://ocg.cancer.gov/programs/target# Multiple

Childhood cancers are
supported; provides vast

amounts of genomic data to
estimate molecular alterations

1000 Genomes Project
https://www.internationalgenome.org/1000-genomes-

summary
Multiple

Provides a comprehensive
resource on human genetic

variation

Kvasir dataset https://dl.acm.org/do/10.1145/3193289/abs/
Gastrointestinal
tract cancer

4000 annotated images
belonging to 8 classes

UCSB-BB dataset https://bioimage.ucsb.edu/research/bio-segmentation
Supports breast

cancer research in
human species

Contains images of human,
monkey, and cat species at

subcellular, cellular, and tissue
levels

BRATS dataset https://www.med.upenn.edu/cbica/brats2020/ Brain tumor

MRI scans of 65 subjects each in
clinical and synthetic datasets,
for brain tumor segmentation

task
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and for that purpose, they used random forest and neural
network models. Furthermore, they used a molecular score
for prognosis that uses only 23 of these genes. They con-
firmed that they have found potential drug targets in these
genetic discoveries. The authors in [54] performed their
experiments using malignant melanoma. They used a data-
set with 1160 females and 786 males. They used an ANN
architecture employing a flexible nonlinear structure for
prognosis prediction of survival probabilities. They found
the performance of their model to be at par with the Cox
model with the advantage that it offers a flexible approach
when analyzing data using a specified distributional form.
Jing et al. [55] introduced a loss function combining a pair-
wise ranking loss and a mean squared error loss to optimize
a DL model validated on four publically available datasets,
such as the Worcester Heart Attack Study (WHAS), Rotter-
dam tumor bank, Study to Understand Prognoses and Pref-
erences for Outcomes and Risks of Treatment (SUPPORT),
and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC). Their model achieved superior
performance results than medical experts for nasopharyn-
geal carcinoma prognosis. Hao et al. [56] proposed a DL
network predicting prognoses and describing complex
biological pathways thus providing their model the power
to interpret its outcomes. They conducted experiments for
prediction in glioblastoma multiforme brain cancer from
TCGA database. Their model achieves an Area under the
Curve (AUC) of 0:6622 ± 0:013 and an F1 score of
0:3978 ± 0:016 outperforming other models such as Logistic
Least Absolute Shrinkage and Selection Operator (LASSO),
Random LASSO, Support Vector Machines (SVMs), and a
dropout neural network model which shows the superiority
of their approach. The authors [57] put forward a multi-
modal DL network integrating multidimensional data. Their

model combined gene expression data, alteration data, and
other forms of clinical data achieving better performance
than models with 1D data and other approaches. Chaudhary
et al. [58] proposed the DL-based approach based on a com-
bination of RNA and methylation data from TCGA to model
hepatocellular carcinoma subjects. Their model achieves a
concordance index of 0.68 and a p value of 7:13 × 10−6. They
found that TP53 mutations, KRT19 and EPCAM stemness
markers, and Wnt and Akt signaling pathways are associated
with more aggressive subtypes. The authors in [59] proposed
a DL model combining CNN and Recurrent Neural Network
(RNN) architectures for the prediction of colorectal cancer
subjects using digitized haematoxylin-eosin-stained tumor
tissue microarray samples. In the low- and high-risk patients,
their model achieved a hazard ratio of 2.3 for visual assess-
ment of histological tissues and a hazard ratio of 1.65 on
the whole-slide level for both low- and high-risk subjects.
Wang et al. [60] come up with a DL model to predict serous
ovarian cancer subjects by extracting prognostic biomarkers
from CT images. They further proposed a combined DL
and Cox hazards model and achieved a concordance index
of 0.713 and 0.694 for individual and three years of recur-
rence probability of subjects, respectively. The authors in
[61] used a DL-based ANNmodel from transcriptomics data.
They deployed TCGA datasets of RNA sequences belonging
to ten different kinds of cancers. Their model achieved supe-
rior or equal level performance at both the pathway and gene
levels. The authors in [62] came up with a DLmodel combin-
ing a Cox proportional hazards model with one of the best
performing survival methods. They conducted experiments
on WHAS, METABRIC, and SUPPORT datasets achieving
good prediction performance levels for personalized treat-
ment recommendations. Mobadersany et al. [63] predicted
time-to-event results from histopathology images and gene-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Histopathological images of different cancer subtypes: (a) breast cancer, (b) skin cancer, (c) head and neck cancer, (d) brain
cancer, (e) liver cancer, (f) colorectal cancer, (g) ovarian cancer, (h) lung cancer, (i) bladder cancer, (j) gastric cancer, (k) prostate cancer,
and (l) pancreatic cancer.
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based biomarkers using CNNs as DL models from glioma
and glioblastoma cohorts of TCGA. They used a sampling-
and filtering-based approach for the improvement of their
predictions by not taking into account the intratumoral het-
erogeneity. Their model achieved a median concordance
index of 0.754 surpassing other state-of-the-art approaches.
The authors in [64] developed a DL-based approach using
CNNs to predict the survival of mesothelioma cancer sub-
jects. They used TCGA and a French source to test their
approach. They achieved a concordance index of 0.656 on
the TCGA cohort surpassing the performance of human
experts and found key regions in the stroma that are associ-
ated with inflammation and cellular diversity. Liu et al. [65]
modeled diagnostic prediction using DLmodels. The authors
conducted their study on 27 diverse cancer types obtained
from TCGA and Gene Expression Omnibus dataset. They
successfully decoded 12 CpG and 13 promoter markers.
The CpG markers that they identified achieved a sensitivity
of 100% in the prediction of prostate cancer samples while
promoter markers achieved 92% using cell-free deoxyribonu-
cleic acid (DNA) methylation data.

Table 2 displays a summary of the studies for the task of
prognosis and prediction of cancers covered in this subsection.

4.2. Segmentation/Detection of Breast Cancer, Lung Cancer,
Bladder Cancer, and Other Types of Cancer. Yap et al. [66]
used DL approaches for breast lesion detection using ultra-
sound images. They investigated the performance of LeNet,
U-Net, and a pretrained AlexNet. They conducted their
experiments on two custom datasets of 306 and 163 images
termed dataset A and dataset B, respectively. Their pre-
trained AlexNet-based model achieved the best overall per-
formance by achieving an F-measure of 0.91 and 0.89 on
both datasets. The authors in [67] come up with different
variants of fully convolutional networks (FCNs) for the seg-
mentation of lesions of breast cancer subjects. They tried an
AlexNet-based FCN, as well as 8-, 16-, and 32-layered FCN
models. To overcome the problem of data deficiency, they
used transfer learning and pretraining on the ImageNet
dataset. Their dataset has two classes, benign and malignant.
They reported an average dice score of 0.7626 using FCN
with 16 layers on benign lesions. Their model correctly rec-
ognized 89.6% of benign lesions and 60.6% of the malignant
lesions successfully. Liu et al. [68] used DL to detect breast
cancer in lymph node biopsies. They used 399 slides from
the Camelyon16 challenge dataset to achieve an AUC of
99% at the slide level. They used a second custom dataset
that has 108 slides to achieve an AUC of 99.6%. As a prepro-
cessing step, they used a color normalization procedure. The
authors in [69] used different DL methods such as faster
region CNN, ResNET-50, and DenseNet-201 architectures
for breast cancer detection using histopathology images.
They used three datasets to conduct their experiments which
are International Conference on Pattern Recognition 2012,
MITOS-ATYPIA-14, and Tumor Proliferation Assessment
Challenge 2016 dataset. They achieved a precision of 0.876
on the International Conference on Pattern Recognition
2012 dataset, 0.848 on MITOS-ATYPIA-14, and a precision
of 0.641 on the Tumor Proliferation Assessment Challenge

2016 dataset. As data augmentation methods, they employed
horizontal and vertical flipping, translation, and resizing
operations to artificially increase the size of datasets. Anur-
anjeeta et al. [70] used shape and morphological features
derived from segmented images to detect cancer cells using
a number of DL and machine learning-based models. They
used J-Rip, logistic modal tree, rotation forest, multilayer
perceptron, and other models trained by histopathological
images. Rotation forest performed the best in cancerous/-
noncancerous detection achieving an accuracy of 85.7%.
The authors in [71] used a modified regional CNN method
to efficiently determine mitosis in breast cancer using histo-
pathological images. They employed subjects belonging to
the 2014 International Conference on Pattern Recognition
(ICPR) and TUPAC 2016 datasets in their study. They
achieved 0.76 in precision on the TUPAC 2016 dataset.
Zhou et al. [72] used a 3D deep CNN model to detect lesions
in the breast cancer MRI dataset. They deployed a custom
dataset with 1537 female patients and classify them as
benign or malignant. They achieved an accuracy of 83.7%
for the diagnostic task and a dice distance score of 0.501
for the detection task. The authors in [73] proposed a DL
integrated architecture with the capability of performing
classification, segmentation, and detection for the screening
of breast masses as benign or malignant. They used digital
X-ray mammograms from the INbreast database. Their
model achieved a mass detection accuracy of 98.96%, while
for mass segmentations, they achieved a dice score of
92.69%. To augment the dataset, the authors applied rota-
tion 8 times to synthetically increase the size of the dataset.
Nasrullah et al. [74] deployed DL-based architectures for
the diagnosis of malignant nodules in lung cancer. They
conducted studies on LUNA16 and LIDC-IDRI datasets.
They used faster region CNN and U-Net styled architecture
to achieve an accuracy of 94.17% on the classification task.
The authors in [75] used a DL-based system for screening
lung cancer using CT scans. They used LIDC-IDRI and Kag-
gle data science bowl challenge datasets for the experiments.
Their system was based on 3D CNN architectures. The
authors used heavy augmentations to artificially increase
the size of the datasets using methods such as rotations, scal-
ing, translation, and reflection. They achieved a dice coeffi-
cient of 0.4 on the LIDC-IDRI dataset. Shkolyar et al. [76]
deployed DL-based models for the detection of papillary
and flat bladder cancer. They used CNNs to construct an
image analysis platform. They used two datasets of 100
and 54 subjects. Their model successfully detected 42 of 44
papillary and flat bladder cancers. They reported a per-
tumor sensitivity of 90.9%. Fourcade et al. [77] used a com-
bination of DL and superpixel segmentation-based methods
to segment full body organs such as the brain and heart from
Positron Emission Tomography (PET) images. To syntheti-
cally increase the size of the dataset, the authors deployed
rotations, scaling, mirroring, and elastic deformations. Their
best performing model achieved a dice score of 0.93. The
authors in [78] deployed DL architectures to detect brain
metastasis on MRI. They used data from 121 subjects in
their proposed study. They used a faster region CNN model
achieving an area under the ROC curve of 0.79. Ma et al.
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[79] used you only look once v3 dense multireceptive fields
CNN for thyroid cancer nodule detection. They used ultra-
sound images and deployed different data augmentation
methods such as color jitter, change saturation, exposure,
and hue on two datasets of 152 and 699 images. The number
of images increased to 10845 after the application of data
augmentation schemes. The values of mean average preci-
sion (mAP) reported by the authors were 90.05 and 95.23.
Das et al. [80] proposed a system combining watershed seg-
mentation, Gaussian mixture model (GMM), and deep neu-
ral network for the classification and segmentation of liver
cancer using CT scans. Their model performed recognition
of hemangioma, hepatocellular carcinoma, and metastatic
carcinoma subjects. They employed 225 CT scans in their
study achieving a dice score of 0.9743 on the testing set for
the segmentation task and an accuracy of 99.38% for the

multiclass classification task. The authors in [81] proposed
a DL-based model for the segmentation of histopathology
images of the liver organ. Their proposed DL model com-
bined residual block, bottleneck block, and an attention
decoder block. The authors further created a new dataset
of 80 histopathology images which they named as the
KMC liver dataset and proposed a joint loss function com-
bining dice and Jaccard losses. They conducted their exper-
iments on two datasets: KMC liver and multiorgan Kumar
datasets. Each image in the Kumar dataset has a dimension
of 1000 × 1000 while each image in the KMC liver dataset
has a dimension of 1920 × 1440. Their model achieved a Jac-
card index of 0.7206 on the KMC liver dataset and 0.6888 on
the Kumar dataset. Wang and Chung [82] proposed a mod-
ified U-Net-based architecture for the segmentation and
diagnosis of the colon gland. The authors employed two

Table 2: Summary of the studies for the prognosis/prediction of cancers.

Publication Type(s) of cancer Type of data Methods Performance

[50] Astrocytic tumor Microarray gene dataset ANN 96.15% accuracy

[51] Breast cancer
Nuclear morphometric

features
ANNs Good (>5 years) and bad (<5 years) prognoses

[52]
Breast invasive
carcinoma

Gene expression data
Multiomics neural

networks
Improved performance using more omics data

[53] Breast cancer TCGA
Random forest,
neural network

Log-rank p < 0:05

[54]
Malignant
melanoma

Custom dataset
Nonlinear ANN

model
ANN model performs better than Cox model

[55] Multiple
WHAS, SUPPORT,

METABRIC, Rotterdam
tumor bank

Deep feedforward
neural network

Better prognostic accuracy than the clinical experts
for the prognosis of nasopharyngeal carcinoma

[56]
Glioblastoma
multiforme

TCGA
Pathway-associated
sparse deep neural

network
AUC = 0:6622 ± 0:013, F1 = 0:3978 ± 0:016

[57] Breast cancer

Gene expression
profile+copy number

alteration profile+clinical
data

Multimodal deep
neural network

The proposed method achieves better performance
than the prediction methods with single-

dimensional data and other existing approaches

[58]
Hepatocellular
carcinoma

TCGA DL-based model
p value = 7:13 × 10−6

Concordance index = 0:68

[59] Colorectal cancer
Images of tumor tissue

samples

Combined
convolutional and

recurrent
architectures

Prediction with only small tissue areas
(hazard ratio 2.3), tissue microarray spot
(hazard ratio 1.67), and whole-slide level

(hazard ratio 1.65)

[60] Ovarian cancer CT images
Combined DL and
Cox proportional
hazards model

Concordance index was 0.713 and 0.694

[61] Multiple TCGA ANN framework
Same or better predictive accuracy compared to

other methods

[62] Multiple
WHAS, SUPPORT, &

METABRIC

Cox proportional
hazards deep neural

network

Superior in predicting personalized treatment
recommendations

[63]
Lower-grade glioma
and glioblastoma

TCGA CNNs Median concordance index = 0:754

[64] Mesothelioma TCGA+French source CNNs Concordance index of 0.656 on TCGA cohort

[65] Multiple
TCGA+Gene Expression

Omnibus dataset
DL-based model

For both marker types, the specificity of normal
whole blood was 100%
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datasets for the experiments: the gland segmentation dataset
from Medical Image Computing and Computer-Assisted
Intervention (MICCAI) challenge and an independent colo-
rectal adenocarcinoma gland dataset. The authors conducted
validation experiments on 378 images augmented using elas-
tic transformation, cropping, rotation, flipping, blurring, and
distortion operations. Their model achieved a dice score of
0.929 on the gland segmentation dataset from MICCAI
and 0.89 on the independent colorectal adenocarcinoma
gland dataset for the segmentation task. The authors in
[83] proposed a CNN architecture combining three CNNs
for the segmentation and classification of colorectal cancer
using MRI images of 28 adenocarcinomas and 5 mucinous
carcinomas. Their model achieved a dice score of 0.60, pre-
cision of 0.76, and recall of 0.55 on the testing set. The
authors used cropping and min–max scaling as preprocess-
ing methods. Juebin et al. [84] proposed segmentation algo-
rithms based on U-Net models from ultrasound images of
ovarian cancer. Image clipping was used as a preprocessing
method. The methods are validated on 127 patients and a
total of 469 images. Their best model achieved a dice score
of 0.87, an average Pearson correlation of 0.90, and an
average intraclass correlation of 0.89. Shibata et al. [85]
used the mask R-CNN algorithm for the segmentation of
1208 healthy and 533 gastric cancer endoscopic images.
The resolution of the images ranges from 640 × 480 to
1440 × 1080 pixels. Their model achieved an average dice
index of 71%. Wang and Liu [86] proposed an architecture
based on Deeplab v3+ for the segmentation of 1340 patho-
logical slices of gastric cancer. The authors used image mir-
roring, random flip, scale, and rotation as augmentation
techniques. Mean subtraction followed by division with
variance was used as a preprocessing method. Their model
achieved a dice score of 0.9166. Shrestha et al. [87] pro-
posed a DL system combining four U-Net models. They
used MRI images of prostate cancer from an online data-
base. Each image has a resolution of 256 ∗ 256 pixels. They
used a combination of modified dice and binary cross-
entropy loss for the segmentation task. They preprocess
the images using denoising and intensity normalization
procedures achieving an overall average accuracy of
95.3%. Liu et al. [88] proposed a DL method integrating
mask R-CNN and Inception version 3 models for the clas-
sification, segmentation, and detection tasks of prostate
cancer. They used a dataset of 1200 ultrasound images.
Their model achieved a dice score of 0.88 and a precision
of 76% on malignant and 75% on benign classes for the
classification task using an Inception v3 architecture. The
authors in [89] proposed a 2D U-Net model deploying
CT images of 556 cases of prostate cancer. They achieved
a dice score of 0.85, 0.94, and 0.85 for three organs,
namely, prostate, bladder, and rectum, respectively. Liang
et al. [90] developed a DL-based model employing CNN
architecture for the segmentation of pancreatic tumors.
The authors deployed a dataset of T1w MRI images of 40
subjects. They achieved a dice score of 0.73 using rotation
and flipping as data augmentation methods. The authors
in [91] proposed a DL method using spiral transformation
to perform segmentation of MRI images of pancreatic can-

cer. The authors used rotation and spiral transformation as
data augmentation methods. They deployed a dataset of
MRI images belonging to 73 patients. Their architecture is
a combination of ResNet and U-Net architectures. They
achieved a dice score of 0:656 ± 0:1021.

Table 3 displays a summary of the studies for the task of
segmentation and detection of cancers covered in this
subsection.

4.3. Classification of Breast Cancer. Huynh et al. [92] used
DL methods to classify regions of interest taken from ultra-
sound images. Cystic, benign, or malignant labels were
assigned to each region. Two binary classification tasks were
performed using pretrained CNNs, nonmalignant (benign+-
cystic)/malignant and benign/malignant. They used SVM as
a classifier on the CNN-derived features. On the nonma-
lignant/malignant classification task, they obtained an
AUC of 0.9 while on the benign/malignant task, their
method obtained an AUC of 0.88. The authors in [93] used
CNNs as their DL approaches and introduced the concept of
a matching layer to convert grayscale to red, green, and blue
patterns. They used 882 ultrasound images obtained from
two publicly available datasets. Using fine-tuning and
matching layer, their method approached an AUC of 0.936
on a test set of 150 cases. Byra et al. [94] used DL transfer
learning-based approaches such as Inception version 3 and
VGG19 architectures on reconstructed B-mode images
experiencing a decrease in classification performances. To
counter this, they used data augmentation to reconstruct
B-mode images achieving better performances on breast
ultrasound images. The authors in [95] combined cross-
modal and cross-domain transfer learning for the benign/-
malignant classification task. In comparison to training from
scratch and simple fine-tuning, their approach achieved bet-
ter performance with 97% accuracy on ultrasound images.
Hadad et al. [96] deployed cross-modal transfer learning
using mammography images achieving an accuracy of 0.93
which is better than cross-domain transfer learning. The
authors in [97] presented a study on the use of MRI in
screening individuals younger than 40 years confirming the
effectiveness of MRI as a modality of choice for such diagno-
ses. They reported a very high sensitivity around 93% to
100% and low specificity in the range of 37% to 97%. They
found MRI to be effective especially after reconstructive sur-
gery. Hu et al. [98] developed a transfer learning methodol-
ogy using an MRI modality with multiple parameters. They
used different sequences such as dynamic contrast-enhanced
and a T2-weighted sequence to distinguish benign lesions
from malignant. They used image, feature, and classifier
fusion methods and achieved an AUC of 0.87 for the feature
fusion scheme that statistically outperformed other methods.
The authors in [99] proposed a methodology using Incep-
tion version 4 and the residual network transfer learning
architectures as well as a recurrent CNN architecture on
the 2015 Breast Cancer Classification Challenge and Break-
His datasets for binary and multiclass classification tasks.
They used rotation, translation, and other data augmenta-
tion methods to artificially increase the size of the datasets
achieving an accuracy of 97:57 ± 0:89% on multiclass and
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Table 3: Summary of the studies for the segmentation/detection of cancers.

Publication Type(s) of cancer Type of data Methods Performance

[66] Breast cancer
Ultrasound images, 2 datasets

(A & B)
LeNet, U-Net, AlexNet

F‐measure = 0:91 (on dataset A)
and F‐measure = 0:89 (on

dataset B)

[67] Breast lesions Two custom datasets
FCN-AlexNet, FCN-32s, FCN-16s,

and FCN-8s
Dice score of 0.7626 (FCN-16s)

[68] Breast cancer Camelyon16 DL algorithm Slide-level AUC of 99%

[69] Breast cancer

International Conference on
Pattern Recognition 2012,

MITOS-ATYPIA-14, Tumor
Proliferation Assessment

Challenge 2016

Faster region CNN, ResNET-50,
DenseNet-201

0.691 F1-measure for the MITOS-
ATYPIA-14 dataset

[70] Multiple
Custom histopathology image

dataset

Multilayer perceptron, logistic
modal tree, sequential minimal

optimization, Naïve Bayes, random
forest, rotation forest, J-Rip, and

PART algorithms

Rotation forest algorithm achieved
an accuracy of 85.7% for binary
classification between cancerous

and noncancerous cells

[71] Breast cancer
ICPR 2014 mitosis dataset,
TUPAC 2016 mitotic cell

dataset
Modified regional CNN

Precision = 0:76, recall = 0:72, F1‐
score = 0:736 on TUPAC 2016

dataset

[72] Breast cancer
Custom dynamic contrast-
enhanced MRI dataset

3D deep CNN architecture

83.7% accuracy, 90.8% sensitivity,
69.3% specificity, AUC of 0.859,
overall dice distance of 0:501 ±

0:274

[73] Breast cancer INbreast database Different DL methods

Accuracy of 98.96%, MCC of
97.62%, F1-score of 99.24%,

Jaccard similarity coefficient of
86.37%

[74] Lung nodules LUNA16, LIDC-IDRI
Two deep 3D customized mixed
link network encoder-decoder

architectures
Accuracy of 94.17%

[75] Lung cancer
LIDC-IDRI dataset, Kaggle data
science bowl challenge dataset

3D CNN architectures
Dice coefficient for LIDC-IDRI of
0.40, with 0.25 precision and 0.93

recall

[76] Bladder cancer Custom datasets DL algorithm
Per-frame sensitivity and

specificity were 90.9% and 98.6%

[77] Full body PET images DL-based approach Dice score of 0:93 ± 0:05

[78] Brain metastases Custom MRI dataset
DL-based approach (faster region-

based CNN model)
96% sensitivity, AUC = 0:79

[79] Thyroid nodules
Two custom datasets of

ultrasound images
You only look once v3 dense
multireceptive field CNN

mAP = 90:05 and 95.23

[80] Liver cancer
225 CT scans of hemangioma,
hepatocellular carcinoma, and

metastatic carcinoma

Watershed segmentation, Gaussian
mixture model (GMM), and deep

neural network

Dice score of 0.9743, accuracy of
99.38%

[81] Liver cancer
KMC liver dataset, multiorgan

Kumar dataset

DL model combining residual
block, bottleneck block, and

attention decoder

Jaccard index of 0.7206 on KMC
liver dataset and 0.6888 on Kumar

dataset

[82] Colorectal cancer
MICCAI gland segmentation

dataset, colorectal
adenocarcinoma gland dataset

Modified U-Net-based architecture

Dice score of 0.929 on MICCAI
gland segmentation dataset, 0.89
on the colorectal adenocarcinoma

gland dataset

[83] Colorectal cancer
Custom dataset of MRI images
of 28 adenocarcinomas and 5

mucinous carcinomas

CNN architecture which is a
combination of three CNN

architectures

Dice score of 0.60, precision of
0.76, and recall of 0.55
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an accuracy of 97:95 ± 1:07% on binary classification tasks.
Bayramoglu et al. [100] used single and multitask CNN
architectures to predict malignancy and image magnification
levels. Cropping and rotation on the BreakHis dataset were
deployed to augment the dataset. They achieved a classifica-
tion rate of 83.72% for the benign/malignant binary classifi-
cation task using a single task and an accuracy of 82.13%
using multitask CNN architecture. The authors in [101] pro-
posed an approach for progressive combining of weak DL
classifiers into a stronger classifier for carcinomas/noncarci-
nomas binary and normal/benign/in situ/invasive carcino-
mas multiclass (4 classes) classification tasks. They used
BreakHis and 2015 bioimaging breast histology classification
challenge datasets. They deployed augmentation methods
such as reflection, random cropping, rotation, and transla-
tion of an image. They achieved a classification accuracy of
99.5% and 96.9% for binary classification tasks using the
2015 bioimaging breast histology classification challenge
database and BreakHis database while for multiclass classifi-
cation, they achieved 96.4% classification accuracy on the
2015 bioimaging breast histology classification challenge
database. Kassani et al. [102] used an ensemble of transfer
learning architectures for binary classification of breast
cancer. They used VGG19, MobileNet, and DenseNet
architectures on four benchmark datasets: BreakHis, Patch-
Camelyon, 2015 Bioimaging challenge, and 2018 ICIAR
datasets. They used flipping, zoom, shear, rotation, etc., as
data augmentation methods. They achieved accuracies of
98.13%, 94.64%, 95%, and 83.1% on these datasets. The
authors in [103] proposed a DL method for multiclass (8
classes) classification of histopathological images on the
BreakHis dataset. Data augmentation methods such as
rotation, flipping, sharing, and their combinations were

deployed to achieve a correct classification rate of 95.48%
on the multiclass classification task. Toğaçar et al. [104]
deployed a DL model for multiclass (8 classes) classification
of breast histopathological images on the BreakHis dataset.
They used convolutional, attention, residual, pooling, and
dense blocks along with hypercolumn technique to build
their architecture. As data augmentation methods, they used
flipping, shifting, change of brightness, and rotation
achieving 98.51% accuracy. The authors in [105] used a com-
bination of DenseNet and Xception transfer learning architec-
tures for benign/malignant binary and magnification-specific
multiclass classification tasks. They used the BreakHis dataset
achieving an accuracy of 99% and 92% on binary and multi-
class classification tasks, respectively, while deploying stain
normalization for preprocessing of images. Spanhol et al.
[106] performed experiments for the binary (benign/malig-
nant tumors) classification task using histology images. They
report an accuracy of 90:0 ± 6:7% on images obtained from
the BreakHis dataset. The authors in [107] proposed a DL
model for the multiclass (8 classes) classification task using
histopathological images. They conducted experiments on
the BreakHis dataset. For data augmentation, the authors
deployed rotation, level/vertical flipping, translation tech-
niques, etc., and their combinations achieving a patient-level
accuracy of 94:7 ± 3:6%. Bardou et al. [108] compared CNNs
and traditional machine learning techniques such as bag of
words and linear coding using SVMs. They deployed BreakHis
datasets for both binary and multiclass (8 classes) classification
tasks to categorize images into benign/malignant classes and
their subclasses. The authors achieved accuracies of 98.33%
and 88.23% for binary and multiclass classifications, respec-
tively, using the deployed approaches. The authors in [109]
combined four residual networks for binary (benign/malignant)

Table 3: Continued.

Publication Type(s) of cancer Type of data Methods Performance

[84] Ovarian cancer
Custom dataset of 127 patients

and a total of 469 images
U-Net models

Dice score of 0.87, an average
Pearson correlation of 0.90, and an
average intraclass correlation of

0.89

[85] Gastric cancer
Custom dataset of 1208 healthy
and 533 endoscopic images

Mask R-CNN algorithm Average dice index of 71%

[86] Gastric cancer
Custom dataset of 1340

pathological slices
Deeplab v3+ Dice score of 0.9166

[87] Prostate cancer
MRI images from an online

database
DL system combining four U-Net

models
Overall average accuracy of 95.3%

[88] Prostate cancer
Custom dataset of 1200

ultrasound images

DL method integrating mask
R-CNN and Inception version

3 models

Dice score of 0.88, a precision of
76% on malignant and 75% on

benign classes for the classification
task using an Inception v3

architecture

[89] Prostate cancer
Custom dataset of CT images of

556 cases
2D U-Net model

Dice score of 0.85, 0.94, and 0.85
for prostate, bladder, and rectum,

respectively

[90] Pancreatic cancer
Custom dataset of T1w MRI

images of 40 subjects
CNN architecture Dice score of 0.73

[91] Pancreatic cancer
Custom dataset of MRI images

belonging to 73 patients
DL method using spiral

transformation
Dice score of 0:656 ± 0:1021

13Computational and Mathematical Methods in Medicine



and multiclass classification of histology images using the
BreakHis dataset. They achieved an accuracy of 96.25% for
the eight-class classification task. The authors deployed
rotation, flipping, translation, and color variation augmenta-
tion as data enhancing methods while stain normalization as
a preprocessing method. Budak et al. [110] used a DL model
combining FCN and bi-LSTM architectures on the BreakHis
dataset for binary (benign/malignant) classification achieving
an accuracy of 96.32%. The authors in [111] used a DL-
based model for binary (benign/malignant) classification of
histopathological images. They performed experiments on
the BreakHis dataset fusing ResNet-18, ResNet-50, and
AlexNet architectures using belief theory. They achieved an
image-level accuracy of 96.88%. Sudharshan et al. [112]
deployed a weakly supervised scheme for the binary classifica-
tion of benign and malignant tumors using histopathology
images. They deployed the BreakHis dataset achieving an
accuracy of 92.1% at 40x magnification. An important contri-
bution of their approach is the absence of the need for labelling
the images. The authors in [38] deployed CNNs for both
binary (carcinoma/noncarcinoma) and multiclass (normal/-
benign/in situ/invasive) classification tasks. They used the
2015 Bioimaging breast histology classification challenge data-
set in their study. Their architectures were able to retrieve
information at different scales. For the multiclass classification
task, the authors achieved an accuracy of 77.8% while for the
binary classification task, they achieved an accuracy of 83.3%
using rotation and mirroring as data enhancement methods
for both these tasks. Rakhlin et al. [113] deployed different
transfer learning architectures using microscopic histological
images from the ICIAR 2018 Grand Challenge dataset for
binary (carcinomas/noncarcinomas) andmulticlass (four clas-
ses) classification tasks. They used pretrained ResNet-50,
Inception version 3, and VGG16 architectures. They deployed
normalization, downscaling, cropping, and color variation as
augmentation schemes achieving a correct classification rate
of 87.2% for multiclass classification and 93.8% for the binary
classification task. The authors in [114] extracted smaller/lar-
ger patches using a clustering approach and a CNN (ResNet-
50 architecture) at cell and tissue levels deploying the 2015
Bioimaging breast histology classification challenge dataset.
For the multiclass (4 classes) classification task, the authors
reported accuracy of 88.89% using the proposed approach.
The authors deployed stain normalization procedure as a pre-
processing method. Shallu and Mehra [115] demonstrated the
use of three different transfer learning architectures such as
VGG16, VGG19, and ResNet-50 for the classification of
histological images on the BreakHis dataset. They deployed
rotation as the data enhancement scheme. They found the
performance of a fine-tuned VGG16 with logistic regression
classifier to be the best achieving an accuracy of 92.6% with
this classifier. The authors in [116] deployed CNN, K nearest
neighbour (KNN), Inception version 3, SVM, and ANN
algorithms for the binary (benign/malignant) classification
task. They used different schemes for preprocessing and data
enhancement such as gray scaling, channel standardization,
flipping, rotation, and cropping as well as image segmentation
to reach an accuracy of 97% using ANN architecture.
Bevilacqua et al. [117] evaluated two different frameworks

for binary and multiclass classification of irregular/regular/-
stellar/no opacity lesions from segmented high-resolution
images. They used ANN classifiers with hand-crafted and
morphological features for the first framework. For the second
framework, they used different CNNmodels especially a VGG
model. They reported accuracy of 84.19% for the first frame-
work on binary and 74.84% on multiclass classification tasks
while for the second framework, they obtained an accuracy
of 92.02% for binary and multiclass classification tasks. The
authors in [118] make a contrast between two machine learn-
ing approaches for the multiclass (8 classes) classification task
using histopathological images on the BreakHis dataset. The
first approach used handcrafted features while the second
approach used CNN as a feature extractor. They used
VGG16, VGG19, and ResNet-50 as their CNN models. They
used rotation, translation, scaling, and flipping as data
enhancement methods. The VGG16 model reaches an accu-
racy of 93.25% at the patient level for the multiclass classifica-
tion task. Spanhol et al. [119] proposed a DL model that
reused a previously trained CNNmodel on the BreakHis data-
set achieving an F1-score of 90.3 at the subject level. The
authors in [120] exploited global covariance information using
a matrix power normalization procedure into a simple CNN
model. This arrangement can exploit second-order statistical
information producing effective representations from histo-
logical images. On the BreakHis dataset for the binary
(benign/malignant) classification task, they achieved an accu-
racy of 97.92% at the subject level while employing cropping
and flipping operations to enhance the size of the dataset
synthetically. Khan et al. [121] used different transfer learn-
ing (GoogLeNet, VGGNet, and ResNet) architectures for
binary classification of benign/malignant tumor cells while
deploying BreakHis and a custom dataset. For data augmen-
tation, scaling, rotation, translation, and color augmentation
methods were used by them to achieve a correct classifica-
tion rate of 97.67%. The authors in [122] introduced an
information-based architecture that is designed to exploit
clinical information. There are six types of records in their
dataset of 100 subjects, such as encounter notes, operation
records, pathology notes, radiology notes, progress notes,
and discharge summaries. They used fine-tuned transformer
models from pretrained bidirectional encoder representa-
tions achieving a precision of 0.976 for relation recognition.
Naik et al. [123] deployed a DL model to assess estrogen sta-
tus from whole-slide histopathological images. They used the
Australian Breast Cancer Tissue Bank as well as TCGA data-
sets in their study and further deployed flipping, rotation,
color jitter, and cutout regularization as augmentation
methods. Their model achieved an AUC of 0.861 on TCGA
and an AUC of 0.905 on Australian Breast Cancer Tissue
Bank datasets. The authors in [124] compared different DL
techniques for the classification of mammograms. They used
single as well as 4-model averaging to conduct their experi-
ments on INbreast as well as an independent database. They
used different data enhancement techniques such as flipping,
rotation, intensity shifting, and zoom. The single model
achieved an AUC of 0.88 while 4-model averaging achieved
an AUC of 0.91 on the independent database. On the
INbreast dataset, the single model achieved an AUC of

14 Computational and Mathematical Methods in Medicine



0.95 while 4-model averaging achieved an AUC of 0.98.
Their study shows the superiority of combining models over
a single model.

Table 4 displays a summary of the studies for the classi-
fication of breast cancer covered in this subsection.

4.4. Classification of Colorectal Cancer, Gastric Cancer,
Bladder Cancer, Lung Cancer, Prostate Cancer, Skin
Cancer, Liver Cancer, Head and Neck Cancer, Pancreatic
Cancer, and Other Types of Cancers. Kather et al. [125]
deployed different transfer learning architectures for multi-
class (9 classes) classification of colorectal cancer subjects.
They used VGG19, AlexNet, SqueezeNet, GoogLeNet, and
ResNet-50 models on two datasets of 86 and 25 subjects
reaching an accuracy of 98.7% and greater than 94% on
them. The authors in [126] deployed a CNN architecture
to extract features from Optical Coherence Tomography
(OCT) images of colorectal cancer subjects. Their network
was trained using 26000 OCT images representing 42 areas
achieving an AUC of 0.998. Dong et al. [127] deployed a
DL method to exploit information in multiphase CT nomo-
grams in gastric cancer subjects. They used three cohorts to
test the effectiveness of their model achieving a discrimina-
tion rate of 0.821, 0.797, and 0.822 in the primary, external
validation, and international validation cohorts. Woerl
et al. [128] deployed a DL method to identify bladder cancer
from histomorphological images. They used 2 datasets of
407 and 16 subjects each from TCGA and custom cohorts,
respectively, achieving accuracies of 69.91% and 75% on
TCGA and custom subsets, respectively. Wang et al. [129]
used the idea of weakly supervised learning exploiting
image-level labels for the classification of lung cancer
images. They used two datasets, one from TCGA and the
other is a custom dataset. To enhance the training set, color
jittering, translation, flipping, and rotation were used.

Their model successfully achieves an accuracy of 97.3%
and an AUC of 85.6% on custom and TCGA datasets.
Karimi et al. [130] used a DL method combining three sep-
arate CNNs that used different patch sizes for the classifica-
tion of histopathological images with limited data. They
used new data enhancement methods such as elastic defor-
mation and augmentation in the space of learned features
for binary classification of cancerous/benign and low-
grade–high-grade patches achieving an accuracy of 92%
and 86%, respectively, on both binary classification tasks.
Dascalu and David [131] used DL architectures for binary
classification of benign/malignant cases of skin cancer sub-
jects. They used a skin magnifier with polarized light and
an advanced dermoscope to construct their datasets. The
authors achieved an F2-score sensitivity of 91.7% and
89.5% respectively for skin magnifier with polarized light
and advanced dermoscope images. The authors in [132]
used DL techniques to build a skin cancer classification
model for binary and multiclass classification of malignant
and benign skin tumors. They used Kaohsiung Chang Gung
Memorial Hospital and HAM10000 datasets in their study.
Their model achieved an accuracy of 85.8% on the
HAM10000 dataset for 7-class classification tasks. On the
Kaohsiung Chang Gung Memorial Hospital dataset, their

model achieved an accuracy of 72.1% for 5-class classifica-
tion and 89.5% for binary classification tasks. Thomas et al.
[133] applied interpretable DL models to classify skin can-
cers in a histopathological setting. They studied three types
of cancers basal cell carcinoma, squamous cell carcinoma,
and intraepidermal carcinoma. They deployed a multiclass
(12 classes) classification model to achieve accuracies
between 93.6% and 97.9%. To solve the class imbalance
problem and to increase the size of the dataset, they used
flipping and rotation as data augmentation methods to
increase the size of the dataset 8 times. The authors in
[134] developed a CNN model for the classification of mel-
anoma and nevi. They used a dataset of 11444 images
belonging to five categories. They deployed novel DL tech-
niques to train a single CNN model. In addition, they also
asked 112 dermatologists to grade the images. Then, they
used a gradient boosting method to develop a new classifier
for binary (benign/malignant) and multiclass (5 classes)
classification tasks achieving accuracies of 86.5% and
82.95% on both these tasks. Sun et al. [135] developed a
DL method to classify liver cancer subjects as abnormal/nor-
mal on publically available TCGA datasets. Transfer learn-
ing and multiple instance learning were combined for the
classification of patch features. The authors used tissue
extraction, color normalization, and patch extraction for
preprocessing of histopathological images. Diao et al. [136]
used a transfer learning-based CNN architecture named
Inception version 3 to classify nasopharyngeal carcinoma
subjects into three classes. They used a total of 1970 images
of 731 subjects. The three classes considered in their study
were chronic nasopharyngeal inflammation, lymphoid
hyperplasia, and nasopharyngeal carcinoma. Their model
achieved a mean AUC of 0.936. Liu et al. [137] used a
CNN classifier to diagnose subjects with pancreatic cancer
using contrast-enhanced CT images. They used three differ-
ent datasets to test the effectiveness of their approach. The
first dataset named local test set 1 has 295 patients with pan-
creatic cancer and 256 controls for training and 75 patients
with pancreatic cancer and 64 controls for validation. The
second dataset named local test set 2 has 101 patients with
pancreatic cancers and 88 controls while the third dataset
named the US dataset has 281 pancreatic cancer subjects
and 82 controls. In local test set 1, local test set 2, and US
datasets, their model achieved an accuracy of 98.6%,
98.9%, and 83.2%, respectively. To augment the datasets,
the authors used moving window and flipping operations.
Korfiatis et al. [138] compared the performances of
ResNet-18, ResNet-34, and ResNet-50 architectures for the
classification of MRI scans of 155 subjects for multiclass (3
classes) classification of no tumor, methylated methylgua-
nine methyltransferase methylation, or nonmethylated clas-
ses. ResNet-50 architecture achieved the best performance
with an accuracy of 94.9%; ResNet-34 architecture achieved
an accuracy of 80.72% while ResNet-18 architecture
achieved an accuracy of 76.75%. The authors in [139] used
a two-phase training to study and mitigate class biasedness
using a DL-based CNN model for the classification of breast
cancer histological images. They conducted their experi-
ments using MITOS12 and 2016 Tumor Proliferation
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Table 4: Summary of the studies for the classification of breast cancer.

Publication Type of data Methods Performance

[92] Custom dataset of ultrasound images Pretrained CNNs
AUC of 0.90 (nonmalignant vs. malignant),

AUC of 0.88 (benign vs. malignant)

[93]
1 custom+2 publically available

datasets
DL-based approach using

a matching layer
AUC = 0:936 (custom dataset), AUCs around

0.89 (publically available datasets)

[94] Custom dataset of ultrasound images Inception v3, VGG19 Robust and efficient classification performances

[95] Custom dataset of ultrasound images
Training from scratch,
pretrained VGG16, fine-

tuning approach
0.97 accuracy, 0.98 AUC using fine-tuning approach

[96] Custom dataset of breast MRI images
Cross-modal transfer
learning approach

Overall accuracy of 0.93 using cross-modal approach

[97] Custom dataset of breast MRI images DL-based method High sensitivity in the range of 93-100%

[98]
Custom dataset of multiparametric

MRI images
Pretrained CNN
architectures

AUCfeature fusion = 0:87

[99]
BreakHis, Breast Cancer Classification

Challenge 2015
Inception recurrent
residual CNN model

100% for the binary and multiclass (Breast Cancer
Classification Challenge 2015 dataset)

[100] BreakHis
Single-task CNN,
multitask CNN

Patient score of 83.72% for binary classification using
single-task CNN

[101]
2015 bioimaging breast histology
classification challenge, BreakHis

dataset

Progressive DL-based
models

Recognition rate of 96.4% and 99.5% on multiclass and
binary classification tasks on 2015 bioimaging breast

histology classification challenge

[102]
BreakHis dataset, PatchCamelyon
dataset, 2015 Bioimaging challenge

dataset, 2018 ICIAR dataset

VGG19, MobileNet,
DenseNet

Accuracy of 98.13% on BreakHis dataset

[103] BreakHis dataset
DL and hierarchical

classification approach
Accuracy of 95.48% on the multiclass classification task

[104] BreakHis dataset Integrated DL model
98.51% classification success on the multiclass

classification task

[105] BreakHis dataset
DenseNet and Xception

architectures
99% and 92% accuracy on binary and multiclass

classification tasks

[106] BreakHis dataset DL-based model
Mean recognition rate of 90:0 ± 6:7 for binary

classification

[107] BreakHis dataset DL-based model Accuracy of 94:7 ± 3:6 for multiclass classification

[108] BreakHis dataset
Bag of words, locality-

constrained linear coding,
CNNs

For CNN model accuracies between 96.15% and
98.33% for the binary classification and 83.31% and

88.23% for the multiclass classification

[109] BreakHis dataset
Combination of 4 residual

networks
Correct classification rate of 96.25% for 8-class

categorization

[110] BreakHis dataset
End-to-end model based
on FCN and bidirectional

LSTM
Accuracy of 96:32 ± 0:51 on binary classification task

[111] BreakHis dataset
ResNet-18, ResNet-50,

and AlexNet
Image-level accuracy of 96.88% for binary classification

[112] BreakHis dataset
Weakly supervised
learning framework

Classification rate of up to 92.1% for binary
classification

[38] 2015 Bioimaging challenge dataset CNN models
Accuracies of 77.8% for four classes and 83.3% for

carcinoma/noncarcinoma were achieved

[113] ICIAR 2018 Grand Challenge
Pretrained ResNet-50,

Inception v3, and VGG16
architectures

Accuracies of 87.2% for multiclass, 93.8% for binary
classification tasks

[114] 2015 Bioimaging challenge database
Clustering algorithm and
ResNet-50 architecture

88.89% accuracy on the overall test set for multiclass
classification

[115] BreakHis dataset 92.60% accuracy
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Assessment Challenge datasets. Prior to phase 1 of training,
segmentation using the global binary thresholding method
was applied. In phase 1, a CNN was trained on the
segmented patches using rotation and flipping data augmen-
tation methods as well as the blue ratio histogram-based
k-means clustering approach. In phase 2, the dataset was
again modified to reduce the effects of class imbalance
yielding an F-measure of 0.79. Campanella et al. [140] pro-
posed a DL-based system utilizing information frommultiple
instances in order to help the pathologists exclude informa-
tion without compromising performance metrics. They used
44732 whole-slide images belonging to 15187 patients. They
achieved AUC above 0.98 and 100% sensitivity for prostate
cancer, basal cell carcinoma, and breast cancer metastases
to axillary lymph nodes. The authors in [141] proposed two
DL-based systems to detect myeloid leukemia from the leu-
kemia microarray genetic dataset. The first DL system is a
single-layered neural network while the second one has 3
hidden layers. They used information of 22283 genes
extracted from the Gene Expression Omnibus repository.
Their models achieved accuracies of 63.33% and 96.67% for
single and multilayered DL architectures with a significant
normalization test (p > 0:05). Jeyaraj and Samuel Nadar
[142] used a regression-based DL algorithm to investigate
hyperspectral images to diagnose oral cancer. Their system
extracted patches for classification into normal, benign, and
malignant classes using BioGPS, TCIA, and GDC datasets.
For 100 malignant image patch training, they achieved an
accuracy of 91.4% while for 500 malignant image patch train-
ing, they achieved an accuracy of 94.5%. The authors in [143]
proposed a DL method to study the relationship between
genomic variations and traits. They analyzed 6083 sample
exon sequencing files belonging to 12 cancer types. They used
TCGA and 1000 Genomes Project. They performed both
binary (cancer/healthy) and multiclass (12 classes) classifica-

tion tasks using specific, total, and mixture models to achieve
an accuracy of 97.47%, 70.08%, and 94.7% for specific, mix-
ture, and total specific models for the identification of cancer.
Owais et al. [144] deployed a DL-based classification frame-
work for the diagnosis of gastrointestinal diseases from endo-
scopic images. They deployed two datasets that are publicly
available: Kvasir dataset and Gastrolab dataset. They
followed a 2-step process. The classification network predicts
the disease type in the first step, and then in the second step,
the retrieval part shows the relevant cases. They performed
multiclass (37 classes) classification using DenseNet transfer
learning architecture, LSTM architecture, PCA, and KNN
methods to achieve a correct recognition rate of 96.19% on
this task. The authors in [145] proposed a CNN-based DL
architecture for the multiclass (4 classes) classification of
acute lymphoblastic leukemia. They used stained bone mar-
row images achieving an accuracy of 97.78%. Kann et al.
[146] deployed a 3D CNNmodel to identify nodal metastasis
and tumor extranodal extension. Their dataset has 2875 CT
samples, 124 samples for validation and 131 samples for test-
ing. They used a series of rotations and flipping technique to
augment the datasets while achieving an AUC of 0.91. The
authors in [147] proposed a DL approach to study the limited
sample training problem from holographic images. They
studied the classification of healthy and cancer cell lines.
They used Generative Adversarial Networks (GANs) as the
data augmentation method to train a large number of unclas-
sified samples from sperm cells. Their model achieved an
accuracy of 99% for healthy/primary cancer/metastatic can-
cer multiclass classification problems.

Table 5 displays a summary of the studies for the task of
classification of cancers covered in this subsection.

4.5. Classification, Segmentation, Prediction, and Detection of
Brain Tumors. Sun et al. [148] proposed a 3D fully

Table 4: Continued.

Publication Type of data Methods Performance

VGG16, VGG19, and
ResNet-50 architectures

[116] Custom dataset
CNN, KNN, Inception v3,
SVM, and ANN models

Accuracy of 97% using ANN algorithm for binary
classification

[117] Custom dataset CNN and ANN models
Accuracy of 92:02 ± 0:51% for the binary classification
task using a VGG model, accuracy of 92:02 ± 0:48% for

the multiclass classification task

[118] BreakHis dataset
VGG16, VGG19, ResNet-

50 architectures
Accuracy of 93.25% for multiclass classification task

[119] BreakHis dataset DL-based model F1-score of 90.3

[120] BreakHis dataset
Deep second-order
pooling network

Accuracy of 97.92% for binary classification

[121] BreakHis+custom datasets
Pretrained CNN

architectures (GoogLeNet,
VGGNet, and ResNet)

Accuracy of 97.67% for binary classification

[122] Custom dataset Transformer models Precision of 0.976 for relation recognition

[123]
Australian Breast Cancer Tissue Bank,

TCGA dataset
Deep neural network

AUC on TCGA of 0.861, AUC on Australian Breast
Cancer Tissue Bank was 0.905

[124] INbreast database DL models AUC = 0:98

17Computational and Mathematical Methods in Medicine



convolutional network-based multipathway architecture to
extract features from MRI images from the BRATS 2019
challenge for the segmentation of brain tumor regions. They
used the concept of dilated convolutions in each pathway to
achieve a dice score of 0.89, 0.78, and 0.76 for whole tumor
(WT), tumor core (TC), and enhancing tumor (ET) on the
BRATS 2019 challenge, respectively. They used cropping,
random slicing, and z-score normalization as the prepro-
cessing methods. The authors in [149] proposed a novel
architecture combining U-Net encoding and decoding sub-

architecture, dilated convolutional feature extracting layers,
and a residual module. Their proposed architecture achieved
a dice score of 0.843, 0.897, and 0.906 and 0.798, 0.902, and
0.845 on ET, WT, and TC brain tumor subregions on
BRATS 2018 and BRATS 2019 challenges, respectively. They
used normalization and cropping techniques to preprocess
the images. Khan et al. [150] utilized VGG16 and VGG19
transfer learning-based CNN models, partial least square
covariance matrix, discrete cosine transform, and extreme
learning machine to extract and classify features on BRATS

Table 5: Summary of the studies for the classification of other types of cancer.

Publication Type(s) of cancer Type of data Methods Performance

[125] Colorectal cancer Custom dataset
VGG19, AlexNet, SqueezeNet

version 1.1, GoogLeNet,
ResNet-50

98.7% accuracy using VGG19
model

[126] Colon cancer Custom dataset CNN model
AUC = 0:998, specificity =
99:7%, sensitivity = 100%

[127] Gastric cancer Custom datasets DL models
Accuracy of 0.822 in the

international validation cohort

[128] Bladder cancer TCGA+custom dataset DL models Accuracy customð Þ = 75%

[129] Lung cancer TCGA+custom dataset
Weakly supervised DL

algorithm
Accuracy of 97.3% on the

custom dataset

[130] Prostate cancer Custom dataset DL methods
Accuracy of 92% in cancerous/

benign classification

[131] Skin cancer Custom dataset DL algorithms
Positive predictive value of

59.9%

[132] Skin cancer
HAM10000, Kaohsiung Chang Gung

Memorial Hospital
Lightweight DL algorithm

Accuracy = 85:8%
(HAM10000, multiclass

classification)

[133] Skin cancer Custom dataset Interpretable DL methods
Accuracies between 93.6% and

97.9%

[134] Skin cancer Custom dataset CNN model
Accuracy of 82.95% for
multiclass classification

[135] Liver cancer TCGA dataset DL model
High accuracy (abnormal/
normal classification)

[136]
Head and neck

cancer
Custom dataset Inception version 3

Mean AUC was 0.936 based on
the testing set

[137] Pancreatic cancer Three custom datasets CNN architectures Accuracy of 0.986 for test set 2

[138] Multiple Custom datasets
ResNet-18, ResNet-34,

ResNet-50
Accuracy of 94.90% for
ResNet-50 architecture

[139] Breast cancer
MITOS12, 2016 Tumor Proliferation

Assessment Challenge
CNN architecture F-measure of 0.79

[140] Multiple Custom dataset
Multiple instance learning-

based DL system
Sensitivity = 100%

[141]
Blood and bone
marrow cancer

Leukemia microarray gene data, Gene
Expression Omnibus repository

Single-layer neural network,
3-layered deep network

96.67% for 3 layered model

[142] Multiple BioGPS data portal, TCIA, GDC dataset
Regression-based partitioned

DL algorithm
Accuracy = 94:5%

[143] Multiple TCGA, 1000 Genomes Project DL algorithms Accuracy = 97:47%

[144] Multiple Kvasir dataset, Gastrolab
DL-based classification

network
Accuracy = 96:19%

[145] Multiple Custom datasets CNN model Accuracy = 97:78%
[146] Multiple Custom dataset 3D CNN model AUC = 0:91
[147] Multiple Custom dataset GAN-based model 90–99% accuracies
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2015, BRATS 2017, and BRATS 2018 challenge datasets to
achieve an accuracy of 97.8%, 96.9%, and 92.5% for BRATS
2015, BRATS 2017, and BRATS 2018 datasets, respectively.
To preprocess the images before feeding them to the classi-
fication model, the authors used the histogram equalization
approach. Pei et al. [151] proposed a joint deep and machine
learning-based model for classification, segmentation, and
prediction of brain tumors. Using a context-aware CNN
architecture for segmentation, 3D CNN architecture for
classification, and LASSO for prediction, the authors
achieved a dice score of 0.821, 0.895, and 0.835 for ET,
WT, and TC regions, respectively, on BRATS 2019 for the
segmentation task, an accuracy of 58.6% for the survival pre-
diction task on the BRATS 2019 dataset, and balanced accu-
racy of 63.9% on the test set for the 2019 Computational
Precision Medicine Radiology-Pathology (2019 CPM-Rad-
Path) challenge. The authors in [152] proposed a resource-
efficient CNN model integrating memory connections and
an adaptive dense block for the segmentation of brain
tumors. They used the BRATS 2015 challenge dataset for
the validation of their model and z-score normalization as
a preprocessing method achieving a dice coefficient score
of 0.858, 0.816, and 0.818 for WT, TC, and ET subregions.
Badža and Barjaktarović [153] present a 22-layered CNN
architecture for brain tumor classification of T1-weighted
MRI images belonging to three categories: meningioma, gli-
oma, and pituitary tumor. They normalize and resize the
scans to 256 × 256 pixels followed by 90° rotation and verti-
cal flipping augmentation methods to synthetically increase
the size of the dataset. The authors achieved an accuracy of
96.56% for the multiclass classification task on a custom
dataset. The authors in [154] proposed a transfer learning-
based approach for segmentation and classification of brain
tumors using Inception version 3-based features. They
concatenated the CNN-based features with local binary pat-
tern- (LBP-) based features. Contrast improvement is used
as a preprocessing method. The authors achieved a dice
score of 0.8373, 0.937, and 0.7994 for TC, WT, and ET sub-
regions on the BRATS 2017 dataset and a dice score of
0.8834, 0.912, and 0.8184 for TC, WT, and ET subregions
on the BRATS 2018 dataset. For the classification task, the
authors achieved an average accuracy upward of 92% on
BRATS 2013, BRATS 2014, BRATS 2017, and BRATS
2018 datasets. Rai et al. [155] proposed a U-Net-based DL
model using skip connections for the classification, segmen-
tation, and detection of tumors in brain MRI scans. They
conducted their experiments on 120 patients of lower-
grade glioma in TCGA database with 1373 scans for patients
and 2556 scans for normal controls. The authors deployed
cropping, resizing, global pixel normalization, horizontal
flipping, flipping and rotation, random rotation, shift scale
rotate, transposition, blurring, Gaussian blurring, random
gamma, random brightness, and normalization as prepro-
cessing and data augmentation methods. Their model
achieved an accuracy of 99.7% on the classification task, a
dice score of 0.9573 on the segmentation task, and a Jaccard
index of 0.86 on the detection task. The authors in [156]
compared and contrasted the performance of different trans-
fer learning architectures for the binary classification of

brain tumors into benign and malignant categories. They
chose AlexNet, GoogLeNet, ResNet-50, ResNet-101, and
SqueezeNet architectures for comparison. They employed a
dataset of 224 benign category and 472 malignant category
T1-weighted MRI images acquired from the TCIA public
access repository. They used resizing, flipping, mirroring, salt
noise addition, and rotation as preprocessing and data aug-
mentation methods to achieve an accuracy of 99.04% using
an AlexNet-type architecture. Feng et al. [157] developed a
3D U-Net model for brain tumor segmentation. They picked
up an ensemble of models to extract features from brain
MRI images on the BRATS 2018 challenge for segmentation
and survival prediction. The authors achieved a dice score of
(0.7946, 0.9114, and 0.8304) on (ET, WT, and TC) subregions
for the segmentation task and an accuracy of 32.1% on the
survival prediction task. The authors in [158] proposed an
ensemble of deep CNN architectures integrating two and three
paths of parallel models in a single model. They used 2D slices
of brainMRI images from the BRATS 2013 dataset achieving a
dice score of (0.86, 0.86, and 0.88) on (WT, TC, and ET) sub-
regions. As a preprocessing step, they standardized the slices
using the zero mean and unit variance normalization proce-
dure. Naser and Deen [159] proposed a DL approach combin-
ing U-Net architecture, VGG16 transfer learning architecture,
and a fully connected architecture for classification and seg-
mentation of brain MRI images into lower-grade gliomas
belonging to 110 patients. They used normalization, cropping,
resizing, padding, rescaling, rotation, zooming, shifting, shear-
ing, and flipping as preprocessing and data augmentation
methods. Their approach achieved a dice score of 0.84 on
the segmentation task and accuracy, sensitivity, and specificity
of 92% on the binary classification (grade II/grade III) task.
The authors in [160] proposed a multiscale 3D CNN architec-
ture for the recognition and segmentation of 220 high- and 54
low-grade glioma MRI scans from the BRATS 2015 challenge
dataset. As a preprocessing method, the authors used histo-
grammatching to ensure consistency among gray levels. Their
model achieved a dice score of 0.89 on the segmentation task, a
sensitivity of 0.89, and a specificity of 0.90 on the recognition
task. Chang et al. [161] proposed a DLmodel combining aver-
age pooling and max pooling layers along with 1 × 1 kernels.
They further combined this model with conditional random
fields to optimize prediction results. The authors used the
BRATS 2013 dataset to achieve a dice score of (0.80, 0.75,
and 0.71) on (WT, TC, and ET) subregions. As a preprocess-
ing method, the authors used an intensity normalization
method. The authors in [162] proposed a multiscale CNN
model for the categorization of an MRI scan into healthy,
meningioma, glioma, and pituitary tumor categories. The
authors used 2D MRI images acquired from local hospitals
in China to conduct their experiments. They achieved a dice
score of (0.894, 0.779, 0.813, and 0.828) on (meningioma, gli-
oma, pituitary tumor, and average), respectively, and accuracy
of 97.3% on the classification task. As preprocessing and data
augmentationmethods, the authors used pixel standardization
and elastic transformation methods.

Table 6 displays a summary of the studies for the classi-
fication, segmentation, prediction, and detection of brain
tumors covered in this subsection.
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5. Discussion

The dynamics of cancer growth with respect to time are
difficult to estimate. Precise measures can be made largely

at the end of the cycle in cancer’s evolution, when it is
detached from the body. Ongoing mutations provide a rich
history of clonal lineages which lead to changes in both
genotype and phenotype.

Table 6: Summary of the studies for the classification, segmentation, prediction, and detection of brain tumors.

Publication Dataset(s) Task(s) Method Performance

[148] BRATS 2019 Segmentation
3D fully convolutional network-based

multipathway architecture
Dice score of 0.89, 0.78, and 0.76 for WT,

TC, and ET subregions, respectively

[149]
BRATS 2018 and
BRATS 2019

Segmentation

Combination of U-Net encoding and
decoding subarchitecture, dilated

convolutional feature extracting layers,
and a residual module

Dice score of 0.843, 0.897, and 0.906 and
0.798, 0.902, and 0.845 on ET, WT, and
TC brain tumor subregions on BRATS
2018 and BRATS 2019 challenges,

respectively

[150]
BRATS 2015,

BRATS 2017, and
BRATS 2018

Classification

VGG16 and VGG19 transfer learning-
based CNN models, partial least square

covariance matrix, discrete cosine
transform, and extreme learning machine

Accuracy of 97.8%, 96.9%, and 92.5% for
BRATS 2015, BRATS 2017, and BRATS

2018 datasets, respectively

[151]
BRATS 2019 and

2019 CPM-
RadPath

Classification,
segmentation, and

prediction

Context-aware CNN architecture for
segmentation, 3D CNN architecture for
classification, and LASSO for prediction

Dice score of 0.821, 0.895, and 0.835 for
ET, WT, and TC regions, respectively, on

BRATS 2019 for segmentation task,
accuracy of 58.6% for survival prediction

task on BRATS 2019 dataset, and
balanced accuracy of 63.9% on 2019

CPM-RadPath challenge

[152] BRATS 2015 Segmentation
Resource-efficient CNN model with
memory connections and an adaptive

dense block

Dice coefficient score of 0.858, 0.816, and
0.818 for WT, TC, and ET subregions

[153] Custom Classification 22-layered CNN architecture Accuracy of 96.56%

[154]

BRATS 2013,
BRATS 2014,

BRATS 2017, and
BRATS 2018

Segmentation and
classification

Inception version 3+LBP

Dice score of 0.8373, 0.937, and 0.7994
for TC, WT, and ET subregions on

BRATS 2017; dice score of 0.8834, 0.912,
and 0.8184 for TC, WT, and ET on

BRATS 2018; average accuracy upward of
92% on BRATS 2013, BRATS 2014,

BRATS 2017, and BRATS 2018 datasets

[155] TCGA database
Classification,

segmentation, and
detection

U-Net-based DL model using
skip connections

Accuracy of 99.7% on the classification
task, dice score of 0.9573 on the

segmentation task, and Jaccard index of
0.86 on the detection task

[156]
TCIA public

access repository
Classification

AlexNet, GoogLeNet, ResNet-50,
ResNet-101, and SqueezeNet

An accuracy of 99.04% using AlexNet-
type architecture

[157] BRATS 2018
Segmentation and

prediction
3D U-Net model

Dice score of 0.7946, 0.9114, and 0.8304
on ET, WT, and TC, accuracy of 32.1%

[158] BRATS 2013 Segmentation Ensemble of deep CNN architectures
Dice score of 0.86, 0.86, and 0.88 on WT,

TC, and ET

[159] Custom
Segmentation and

classification

U-Net architecture, VGG16 transfer
learning architecture, and a fully

connected architecture

Dice score of 0.84; accuracy, sensitivity,
and specificity of 92% on the binary

classification task

[160] BRATS 2015
Segmentation and

classification
Multiscale 3D CNN architecture

Dice score of 0.89, sensitivity of 0.89, and
a specificity of 0.90

[161] BRATS 2013 Segmentation
DL model combining average
pooling and max pooling layers

along with 1 × 1 kernels

Dice score of 0.80, 0.75, and 0.71 on WT,
TC, and ET

[162] Custom
Segmentation and

classification
Multiscale Convolutional Neural

Network

Dice score of 0.894, 0.779, 0.813, and
0.828 on meningioma, glioma, pituitary
tumor, and average and an accuracy of

97.3%
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Psycho-oncology is a branch of oncology that deals
directly with psychological and social issues. It deals with
both emotional and psychobiological dimensions of cancer.
However, there are still a number of obstacles in its wide
adoption such as the dearth of medical practitioners as well
as assessment tools and supporting instruments. It is impor-
tant that both psychological and psychobiological factors
influence the way cancers are treated. This domain must ful-
fill the demands for the availability of resources, support for
caregivers and patients, and carving out new research direc-
tions for enthusiastic researchers [163, 164].

Research in AI has proven its worth in the support of
medical decision-making. Due to the unknown nature of
these algorithms, their widespread adoption is still limited.
Explanatory AI algorithms provide a solution to this prob-
lem. However, performance issues might hinder their adop-
tion as well. Robustness, local attribution, and completeness
are three key properties of an explainable AI system. One
way to get around this problem is to find strategies that opti-
mally merge explainable and nonexplainable AI models.
Some solutions that point in this direction are winning the
confidence of clinicians by marking the regions in an image
that are involved in AI predictions; another way is to attack
or deceive the DL models through adversarial augmenta-
tions as it could potentially reveal the important features
and discard the unimportant ones. There is a close link
between interpretability and explainability. An explainable
model is interpretable, but the reverse connection may not
hold. A prediction relying on thousands of parameters is
neither interpretable nor explainable [165, 166].

Precise DL model predictions are dependent on the
availability of a large corpus of data (labelled or unlabelled),
and it is a challenge to train it on a relatively small dataset.
One way to look at this problem is through understanding
the genetic evolution process. Gene transfer is the transfer
of genetic information from a parent to its offspring. Genes
encode genetic instructions (knowledge) from ancestors to
descendants. The ancestors do not necessarily have better
knowledge; yet, the evolution of knowledge across genera-
tions promotes a better learning curve for the descendants.
There is a need for methods that can mimic this behaviour
and use a limited number of examples to achieve their
desired performance on different tasks [167]. Catastrophic
forgetting is another problem limiting the performance of
modern networks as they lack the ability to learn from con-
tinuous streams of data. The quality of the feature represen-
tation considerably determines the amount of forgetting.
Boosting secondary information is the key to improving
the transferability of features from old to new tasks without
forgetting and is a promising direction for future work [168]
especially for cancer diagnosis, prognosis, and prediction.

Despite the claims made by researchers, multiclass clas-
sification is an immensely difficult problem requiring a dee-
per understanding of human visual perception that moves
beyond large datasets, and DL is perhaps necessary to solve
many domain problems [169] including cancer diagnosis,
prognosis, and prediction.

Another challenge that is worth mentioning is to find
intricate hierarchical patterns from all forms of data such

as labelled and unlabelled in a way that integrates informa-
tion to perform visual inference. Unsupervised and semisu-
pervised learning can help in this direction by offering
potential solutions that help us in delving deeper into cancer
pathogenesis and prediction tasks [170].

Can we use real-world images from another domain for
calibration? Bridging the gap between cross-domain calibra-
tion and in-domain calibration is required to get optimal
performance from neural networks. Techniques such as
gram matrix similarity can be used as a criterion to select
calibration datasets from a candidate pool to further
improve performance [171]. This process can be used for
effective feature construction in cancer diagnosis, prognosis,
and prediction.

Modern DL object detection networks rely heavily on
region proposal calculating algorithms to identify object
locations. However, region proposal computation is a slow
task. Faster region CNNs solve this problem by sharing con-
volutional layers with object detection subsystems. This
process requires further research, and there is a need for
improved computationally lightweight methods [25, 26].
Cancer lesion detection can be improved by doing thorough
research in this domain.

Modern DL networks rely heavily on global image statis-
tics. This reliance can cause problems for these systems as
shape and texture recognition is often better done at the local
rather than the global level. Research in this domain can lead
to better network generalization [172] holding the potential
to improve cancer diagnosis, prognosis, and prediction.

Mitigating gradient explosion or decay in RNN training
based on pondering over informative inputs to strengthen
their contribution in the hidden state and finding computa-
tionally efficient ways for this purpose by suppressing noise
in inputs or imposing novel constraints is a problem worth
investigating [173].

Image recognition and image generation are two
cornerstones of computer vision. While both are burgeoning
fields, specialized techniques from both subareas can some-
times form a dichotomy. Historically, the field of DL was
widely popularized in discriminative image classification
with AlexNet architecture and image generation through
GANs and Variational Autoencoders (VAEs). Novel data
augmentation methods that force a network to pay attention
to the moments extracted by layers of a deep network are a
need of time [174] and can improve the performance of
models in cancer diagnosis, prognosis, and prediction.

Further research should also target the discovery of novel
objects (such as those having an aberrant organization, rare
tumor, and foreign bodies), interpretable DL models (using
influence functions or an attention mechanism), intraoperative
decision-making, and tumor-infiltrating immune cell analysis.
Some problems such as the appearance of whole-slide image
as orderless texture-like image and color variation and artefacts
are potentially hindering the performance of DL techniques
[175] for cancer diagnosis, prognosis, and prediction.

Different types of imaging modalities like mammogra-
phy, CT, MRI, and ultrasound have helped in the staging
of cancer especially breast cancer. These systems have helped
medical practitioners in the early identification of breast
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cancer [176]. For breast cancer, varying types of breast den-
sities make masses very difficult to detect and classify in
comparison to calcifications providing room for further
research in this domain [177].

Other areas for potential research are scarcity of data,
imbalanced datasets, missing data, and high dimensionality
of patient data. Future work should be focused on testing
and improving methods to achieve better performing DL
models for cancer diagnosis, prognosis, and prediction tasks.

6. Conclusion

DL models have revolutionized the diagnosis and predic-
tions of cancers. Data have been accepted in various forms
and multiple sources. These models are excellent feature
extractors, and their characteristics can improve cancer
prognosis and prediction. Data augmentation is important
for cancer diagnosis and prediction tasks to improve the
final performance of systems. These methods will play a
key role in making predictions about the cancer diagnosis
and prediction tasks. However, further testing and validation
are required on larger datasets for clinical applications. More
research on data augmentation methods, learning in differ-
ent domains such as frequency domain, and deploying novel
architectures such as graph convolutional networks will
likely improve their performance further.
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In medical visualization, nursing notes contain rich information about a patient’s pathological condition. However, they are not
widely used in the prediction of clinical outcomes. With advances in the processing of natural language, information begins to be
extracted from large-scale unstructured data like nursing notes. This study extracted sentiment information in nursing notes and
explored its association with in-hospital 28-day mortality in sepsis patients. The data of patients and nursing notes were extracted
from the MIMIC-III database. A COX proportional hazard model was used to analyze the relationship between sentiment scores
in nursing notes and in-hospital 28-day mortality. Based on the COX model, the individual prognostic index (PI) was calculated,
and then, survival was analyzed. Among eligible 1851 sepsis patients, 580 cases suffered from in-hospital 28-day mortality (dead
group), while 1271 survived (survived group). Significant differences were shown between two groups in sentiment polarity,
Simplified Acute Physiology Score II (SAPS-II) score, age, and intensive care unit (ICU) type (all P < 0:001). Multivariate COX
analysis exhibited that sentiment polarity (HR: 0.499, 95% CI: 0.409-0.610, P < 0:001) and sentiment subjectivity (HR: 0.710,
95% CI: 0.559-0.902, P = 0:005) were inversely associated with in-hospital 28-day mortality, while the SAPS-II score (HR:
1.034, 95% CI: 1.029-1.040, P < 0:001) was positively correlated with in-hospital 28-day mortality. The median death time of
patients with PI ≥ 0:561 was significantly earlier than that of patients with PI < 0:561 (13.5 vs. 49.8 days, P < 0:001). In
conclusion, sentiments in nursing notes are associated with the in-hospital 28-day mortality and survival of sepsis patients.

1. Introduction

Sepsis, a syndrome of life-threatening physiologic, patho-
logic, and biochemical dysfunction due to uncontrolled
responses to infection, is one of the leading causes of deaths
in intensive care units (ICUs) [1]. Despite advances in care,
sepsis remains among the costliest diseases, approximately
accounting for over 20 billion (5.2%) of total United States
(US) hospital costs [2]. In the US, admission for sepsis has

overtaken that for stroke and myocardial infarction [3].
According to statistics, the prevalence of sepsis is up to 535
cases per 100 100,000 person-years and on the rise [4].
Population-level epidemiological data show that there are
31.5 million cases of sepsis and 19.4 million cases of severe
sepsis worldwide, with 5.3 million potential deaths each year
[5], and the in-hospital mortality reaches up to 25%-30% [6].

Currently, severity of illness scores (SOI) is usually used
to predict mortality in ICUs. The SOI system is established
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according to the coded data of patients’ demographics, vital
signs, and laboratory results usually accessed from the elec-
tronic health records, but there also exist unstructured data
in the electronic health records, such as clinical notes written
by clinicians which are not frequently used for predicting
mortality [7]. Studies have demonstrated that clinicians
can properly predict mortality in ICUs [8, 9]. Thus, their
notes may provide some important information for patients’
health status assessment. A previous study showed that the
sentiment of clinicians towards patients could be evaluated
by sentiment analysis, a method to classify the subjective
properties of written text [10]. Sentiments measured in clin-
ical notes are different according to demographic features
and clinical outcomes [10]. There are studies suggesting that
sentiments measured in clinical notes are associated with
hospital readmission and mortality [11, 12].

In this study, we investigated the association of senti-
ments in nursing notes with the in-hospital 28-day mortality
of sepsis patients based on the Medical Information Mart for
Intensive Care (MIMIC-III) database, a freely accessible crit-
ical care database, aimed at providing some evidence for the
improvement of patients’ outcomes in ICUs.

2. Methods

2.1. Study Population. The data of patients and nursing notes
were accessed from the MIMIC-III database developed by the
MIT Lab for computational physiology. As an openly available
dataset, MIMIC-III contains deidentified health data related to
approximately 60,000 ICU admissions, including demo-
graphics, laboratory tests, medications, vital signs, transcribed
nursing notes, diagnostic and procedure codes, fluid balance,
length of stay, survival data, and others [13]. The inclusion cri-
teria of this study were as follows: (1) patients diagnosed with
sepsis, severe sepsis, and septic shock (International Classifica-
tion of Diseases 9 (ICD-9) codes: 99591, 99592, and 78552) in
the MIMIC-III database and (2) 15 years old or above at hospi-
tal admission. The exclusion criteria were as follows: (1) notes
identified by physicians as errors, (2) notes written less than
12 hours before the time of death, and (3) patients without
any data of nursing notes.

The data used in this study were obtained from the
MIMIC-III database (https://mimic.physionet.org/), an
openly available dataset. The data collection in the
MIMIC-III was approved by the Ethics Review Board of
the Beth Israel Deaconess Medical Center, and all private
information has been desensitized.

2.2. Sentiment Analysis. Two techniques (syntactic and
sematic) are mainly used to classify and compute the senti-
ment polarity in text [14]. A semantic approach means that
the sentiment is extracted based on text meaning and is
commonly obtained using a classifier [14]. To make infer-
ences based on text structural features, this study employed
a syntactic technique to extract sentiments.

Both the Python programming language and TextBlob nat-
ural language processing library were adopted to compute sen-
timent scores for the nursing notes [15]. The sentiment of text
strings was computed using the pattern module in TextBlob.

The pattern comprised a lexicon for various English language
adverbs and adjectives able to be mapped to three dimensions
of sentiment scores: polarity, subjectivity, and intensity [16].
The sentiment polarity was returned using TextBlob with a
score from -1 to 1, and the sentiment subjectivity was returned
with a score from 0 to 1. Higher scores showed more positive,
subjective sentiments. In this study, both the polarity score
and subjectivity score were assigned for each nursing note,
and the scores were computed through establishment of a Text-
Blob object initialized with nursing note strings and extraction
of sentiment attributes from the object [7]. The mean scores
of sentiment polarity and subjectivity in nursing notes written
during hospitalization were calculated for the first hospital
admission of each patient and then used as predictors in the
model of this study. For an example of sentiment polarity scores
using TextBlob, see Table 1.

2.3. Mortality and Survival Assessment. As a common pre-
dictor of ICU mortality, Simplified Acute Physiology Score
II (SAPS-II) is a composite score, including 17 variables
(age, 12 physiology variables, type of admission, and 3
underlying disease variables) [17]. In this study, the SAPS-
II score was calculated by the data from the MIMIC-III data-
base and SQL scripts in the MIT Lab for computational
physiology git repository. Additionally, gender and ICU type
were also enrolled as variables because they were freely
accessed from the MIMIC-III database, but not involved in
SAPS-II. Survival was defined as the number of days from
hospital admission to death or right-censoring time.

2.4. Statistical Analysis. Statistical analysis was performed
using SPSS 22.0 software (IBM Corp., Armonk, NY, USA)
and Python text analysis (version 3.7). Normally distributed
data were compared by the t-test and manifested as mean
± standard deviation (�x ± s); abnormally distributed data
were compared with the Mann-Whitney U rank-sum test
and presented as median and quartile (M (Q1, Q3)). Enu-
meration data were compared by the χ2 test, with n (%) as
the manifestation. The COX proportional hazard model
was used to analyze the relationship between sentiment
scores in nursing notes and the in-hospital 28-day mortality
of sepsis patients. The size power of our study was 0.858.

The common type of the COX model was hðtÞ = h0ðtÞ
exp ðX ′βÞ, in which h0ðtÞ and hðtÞ represented the datum
risk function and the risk function at t time point, respec-
tively, X was the covariate vector quantity, and β was the
unknown vector quantity of the regression coefficient. The
formula of the individual prognostic index (PI) was PI = X
1β1 + X2β2 +⋯+Xkβk. Based on the COX model, the indi-
vidual PI was calculated. The greater the individual PI, the
worse the prognosis. The survival curves were compared
using a log-rank test. Box plot, histogram, and forest plot
in our study were plotted with Python software. The power
analysis was carried out to assess the statistical power
(1 − β) using PASS 15.0 software (NCSS, LLC). The results
showed that the power values of the sentiment polarity score
and sentiment subjectivity score were all 1.000. It was indi-
cated that our findings performed well reliability. A signifi-
cant difference was shown at P < 0:05.
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3. Results

3.1. Baseline Characteristics of the Study Population. In the
MIMIC-III database, there were a total of 3567 patients

admitted to the ICU. Of these patients, 1128 patients with-
out sepsis, 356 cases lacking sentiment polarity and subjec-
tivity scores, 172 with missing SAPS-II, and 60 with
missing survival data were excluded. Totally, 1851 sepsis

Table 1: An example of sentiment polarity scores using TextBlob.

Excerpt text with deidentified patient information
Polarity
score

Subjectivity
score

New pt from ED,reffered from [∗∗Hospital3 1589∗∗],kc/o ESRD with HD, chronic diarrhea,c-
diff,MRSA,presented with low BP treated with antibiotics,levophed,and dopamine,and transffered to [∗∗
Hospital1 54∗∗] ED for further management,received 3lit FB IN ED,off dopa,on levophed and transffered to
[∗∗Hospital Unit Name 44∗∗] for further management.VSS. ON NRBM sats 99%.having multiple sores on
both legs and arms,amputated most of the fingers and toes. Pt not following with commands,not talking.
Unable to assess orientation.

0.017 0.357

STATUS
D: INTUBATED ON PROPOFOL GTT FOR COMFORT..FOLLOWS COMMANDS MOVES ALL
EXTREM'S..K+'S DOWN
A: PROPOFOL WEANED OFF & PT EXTUBATEDWITHOUT PROB..ORAL NG DC'D.. SAT'S GOOD ON
OFM @ 40%..STRONG COUGH..OOB TO CHAIR WITH 2 ASSISTS TOL WELL..A-LINE DC'D..K+
REPLETED..GOOD HUO..ABD SOFT WITH + BS'S
R: STABLE
P: [∗∗Month (only) 83∗∗] BE TRANSFERED TO FLOOR IF NEED BED PER DR [∗∗First Name (STitle)
349∗∗]..MONITOR K+'S & REPLETE AS NEEDED..LABS PER HO..CONTINUE WITH GOOD
PULMONARY TOILET START CL LIQ'S AS TOL

0.101 0.522

See careview data and transfer note. Neuro: A&O x3. CV: Afib with controlled ventricular response, sbp 100-
130's/50's. Pulm: RA sats 94-97%, lungs clear, pt occ productive of thick blood tinged sputum. GU: Uo 25-
120cc hr/clr yellow, foley catheter dc'd at noon. GI: Taking house diet without difficulty. P: Chest CT today/
?mass, pt to transfer to medical floor with goal to discharge home.

-0.050 0.215

Table 2: Baseline characteristics of survived and dead groups (n (%)).

Variables Survived group (n = 1271) Dead group (n = 580) Total t/χ2 P

Sentiment polarity score (�x ± s) 0:051 ± 0:038 0:026 ± 0:040 0:043 ± 0:040 12.47 <0.001
Sentiment subjectivity score (�x ± s) 0:377 ± 0:036 0:376 ± 0:040 0:377 ± 0:037 0.95 0.340

SAPS-II score (�x ± s) 43:63 ± 15:51 57:27 ± 15:77 47:906 ± 16:825 17.44 <0.001
Age (years) 24.45 <0.001

<40 92 (7.20) 23 (4.00) 115 (6.20)

40-59 330 (26.00) 143 (24.70) 473 (25.60)

60-69 222 (17.50) 126 (21.70) 348 (18.80)

70-74 152 (12.00) 53 (9.10) 205 (11.10)

75-79 172 (13.50) 57 (9.80) 229 (12.40)

≥80 303 (23.80) 178 (30.70) 481 (26.00)

Gender 0.096 0.757

Female 573 (45.10) 257 (44.30) 830 (44.80)

Male 698 (54.90) 323 (31.60) 1021 (55.20)

ICU type 25.36 <0.001
CCU 51 (4.00) 48 (8.30) 99 (5.30)

CSRU 36 (2.80) 25 (4.30) 61 (3.30)

MICU 738 (58.10) 352 (60.70) 1 090 (58.90)

SICU 284 (22.30) 96 (16.60) 380 (20.50)

TSICU 162 (12.70) 59 (10.20) 221 (11.90)

SAPS-II: Simplified Acute Physiology Score II; ICU: intensive care unit; CCU: coronary care unit; CSRU: cardiac surgery recovery unit; MICU: medical
intensive care unit; SICU surgical intensive care unit; TSICU: trauma/surgical intensive care unit.
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patients were eligible for the study, among whom 580
patients suffered from in-hospital 28-day mortality from
the date of ICU admission (dead group), while 1271 patients

survived (survived group). The baseline characteristics of the
two groups were compared as shown in Table 2, and the
flowchart is presented in Figure 1.

Wthout sepsis(n=1128)
Lacking sentiment polarity and

(n=356)

SAPS- II missing (n=172)
Survival data missing (n=60)

1851 Samples

Univariate cox
regression

Multivariate cox
regression

Baseline characteristics
of study population

T

Polarity Subjectivity

3567 Samples

Without sepsis (n = 1128)
Lacking sentiment polarity and

subjectivity scores (n = 356)

SAPS-II missing (n = 172)

Survival data missing (n = 60)

1851 Samples

Univariate cox
regression

Multivariate cox
regression 

Baseline characteristics
of study population

TextBlob

Polarity Subjectivity

3567 Samples

Sentiment scores
(3567 Samples)

Figure 1: Flow diagram of patient screening from the MIMIC-III database.
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Figure 2: Box plot of the score of sentiment polarity, sentiment subjectivity, and SAPS-II between two groups.
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The sentiment polarity score of patients in the survived
group was significantly higher than that in the dead group
(P < 0:001), while the SAPS-II score was notably lower than
that in the dead group (P < 0:001) (Table 2, Figure 2). The
differences were significant between the two groups in age
(P < 0:001) and ICU type (P < 0:001), but not in the senti-
ment subjectivity score (P = 0:340) and gender (P = 0:757)
(Table 2, Figure 3).

3.2. COX Regression Analysis of the Association between
Sentiments and 28-Day Mortality. As shown in Table 3, uni-
variate analysis showed an inverse association between sen-
timent polarity and 28-day mortality (hazard ratio (HR):
0.458, 95% confidence interval (95% CI): 0.401-0.524, P <
0:001) and no association between sentiment subjectivity
and 28-day mortality (HR: 0.863, 95% CI: 0.657-1.133, P =
0:289). The risk of 28-day mortality in sepsis patients would

increase 0.04 times when 1 point in the SAPS-II score was
increased each time (HR: 1.040, 95% CI: 1.036-1.045, P <
0:001). There was no association between gender and 28-
day mortality (HR: 1.104, 95% CI: 0.936-1.301, P = 0:240).

In multivariate analysis, it was observed that both senti-
ment polarity (HR: 0.499, 95% CI: 0.409-0.610, P < 0:001)
and sentiment subjectivity (HR: 0.710, 95% CI: 0.559-
0.902, P = 0:005) were inversely associated with in-hospital
28-day mortality, while the SAPS-II score (HR: 1.034, 95%
CI: 1.029-1.040, P < 0:001) was positively correlated with
in-hospital 28-day mortality. The patients aged ≥80 years
had an increased risk of in-hospital 28-day mortality com-
pared with those aged <40 years (HR: 1.612, 95% CI:
1.032-2.520, P = 0:036). There were no differences in in-
hospital 28-day mortality between the age of 40-59 (HR:
1.217, 95% CI: 0.781-1.886, P = 0:385), 60-69 (HR: 1.479,
95% CI: 0.943-2.321, P = 0:089), 70-74 (HR: 1.048, 95% CI:
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Figure 3: Histogram of the age, gender, and ICU type between survived and dead groups.
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Table 3: COX regression analysis of the association between sentiments and 28-day mortality.

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P β

Sentiment polarity score 0.458 (0.401, 0.524) <0.001 0.499 (0.409, 0.610) <0.001 -0.694

Sentiment subjectivity score 0.863 (0.657, 1.133) 0.289 0.710 (0.559, 0.902) 0.005 -0.342

SAPS-II score 1.040 (1.036, 1.045) <0.001 1.034 (1.029, 1.040) <0.001 0.034

Age (<40) (years)
40-59 3.027 (1.955, 4.687) <0.001 1.217 (0.781, 1.886) 0.385 0.196

60-69 1.462 (0.941, 2.272) 0.091 1.479 (0.943, 2.321) 0.089 0.391

70-74 2.074 (1.328, 3.238) 0.001 1.048 (0.637, 1.723) 0.854 0.047

75-79 1.584 (0.969, 2.591) 0.067 1.030 (0.629, 1.687) 0.906 0.030

≥80 1.721 (1.058, 2.799) 0.029 1.612 (1.032, 2.520) 0.036 0.478

Gender (female)

Male 1.104 (0.936, 1.301) 0.240 1.104 (0.934, 1.306) 0.245 0.099

ICU type (CCU)

CSRU 0.335 (0.206, 0.545) <0.001 0.397 (0.243, 0.650) <0.001 -0.923

MICU 0.475 (0.351, 0.643) <0.001 0.527 (0.388, 0.715) <0.001 -0.641

SICU 0.254 (0.179, 0.361) <0.001 0.299 (0.210, 0.426) <0.001 -1.208

TSICU 0.240 (0.163, 0.354) <0.001 0.280 (0.190, 0.414) <0.001 -1.272

SAPS-II: Simplified Acute Physiology Score II; ICU: intensive care unit; CCU: coronary care unit; CSRU: cardiac surgery recovery unit; MICU: medical
intensive care unit; SICU: surgical intensive care unit; TSICU: trauma/surgical intensive care unit; HR: hazard ratio; 95% CI: 95% confidence interval.

Variable

Sentiment polarity score 

Sentiment subjectivity score 

SAPS−II score 

Age, years

< 40

40−59

60−69

70−74

75−79

≥ 80

Gender

Female

Male 

ICU type

CCU

CSRU

MICU

SICU

TSICU

HR (95%CI)

0.499 (0.409,0.610) 

0.710 (0.559,0.902) 

1.034 (1.029,1.040)

Ref

1.217 (0.781,1.886) 

1.479 (0.943,2.321) 

1.048 (0.637,1.723) 

1.030 (0.629,1.687) 

1.612 (1.032,2.520)

Ref

1.104 (0.934,1.306)

Ref

0.397 (0.243,0.650) 

0.527 (0.388,0.715) 

0.299 (0.210,0.426) 

0.280 (0.190,0.414)

p

<0.001

0.005

<0.001

0.385

0.089

0.854

0.906

0.036

0.245

< 0.001

< 0.001

< 0.001

< 0.001

0.1 0.5 1 1.5 2 2.5

Odds ratio

Figure 4: Forest plot of multivariate analysis of the association between sentiments and 28-day mortality.
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0.637-1.723, P = 0:854), 75-79 (HR: 1.030, 95% CI: 0.629-
1.687, P = 0:906), and <40 years. In addition, no significant
difference was found between gender and 28-day mortality
(HR: 1.104, 95% CI: 0.934-1.306, P = 0:245). Patients that
stayed in the trauma/surgical intensive care unit (TSICU)
were least likely to die within 28 days after admission (HR:
0.280, 95% CI: 0.190-0.414, P < 0:001) (Table 3, Figure 4).

3.3. Survival Analysis. According to the individual PI,
patients were assigned into the high-risk group (PI ≥ 0:561)
and the low- and middle-risk group (PI < 0:561), and the
survival curves are illustrated in Figure 5. It could be
observed that the median death time of the high-risk group
was significantly earlier than that of the low- and middle-
risk group (13.5 vs. 49.8 days, P < 0:001).

4. Discussion

In the present study, a total of 1851 sepsis patients were eli-
gible according to inclusion and exclusion criteria, among
whom 580 cases suffered from in-hospital 28-day mortality,
while 1271 cases survived. Multivariate COX analysis
showed that sentiment polarity and sentiment subjectivity
were inversely associated with in-hospital 28-day mortality.
Based on the quartiles of the individual PI, patients were
assigned into the high-risk group and the low- and middle-
risk group. Survival analysis indicated that the high-risk
group had earlier median death time compared with the

low- and middle-risk group. These all suggested that the
quantitative measurement of sentiments in nursing notes
was associated with the in-hospital 28-day mortality and
survival of sepsis patients; nursing notes containing rich
information may serve as a potential predictor of clinical
outcomes in the ICU.

To the best of our knowledge, brief fragments of the text
are conducive to reflecting the author’s feelings about a
given topic. Recently, language processing tools have been
developed and allow the characterization of feelings, such
as the sentiment in text documents [18]. Sentiment is usually
described as the relative positivity or polarity of a text string
and is measured by a number from -1 (very negative) to 1
(very positive) [14]. It can also be interpreted as the esti-
mated probability of “positive” or “negative” through a clas-
sifier. Sentiment analysis permits us to gain insights into the
clinicians’ emotions and attitudes towards patients through
the subjective expressions made by clinicians in the text of
clinical notes, thus contributing to the prediction of patients’
outcomes [19–22]. In health-related fields, sentiment analy-
sis has been widely applied to Cancer Survivors Network
(CSN) breast and colorectal cancer discussion posts [23],
health reforms on Twitter [24], encounter notes of patients
with critical illness [25], etc. This study was aimed at identi-
fying the association between sentiments in nursing notes
and the in-hospital 28-day mortality of sepsis patients. The
results exhibited that both sentiment polarity and sentiment
subjectivity were inversely associated with in-hospital 28-
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Figure 5: Survival curve comparison of two groups according to the individual prognostic index.
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day mortality, supported by the results of McCoy et al. that
the sentiment measured in hospital discharge notes was
related to hospital readmissions and mortality risk [11].
Based on the COX model, the patients with PI ≥ 0:561 were
found to have a higher risk of death than those with PI <
0:561, highlighting the potential value of sentiments in sur-
vival analysis. A previous study has shown a strong associa-
tion between sentiments and the risk of death even after
adjustment for severity of illness and baseline informa-
tion [25].

The superiority of the present study was that it was the
first study to investigate the association between sentiments
in nursing notes and the in-hospital 28-day mortality of sep-
sis patients. The nursing notes written less than 12 hours
before the time of death were excluded, which made the
results more reliable. However, the present study also had
several limitations that should be cautiously interpreted.
First, nursing notes from the MIMIC-III database with
single-center samples may manifest different characteristics
because of variations in clinicians, experience, training, or
working environment, easily causing the results to be nonge-
neralizable. Second, the approach used to measure the senti-
ment in the present study was not the only approach
available. Other techniques could produce different results,
such as those based on the machine learning model to make
semantic inferences. Third, the mean sentiment scores could
only characterize the variations at the level of patients, but
not at the levels of sentences, paragraphs, or documents.
Forth, the nursing notes were recorded by caregivers who
are research nurses, medical doctors, or so on (available at
https://mimic.mit.edu/docs/iii/tab les/caregivers/). It cannot
be determined whether the sentiments based on nursing
notes are based on past or personal experiences. Moreover,
the subtle difference in sentiments was not obtained over
time. In the future, the temporal mode of nursing notes will
be examined to gain more insights.

5. Conclusions

Sentiments in nursing notes are associated with the in-
hospital 28-day mortality and survival of sepsis patients,
suggesting the importance of sentiments in nursing notes
for the prediction of clinical outcomes in the ICU. Although
predicting clinical outcomes is still a complex problem, the
information extracted from unstructured data like nursing
notes may contribute to further improving prediction
performance.
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Coronary angiography is the “gold standard” for the diagnosis of coronary heart disease, of which vessel segmentation and
identification technologies are paid much attention to. However, because of the characteristics of coronary angiograms, such as
the complex and variable morphology of coronary artery structure and the noise caused by various factors, there are many
difficulties in these studies. To conquer these problems, we design a preprocessing scheme including block-matching and 3D
filtering, unsharp masking, contrast-limited adaptive histogram equalization, and multiscale image enhancement to improve
the quality of the image and enhance the vascular structure. To achieve vessel segmentation, we use the C-V model to extract
the vascular contour. Finally, we propose an improved adaptive tracking algorithm to realize automatic identification of the
vascular skeleton. According to our experiments, the vascular structures can be successfully highlighted and the background is
restrained by the preprocessing scheme, the continuous contour of the vessel is extracted accurately by the C-V model, and it
is verified that the proposed tracking method has higher accuracy and stronger robustness compared with the existing adaptive
tracking method.

1. Introduction

Cardiovascular disease is currently recognized as one of the
most important chronic diseases leading to human death
in the world. In recent years, morbidity and mortality from
cardiovascular diseases continue to increase, ranking first
among various diseases. Coronary angiography (CA) is a
common and effective method for diagnosing coronary
heart disease. It is regarded as the “gold standard” for the
diagnosis of coronary heart disease and is widely used in
clinical diagnosis [1].

Normally, human arteries and vessels are invisible under
X-rays. However, by injecting X-ray impervious substances
into the coronary arteries and then irradiating the coronary
artery area with X-rays, the arteries and vessels can be

visualized. To decide the treatment plan, doctors need to
find the location and degree of coronary artery stenosis
based on the image by themselves. Nevertheless, in this
way, a large amount of repetitive work and subjective errors
are inevitable. Thus, it is of great benefit to invent technolo-
gies to segment and identify vessels in angiograms. For this
reason, many scholars have proposed various methods.

For many years, image segmentation is one of the
focuses of image processing. Up to now, many segmentation
technologies for vessels have been proposed. Based on the
two characteristics of discontinuity between regions and
similarity within regions, we can divide vessel segmentation
technologies into three categories: boundary-based segmen-
tation technologies [2–8], region-based segmentation tech-
nologies [9–11], and technologies combined with specific
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theories and tool segmentation [12–15]. Sahoo et al. [16]
adopted the maximum entropy method and the gray thresh-
old that maximizes entropy corresponded to the optimal
segmentation threshold. Sato et al. [17] constructed a multi-
parameter similarity function for enhancing vessels by ana-
lyzing the properties of the eigenvalues of the Hessian
matrix of spherical, tubular, and sheet-like structures at a
certain scale. Based on the simplified Mumford-Shah model
and the level set idea, Chan and Vese [18] proposed a new
active contour C-V model to evolve the curve through the
minimization of the energy function. Most recently, deep
learning methods have also been widely used in the field of
vessel segmentation. For example, Chen et al. [19] trained
the 3D U-Net to perform three-dimensional vessel segmen-
tation and achieved high segmentation accuracy.

Moreover, people have studied a variety of methods for
vascular identification, such as multiscale-based methods
[20–24] and tracking-based methods [25–29]. Among these
methods, the tracking-based method has been proved to be
very effective. It can detect coronary information based on
the local response of angiogram without scanning the entire
image. In the process of coronary artery extraction, the
extraction result is unstable due to the manual setting of seed
points. Aiming at this problem, Xiao et al. [30] proposed an
automatic seed point acquisition method based on ridge
point detection. These ridge points serve as seed points for
adaptive tracking of the centerline of the coronary artery.
Aylward and Bullitt [26] proposed a multiscale spatial cen-
terline tracking algorithm based on ridge detection, which
uses the eigenvalue decomposition of the Hessian matrix to
extract the ridge. However, due to limitations in algorithm
design and the effects of low image quality, noise, etc., the
accuracy and robustness of these methods still have room
for improvement.

Our main work and contributions are as follows: first, we
designed a preprocessing scheme to increase the quality of
the image and enhance the vascular structure. Then, we used
the C-V model to achieve vessel segmentation. Finally, we
proposed an improved adaptive tracking algorithm to realize
automatic identification of the vascular skeleton, which
achieved better effects than former methods according to
our experiments.

This paper is organized as follows. In Section 2, we intro-
duce our scheme of image preprocessing. Section 3 describes
the active contour model to extract the vascular contour.
Section 4 describes the details of our proposed improved adap-
tive tracking method. Section 5 presents the analysis and
experimental results of testing the robustness and accuracy
of our methods. Finally, conclusions are drawn in Section 6.

2. Image Preprocessing

The complex and varied configuration of the coronary artery
structure, noise caused by various factors, artifact caused by
the beating of the heart, and low contrast of terminal vessels
make precise segmentation very challenging. Therefore,
before the extraction of coronary artery structure, coronary
angiograms should be preprocessed to enhance the vascular
structure and suppress the background noise. In this paper,

block-matching and 3D filtering (BM3D) [31] is used to
effectively filter out noise. Unsharp masking (UM) [32],
contrast-limited adaptive histogram equalization (CLAHE),
[33] and multiscale image enhancement [34] are used to
improve image contrast and highlight the vascular structure.

2.1. Block-Matching and 3D Filtering. BM3D is a 3D block-
matching algorithm used primarily for noise reduction in
images. Firstly, by the grouping technique of block-match-
ing, image fragments are grouped based on similarity and
are integrated into a three-dimensional matrix. Then, filter-
ing is done on every fragment group. At last, the image is
transformed back into its two-dimensional form and all
overlapping image fragments are weight-averaged to ensure
that they are filtered for noise yet retain their distinct signal.
This algorithm can effectively remove image noise.

2.2. Unsharp Masking. The main procedures of UM algo-
rithm are as follows: first, a passivated fuzzy image is gener-
ated after low-pass filtering of the original image. Then, the
image with high-frequency components is obtained by sub-
traction of the original image and the fuzzy image. Finally,
the high-frequency image is enlarged with a parameter and
superimposed with the original image; that is, an image with
enhanced edges is generated. The specific algorithm steps are
as follows:

(1) Generate the smoothing result:

gmask x, yð Þ = I x, yð Þ −�I x, yð Þ, ð1Þ

where Iðx, yÞ represents the gray of the pixel ðx, yÞ, �Iðx, yÞ
represents the gray of the pixel ðx, yÞ after low-pass filtering,
and gmaskð∙Þ generates the high-frequency component of
the image

(2) Add the passivation template to the original image
with a certain proportion:

g x, yð Þ = I x, yð Þ + k ∗ gmask x, yð Þ, ð2Þ

where k is the enlarge coefficient and gð∙Þ generates the
image with enhanced edges

2.3. Contrast-Limited Adaptive Histogram Equalization. As a
variant of adaptive histogram equalization, the CLAHE
method limits the contrast amplification to reduce excessive
amplification of noise. In CLAHE, the contrast amplification
in the vicinity of a given pixel is given by the slope of the
transformation function, which is proportional to the slope
of the neighborhood cumulative distribution function
(CDF) and therefore to the value of the histogram. CLAHE
limits the amplification by clipping the histogram at a prede-
fined value before computing the CDF. This limits the slope
of the CDF and therefore of the transformation function. It
is advantageous not to discard the part of the histogram that
exceeds the clip limit but to redistribute it equally among all
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histogram bins. The process of clipping the histogram is
shown in Figure 1.

2.4. Multiscale Image Enhancement. Frangi et al. [34] pro-
posed the multiscale enhancement method based on the
Hessian matrix of the image. In this method, the relationship
among the eigenvalues, eigenvectors of the Hessian matrix,
and the orientation of vascular structure are utilized, com-
bined with the multiscale theory. Then, the vascular struc-
ture in the coronary angiogram is detected by constructing
an appropriate vascular similarity function. At present, the
method has become one of the most commonly used
methods of multiscale enhancement.

The vascular similarity function is established as follows:

V P ; σð Þ =
0, if λ2 > 0,

exp −
RB

2

2β2

� �
exp −

2m2

λ2
2

� �
1 − exp −

SH
2

2c2
� �� �

, otherwise,

8><
>:

ð3Þ

where λ1 and λ2 are two eigenvalues of the Hessian matrix,
∣λ1 ∣ ≤jλ2j, P is an arbitrary point in the image, σ is the scale
parameter, RB = jλ1j/jλ2j, SH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1

2 + λ2
2p
, and RB is the

vascular structure enhancement factor, which is used to dis-
tinguish the globular structures from the tubular structures;
SH is the norm of the Hessian matrix; and β, c, and m
control the overall smoothness of linear objects.

When the scale factor σ is consistent with the width of
the tubular structure, the filtering result VðP ; σÞ gets the
maximum value. By iterating the scale parameters σ, the
values VðP ; σÞ under different scales are obtained, and the
maximum value is taken as the actual output of the
point P:

V Pð Þ = max
σmin≤σ≤σmax

V P ; σð Þ, ð4Þ

where σmin and σmax are the minimum and maximum
sizes of the vascular structure, respectively.

3. Vessel Segmentation

In this section, we will introduce the active contour model to
extract the vascular contour of coronary angiograms.

Kass et al. [35] proposed the active contour model
(ACM). This method converts the image segmentation
problem into solving an energy minimization problem.
The contour curve is the edge of the blood vessel when the
energy function reaches the minimum. The active contour
model is mainly divided into edge-based and region-based
according to the different construction methods of the
energy function. The most prominent advantage of the
ACM is its resistance against strong noise.

The C-V model [18, 36, 37] is a representative region-
based active contour model. The specific algorithm steps
are as follows:

(1) Put forward the energy function:

F C, c0, cbð Þ = u · L Cð Þ + v · Sb Cð Þ + λ0

ð
outside

I x, yð Þ − c0j j2dxdy

+ λb

ð
inside

I x, yð Þ − cbj j2dxdy,

ð5Þ

where c0, cb represent the average gray levels of the outside
and inside areas of the curve C, respectively; LðCÞ represents
the length of the closed curve C; SbðCÞ represents the area of
the inner area of C; and u, v, λ0, and λb represent the weights
of items in the energy function.

(2) Introduce the level set method, set wðx, yÞ as a sign
distance function with positive, negative, zero repre-
senting inside, outside, and right on the curve C,
respectively:

C = x, yð Þ: w x, yð Þ = 0f g,
inside Cð Þ = x, yð Þ: w x, yð Þ > 0f g,
outside Cð Þ = x, yð Þ: w x, yð Þ < 0f g:

8>><
>>:

ð6Þ

Introduce the following H and δ functions:

H wð Þ =
1,w ≥ 0,
0,w < 0,

(
ð7Þ

δ wð Þ = d
dw

H wð Þ: ð8Þ

Rewrite the energy function as a level set equation:

F C, c0, cbð Þ = u ·
ð
δ wð Þ ∇wj jdxdy + v ·

ð
H wð Þdxdy

+ λ0

ð
outside

I x, yð Þ − c0j j2 1 −H wð Þð Þdxdy

+ λb

ð
inside

I x, yð Þ − cbj j2H wð Þdxdy,

ð9Þ

where λb and λ0 are the iterative parameters in the C-V
model, and their values affect the evolution rate of the curve
C. When the curve C contains the segmentation target, the

Number of pixels

0 255
Intensity

Number of pixels

0 255
Intensity

Figure 1: The clipping process of CLAHE.
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internal homogeneity of the curve C is low; thus, it is
necessary to enlarge λ0 to accelerate the evolution of the
curve C to the target, and vice versa.

(3) The energy minimization problem can be solved by
minimizing the level set equation iteratively

The C-V model minimizes the energy function to obtain
the evolution curve that approaches the edge of the blood
vessels and finally segments the target. Compared with other
methods, it has better effects on the continuous gradient.

4. Improved Adaptive Tracking

In this section, we will propose an improved adaptive track-
ing method, which is more robust and has fewer misjudg-
ments in the tracking process, to automatically extract the
skeleton of the coronary blood vessels.

4.1. Ridge Point Detection. Ridge point detection is
important for seed point selection, blood vessel tracking,
and bifurcation point detection. Ridge point is the local gray
maximum point of the two-dimensional image. After multi-
scale enhancement, a ridge point of the blood vessel is
usually located at the maximum point perpendicular to the
direction of the blood vessel. The gradient of the local max-
imum point in the image is zero, and its Hessian matrix is
negative [38]. Since the coordinates of image pixels are all
integers, according to the principle of linear interpolation,
if the point ðε, ηÞ ðx < ε < x + 1, y < η < y + 1Þ satisfies the fol-
lowing conditions:

∇ x, yð Þ∇ x + 1, y + 1ð Þ < 0 or
∇ x + 1, yð Þ∇ x, y + 1ð Þ < 0,
λi x +m, y + nð Þ < 0, i = 1, 2,m = 0, 1, n = 0, 1ð Þ,

ð10Þ

where ∇ðx, yÞ is the gray gradient of point ðx, yÞ and λiðx, yÞ
are the eigenvalues of the Hessian matrix of point ðx, yÞ;
then, ðε, ηÞ can be considered as a local maximum point,
and the pixel ðx, yÞ, as its approximate solution, is defined
as a ridge point.

The ridge points may be misjudged due to the image
noise caused by the uneven distribution of contrast agents
and other factors. Thus, a gray threshold is used to screen
out those misjudged ridge points. This method can
effectively remove most of the ridge points outside the
blood vessel.

4.2. Tracking Process. The tracking algorithm starts from a
seed point and gradually tracks to the end of the vessel,
extracting the blood vessel skeleton. We randomly select
the seed point from the detected ridge points.

The initial tracking direction can be calculated from the
gray information around the seed point. According to [38],
take the seed point as the center and search for the gray
maximum point P+ on the circle with radius d. P+ is the first
point of forward tracking, the forward initial tracking direc-
tion u+ and angle θ+ can be expressed as

u P+ð Þ = P+ − P
∥P+ − P∥

= cos θ+, sin θ+
� �

: ð11Þ

After obtaining the forward tracking direction, we search
for the local maximum point P− on arc lð2π − θ+ − Δθ,
2π − θ+ + ΔθÞ centered in the opposite direction ð2π − θ+Þ

l

P

P+

P–

r
P

u(P+)
u(P–)

Δθ

Δθ

Figure 2: Initial direction detection.
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Figure 3: Forward tracking.
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Figure 5: Vascular branch detection.

4 Computational and Mathematical Methods in Medicine



of the forward tracking angle θ+. The search area is shown
in Figure 2.

The backward direction of the initial trace u− can be cal-
culated as

u P−ð Þ = P− − P
∥P− − P∥

: ð12Þ

Tracking from the current point forward to the next
point is the main step of this algorithm. The current tracking
direction is determined by the direction from the previous
point Pk−1 to the current point Pk:

uk =
Pk−1 − Pk

∥Pk−1 − Pk∥
: ð13Þ

After determining the tracking direction, we search for
the local maximum point Pk+1 on arc lk(θk − Δθ, θk + Δθ)
and the following conditions should be met:

I Pk+1ð Þ > I0,
NP Pk+1ð Þ < τP ,

(
ð14Þ

where IðPk+1Þ is the gray of Pk+1, NPðPk+1Þ is the number of
tracking points around Pk+1, and I0 and τP are two thresh-
olds. The first condition is to prevent the overtracking
beyond the vessel area, while the second condition can avoid
repeatedly tracking the vessel and being trapped in a local
endless loop. If both conditions are satisfied, we continue
to track from Pk+1. Otherwise, Pk+1 is the endpoint of the
vessel. We illustrate the tracking process in Figure 3.

Due to the noise and other issues mentioned above, a few
tracking points may deviate from the center of the vessel.
The tracking point can be adjusted to the center by center
adjustment, which combines the blood vessel contour and
tracking direction information. The specific steps are as fol-
lows: get the normal line of the vessel through the vertical
direction of the current tracking direction and find the inter-
section points G1,G2 of the normal line and the blood vessel
contour;, then tracking point Pk can be adjusted to

P′k =
G1 + G2

2 , ð15Þ

meanwhile, change the tracking direction uk to

u′k =
P′k − Pk−1
∥P′k − Pk−1∥

: ð16Þ

The adjustment process is illustrated in Figure 4.
Bifurcation detection is another important process of the

tracking algorithm. Ideally, we only need to distinguish two
different vessel branches at the vessel bifurcation. However,
in the actual tracking process, the accurate positions of vessel
bifurcations are usually unknown. Thus, bifurcation detection
is required at each point of the tracking process. We propose a
robust bifurcation detection method. It includes two main
steps: first, obtain one branch point (tracking point) Pk by
the tracking method, and second, search in the fan ring area
between angle (θk − Δθ′,θk + Δθ′) and radius ðr1, r2Þ to find
a ridge point that satisfies the following conditions:

θb − θkj j > τ1,
θb − θk−1j j > τ2,
∥Pb − Pk∥>d,
NB Pbð Þ < τB,

8>>>>><
>>>>>:

ð17Þ

where Pb and uðPbÞ represent the detected ridge point of the
new branch (the branch point) and its direction, respectively;
NBðPbÞ is the number of bifurcations around Pb; and τB is a
threshold. The first three conditions mean that when uðPbÞ
significantly differs from uðPkÞ and uðPk−1Þ and the distance
between Pb and Pk is large enough, the new branch has a large
gap with the former branch. The last condition indicates that
NBðPbÞ should be smaller than τB to avoid duplication with
existing tracking. If all the conditions are satisfied, Pb is
detected as a bifurcation point and we keep tracking the
branch vessels. The schematic diagram of bifurcation detec-
tion is shown in Figure 5.

(a) (b) (c)

Figure 6: Three selected original images.
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(a)

(b)

(c)

Figure 7: Experimental results of three original images obtained by applying the proposed method. (a) Images preprocessed. (b) Vascular
contour segmentation. (c) Improved adaptive tracking (red dots are bifurcation points, green dots are normal tracking points).

(a) (b)

Figure 8: Comparison of the tracking effect between our proposed method and the method of [38]. (a) Results of [38]. (b) Results of the
proposed method.

6 Computational and Mathematical Methods in Medicine



In addition, before tracking, the ridge image can be prepro-
cessed to remove the scattered and distributed ridge points, it
can also reduce the misjudgments of bifurcations. The specific

steps areas follows: set a threshold τR, count the number of sur-
rounding ridge points for each ridge point NRðPÞ, and then
remove this ridge point if NRðPÞ < τR and keep it otherwise.

(a) (b)

Figure 9: Experimental results of different seed points (blue). (a) The method of [38]. (b) The proposed method.
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5. Results and Analysis

In this section, we will conduct several experiments to justify
the effectiveness of the proposed method. All the images are
captured from the video data of coronary angiograms pro-
vided by Qilu Hospital (Qingdao). The experiments are
implemented on an Intel Core i5-8300H and 8GB of RAM
processor using MATLAB software of version 2019b.

We carefully selected the parameters used. In multiscale
enhancement, we set β, c, and σ to 0.5, 20, and [1 : 10]. In the
proposed tracking method, we set the radius to 5 pixels and
Δθ to 45° in forward tracking. For bifurcation detection, it
needs a larger area for searching; thus, we set the radius
ðr1, r2Þ to ð7, 12Þ pixels and Δθ′ to 135∘ which can avoid
backward tracking. Note that we set other thresholds I0,
τ1, τ2, d, τP, τB, and τR to 10, 45∘, 30∘, 5, 4, 2, and 3.

Three images with the different vascular structures were
selected for independent experiments, which are shown in
Figure 6. We applied our methods for these images, and
the results are shown in Figure 7.

As can be seen from Figure 7, even though the vascular
structures in the images are very different, the proposed
method still has a nice experimental effect. From the images
preprocessed (a), we can find that after the image prepro-
cessing, the vascular structures were successfully highlighted
and the background was restrained. The extraction of vessel
contours (b) obtained vascular contours accurately and
completely. The improved adaptive tracking method (c) is
a core part of our work: compared with the original adaptive
tracking method of [38], one of the main improvements in
this approach is the bifurcation point detection part. We
changed the originally fixed search radius to a proper search
scope, which enhanced the capacity of the retrieval of bifurca-
tion, and we used four conditions in Equation (17) to judge
bifurcation point instead of only using the first condition,
which greatly improved the detection accuracy and reduced
the misjudgment. The results can be seen in Figure 8.

To achieve the completely automatic identification of
vessels, we need to test the robustness of the proposed track-
ing method for randomly selected seed points from the
detected ridge points. Taking Figure 6(c) as an example,
three seed points were selected from different positions.
The experimental results are shown in Figure 9. It can be
seen that the results of the proposed method have strong
robustness; that is, our method is generally applicable for
automatically selected seed points. Meanwhile, our method
is more accurate than the method of [38], which is clear in
Figure 9 that the points of different types we identified are
more approaching to the real vessel.

Even though our method has an improvement in accuracy
and robustness compared to the former one, it still has some
shortcomings. For example, the image preprocessing method
is not effective enough for some images with complex vascular
structures. Although the detection of bifurcation points has
been improved compared with the method in [38], there are
still a few misjudgments. This phenomenon can be seen in
Figure 8(b). In the case of a more complex vascular structure,
the tracking effect varies with the selection of seed points, and
some vessel segments may be lost, as shown in Figure 7(c2).

6. Conclusion

In this paper, we designed a scheme of image preprocessing,
used the C-V model, and proposed an improved adaptive
tracking method, with which we can realize segmentation
and automatic identification of vessels in coronary angio-
grams. Among these methods, the improved adaptive track-
ing method contains our major innovations that can
enhance the capability of identifying vessels. Besides, we
did many experiments to test our proposed method and
the results turned out that our method is more robust and
accurate than the former method.

Due to the complexity of coronary angiograms described
above, traditional image processing methods are not effec-
tive enough. Hence, in the following work, we will continue
to optimize the tracking algorithm and carry out image pro-
cess research on deep learning to achieve a better effect.
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Accurate assessment of mitral regurgitation (MR) severity is critical in clinical diagnosis and treatment. No single
echocardiographic method has been recommended for MR quantification thus far. We sought to define the feasibility and
accuracy of the mask regions with a convolutional neural network (Mask R-CNN) algorithm in the automatic qualitative
evaluation of MR using color Doppler echocardiography images. The authors collected 1132 cases of MR from hospital A and
295 cases of MR from hospital B and divided them into the following four types according to the 2017 American Society of
Echocardiography (ASE) guidelines: grade I (mild), grade II (moderate), grade III (moderate), and grade IV (severe). Both
grade II and grade III are moderate. After image marking with the LabelMe software, a method using the Mask R-CNN
algorithm based on deep learning (DL) was used to evaluate MR severity. We used the data from hospital A to build the
artificial intelligence (AI) model and conduct internal verification, and we used the data from hospital B for external
verification. According to severity, the accuracy of classification was 0.90, 0.89, and 0.91 for mild, moderate, and severe MR,
respectively. The Macro F1 and Micro F1 coefficients were 0.91 and 0.92, respectively. According to grading, the accuracy of
classification was 0.90, 0.87, 0.81, and 0.91 for grade I, grade II, grade III, and grade IV, respectively. The Macro F1 and Micro
F1 coefficients were 0.89 and 0.89, respectively. Automatic assessment of MR severity is feasible with the Mask R-CNN
algorithm and color Doppler electrocardiography images collected in accordance with the 2017 ASE guidelines, and the model
demonstrates reasonable performance and provides reliable qualitative results for MR severity.

1. Introduction

Mitral regurgitation (MR) is a common valvular heart con-
dition. A study by the 2016 American Heart Association
(AHA) in the USA estimated that the incidence rate of mod-
erate or worse MR is 1.7%, which is approximately 4-fold
higher than that of aortic stenosis [1]. Furthermore, the inci-
dence increases with age, and the proportion can reach 10%

in the population over 75 years old [2]. The therapeutic
method varies based on the degree of MR. According to
the Society of Thoracic Surgeons national database, the
number of mitral valve surgeries increased by an average
of 4% every year between 2010 and 2015. When deciding
which patients are suitable for mitral valve (MV) surgery,
the guidelines of the American College of Cardiology
(ACC) and AHA for the management of valvular heart
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disease emphasize the severity of MR [3]. Thus, accurate
assessment of MR severity is crucial for clinical decision-
making, prognostication, and decisions regarding the tim-
ing of surgical intervention [4]. Transthoracic echocardiog-
raphy (TTE) is the most important imaging method for
MR diagnosis and evaluation due to its widespread avail-
ability, low cost, acceptability, and safety profile [5]. How-
ever, the MR evaluation parameters listed in the 2017
American Society of Echocardiography (ASE) guidelines
are numerous and complex and are very challenging to
use in practice [6]. There is currently no single recom-
mended MR evaluation method in this setting. Herein, we
attempt to validate a convenient and automatic method
for evaluating MR severity.

Since John MacCarthy first proposed “artificial intelli-
gence (AI)” in 1956, researchers have made great efforts to
apply AI to almost all stages of clinical practice. At present,
the development of AI in the field of ultrasound medicine
to improve the accuracy of ultrasound diagnosis, reduce
the misdiagnosis rate, and meet growing clinical needs is a
hot research topic. Deep learning (DL) is a subset of AI
inspired by the workings of the human brain, commonly
referred to as an artificial neural network (ANN) [7]. Convo-
lutional neural networks (CNNs) are a subtype of ANNs that
mimic the visual cortex. Regions with CNN features (R-
CNN) apply CNNs in object detection. To improve efficiency,
Fast R-CNN combines the feature extraction, classification,
and bounding box prediction of R-CNN and incorporates a
method called region of interest pooling (RoIPool) [8]. Then,
researchers developed Faster R-CNN, which has similar accu-
racy to Fast R-CNN, but the training time and testing time are
10 times shorter. He et al. proposed a newmethod calledMask
R-CNN in 2017, which expands Faster R-CNN by adding
branches used to predict the segmentation mask on each of
the RoIs classified with existing branches and border frame
returns [9]. Compared to Faster R-CNN, the mask branch
only adds a small computational overhead, enabling a fast sys-
tem and rapid experimentation. Thus, our study chose Mask
R-CNN algorithm. Such an AI system has great potential for
effective improvement of diagnosis.

We aimed to evaluate the feasibility and accuracy of MR
severity detection with AI data models using MR color
Doppler echocardiography images collected based on the
2017 ASE guidelines.

2. Methods

2.1. Establishment of the MR Color Doppler
Echocardiography Case Database

2.1.1. Ultrasound Instrument. Ultrasound was performed by
echocardiographers using a Philips ultrasound machine
(EPIQ 7C, Philips Medical Systems, Bothell, WA), GE ultra-
sound machine (VIVID E95, GE Medical Systems, Horten,
Norway), and Siemens ultrasound machine (SC2000, Siemens
Medical Solutions USA, Inc.).

2.1.2. Patients and MR Image Classification Standard. This
study involved data from two large general hospitals in dif-

ferent regions. Hospital A is Shandong Provincial Third
Hospital, and hospital B is The First Affiliated Hospital of
Wannan Medical College. The Institutional Review Boards
of the two hospitals approved this study protocol and
waived the need for informed consent due to a minimal
potential for harm.

All echocardiographers were well experienced, had
worked more than five years, and had undergone thorough
professional training before the study. According to the
quantitative methods of MR evaluation from the 2017 ASE
guidelines (see Figure 1), the severity of MR can be classified
into three types: mild, moderate, and severe. This classifica-
tion is relatively broad and cannot well reflect the severity of
MR. Then, MR was further subclassified into four grades:
grade I (mild), grade II (moderate), grade III (moderate),
and grade IV (severe). A total of 1132 and 295 MR cases
were collected from hospital A and hospital B, respectively,
from January 2019 to December 2020. There were a similar
number of cases for each grade. The 2017 ASE guidelines
provide distinct criteria for the classification of chronic MR
using color Doppler echocardiography: vena contracta
(VC), effective regurgitant orifice (ERO), regurgitant volume
(RVol), and regurgitation fraction (RF) [6]. VC is a parame-
ter used for determination of the regurgitant orifice. To
obtain the VC, we measure the narrowest width of the jet
as it emerges from the orifice in zoom mode on the long axis
view of the sternum. When determining the ERO, it is
important to carefully measure the proximal isovelocity sur-
face area (PISA) and obtain the greatest PISA radius at the
time of peak MR velocity. To obtain the most hemispheric
flow convergence, we adjust the lower Nyquist limit to 30-
40 cm/sec. The Nyquist limit should be set at 50-70 cm/sec
when measuring RF. RVol is measured in the case of multi-
ple jets or eccentric jets, as it is more accurate. Color Dopp-
ler echocardiography images are acquired from the standard
two-dimensional (2D) apical 4-chamber view of TTE or the
standard view with the most regurgitation.

2.1.3. Exclusion Criteria. Cases were excluded if the image
quality was very poor or TTE images could not be clearly
displayed.

2.2. Image Marking. The LabelMe software (3.167) was used
to demarcate the region of interest (RoI) in MR ultrasound
images for automatic analysis by machine DL technology.
The workflow of LabelMe is shown in Figure 2. At the
“Annotation” step, tracing the contour of MR, the more
accurate the better (see Figure 3).

2.3. Establishment and Validation of the Data Model

2.3.1. Network Architecture. Mask R-CNN is a method of
object detection and segmentation that can distinguish dif-
ferent objects in images and draw bounding boxes (bbox)
around specific objects. It can also mark and classify targets
and identify other detection key points. The network archi-
tecture was constructed in the Google TensorFlow frame-
work, and the network architecture of the Mask R-CNN
algorithm is illustrated in Figure 4. We defined a multitask
loss on each sampled RoI as L = Lcls + Lbbox + Lmask . The
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classification loss (Lcls) and bounding box loss (Lbbox) were
identical to those defined in Faster R-CNN [8].

Lcls =
1

Ncls
〠
ⅈ
Lcls pi, p∗ið Þ, ð1Þ

Lbbox =
1

Nbox
〠
ⅈ
p∗i L

smooth
1 ti – t∗ið Þ, ð2Þ

Lcls pi, p∗if gð Þ = –p∗i log p∗i − 1 − p∗ið Þ log 1 − p∗ið Þ: ð3Þ

Lmask is the average binary cross-entropy loss.

Lmask = – 1
m2 〠

1≦ⅈ≤m
yij log oy

k
ⅈ j + 1 − ykⅈ j

� �
log 1 − oykⅈ j

� �h i
:

ð4Þ

The loss function value (L), Lcls + Lbbox + Lmask , in the
Mask R-CNN was minimized.

2.3.2. Network Training and Testing. The Mask R-CNN was
trained using the MR ultrasound images. The MR images
acquired from hospital A made up dataset A, and the MR

Chronic Mitral Regurgitation by Doppler Echocardiography
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Specific Criteria for Mild MR

0.3cm
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Yes, mild

A
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RVol 30~44ml
RF 30~39%
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Intermediate Values: MR Probably Moderate

B

Perform quantitative methods whenever possible
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C

Yes, severe
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EROA 0.4cm2

RVol 60ml
RF 50%
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Small, narrow central jet
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3specific criteria for

elliptical orifice

Definitely severe

Flail leaflet
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PISA radius
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Pulmonary vein systolic flow reversal
Enlarged LV with normal function

Does MR meet specific criteria for mild or severe MR?

Figure 1: Algorithm for the integration of multiple parameters of MR severity by Doppler echocardiography adapted from ASE 2017.

Before annotation During annotation After annotation

Figure 2: The workflow of LabelMe. (a) Create dataset on our local computer. (b) Perform annotation and save annotation results on each
image by pressing “Save” button. (c) For each image, get a.json file, which contains for the labels created.
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images acquired from hospital B made up dataset B. Data-
set A was used for training of the AI model. To ensure the
accuracy and stability of the model, we used dataset B to
verify the model. The ratio of dataset A to dataset B is
approximately 8 : 2. The ratio of each grade in the two data-
sets is also approximately 8 : 2. The trained model was
applied for prediction in the test set. The training parame-
ters were set as follows: For the backbone and region pro-
posal network (RPN), learning rate was 0.001; for the
R-CNN and Mask heads, learning rate was 0.0001. Through-

out the training process, the momentum was set to 0.9 and the
stochastic gradient descent optimizer was used. The learning
rate and momentum were set by monitoring the loss during
training. With a low learning rate, the improvements will be
linear.

2.3.3. Evaluation Metrics. The overall performance of the
AI model for the assessment of MR severity was validated
with accuracy, precision, recall, F1-score, Macro F1, and
Micro F1.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3: Example of MR contour. (a–d) The original image of MR of grade Ⅰ, grade Ⅱ, grade Ⅲ, and grade Ⅳ. (e–h) The contour map of
the MR traced by the LabelMe software corresponding to (a–d).
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Accuracy is the ratio of the number of examples consis-
tent with the results of the 2017 ASE guidelines and the total
number of examples.

Precision = TP
TP + FP

, ð5Þ

Recall = TP
TP + FN

, ð6Þ

F1 − score =
2 ∗ precision ∗ recall
precision + recall

: ð7Þ

Macro F1. Split the evaluations of n categories into n
two-category evaluations, calculate the F1-score of each
two-category, and the average value of the n F1-scores is
Macro F1.

Micro F1. Divide the evaluations of n categories into n
two-category evaluations, and add the corresponding TP,
FP, and RN of the n two-category evaluations to calculate
the precision and recall. The F1-score calculated from these
precision and recall is Micro F1.

TP is the number of true positives, FP is the number of
false positives, and FN is the number of false negatives.

3. Results

In this study, 1132 MR ultrasound images (288 grade I, 278
grade II, 270 grade III, and 296 grade IV) in dataset A and
295 MR ultrasound images (82 grade I, 75 grade II, 74 grade
III, and 64 grade IV) in dataset B were finally applied. The
baseline demographic and TTE characteristics of the study
patients are summarized in Table 1.

Figure 5 shows the model performance evaluation met-
rics and results. The total loss was 0.0493, the bbox loss
was 0.0055, the class loss was 0.0012, and the mask loss
was 0.0427.

Figure 6 shows four test examples for the assessment of
MR severity. Figures 6(a)–6(d) are graded MR images
obtained by the evaluation methods described in the 2017
ASE guidelines. Figures 6(e)–6(h) are the results of the test
using this AI model, which are consistent with the results
obtained by the evaluation methods described in the 2017
ASE guidelines.

Figure 7 shows the confusion matrix of the MR classifi-
cation and grading results for the validation. The accuracy
of classification according to severity was 0.90, 0.89, and
0.91 for mild, moderate, and severe MR, respectively. The
accuracy of classification according to grade was 0.90, 0.87,
0.81, and 0.91 for grade I, grade II, grade III, and grade IV,
respectively.

Figure 8 shows the comparative histograms of preci-
sion, recall, and F1-score between classification indexes
(Figure 8(a) is the classification according to severity, and
Figure 8(b) is the classification according to grading). The
precision of classification according to severity was 0.94,
0.93, and 0.87 for mild, moderate, and severe MR, respec-
tively. The precision of classification according to grade was
0.94, 0.88, 0.88, and 0.87 for grade I, grade II, grade III, and
grade IV, respectively. The recall of classification according
to severity was 0.94, 0.90, and 0.92 for mild, moderate, and
severe MR, respectively. The recall of classification according
to grade was 0.94, 0.89, 0.82, and 0.92 for grade I, grade II,
grade III, and grade IV, respectively. The F1-score of classifi-
cation according to severity was 0.94, 0.91, and 0.89 for mild,
moderate, and severe MR, respectively. The F1-score of

conv conv

L

Lclass

Lbbox

Lmask

RolAlign

Figure 4: The network architecture of Mask R-CNN.

Table 1: Medical history, clinical presentation, and baseline TTE characteristics of the study patients.

Age (Yrs) Male
Medical history and clinical presentation Baseline TTE characteristics

Time
(minutes)CHD MI HTN DM TIA NYHA≥III LVDd,

cm
LVDs,
cm

LA, cm EF, %
Reduced
EF, <50%

Mild
(grade I)

61
(29-82)

126 59 14 56 41 29 19 4:3 ± 0:57 3:1 ± 0:59 3:4 ± 0:52 58
(46-67)

7 5:8 ± 4:5

Moderate
(grade II)

68
(31-88)

117 102 51 82 37 27 47 4:4 ± 0:61 3:3 ± 0:58 3:5 ± 0:69 57
(44-66)

19 10:6 ± 2:7

Moderate
(grade III)

71
(41-90)

121 125 62 103 38 44 91 5:1 ± 0:53 37 ± 0:65 4:2 ± 0:71 50
(36-63)

55 11:1 ± 2:4

Severe
(grade IV)

73
(43-92)

135 140 71 134 47 48 135 5:5 ± 0:70 42 ± 0:87 4:5 ± 0:73 44
(30-61)

98 5:5 ± 4:4

CHD: coronary artery heart disease; MI: myocardial infarction; HTN: hypertension; DM: diabetes mellitus; TIA: transient ischemic attack; NYHA: New York
Heart Association; time: the time taken to quantitatively evaluate the severity of MR according to the 2017 ASE guidelines. Values are median (interquartile
range), mean ± SD, or n (%), unless otherwise indicated.
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classification according to grade was 0.94, 0.88, 0.85, and 0.89
for grade I, grade II, grade III, and grade IV, respectively. It
can be observed that this model produces satisfactory preci-
sion, recall, and F1-score results in the evaluation of MR
severity.

Table 2 shows the comparison results of Macro F1 and
Micro F1 in each classification. This shows a satisfactory
classification result.

4. Discussion

We validated the Mask R-CNN algorithm for the evaluation
of MR severity. The present study demonstrated the feasibil-
ity and accuracy of the Mask R-CNN algorithm for qualita-
tive assessment of MR and demonstrated the reasonable
performance of the model.

TTE is the most common imaging technique by which
MR severity and etiology are determined. Although many
recent studies have shown that 2D technology is not the
most accurate method for quantitatively evaluating MR,
the 2D TTE technique is currently the most commonly used
method for quantitatively evaluating MR compared with
cardiac magnetic resonance (CMR), transesophageal echo-
cardiography (TEE), and the 3D TTE technique [10].
However, there is currently no single echocardiographic
parameter that is precise enough to quantify MR. Integration
of multiple parameters is required for a more accurate
assessment of MR severity [11]. When multiple parameters
are concordant, MR severity, especially mild and severe

MR, can be determined with high confidence. In our
study, all MR grades were determined independently by
two well-experienced echocardiographers according to the
2017 ASE guidelines. It is necessary to emphasize that
when there is consistent evidence from different parame-
ters, it is easy to grade MR severity with confidence. When
different parameters are contradictory, one must look care-
fully for technical and physiologic factors to explain the
discrepancies and repeat the measurements according to
the 2017 ASE guidelines. If the discrepancy remained, a
third investigator’s recommendation was used as a refer-
ence. Errors in measurement can be prevented.

AI is a powerful technological driving force at present.
Increasing efforts have been made by medical ultrasound
experts, mathematicians, and computer scientists to pro-
mote the integration of ultrasound, medicine, and AI,
thereby improving the accuracy of ultrasonic diagnosis,
reducing the misdiagnosis rate, shortening the reporting
time, and meeting growing clinical needs [12].

AI has made some progress in the assessment of MR;
here, we review some recent studies. Many studies of MR
diagnosis have been carried out to investigate heart sounds
(HSs). Maglogiannis et al. used Doppler heart sound
(DHS) data with wavelet decomposition followed by a
three-step diagnosis phase based on support vector machine
(SVM) classifier to classify heart valve disease. The reported
accuracy for aortic stenosis (AS) and MR classification is
91.67% [13]. Safara et al. developed a multilevel basis selec-
tion (MLBS) method with an SVM classifier to classify
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Figure 5: Model performance evaluation metric and results. The abscissa axis is epoch, and the ordinate axis is loss. These four ordinates
represent bbox loss, class loss, mask loss, and total loss, respectively.
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normal AS MR and AR samples, and the accuracy of classi-
fication was 97.56% [14]. There are some other AI studies on
the detection of MR. An intelligent diagnostic system based
on automatic diagnostic feature extraction for diagnosing
heart diseases developed by Sun could discriminate MR with
an accuracy of 98.4% [15]. Kwon, MD, and colleagues devel-
oped and validated an AI algorithm for detecting MR using
electrocardiography (ECG); they demonstrated a promising
performance of the AI algorithm for accurate MR detection.
During the internal and external validation, the accuracy of
MR detection was 0.816 and 0.877, respectively [16].

However, the abovementioned studies only used AI algo-
rithms to detect MR, and there were no further qualitative

studies. Recently, some studies have focused on detecting
the severity of MR using automatic detection methods.
Moghaddasi and Nourian developed a novel method for
grading MR according to novel textural features with
machine learning methods [17]. The proposed method
achieved satisfactory accuracy for the detection of MR sever-
ity in normal subjects. This method is based on echocardiog-
raphy videos. In their study, MR was graded into three types:
mild, moderate, and severe. They did not further subdivide
moderate MR into grade II and grade III. This does not
reflect the severity of MR well. Studies by Uretsky et al.
highlighted the accuracy and reproducibility of CMR in
quantifying MR and have begun to link CMR to clinical

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6: Test example of assessment of MR severity. (a–d) The MR images obtained by the quantitative evaluation methods of 2017 ASE
guidelines. (e–h) The grading result obtained by the Mask R-CNN algorithm. The confident scores for the four cases were 0.987, 0.986,
0.997, and 1.000, respectively.
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outcomes [18]. However, in our daily practice, CMR is not
widely available and is time-consuming. Moreover, in some
emergency situations, CMR cannot be the first choice, and
there are contraindications for it in some patients. Some
studies have also pointed out that the degree of MR mea-
sured by TEE is more accurate than that measured by
TTE. Militaru et al. evaluated the accuracy of MR volume

quantified with 3D color Doppler TEE using new semiauto-
mated software. The new software enabled semiautomated
3D MR flow quantification in complex MR with multiple
eccentric jets and showed a satisfactory result [19]. However,
TEE is operator dependent and semi-invasive, typically
requiring patient sedation [20]. It is not suitable for routine
examinations.

In our study, when classifying according to severity, we
achieved accuracies of 0.90, 0.89, and 0.91, and when classi-
fying according to grading, we achieved accuracies of 0.90,
0.87, 0.81, and, 0.91. Among the grading classifications,
grade III has the lowest accuracy, which is mostly because
the characteristics of grade III have some overlap with the
characteristics of severe MR. In model verification, the
unrecognized rate of grade I reached 0.04, which is probably
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Figure 8: Comparative histograms of precision, recall, and F1-score between classification indexes ((a) classification according to severity;
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Table 2: The comparison results of Macro F1 and Micro F1 in each
classification.

Classification Macro F1 Micro F1

According to severity 0.91 0.92

According to grading 0.89 0.89
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because the VC in some images of grade I is too small to be
identified. Our model also obtained better precision, recall,
F1-score, Macro F1, and Micro F1. All these suggest that
our model has good performance. In the process of collect-
ing cases, the quantitative methods for MR identification in
the 2017 ASE guidelines were time-consuming, and for each
case, it took a few minutes to take the pictures required to
obtain the results. Grade I and grade IV take less than 10
minutes to classify; however, grade II and grade III take
more than 10 minutes (see Table 1). This is because when
VCW ≤ 0:3 cm, VCW ≥ 0:7 cm, or some other obvious con-
dition is present (Figure 1), it is easy to determine whether
MR is mild or severe, and no further evaluation is needed.
In contrast, assessing MR severity with our AI model
requires a shorter amount of time, which could greatly
reduce working time. This can significantly improve the
work efficiency of clinicians.

In this study, we designed an experimental dataset and a
validation dataset. Hospital A and hospital B are in different
regions, and both hospitals are large tertiary general hospi-
tals. This can effectively address the influence of regional dif-
ferences. Three commonly used and well-known brands of
ultrasound machines were used, so the accuracy and quality
of performance were good. The results prove that our AI
model is universally applicable and has good performance
and high accuracy. More importantly, it greatly shortens
the diagnosis time. Due to these advantages, this AI model
has the potential to be used for diagnosis in daily clinical
practice.

5. Conclusions

Accurate assessment of the severity of MR is crucial in clin-
ical treatment. In this study, we chose the Mask R-CNN
algorithm to qualitatively evaluate MR using color Doppler
echocardiography images collected based on the 2017 ASE
guidelines. This demonstrated that the model has good per-
formance and could evaluate the severity of MR with good
accuracy. Thus, with the combination of MR echocardiogra-
phy images and DL, the time required to analyze cardiac-
related parameters is decreased, and clinical decision-making
can be expedited. This model can serve as a new tool for the
evaluation of MR severity.
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Purpose. To analyze the characteristics of hyperdense lesions on brain CT conducted immediately after arterial revascularization
(AR) in patients with acute ischemic stroke (AIS), track the outcome of those lesions and investigate their clinical significance.
Materials and Methods. 97 AIS patients were enrolled in our study. Among them, 52 patients showed hyperdense lesions and
were divided into three categories: type I, type II and type III according to the morphologic characteristics of hyperdense
lesions. All patients underwent several follow-up CT/MR examinations to visualize the outcomes of the lesions. Results. Among
the 52 patients, 22 showed contrast extravasation, 23 displayed contrast extravasation combined with hemorrhagic
transformation (HT) and 7 confirmed symptomatic intracranial hemorrhage (SICH) in follow-up CT/MR. Among the without
hyperdense lesions group, only 7 converted to hemorrhage, and no SICH occurred. All type I lesions showed contrast
extravasation; 23 type II lesions turned to hemorrhage, 2 revealed SICH and 6 were pure contrast extravasation; all of the type
III developed into SICH. Conclusion. Hyperdense lesions on non-enhanced brain CT obtained immediately after arterial
revascularization (AR) exhibited varying features. Type I indicated a pure contrast extravasation. Type II and type III
hyperdense lesions suggested higher incidence of HT, the presence of type III lesions indicated an ominous outcome.

1. Introduction

Arterial revascularization (AR) has become the preferred
treatment for patients with acute ischemic stroke (AIS)
[1–3]. Non-enhanced brain CT conducted immediately after
AR often presents hyperdense lesions in the parenchyma [4,
5]. Such hyperdense lesions have been reported and ana-
lyzed in various literature since 1993 [6]. However, it is still
a tricky problem to determine whether the hyperdense
lesions are contrast extravasation or cerebral hemorrhage
[7]. The purpose of this study was to analyze the imaging
characteristics of intracranial hyperdense lesions and to clas-
sify them according to their morphological characteristics.

And the final outcome and clinical significance of different
types of hyperdense lesions was analyzed based on its spon-
taneous regression, HT, or even SICH.

2. Materials and Methods

2.1. Patients. From August 2016 to Match 2020, 97 AIS
patients (51 males and 46 females) were included in our
study with an average age of 61.73± 8.44 years (range, 41-
83 years). This study was approved by the Medical Ethics
Committee of our hospital. Written informed consent was
obtained from all patients.
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2.2. Arterial Thrombolysis or/and Mechanical
Thrombectomy. All patients received arterial thrombolysis
or/and mechanical thrombectomy within 6 hours after
onset. The findings of brain CT immediately after AR were
analyzed in all cases. The contrast agent used for cerebral
angiography during AR was iohexol (300mgI/ml), with the
dosage of 150-250ml. The time window for arterial throm-
bolysis (from the initial onset to the onset of arterial throm-
bolysis) is 3-6 hours. Thrombolysis lasts for 30 minutes to
2.5 hours. The thrombolytic agent used was urokinase. Doses
of urokinase ranged from 60000 to 600000U, with 10mL
saline/60000U, in boluses. 40 of the patients were treated
with thrombolysis alone and 57 were treated with mechani-
cal thrombectomy combined with arterial thrombolysis.
Among the 97 patients, the site of occlusion was the internal
carotid artery in 32 patients, the M1 segment of middle cere-
bral artery in 54 patients, the M2 segment in 8 patients, and
the basilar artery in 3 patients.

2.3. CT Acquisition. After cerebral angiography and revascu-
larization of obstructed vessels, all patients underwent non-
enhanced CT scan of brain immediately after AR. Follow-
up CT was performed within 24 hours or 48 hours after
the procedure. Gd-free MR scanning was performed in 21
patients within 48 hours after procedure. Using Philips Bril-
liance 256 rows of iCT scanners, all patients were scanned
from the base of the skull to the top of the skull. Scanning
conditions: 120KV, 300MA, layer thickness of 3mm. Philips
Achieva 1.5T MR scanner was used to collect the images
with the skull phased-front circle. The scanning sequence
includes T1-weighted sequence, T2- weighted sequence,
fluid attenuated inversion recovery (Flair), diffusion
weighted imaging (DWI), apparent diffusion coefficient
(ADC), susceptibility weighted imaging (SWI) etc.

2.4. Imaging Evaluation. The characteristics of non-
enhanced brain CT of all patients were analyzed and evalu-
ated by two experienced attending radiologists or above.
According to the shape, location and with/without mass
effect of hyperdense lesions, the patients were divided into
three categories: type I (sporadic patchy lesions with unclear
boundaries which mostly distributed in the cerebral cortex
and sulti, without mass effect (Figure 1(a))), type II (solid
“mass” shaped lesions with well-defined boundaries which
mostly distributed in the basal ganglion and without mass
effect or mild mass effect (Figures 2(a) and 3(a))) and type
III (diffuse patchy lesions occupying a larger area with obvi-
ous mass effect (Figure 4(a))). Once divergence occurred
during the diagnosis and classification evaluation, the two
parties shall solve the difference through consultation.

2.5. Statistical Analysis. All statistical analyses were con-
ducted using SPSS version 18 (SPSS Inc, Chicago, USA).
Quantitative data were expressed as means ± standard
(SD) and compared by the two-sample independent Stu-
dent’s t-test; Qualitative data was expressed as rate and com-
pared by Chi-square test. P< 0.05 indicated that the
difference was statistically significant.

3. Results

3.1. Overall Results. Among 97 patients, 52 (53.6%) patients
showed hyperdense lesions around the intracranial infarc-
tion area on non-enhanced CT conducted immediately after
AR, whereas the other 45 (46.4%) patients (the control
group) had no hyperdense lesions. The basic clinical data
of patients in the hyperdense group and without hyperdense
group were summarized in Table 1. There were no signifi-
cant differences in age, sex, hypertension, diabetes, NIHSS
score, history of antiplatelet therapy before onset, degree of
recanalization, methods of arterial revascularization. 30
(57.7%) patients in the intracranial hyperdense lesions group
developed HT after AR, Among the control group, 7 patients
converted to AICH (Asymptomatic Intracranial Hemor-
rhage) in follow-up CT/MR within 24 or 48 hours after AR
(Table 2), and no SICH occurred. Significantly higher HT
incidence was observed in the hyperdense lesions group
when compared with the without hyperdense lesions group
(P< 0.001).

3.2. Outcome of the Hyperdense Lesions. In the hyperdense
group, hyperdense lesions were completely disappeared in
22 (42.3%) patients (Figures 1 and 3), 23 (44.2%) patients
displayed contrast extravasation combined with HT
(Figure 2) and 7 (13.5%) patients were confirmed SICH
(Figure 4) in follow-up CT/MR within 24 or 48 hours after
AR. In follow-up CT 24 or 48 hours after AR, the outcome
of different types of hyperdense lesions were as follows
(Table 3): sporadic patchy type I lesions (16 lesions) were
completely disappeared, showing contrast extravasation; 23
type II lesions (74.2%) turned to hemorrhage (AICH), 2
lesions (6.5%) revealed SICH and 6 lesions (19.4%) were
contrast extravasation; all of the type III (5 cases) lesions
developed into SICH. Type II and type III had a significantly
higher incidence of HT than type I (P< 0.01). The sensitiv-
ity, specificity, positive predictive value and negative predic-
tive value of hyperdense lesions on non-enhanced CT
conducted immediately after AR for the prediction of HT
were 81.1%, 63.3%, 57.7% and 84.4%, respectively.

4. Discussion

With the development of medical imaging equipment and
interventional medical technology, patients with AIS have
more opportunities for transductal AR (including intra-
arterial drug thrombolysis, mechanical thrombectomy),
which improves the rate of vascular recanalization in stroke
patients and greatly improves the patients’ clinical prognosis
and survival rate. However, intracranial hemorrhage, a com-
plication associated with intravascular interventional proce-
dures, poses a challenge to clinical diagnosis and treatment
of AIS. Immediately after completing intra-arterial proce-
dures, a non-enhanced CT is often performed to assess the
progression of the AIS and whether hemorrhage has
occurred [6]. Non-enhanced CT often detects hyperdense
lesions in the parenchyma. Not all hyperdense lesions on
non-enhanced CT conducted immediately after AR repre-
sent hemorrhage, it may be attributed to either contrast
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extravasation or cerebral hemorrhage [6, 8]. So neurologists
and neuroradiologists need to identify the true nature of the
hyperdense lesions so that appropriate interventions can be
taken in time, otherwise it will seriously affect the prognosis
of patients.

A large amount of contrast agent is injected during the
angiography and AR in patients with AIS, so extravascular
exudation of contrast agent may be the pathological mecha-
nism of CT intracranial hyperdense lesions. Contrast extra-
vascular exudation is based on damage to the blood-brain
barrier (BBB) [9]. For patients with AIS, the permeability
of occluded vessels in the infarcted area was changed. After
recanalization, the blood flow in the infracted area increased
significantly and hyperperfusion occurred. When the perfu-
sion pressure of the distal capillary bed exceeds the bearing
capacity of the vessel wall, the BBB is destroyed and contrast
agent exudates. The removal time of the contrast agent
injected during the recanalization is prolonged due to ische-
mia and hypoxia in the cerebral infarction area, which
results in the local retention of contrast agent [10]. During
interventional procedure, microcatheter and microguide
wire may lead to vascular intimal damage, which is also
one of the common causes of contrast extravasation [11,
12]. The manifestations of post-procedure CT intracranial
hyperdense lesions vary with the degree of cerebral micro-
vascular injury. When ischemic injury only destroys the per-
meability barrier of endothelial cells, the intracranial
hyperdense lesions may be a single contrast agent without
hemorrhage. However, when ischemic infarcts break down
the structural barrier-basement membrane, the hyperdense
lesions may be associated with some form of hemorrhage,
or a mixture of contrast and blood. Disruption of the

blood–brain barrier may be an essential condition for hem-
orrhagic transformation [11–13].

There were no significant differences in terms of age, sex,
hypertension, diabetes mellitus, National Institute of Health
Stroke Scale score (NIHSSs), history of antiplatelet therapy
before onset, recanalization rate and method of thrombolysis
between patients with intracranial hyperdense lesions group
and those without. The incidence of HT in patients with
hyperdense lesions group was significantly higher than that
without hyperdense lesions group, and the difference was
statistically significant (Table 1).

In this study, 22 (42.3%) patients of the intracranial
hyperdense lesions were completely disappeared on a
follow-up CT obtained within 24 hours or 48 hours after
procedure. Among them, 16 patients had type I hyperdense
lesions and 6 patients had type II lesions. Follow-up CT scan
showed no recurrence of HT in these patients. This rapidly
fading intracranial hyperdense lesions was contrast extrava-
sation without HT. That is, ischemic injury in these patients
may be limited only to the endothelial permeability barrier.
Wildenhain et al. reported that rapid dissolution of intracra-
nial hyperdense lesions is a good prognostic indicator [2].

There are several definitions of contrast extravasation
after AR in patients with AIS. Nakano et al. [14] believed
that the rapidly fading of high-density shadow was the main
basis for the diagnosis of the extravasation of contrast agent.
Mericle et al. [7] showed that extravasation of contrast
medium should be defined as a hyperdense lesions with a
maximal Hu measurement>90 and/or the hyperdense
lesions rapidly subsided within 24 hours after AR. According
to our study, we are more inclined to suggest that rapid res-
olution of intracranial hyperdense lesions is the key to the

(a) (b)

Figure 1: Non-enhanced brain CT scan of a 58-year-old woman who had a sudden onset of impaired left limb movement. (a). The non-
enhanced brain CT scan obtained immediately after intra-arterial thrombolysis showed that a type I hyperdense lesion was located in the
right temporal lobe cortex with a CT value of 90-135 Hu. There was no mass effect. (b). Follow-up CT scan obtained 24 hours after the
end of AR, the hyperdense lesion on the right temporal lobe cortex was completely disappeared.
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diagnosis of contrast extravasation, and there was no mass
effect of the intracranial hyperdense lesions. The maximal
Hu measurement>90 of intracranial hyperdense lesions
was not an absolute indication for the diagnosis of the
extravasation of contrast medium.

If follow-up CT within 24 hours or 48 hours after proce-
dure showed that the attenuation of the intracranial hyper-
dense lesions was mildly reduced compared with that of
non-enhanced CT conducted immediately after completing

inter-arterial procedure, and the size and contour of intra-
cranial hyperdense lesions changed slightly, even the hyper-
dense lesions appeared space occupying effect. The above CT
findings are known as contrast extravasation combined with
HT. HT is the most serious complication after AR in AIS
patients [12]. HT after arterial thrombolysis can be divided
into SICH and AICH. SICH was defined as a decrease in
the NIHSSs ≥4 within 36 hours after thrombolysis and intra-
cranial hemorrhage confirmed by imaging was correlated

(a) (b)

(c) (d)

Figure 2: CT scan of a 62-year-old man who had a sudden onset of impaired right limb movement. (a). The non-enhanced brain CT scan
obtained immediately after intra-arterial thrombolysis showing a hyperdense area in the head portion of the left caudate nucleus and the
entire left lentiform nucleus. Representative type II, namely solid “mass” shaped lesions with well-defined boundaries and without mass
effect. (b). Follow-up CT scan obtained 48 hours after the end of intra-arterial thrombolysis. The range of the hyperdense area increased
slightly and the attenuation decreased. The patient was not accompanied by deterioration of neurological symptoms. (c). On the 2nd day
after the procedure, susceptibility weighted imaging showed patchy low signal in the left basal ganglia region, indicating hematoma
formation. (d). Two weeks after the procedure, the left basal ganglia hematoma had been completely absorbed.
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with the deterioration of clinical symptoms in time. AICH
was defined as bleeding without deterioration of neurologi-
cal symptoms [15].

HT is a complex and multifactorial phenomenon.
Known risk factors include age, blood glucose, low platelet
count, high NIHSSs, size and location of ischemic area, poor
collateral vessels, arterial stiffness, thrombolytic agent used
and time window allowed for the initiation of the therapy
[16, 17]. And its occurrence is closely related to the damage
of BBB, the reperfusion injury of ischemic area, the use of
microcatheter, the establishment of collateral circulation
and prolonged procedure time [18, 19], which is the result
of the combined action of the above factors [4]. In this study,
30 (57.7%) patients in the intracranial hyperdense lesions
group developed HT after AR, including 23 (44.2%) patients
with AICH and 7(13.5%) patients with SICH. All of the 23
(44.2%) patients with AICH were type II hyperdense lesions.
Among the 7 patients with SICH, 2 were type II hyperdense
lesions and 5 were type III.

SICH, a massive intracerebral hematoma (accompanied
by obvious space occupying effect) with worsening neuro-
logical symptoms, is a clinical and CT imaging hybrid [20].
It is also the most intractable problem in the reperfusion
treatment of AIS patients. The rapid disappearance of intra-
cranial hyperdense lesions after AR had nothing to do with
SICH. Since SICH is a serious microvascular injury involv-
ing the basement membrane, no hyperdense lesions on
non-enhanced CT immediately after AR suggests that the
permeability and structural barrier of microvascular endo-
thelial cells are not destroyed, which may be a reliable nega-
tive predictor of SICH, in other words, the incidence of

SICH will be extremely low or will not occur at all. Kass-
Hout et al. [21] indicated that a longer procedure time is
an independent predictor for SICH in patients receiving
mechanical thrombectomy. The extended procedure time
may be due to difficulty getting catheters into blocked ves-
sels, which may be related to arterial stiffness or more
comorbidities [22]. Prolonged procedure time means more
attempts to recanalize the occluded vessels. The above fac-
tors could greatly increase the incidence of HT [23, 24]. A
prolonged procedure time was significantly associated with
a higher rate of SICH, even in patients with successful recan-
alization [19].

Nakano et al. [14] reported that 48% of patients showed
intracranial hyperdense lesions on non-enhanced CT imme-
diately after arterial thrombolysis, and 29.7% of these
patients developed SICH, while patients without intracranial
hyperdense lesions on non-enhanced CT immediately after
AR had no SICH. Jang et al. [6] reported that 33% (31/94)
of patients displayed intracranial hyperdense lesions on
non-enhanced CT immediately after intraarterial proce-
dures. Among them, 58% (18/31) developed cerebral hemor-
rhage, and 19.4% (6/31) developed SICH. In this study,
53.6% (52/97) of the patients showed intracranial hyper-
dense lesions around the intracranial infarction area on
non-enhanced CT immediately after AR, and 13.5% (7/52)
of them developed SICH. None of the patients without intra-
cranial hyperdense lesions developed SICH. In our study, the
incidence of intracranial hyperdense lesions on non-
enhanced CT immediately after AR was higher than that
in the results of Nakano et al. [14] and Jang et al. [6], and
the incidence of SICH was lower than that in the results of

(a) (b)

Figure 3: CT scan of a 58-year-old woman who had a sudden onset of impaired left limb movement. (a). The non-enhanced brain CT scan
obtained immediately after intra-arterial thrombolysis showing a type II hyperdense lesion in the right lentiform nucleus with a CT value of
90-135 Hu. A type I hyperdense lesion was located in the right insular cortex with a CT value of 52-57 Hu (the latter was not included in this
study). There was no mass effect in the above two lesions. (b). Follow-up CT scan obtained 24 hours after the end of AR, the hyperdense
lesion of the right lentiform nucleus was obviously absorbed. The patient was not accompanied by deterioration of neurological symptoms.
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(a) (b)

(c) (d)

Figure 4: CT scan of a 66-year-old woman who experienced a sudden left limb inactivity accompanied by loss of speech function for 4
hours. There was no intracranial hemorrhage on CT scan before thrombolytic therapy. (a). The non-enhanced brain CT scan obtained
immediately after intra-arterial thrombolysis showing a type III hyperdense lesion in the right basal ganglia with a CT value of 55-73
Hu. The right ventricle was significantly compressed. The patient had a marked symptom of neurological deterioration. (b). Follow-up
CT scan obtained 24 hours after the end of AR revealed that the contour of the hyperdense lesion located in the right basal ganglia
region was slightly expanded, the attenuation was increased, and the surrounding low-density edema occurred, with obvious space-
occupying effect. (c). T2WI and D FLAIR obtained 24 hours after procedure showed large patchy low signals in the right basal ganglia
region surrounded by high signal. Low signal denotes hematoma and high signal denotes edema.
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Nakano et al. [14] and Jang et al. [6]. There was no signifi-
cant difference between cases selection and vascular recon-
struction methods, so this difference may be related to the
insufficient sample size, different generations of thrombect-
omy devices and procedure time. Whether it is related to
other factors remains further analysis with a larger group
of patients. Our results showed that none of the patients
without intracranial hyperdense lesions developed SICH,
which was consistent with the study of Nakano et al. [14].

This study showed that type I intracranial hyperdense
lesions (sporadic patchy lesions with unclear boundaries),
which completely disappeared within 24 hours post-proce-
dure, is a single, pure contrast extravasation. A large propor-
tion (80.6%,25/31) of type II intracranial hyperdense lesions
(solid “mass” shaped lesions with well-defined boundaries)
converted to hemorrhage, while a small proportion
(19.4%,6/31) were only contrast extravasation. Type III
intracranial hyperdense lesions (diffuse patchy lesions with
mass effect) invariably developed into SICH. The occurrence

of intracranial hyperdense lesions after AR has a high sensi-
tivity and negative predictive value for the prediction of
cerebral HT, but the specificity and positive predictive value
are not high, which is consistent with the research results of
Kim et al. [25].

This study has some limitations. Firstly, the retrospective
design has its inherent limitations of such study. Secondly,
the sample was small, which may have influenced the results
in this study. Another limitation is that our study was a
single-center study and we did not analyze the effect of the
duration of procedure on the occurrence of hyperdense
lesions on non-enhanced CT conducted immediately after
AR. Therefore, we will conduct multicenter studies in future
to collect more cases of ischemic stroke with transarterial
revascularization and follow up for a longer time, so as to
confirm the availability and practicability of the morpholog-
ical classification of intracranial hyperdense lesions in the
current study.

5. Conclusions

In conclusion, the occurrence of intracranial hyperdense
lesions on non-enhanced CT conducted immediately after
AR has its limitations for the accurate prediction of cerebral
HT (including SICH and AICH). Type I hyperdense lesions
suggested pure contrast extravasation and was not associated
with hemorrhagic complications. The presence of Type II
and type III hyperdense lesions indicated higher incidence
of HT, in particular, the presence of type III hyperdense
lesions indicated an ominous outcome. When intracranial
hyperdense lesions of type II and type III appear around
the intracranial infarction area in stroke patients, high
attention should be paid to the progress of the patient’s neu-
rological symptoms and timely and effective treatment
should be given to minimize the complications of cerebral
hemorrhage.

Data Availability

The data used to support the findings of this study are
included within the article.

Table 1: Baseline Characteristics of Patients in the Hyperdense Group and without hyperdense Group.

Hyperdense group (n = 52) Without hyperdense group (n = 45) P

Age (mean± SD) 61.5± 8.66 62.0± 8.26 0.773

Gender (male/female) 28/24 23/22 0.788

Hypertension 24 20 0.866

Diabetes 18 14 0.714

NIHSS score (mean± SD) 13.94± 3.9 13.93± 4.2 0.991

History of antiplatelet therapy before onset 29 25 0.983

Successful recanalization (%) 34 (65.4) 26 (57.8) 0.442

Thrombolysis 22 18 0.818

Thrombolysis and mechanical thrombectomy 30 27 0.818

HT (%) 30 (57.7) 7 (15.6) <0.001
NIHSS=National Institute of Health Stroke Scale. HT = hemorrhagic transformation.

Table 2: Distribution of HT between the hyperdense group and the
without hyperdense group.

No hemorrhage AICH SICH

Hyperdense group (n = 52) 22 23 7

Without hyperdense
group (n = 45)

38 7 0

P <0.001
HT = hemorrhagic transformation, AICH=Asymptomatic Intracranial
Hemorrhage, SICH = Symptomatic Intracranial Hemorrhage.

Table 3: Distribution of HT among the different types of
hyperdense lesions.

No hemorrhage AICH SICH

Type I (n = 16) 16 0 0

Type II (n = 31) 6 23 2

Type III (n = 5) 0 0 5

P <0.01
HT = hemorrhagic transformation, AICH=Asymptomatic Intracranial
Hemorrhage, SICH = Symptomatic Intracranial Hemorrhage.
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Alopecia areata is defined as an autoimmune disorder that results in hair loss. The latest worldwide statistics have exhibited
that alopecia areata has a prevalence of 1 in 1000 and has an incidence of 2%. Machine learning techniques have
demonstrated potential in different areas of dermatology and may play a significant role in classifying alopecia areata for
better prediction and diagnosis. We propose a framework pertaining to the classification of healthy hairs and alopecia
areata. We used 200 images of healthy hairs from the Figaro1k dataset and 68 hair images of alopecia areata from the
Dermnet dataset to undergo image preprocessing including enhancement and segmentation. This was followed by feature
extraction including texture, shape, and color. Two classification techniques, i.e., support vector machine (SVM) and k
-nearest neighbor (KNN), are then applied to train a machine learning model with 70% of the images. The remaining
image set was used for the testing phase. With a 10-fold cross-validation, the reported accuracies of SVM and KNN are
91.4% and 88.9%, respectively. Paired sample T-test showed significant differences between the two accuracies with a p <
0:001. SVM generated higher accuracy (91.4%) as compared to KNN (88.9%). The findings of our study demonstrate
potential for better prediction in the field of dermatology.

1. Introduction

The “falling of scalp hairs in sufficient quantity” is defined as
hair loss [1]. Alopecia areata is an autoimmune disorder that
involves nonscarring hair loss in well-defined patches that
can affect the entire scalp region and, ultimately, lead to bald-
ness [2, 3]. The disorder impacts millions of people world-
wide [4], especially those with a family history of alopecia
areata [5]. It begins when the body’s autoimmune system
starts to target the hair follicles, disturbing their normal func-
tioning and preventing subsequent hair growth. The out-
come is hair loss. Hair loss can be attributed to various
causes, and trichoscopies and biopsies are generally necessary
to ensure the cause is alopecia areata. However, the limita-

tions of these diagnostic methods are the uncertainty sur-
rounding the number of tests required for adequate
diagnosis. Hence, there is a vast scope for researching new
techniques pertaining to the classification and diagnosis of
alopecia areata [6].

Machine learning (ML) techniques have shown effective-
ness in the prediction and classification of various diseases
and disorders. Machine learning encapsulates the study of
different computer algorithms that exhibit the potential to
learn and adapt [7]. Machine learning (ML) algorithms and
their advanced versions have been incorporated in various
medical disciplines for diagnostic purposes. For instance,
machine learning (ML) techniques have exhibited accurate
results using magnetic resonance imaging (MRI) and
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computed tomography (CT) images for the diagnosis of
brain tumors, breast cancer, ovarian cancer, pulmonary dis-
ease, and dermatological diseases [8–12]. Machine learning
(ML) techniques have also shown their credibility during
the COVID-19 pandemic and have aided medical profes-
sionals in identifying the coronavirus disease along with its
levels [13].

In dermatology, effective diagnosis and prediction have
been achieved by different machine learning methods. Scalp
analysis systems have been developed utilizing SVM and
KNN to classify scalp images. Scalp images have been used
for classification of conditions such as dandruff with the
employment of machine learning techniques of SVM,
KNN, and decision trees [14–20]. All these techniques use
scalp and/or skin images to develop prediction models. To
the best of our knowledge, so far, none of the machine learn-
ing techniques has been applied on human hair images.

In this paper, we propose a framework that encapsulates
practical application in effectively classifying alopecia areata
and healthy hairs using hair images as previous work has
been carried out with scalp and skin images only. Our pro-
posal demonstrates the practical application of machine
learning techniques for distinguishing alopecia areata. The
results from our study exhibit the future potential of this
framework to distinguish hair disorders that cannot be deter-
mined by the naked eye.

2. Related Works

Most researchers have used scalp images to extract skin fea-
tures characteristic of alopecia areata. A trichoscopy method
was proposed that involved extraction of hair loss feature by
processing of scalp images using encapsulated techniques
such as grid line selection and eigenvalue. The system was
novel in terms of using a combination of computer vision
and image processing techniques for alopecia areata diagno-
sis [14]. In another study, an automated classification
method for the early diagnosis and treatment of alopecia
was proposed using artificial neural networks (ANN). The
system used a feedforward artificial neural network, and the
results exhibited an accuracy of 91% [15]. In another work,
scalp images were classified according to three scalp condi-
tions namely, alopecia areata, dandruff, and normal hair.
The classification yielded an accuracy of 85% [16]. In another
study, texture analysis was executed on scalp images using
Severity of Alopecia Tool (SALT) score. The proposed system
permitted analysis of hair density changes exhibited in alope-
cia areata [17].

Other systems have used scalp images to analyze hair
density and loss that manifest due to various reasons, includ-
ing alopecia areata. A system referred to as TrichoScan was
developed using epiluminescence microscopy to analyze hair
cover in scalp images of people with androgenic alopecia
(AGA). Four parameters, namely, hair density, hair diameter,
hair growth rate, and anagen/telogen ratio, were extracted,
and the results reported a correlation of approximately 91%
[21]. In another system, hair loss was diagnosed via the appli-
cation of artificial neural networks (ANNs). Scalp images
were acquired from three hundred and forty-eight partici-

pants, and the results of the study exhibited that artificial
neural networks can be utilized for detecting hair loss [22].
Shih [23] captured forty microscopic scalp images with a
magnification factor of eighty-five to propose a hair counting
algorithm involving features such as density, diameter,
length, and hair oiliness level. The algorithm was observed
to be more accurate than the traditional Hough-based one
and was more reliable in counting hairs on an individual’s
scalp as compared to manual counting.

Researchers have also used scalp images to develop
machine learning models for diagnosing different diseases.
An intelligent scalp analysis system was proposed employing
different machine learning methods such as SVM, linear dis-
criminant analysis (LDA), KNN, and decision trees. Classifi-
cation was carried out between two groups, namely, bacteria
1 that pertains to blisters or boils in the scalp and bacteria 2
that comprises of scalp skin exhibiting red spots. The highest
accuracy of 80% was achieved with the application of SVM
[18]. Another scalp analysis system used optical coherence
tomography (OCT) and machine learning to identify fungal
infection. A-line features comprising of attenuation coeffi-
cient values and B-scan features involving texture parameters
such as energy, kurtosis, and skewness were extracted from
the captured scalp images. Classification was carried out
between nondandruff and dandruff scalps with the applica-
tion of machine learning algorithms including decision tree,
SVM, neural network, and extreme learning machine
(ELM). The highest accuracy of 87.5% was acquired via
SVM followed by neural network, decision tree, and ELM
with 83.3%, 79.16%, and 75.23% accuracies, respectively
[19]. A webcam and microscope camera sensor system was
proposed for executing a hair and scalp analysis with refer-
ence to the Norwood-Hamilton scale. K-means clustering
was applied, and the level of baldness was determined. The
results exhibited accuracy in the range of 71% to 84% for dif-
ferent circumstances such as oily scalp, swollen/red scalp,
and dry scalp [20].

The literature review demonstrates that no work has been
done with hair images for identification of alopecia areata
(hair disorder). Previous work has been carried out with der-
moscopic and scalp images. Similar image preprocessing
steps were used in [16]; however, the study made use of scalp
images and applied only SVM with 85% accuracy. Further-
more, feature extraction techniques were also different in
[16] as compared to our proposed framework. Hence, our
work demonstrates a novel and innovative framework for
classifying alopecia areata using color, texture, and shape as
features and SVM and KNN as classification algorithms.

3. Materials and Methods

3.1. Datasets

3.1.1. Healthy Hair Image Dataset. A total of 200 healthy hair
images have been retrieved from the Figaro1k dataset. Fig-
aro1k is a publicly available dataset containing different clas-
ses of hair images such as straight, wavy, and curly [24]. A
normalization procedure has been applied on the dataset to
ensure that the size and the aspect ratio of every image are
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Table 1: Sample input images of alopecia areata and healthy hairs.

Classes Images

Alopecia areata

Healthy hair
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the same [24]. Table 1 lists a few healthy hair images from the
Figaro1k dataset that have been utilized in this study.

3.1.2. Alopecia Areata Image Dataset. A total of 68 hair
images of alopecia areata are retrieved from the Dermnet
dataset. The dataset available on Dermnet comprises of
twenty-three categories of dermatological diseases, including
alopecia areata [25]. Another type of disease images includes
that of eczema, seborrheic keratoses, tinea ringworm, bullous
disease, poison ivy, and psoriasis [25]. Table 1 illustrates a
few alopecia areata images that we utilized.

3.2. Proposed Framework with SVM and KNN. To ensure that
our data comprising the sample input images is organized
and error-free, the dataframe function from Pandas Python
Library is utilized to eliminate unwanted rows and columns
and to clean the images. The code is written using Python
on a Linux workstation utilizing the TensorFlow package
with NVidia Titan GPU. The classification technique is exe-
cuted with the aid of two machine learning methods, support
vector machine (SVM) and k-nearest neighbor (KNN). The
proposed flow process of the classification framework is
exhibited in Figure 1. It starts initially with the input sample

Table 1: Continued.

Classes Images
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images of healthy hairs and alopecia areata. This is followed
by image enhancement process that permits getting rid of
any unwanted deformation in the images. Following image
enhancement, image segmentation and edge detection are
carried out. Furthermore, three features, namely, color, tex-
ture, and shape, are extracted, and the classification process
is executed. Empirical studies represent that more reliable
results can be acquired if 20-30% of data is used for testing
and 70-80% for training [26]. Hence, in this study, 70% of
the images have been used for model training and the
remaining 30% are utilized for testing. The end result is the

classification of an image into alopecia areata (class 0) or
healthy hairs (class 1).

3.3. Image Preprocessing

3.3.1. Image Enhancement. The technique of image enhance-
ment relates to improving the contrast, brightness, and the
pixel luminance values [27]. In this study, the sklearn.prepro-
cessing library part of scikit-image processing that involves a
vast array of techniques for image enhancement and image
segmentation has been employed. The technique pertaining

Start

Healthy hairs image and
alopecia areata image

Image enhancement

Enhanced image

Image segmentation and
edge detection

Segmented 
image

Texture feature 
extraction

Color feature 
extraction

Shape feature 
extraction

Texture ColorShape

Classification

Classified alopecia 
areata image

Classified healthy 
hairs image

End

Figure 1: Proposed flow process of the classification framework.

5Computational and Mathematical Methods in Medicine



to histogram equalization is used to enhance the sample
input images. Histogram equalization (HE) tends to improve
areas of lower local contrast and enhances the intensities that
ultimately lead to increase in the global contrast of the sample
input images [28]. In our study, histogram equalization (HE)
is executed by converting the RGB image into an equivalent
hue-saturation-value (HSV) image format. Histogram equal-
ized intensity matrix is produced, and the image is enhanced.
This is exhibited by Figures 2 and 3 demonstrating the sam-
ple image of alopecia areata and healthy hair before and after
histogram equalization, respectively.

3.3.2. Image Segmentation and Edge Detection. The image
segmentation operation pertains to dividing the constituents
of an image into desired fragments or sections that have sim-
ilar features like texture, intensity, and pixel values [29]. In
this study, image segmentation has been carried out via the
resize operation and edge detection. The resize operation
resizes an image by a given scaling factor or dimension. In
this study, the resize dimension was set to 64; hence, a seg-
mented output image with a dimension factor of 64 was gen-
erated. A major technique of image segmentation is edge
detection. Edge detection is used to identify curves in an
image that follow a path pertaining to rapid change in the
intensity of the image [30]. In this study, the antialiasing
technique in relation to edge detection and as part of the
scikit-image processing library of Python has been utilized.
The antialiasing operation is set to true to denote that the
rough edges in the images are smoothened. Figures 4 and 5
show sample images of alopecia areata and healthy hair
before and after edge detection, respectively.

3.4. Feature Extraction. Our study involves the extraction of
three features of color, texture, and shape from each input
sample image. The libraries of Python used for color, shape,
and texture feature extraction include cv2 and skimage.

3.4.1. Color Feature. In this study, the images have been con-
verted to a NumPy array involving a list of color pixel values
of RGB. The cv2 library is used to compute the mean of each
of the three color channels including red, green, and blue.
The first mean value that the cv2 library generates is of the
blue channel, the second is of the green channel, and the
third relates to the red channel. The cv2 library stores RGB
images as NumPy array in a reverse order; hence, the first
value corresponds to the blue channel, the second to the
green channel, and the third value to the red channel.

3.4.2. Texture Feature. As part of this study, the skimage
library and the cv2 library of Python have been imported to
exploit scikit’s image processing capability. Local Binary Pat-
terns (LBPs) are employed as texture descriptors to compute
the local representation of the texture feature. The local rep-
resentation that aids in extracting the texture feature is con-
structed by comparing each pixel of the image with its
surrounding neighborhood of pixels. The texture is extracted
using LBPs, where gc is the intensity value of the central pixel
and gp is the intensity of the neighboring pixel with index p

as specified in the following equation:

LBP gpx, gpyð Þ = 〠
p−1

p=0
S gp − gcð Þ × 2p: ð1Þ

The function S can be expressed as

S xð Þ =
1 if x ≥ 0

0 if x < 0

( )
: ð2Þ

3.4.3. Shape Feature. The OpenCV library of Python that has
been imported in our study utilizes Hu moment shape
descriptor to extract the shape feature, where h denotes the
computed Hu moment and η represents the normalized cen-
tral moment. The Hu moment shape descriptor is exhibited
in Equation (3) and Equation (4). Central moment is
involved in the computation of Hu moments as they shift
the center of the image to the centroid region. Furthermore,
Hu moments incorporating central moments tend to be
invariant to translation, scale, and rotation that help in the
extraction of the shape feature. Hu moments are able to
extract shape features by quantifying the outline of the sam-
ple input images thus yielding the NumPy array form of the
images. Finally, the flatten operation flattens the NumPy
array to produce the shape feature vector.

hO = η2O + ηO2, ð3Þ

h1 = η2O − ηO2ð Þ2 + 4η211: ð4Þ
3.5. Classification. In this study, support vector machine
(SVM) and k-nearest neighbor (KNN) have been utilized
for classifying healthy and alopecia areatahair images into
their accurate classes. Figure 6 depicts the architecture of
our framework, including the training and testing phases.
The initial steps in the framework are concerned with image
preprocessing and feature extraction. This is followed by
model training with machine learning algorithms and then
execution of the testing phase.

3.6. Mathematical Operations of Classifiers

3.6.1. Mathematical Operations of SVM. Support vector
machine (SVM) determines the linear and nonlinear separa-
bility with the aid of a hyperplane [31]. Its kernel method
transforms two-dimensional nonlinearly separable data into
higher dimensions that yield the optimal hyperplane to sep-
arate the data [32]. The kernel trick employs the multiplica-
tion of a kernel function k with the dot product xi · xj as

Before HE After HE

Figure 2: Sample outcomes of HE for alopecia areata.
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represented by

max
∝

〠
m

i=1
∝i −

1
2
〠
m

i=1
〠
m

j=1
∝i∝jyiyjK xi · xj

� �
: ð5Þ

In this study, the radial basis function (RBF) has been
used as the kernel function. It is also referred to as the Gauss-
ian kernel and contains a parameter γ as shown in the follow-
ing equation:

K xi:xj
� �

= exp −γ xi −k xj
��2� �

: ð6Þ

3.6.2. Mathematical Operations of KNN. The k-nearest
neighbor algorithm pertains to finding the nearest neighbors.
The process involves finding the nearest point that lies close
to the input point in a given dataset [33]. In this study, the
neighbors are specified as three which denotes that for every
new input data, the three closest neighbors will be evaluated
for classification. The algorithm initially analyzes the Euclid-
ean distance that transforms data points into mathematical
values.

The Euclidean distance formula in Equation (7) finds the
distance between two points in a plane with coordinates (x, y)
and (a, b).

dist x, yð Þ, a, bð Þð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − að Þ2 + y − bð Þ2

q
: ð7Þ

3.7. SPSS Analysis. The paired sample T-test was performed

via Statistical Package for Social Sciences (SPSS), IBM SPSS
Statistics for Windows, Version 22.0. Armonk, NY: IBM
Corp., on the accuracies generated from both SVM and
KNN. The number of accuracy samples for both the algo-
rithms was thirty.

4. Results and Evaluation

4.1. Performance Evaluation. The performance evaluation of
support vector machine (SVM) and k-nearest neighbor
(KNN) is evaluated using confusion matrices. The confusion
matrix exhibited in Figure 7 demonstrates the predicted out-
comes for the two classes. The two classes, alopecia areata
and healthy hairs, have been denoted by 0 and 1, respectively.
When the actual value is 1 and the predicted value is also 1,
then the outcome is true positive (TP); otherwise, the out-
come is false negative (FN). On the contrary, when the actual
value is 0 and the predicted value is also 0, then the outcome
is true negative (TN); otherwise, false positive (FP) is
generated.

Figure 8 exhibits the confusion matrix formulated after
application of support vector machine (SVM) and represents
that out of the 81 images tested, 74 images were classified
accurately, thus yielding an accuracy of 91.4%. 22 images
were classified as alopecia areata, and 52 images were classi-
fied as healthy hairs.

Figure 9 exhibits the confusion matrix generated after the
application of k-nearest neighbor (KNN) and shows that out
of the total 81 images tested, 72 images were classified accu-
rately, thus yielding an accuracy of 88.9%. 24 images were
classified as alopecia areata, and 48 images were classified
as healthy hairs. The reported accuracies were achieved after
10-fold cross-validation.

The performance and classification results for SVM and
KNN are shown in Table 2. The accuracy for both SVM
and KNN can be calculated by dividing the number of truly
classified images by the total number of test images and mul-
tiplying the result with 100 as expressed in the following
equation:

Accuracy = TP + TN
FP + FN + TP + TN

× 100%: ð8Þ

Equation (9) demonstrates the results obtained via SPSS
analysis.

t 29ð Þ = 4:744,

p < 0:001:
ð9Þ

4.2. Performance Metrics. The sklearn library in Python helps
to compute the true positives and false positives and true neg-
atives and false negatives [34]. Classification techniques
encapsulate classification metrics, namely, precision, recall,
and F1 score. Precision relates to the ability of a classifier to
be precise, i.e., its capacity to not to mark a positive circum-
stance that is actually negative. Recall is the ability of a clas-
sifier to identify all the true positives. Recall can be defined
for each class as the ratio of true positives to the summation
of true positives and false negatives [35]. F1 score can be

Before HE After HE

Figure 3: Sample outcomes of HE for healthy hair.

Original image Edge detection 

Figure 4: Sample outcomes of edge detection for alopecia areata.

Original image Edge detection 

Figure 5: Sample outcomes of edge detection for healthy hair.
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defined as a score that exhibits the relationship between pre-
cision and recall [35]. In order to evaluate and analyze the
effectiveness of the classification framework, the perfor-
mance metrics shown in Equations (10), (11), and (12)
including precision, recall, and F1 score were employed,
where TP is true positive, TN is true negative, FP is false pos-
itive, and FN is false negative. The values of these perfor-
mance metrics have been computed as per their formulas

and are represented in Table 3.

Precision =
TP

TP + FP
× 100%, ð10Þ

Recall =
TP

TP + FN
× 100%, ð11Þ

F1 score =
2 ∗ precision ∗ recall
precision + recall

× 100%: ð12Þ

5. Discussion

5.1. Principal Findings. The objectives of this study were to
extract the color, texture, and shape features from healthy
and alopecia areata hair images and apply machine learning
algorithms including support vector machine (SVM) and k
-nearest neighbor (KNN) to execute classification of the
images. SVM can classify linear and nonlinear data by gener-
ating a line or a hyperplane [31]. The RBF kernel method
employed in our study aids to transform the data that yields
the optimal hyperplane and in turn generates higher accu-
racy. On the contrary, KNN uses the Euclidean distance
function to compute the probability of the test inputs that
are closer to the data points [36]. Our study demonstrates
better performance of SVM as compared to KNN when clas-
sifying hair images into healthy versus alopecia areata.

Other systems that have used the same machine learning
techniques have also shown higher accuracies. For example, a
skin lesion classification system based on support vector
machine (SVM) and k-nearest neighbor (KNN) resulted in
the accuracies of 89.50% and 82.00% for support vector
machine (SVM) and k-nearest neighbor, respectively [37].
In another study, dermoscopic images were utilized for the
classification of skin cancer using support vector machine
(SVM), k-nearest neighbor (KNN), and random forest. The
results demonstrated that support vector machine (SVM)
performed better than the other two classifiers [38]. Better
performance of support vector machine (SVM) lies in its
mathematical operations. Hence, it can be deduced that the
higher accuracy of 91.4% by support vector machine (SVM)
is due to the use of kernel function that transforms the data
into higher dimensions and yields the optimal hyperplane.

Hair image
(Alopecia areata)

Image 
preprocessing

Image 
enhancement, 
segmentation 

and edge 
detection

Feature 
extraction

Color, texture 
and shape 
features 
extracted

ML 
algorithms 

applied 
including SVM 

and KNN

Training 
phase with 
70% of data 

Trained 
model

Testing phase
with 30% of

data

Alopecia 
areata 

(Class 0)

Output: 
classified 

image

Healthy hair 
(Class 1)

Hair image
(Healthy hair)

Figure 6: Architecture of the proposed framework. Top left: sample input images of alopecia areata and healthy hairs. Turquoise block: image
preprocessing. Orange block: color, texture, and shape feature extraction. Purple block: SVM and KNN application. Green block: training
phase. Pink block: testing phase.
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Figure 7: Confusion matrix.
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Figure 8: Confusion matrix of SVM illustrating the classified
images of both alopecia areata (class 0) and healthy hairs (class 1).
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The strength of our proposed framework lies in being the
first of its kind to classify alopecia areata and healthy hairs
using hair images. The limitation of this study includes
applying machine learning (ML) techniques on a limited
dataset with no clinical data being collected. Nevertheless, it
has been widely observed that deep learning techniques such
as convolutional neural network (CNN) tend to generate
high accuracies [39]. Furthermore, deep learning applica-
tions do not involve image preprocessing and feature extrac-
tion [39, 40]. An intelligent scalp analysis system was
proposed employing convolutional neural network (CNN),
and results exhibited accuracy of 89.77% [18]. Hence, future
work can be carried out using CNN so that even better clas-
sification performance can be achieved.

6. Conclusion

This study proposed a classification framework for healthy
hairs and alopecia areata using hair images with features
including color, texture, and shape being extracted and sup-
port vector machine (SVM) and k-nearest neighbor (KNN)
being applied. The application of support vector machine

(SVM) and k-nearest neighbor (KNN) presented an accuracy
of 91.4% and 88.9%, respectively. These accuracies exhibit
that the proposed classification framework has been found
to be successful and robust in classifying two different sets
of hair images. However, future work with deep learning
techniques such as convolutional neural networks (CNN)
can also be carried out and integrated with the existing
system.
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Histological analysis to tissue samples is elemental for diagnosing the risk and severity of ovarian cancer. The commonly used
Hematoxylin and Eosin (H&E) staining method involves complex steps and strict requirements, which would seriously impact
the research of histological analysis of the ovarian cancer. Virtual histological staining by the Generative Adversarial Network
(GAN) provides a feasible way for these problems, yet it is still a challenge of using deep learning technology since the amounts
of data available are quite limited for training. Based on the idea of GAN, we propose a weakly supervised learning method to
generate autofluorescence images of unstained ovarian tissue sections corresponding to H&E staining sections of ovarian tissue.
Using the above method, we constructed the supervision conditions for the virtual staining process, which makes the image
quality synthesized in the subsequent virtual staining stage more perfect. Through the doctors’ evaluation of our results, the
accuracy of ovarian cancer unstained fluorescence image generated by our method reached 93%. At the same time, we evaluated
the image quality of the generated images, where the FID reached 175.969, the IS score reached 1.311, and the MS reached
0.717. Based on the image-to-image translation method, we use the data set constructed in the previous step to implement a
virtual staining method that is accurate to tissue cells. The accuracy of staining through the doctor’s assessment reached 97%. At
the same time, the accuracy of visual evaluation based on deep learning reached 95%.

1. Introduction

Computer-aided medical diagnosis is a hot topic nowadays.
In recent years, researchers devoted to the issue in this direc-
tion and achieved excellent research outcomes. Some studies
[1–5] established spiking neural networks to simulate biolog-
ical metabolic processes, infer the final physiological calcula-
tion results, and obtain the final diagnosis solution. Some
studies [6–10] rely on the idea of deep learning to build a
deep neural network model to complete the diagnosis of
patients based on the characteristics of various medical data.
The above methods have achieved extraordinary accuracy
and efficient treatment for specific medical domain.
However, few studies have focused on the preparation and
labeling of medical data. At present, traditional medical data

preprocessing methods can no longer meet the needs of intel-
ligent diagnosis with large data volumes.

The ovarian cancer is a global problem, is typically diag-
nosed at a late stage, and has no effective screening strategy
[11]. Microscopic imaging of tissue samples is the basis for
subsequent diagnosis and prognosis of cancer. H&E staining
and labeling of tissue samples can better help locate suitable
cancer tissues and perform subsequent analysis, diagnosis,
and prognosis. Therefore, strict control of tissue section stain-
ing standards will significantly enhance the final diagnosis
and prognosis results. However, the traditional histopatho-
logical section staining process involves many standard oper-
ating steps, and each technician must strictly adhere to these
gold standards. These methods are often time-consuming
and laborious and often have higher requirements. The
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histological tissue appearance may assume different color
intensities depending on the staining process, operator ability,
and scanner specifications [12]. The above problems will
seriously harm the analysis of the disease pathology of the
tissue and the events of the disease prognosis. Many coping
strategies have been established to improve the success rate
and quality of tissue staining in clinical trials. Massimo et al.
[12] presented a novel fully automated stain separation and
normalization approaches forHematoxylin and Eosin stained
histological slides to improve the contrast between histologi-
cal tissue and background and preserve local structures with-
out changing the color of the lumen and the background.
Mario et al. [13] used experiments to clarify Eosin-based fluo-
rescence spectroscopy can be used to directly examine H&E
stained tissue slides. Relevant areas can be imaged and spectral
analysis done to obtain objective data. The abovemethod does
solve the problems of low accuracy and poor effect in tradi-
tional staining to a certain extent. However, the first method
still cannot avoid the strict and complicated processing steps
of the traditional method. Although the second method uses
a more novel method of labeling pathological tissues, the use
of H&E staining analysis is still the mainstream processing
method for pathology research today. The popularization
and promotion of this program are still a long process.

We propose to construct a computationally staining and
labeling algorithm for H&E staining of the ovarian cancer
tissue sections. This method can effectively avoid the compli-
cated steps of H&E staining of traditional ovarian cancer
tissue sections and make up for the diagnosis tension caused
by the lack of data. Rivenson et al. [14] proposed a virtual
staining method for pathological sections based on deep
learning. They placed the fresh tissue section on a fluores-
cence microscope to observe the autofluorescence imaging
of the tissue sample and then stained and labeled the sample
to obtain the corresponding stained image. After repeating
the above work, a huge data set is constructed, and then, a
deep learning model is performed to complete the feature
learning from unstained samples to stained samples. How-
ever, the above method requires a large number of tissue
samples from the patient and cannot be effectively imple-
mented under multiple limited conditions. At the same time,
the process of data construction still cannot completely get
rid of the traditional H&E staining process.

To solve the problems above, we firstly proposed a weakly
supervised image generation algorithm based on the
CycleGAN model [15], which generate the corresponding
unstained image for the stained ovarian sections.
Figure 1(a) shows the overview of this domain translation
method. We introduce the domain consistency loss based
on the original CycleGAN model, to ensure that the results
after the cycle generation are accurately matched to the spe-
cific domain. The introduction of input buffers can better
magnify the effect of domain consistency loss. We only
collected 400 H&E staining images of ovarian cancer and
80 autofluorescence images from other tissues as the experi-
mental data set. From the experimental results, it can be seen
that under such extremely inconsistent distribution condi-
tions, the construction of H&E staining images to corre-
sponding unstained images can be completed based on our

method. The data set constructed by the above method can
provide a good data guarantee for this goal. Figure 1(b) shows
the overview of the virtual staining process. We analyzed
whether the state-of-the-art image translation model can be
effectively used in this experimental environment, but it is a
pity that although these methods have some effects, they can-
not meet our requirements for absolute fineness. Therefore,
we made improvements on the traditional UNet basic frame-
work [16] and proposed the Parallel Feature Fusion Network
(PFFN). At the same time, we introduced a more superior
training method to better fit the model to the optimal state.
Compared with the traditional image translation method,
the quality of the image generated by our improved image
translation method is superior.

In this work, we mainly solved two problems. The first is
that due to the limited number of pathological tissue samples,
we provide a method for constructing a virtual data set com-
posed of autofluorescence imaging of ovarian cancer patho-
logical tissues and corresponding H&E staining imaging.
Using our method, limited ovarian tissue images can be
augmented with high quality in a short time. Next, based
on our augmented data, we propose a virtual staining
method. Using this method can swiftly and efficiently execute
virtual staining of ovarian cancer pathological slices, and the
quality of the generated virtual stained images is guaranteed.
We have also compared with previous methods; the latter
cannot exceed our proposed method in terms of image qual-
ity or evaluation accuracy. Our Code is available at https://
github.com/menggerSherry/ImageStain.

2. Materials and Methods

2.1. Related Work

2.1.1. Generative Adversarial Network. Generative Adversar-
ial Networkwasfirst proposed byGoodfellow et al. [17].Differ-
ent kinds of GANs model have shown its remarkable data
generation especially in the computer vision domain. Recently,
successful research such as image generation [18–20], image-
to-image translation [15, 21, 22], and superresolution [23, 24]
shown remarkable result. Traditional structure of GAN con-
tains two networks: a generator and a discriminator. The gen-
erator learns from a random noise to images which is same as
the train set. The discriminator learns to distinguish the real
image in the data set and the fake image generated by the gen-
erator. The propose of the idea of GAN can produce better
image results through the continuous adversarial training
between the generator and the discriminator. However, there
are still some problems in GAN training, such as unstable
training and model collapse.

2.1.2. Conditional GANs. Traditional GAN model has shown
very powerful data generation capabilities. However, we can-
not artificially control the generation state of GAN and let the
model generate the image we need. Mirza and Osindero [25]
successfully solved this problem. Many researchers control
GAN to generate data purposefully by imposing some condi-
tions in training and introduce many conditional GAN
models. Researchers have made many improvements to
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conditional GAN, making conditional GAN widely used.
Research on the conditional GAN is widely welcomed in
the face editing [26], domain transfer [27], and photo editing
[28]. Today’s conditional GAN has not only been widely used
in the direction of computer vision but also began to receive
attention in audio and language processing. As conditional
GAN has been widely used, its problems have gradually
emerged. During the training process, it is easy to fit only
to several optimal directions, which eventually leads to the
collapse of the model and loss of model diversity. At the same
time, in the training process, user cannot control the training
progress of the generator and the discriminator, making
GAN very unstable during the training process.

2.1.3. Improvement of GAN. Model collapse and training
instability seriously affected the final experimental results.
There are many aspects of research that have begun to solve
these two fatal problems and have achieved good results.
Raford et al. [20] use deep convolutional networks to design
generators and discriminators and adopt batch normaliza-
tion. The proposal of DCGAN solves the problem of unstable
training and the model collapse. At the same time, applying
CNN to the network structure can better adapt to the pro-
cessing of images. Martin et al. [18, 19, 29] analyzed in detail
the reasons for the collapse of the GANmodel and the unsta-
ble training. They modified the loss of the original GAN to
Wasserstein loss [18] and added a gradient penalty [19] so
that the GANmodel completely avoided these two problems.

2.1.4. Image-to-Image Translation. The image-to-image
translation has been a hot topic since GAN was proposed.
Because of the wide range of uses of this type of problem,
many researchers have begun research in this field. This issue
was first raised by Isola et al. [21]. They modified the condi-
tional GAN and finally achieved excellent image translation

results. Today, image translation has achieved remarkable
results in domain translation [15, 26], superresolution image
synthesis [22, 30], video synthesis [31], etc. The problem we
are facing now is the H&E staining of ovarian cancer patho-
logical slices. Inspired by the above successful cases, we used
the idea of conditional GAN to improve a new network struc-
ture and training strategy and finally realized this virtual
staining of ovarian cancer. Through the final verification
stage, we found that significant success has been achieved
in both efficiency and effectiveness.

2.2. Construction of the Paired Data Set. Our goal is to finish
the accurate staining of ovarian cancer tissue. This means
that every cell structure can be accurately stained. Therefore,
we intend to build a fully supervised image to image transla-
tion model. With reference to the method of Rivenson et al.
[14], the unstained image is obtained by placing a fresh tissue
section of ovarian cancer in a fluorescence microscope for
direct observation. Then, performing elaborate staining on
this fresh tissue to get the stained image. In this way, each
unstained image corresponds to a stained image as a label.
It is indeed feasible to construct a perfect data set by repeat-
edly conducting the above steps. The work of Rivenson et al.
did give marvelous results. But when we implement their
idea, we found that collecting so many fresh sections in a
short time is indeed not an easy task, and it is laborious
and tiring to do these jobs repeatedly. There is also a problem
that the data set is limited. We have a large number of H&E
staining images of ovarian cancer, but the number of autoflu-
orescence images of fresh slices is very rare, which makes the
distribution of the two sets of data very uneven. Due to some
of the above problems, we decided to abandon the method of
Rivenson et al. and propose a deep learning method to
complete the construction of the above-paired data set under
limited supervision conditions.

Generated unstained
autofluorescence image

Generator
network

Generator
network

Generator
network

Cycle consistency
loss

Domain consistency network

(a) Dataset construction (b) Virtual staining

Random pop

Input bufferH&E stained
tissue image

Construct paired
dataset

Paired dataset

DiscriminatorDiscriminator

True or false

True or false

True or false

Figure 1: Overview of this virtual staining process: (a) the overview of this domain translation method; (b) overview of the virtual
staining process.
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2.2.1. CycleGAN Baseline. Unpaired image to image problem
is an important problem. In many cases, building a paired
data set takes a lot of time and work, but using unpaired
image to image translation can avoid time-consuming data
collection. The CycleGAN proposed by Zhu et al. [15] is a
good model to solve such problems. Zhu et al. proposed a
cycle consistency loss, kFX⟶Y ðGY⟶X ðxÞÞ − xk1,
kGY⟶X ðFX⟶Y ðxÞÞ − xk1 finished the translation of the
domain X and the domain Y . Using this unsupervised
method can effectively achieve conversion between two dis-
tributed data. But as mentioned above, the data distribution
between our existing two domains is extremely uneven. In
our experiment, we used the CycleGAN model to complete
the data construction, but the results were very disappointing.

Figure 2(a) is the result of training using the CycleGAN
model. We can see that there are a large number of sharp
holes in the image. The input stained image’s positions corre-
sponding to these holes have normal textures, indicating that
this model cannot effectively learn the features correspond-
ing hole domain. We then introduce a large number of data
augmentation methods based on the original CycleGAN,
such as random jitter, random horizontal and vertical flips,
random jitter rotation (first interpolate and zoom, then ran-
domly rotate a small angle, and finally crop to the original
image size), and elastic deformation [16]. We can observe
the results as shown in Figure 2(b). The number of cavities
is obviously reduced, and the overall image quality has been
slightly improved, but the existence of cavities is still not
completely resolved.

We zoomed on the position of the hole as shown in
Figure 2(c). It can be found that the generator and discrimi-
nator in these positions did not play their role at all. We
hypothesis that the feature distribution of the unstained
image domain is sparser than the stained image domain’s.
The essence of domain to domain translation is to learn the
features of images in a domain and then translate these fea-
tures based on the supervision of the image feature rules of
the target domain. Based on the above assumptions, when
converting from a stained domain to an unstained domain,
the features of the stained domain learned by the generator
may be difficult to be reasonably represented by the limited
positive sample image features of the unstained domain
distribution. This will affect the discriminator’s training on
the area where these features are located. The generator
synthesized a black hole in this area, which can make the dis-
criminator think it is true, resulting in a train mode collapse
in this area. With continuous training, the effect in areas with
sufficient supervised positive sample features is getting better
and better; this area remains unchanged, and the black hole
continues to become obvious.

2.2.2. Domain Consistency Network. When data augmenta-
tion is introduced, the number of samples theoretically
increases, but with the increase in the number of data aug-
mentation methods introduced, many augmented images
may appear only a few times during training, which will
cause the underfitting issue. We therefore introduce an input
buffer to store the input image after a large amount of data
augmentation and then randomly select the input image

from the buffer as the input of the network. At the same time,
in order to enhance the fitting ability of the network, we
introduce the domain consistency loss. Specifically, a domain
consistency discriminator is introduced to distinguish which
domain the image belongs to. It participates in the training
with the generator. In this way, through continuous training,
the generator can synthesize images that are more accurate to
a specific domain.

Figure 3 describes the structure of the domain consis-
tency network and its training process. Where SepConv is
the Deep Separable Convolution, LReLU is the LeakyReLU
activation operation. The network first downsampling the
input image on both sides three times to extract the effective
features of the image, then fuses the two features and per-
forms a series of convolution layers with 1 × 1 kernel to
extract relevant information from the fused features and
obtain a single-channel result. We ensure that the output
dimension of the network is the same as the output dimen-
sion of the discriminator. In this way, real images with a large
amount of data augmentation are first pushed into the buffer,
and then, the buffer randomly selects two batches of images
as the real image input of the domain consistency network.
The domain consistency network learns that they belong to
the same domain. The image generated by the generator
and the real image randomly selected from the buffer are
used as the input of the domain consistency network, and
the network learns to distinguish that they belong to different
domains. While learning to fool the discriminator, the gener-
ator also needs to fool the domain consistency network so
that the domain consistency network thinks that the gener-
ated image and the real image are in the same domain.

We define the mapping G1 : X⟶ Y as the conversion
process from the stained image domain X to the unstained
image domain Y , and its corresponding domain consistency
network isC1. We can describe the domain consistency loss as:

L G1, C1, X, Y1, Y2ð Þ = Ey∼pdata yð Þ C1 Aug Y1ð Þ, Aug Y2ð Þð Þð Þ2� �
+ Ex∼pdata xð Þ 1 − C1 Aug Y1ð Þ,G1 Xð Þð Þð Þ2� �

:

ð1Þ

The Aug in Equation (1) represents the corresponding
data augmentation; AugðY1Þ and AugðY2Þ, respectively, rep-
resent the unstained image randomly selected from the input
buffer after the augmentation transformation. Here, G1 tries
to generate an unstained image G1ðxÞ that is very close to
the representative AugðY1Þ of the unstained image domain,
and C1 tries to distinguish whether the two input images
AugðY1Þ and AugðY2Þ are in the same domain. Like the idea
of adversarial training,G1 tries to minimize the objective func-
tion of equation; C1 tries to maximize the objective function of
Equation (1), which is expressed asminG1

maxC1
LðG1, C1, X,

Y1, Y2Þ. Similarly, to ensure the balance of training, we use
minG2

maxC2
LðG2, C2, Y , X1, X2Þ to represent the domain

consistency loss affecting the stained image.
The image shown in Figure 2(d) is the result of the

unstained image synthesized by the generator after we intro-
duce the domain consistency network. It can be found that
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compared with the results of the first two models, the result
of Figure 2(d) is closer to the real image domain, the image
quality has been significantly improved, and the sharp holes
have become significantly smoother. Yet it is extremely
frustrating that the issue of sharp holes has not been
completely solved, and there are still unmatched black areas
in the generated image.

2.2.3. Modification of the Generator Network Structure. Let
us revisit the reasons for the formation of sharp holes. A
similar problem also occurred in the experiment of Karras
et al. [32–34]. They observed that most images generated

by StyleGAN [33] exhibit characteristic droplet-like artifacts
that resemble water droplets. They think it is caused by the
AdaIN problem in StyleGAN, and then, they canceled the
normalization operation in StyleGAN2 [34], so that
droplet-like artifacts can be effectively solved. The generator
of the traditional CycleGAN model adopts the network
structure proposed by Johnson et al. [35]. The design idea
of the network is to perform deep feature fusion of the
sampled feature maps by stacking residual blocks. And
CycleGAN uses Instance Normalization after each convolu-
tion operation. Combined with the hypothesis of Karras
et al., we believe that the key issue lies in Instance

Generator

(a) CycleGAN (b) Improved CycleGAN (c) Cavity area (d) Ours (e) Ours SeparableConvH&E stained image

Figure 2: Comparison of the results of using different trained models to construct data sets: (a) results generated by CycleGAN model; (b)
results synthesized by the improved CycleGAN model; (c) enlarge some cavity area of the synthesized image; (d) results after introducing
domain consistency network training; (e) result of using our modified generator structure and domain consistency network.
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Figure 3: Training the domain consistency network.

5Computational and Mathematical Methods in Medicine



Normalization. Instance Normalization is to normalize each
layer of feature maps separately, which may ignore the cor-
relation between each layer of feature maps to a certain
extent. Meanwhile, due to the structural particularity of the
residual block, directly summing the residual and the result
after convolution is likely to amplify the effect of Instance
Normalization, thus creating this kind of hole.

We made a simple design on the basis of the original
generator to completely solve this problem. Since Instance
Normalization may affect the correlation between feature
maps, we enhance the correlation of the network’s feature
channels. We first use the Xception block [36] instead of
the original residual block. Xception block uses a depth-
wise separable convolution, which is mainly composed of
depth-wise convolution and point-wise convolution. The
benefit of the depth-wise separable convolution is that the
convolution’s spatial correlation and the feature map channel
correlation are operated separately, which reduces the
number of training parameters and improves the influence
of the convolution on the channel correlation. Next, in order
to completely eliminate the problem of Instance Normaliza-
tion, we replace the convolution operation in the upsampling
process and downsampling with depth-wise separable
convolution operation. Through the above modifications,
we believe that the new generator can completely avoid the
cavity problem.

Figure 2(e) is the inference result after training with the
improved generator network. We can see that we have
completely solved the hole problem, and the image quality
was further enhanced. At the same time, through quantitative
evaluation, we conclude that this method can construct a
good unstained data set. We evaluated the quality of images
generated by different methods, and the test results are
shown in Table 1. From the evaluation results in the table,
we can see that the quality of the images generated by our
method far exceeds the state-of-the-art method. At the same
time, we also submit the generated data to the doctor to
judge, so that the doctor can distinguish the authenticity of
the generated image. We have prepared 400 unstained
images generated by different methods to allow doctors to
judge the images within the specified time. According to
the number of correct images, we can get the accuracy. The
correct rate of each trial we recorded is shown in Table 2. It
can be found that the accuracy of the images obtained by
the previous methods is very low. Our analysis is due to the
influence of the black holes in the generated images. When
there are black holes in the generated image, the doctor will
naturally distinguish the difference from the real image and
consider the image to be a fake image. This may be why when
we completely solve the hole problem, the accuracy of the
image is doubled.

2.3. A Virtual Staining Method Specific to Tissue Texture.
Through the above methods, we successfully constructed
the paired data set composed of unstained images and
stained images. We thus can regard virtual staining as an
image-to-image translation problem. Today, many mature
algorithms in the field of image-to-image translation have
produced amazing results, yet whether these algorithms can

be directly applied to this special domain remains to be veri-
fied. What we want is an image translation that is accurate to
the tissue, so we need to build a more accurate image-to-
image translation algorithm. In order to achieve this goal,
we have made many modifications to the loss function,
network structure, and training strategy.

2.3.1. The Review of Image-to-Image Translation. Conven-
tional image-to-image translation algorithms are usually
based on the Pix2Pix baseline. Isola et al. [21] use UNet as
the generator and use the patchGAN structure discriminator
to discriminate images with accuracy to the patch. And the
L1 loss is introduced on the basis of the conventional GAN
loss to evaluate the pixel gap between the real image and
the generated image. UNet was originally a dedicated net-
work structure designed to handle cell structure segmenta-
tion tasks. It can effectively retain a lot of accurate and
detailed feature information through layer-by-layer skip con-
nections. At the same time, the patchGAN discriminator
reduces the receptive field of the image to be determined, so
that the discriminator has a stronger ability to distinguish
the details of the image, which also promotes the quality of
the generated image. We consider using the idea of Pix2Pix
to perfect the model so that the model can better apply to
the problems we are facing this time.

2.3.2. A UNet Structure-Based Generator. The essence of the
image translation task is that we input an image into the net-
work; the network can learn various features of the image and
then convert the original features of the image into the target
features. We can simply regard the feature as the information
that people can obtain by observing the image, specifically,
the information that can perceive after the pixel value of
the image is saw by the person. Therefore, the translation
process from an image with original features to an image with
another type of features can be conceded as the pixel value

Table 1: Comparison of the quality of unstained images using
different methods.

CycleGAN
Improved
CycleGAN

Ours
Ours (with

separable Conv)

IS ↓ 1.590 1.700 1.407 1.311

FID
↓ 471.421 360.029 235.410 175.969

MS
↓ 0.883 0.873 0.794 0.717

Table 2: Accuracy results of unstained images synthesized using
different methods.

CycleGAN
Improved
CycleGAN

Ours
Ours (with

separable Conv)

Doctor
1

12.50% 1.25% 24.25% 77.5%

Doctor
2

3.50% 5.50% 39.5% 86.5%

Doctor
3

0.00% 1.50% 55.50% 93.50%
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conversion of the image. From this perspective, image trans-
lation and semantic segmentation tasks are very similar,
which is why the generator networks in the earliest image
translation tasks (such as Pix2Pix [21]) are designed with
the help of UNet networks. The UNet network was first used
in the semantic segmentation task of the cell dimension. It
uses skip connection to allow the network to effectively learn
detailed features. Therefore, our task is also based on the
UNet structure to design generator.

The process of using convolution to extract image feature
values is a process of continuous dimensionality reduction of
image feature data. In this process, the network must selec-
tively learn to extract more representative features. On the
contrary, some low-frequency, nonrepresentative features
will be ignored in the feature extraction process. When we
directly sample the dimensions of features, the network can
only use these most representative features. In the process
of directly decoding from high-frequency features to the
target image, the network will ignore many low-frequency
features, which makes the generated image quality very
unsatisfactory. The introduction of skip connection is to fuse
these low-frequency features with the features of the restora-
tion process. This is why the image translation model using
the UNet network as the generator can achieve great results.

So why do not we directly tell the network what charac-
teristics we want to learn? We therefore deconstructed the
original UNet network and designed a new generator. We
call it the Parallel Feature Fusion Network (PFFN). Its
network structure is shown in Figure 4. The stained image
we input first enters the Average Pooling Sampling Block in
Figure 4(a), and the network will perform the sampling work
according to different sampling steps. Through the above
operations, we obtain sampled images at different scales.
Taking an input image with a size of 256 × 256 pixels as an
example, after sampling with steps 6, 5, 4, 3, 2, and 1, respec-
tively, the different scaled images with 8 × 8, 16 × 16, 32 × 32,
64 × 64, 128 × 128, and 256 × 256 are obtained. Through
continuous downsampling operations, the image will lose
many low-level aspects features but on the contrary can
retain many high-level features. For example, after we sample
a cell tissue image, we can see that the high-level aspect fea-
tures of the image such as the shape of the cell, but we cannot
see the low-level features that are lost after sampling, such as
the detailed structure within the cell.

After receiving the input images of six scales, we input the
images of each scale into the corresponding Parallel Feature
Extraction Block in Figure 4(b). Each feature extraction
network is designed based on the UNet structure, and the
detailed network implementation is shown in Figure 5. The
function of the FromRGB module in Figure 5(a) is to convert
the image into a feature map of 512-dimensional channels. In
the entire network, we stipulate that the feature map is 512
dimensions. We design three branches in FromRGB module,
and each branch adopts different sampling methods. Finally,
the feature maps of different sensory scales sampled by differ-
ent sampling methods are deeply fused and used as the input
of the improved UNet network in Figure 5(b).

Due to the different sampling scales of input images of
different scales, we design three UNet structures as the fea-

ture extraction network, named UNet2, UNet4, and UNet6,
respectively. The subscripts indicate the feature sampling
depth of the UNet. The network structure shown in
Figure 5 is UNet2. What differs from the traditional UNet is
that we added the additional skip connections. Unlike the
conventional UNet network, we have introduced additional
skip connections from the upper layer to the lower layer on
the UNet. As we mentioned, every time the network passes
through a convolutional layer, some low-frequency features
are lost. The original UNet skip connection only guarantees
the low-frequency feature transfer to the same layer, but the
lower layer may also need the low-frequency feature of the
upper layer. We therefore introduced a skip connection from
the upper layer to the lower layer so that the bottom layer can
also learn effective low-frequency features. This design is very
similar to the idea of UNet3+ [37], but we removed the skip
connection to the deeper layer. First of all, the number of
layers of our three UNet networks is not deep enough. The
introduction of so many skip connections may not be signif-
icantly improved. On the contrary, it will bring a greater
amount of calculation. This new structure diagram of UNet
is shown in Figures 5 and 6 where the red arrows indicate
the new skip connection we added. We usedUnet6 and UNet
as the generator to train the models separately and evaluate
the quality of the generated images. It can be seen from
Table 3 that the image quality generated by UNet6 is
improved compared with the traditional UNet, where the
FID decreased by about 2-3 and the Inception Score
decreased by about 0.01-0.04. However, the network depth
of UNet6 is only 6 layers, and the depth of UNet reaches 8
layers. It can be proved that UNet6 has a powerful feature
learning ability within a limited sampling field.

We specify that 8 × 8 and 16 × 16 input images useUNet2
network, 32 × 32 and 64 × 64 input images use UNet4 net-
work, and 128 × 128 and 256 × 256 input images use UNet6
network. In the process of continuous sampling of images
with 256 × 256 pixels to 8 × 8, the lower resolution image
retains the higher-level aspect features, which can be learned
by using the shallow network structure like UNet2. As the
image pixels increase, the UNet network structure continues
to deepen, and the effect of UNet will continue to be
highlighted. The low-level aspect features of high-resolution
images can be learned through the deeper network like
UNet4 and UNet6. In this way, the network can learn the
image features of each level of the sampling module accord-
ing to our wishes, and the resulting feature maps cover the
feature values of the image from coarse to fine. We finally
introduce an upsample process to continuously fuse these
features to obtain the final output image. In the process of
upsample, we also introduce skip connection to ensure the
feature of high-level aspects to propagate down better. Com-
pared with the traditional UNet network as the generator, the
network designed by us has a wider reception field, and the
image obtained has a stronger performance ability, while
covering all the characteristics of UNet. From Table 3, com-
pared with the image quality generated by UNet, the FID of
the image generated by using our PFFN network as a gener-
ator was reduced by about 3-9, and the Inception Score was
reduced by about 0.1-0.2. Compared with the image FID
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generated by UNet6, the FID was reduced by about 1-8, and
the Inception Score was reduced by about 0.1-0.2.

2.3.3. Choice of Loss Function. The most commonly used loss
functions of traditional GANs are cross-entropy loss and L2
loss. These loss functions have proven their feasibility in
GAN training through a large number of experiments. But
there are also many studies show that using these two loss
function optimization models in GAN’s training will cause
very terrible results. Moreover, many drawbacks of GAN,
such as mode collapse and training instability, are caused
by the use of these instable loss functions. We used this kind
of loss function to train in the experiment, yet the result is not
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what we expected. Therefore, choosing an appropriate loss
function is very important in this experiment.

In this experiment, we consider using two robust loss
functions: Wasserstein loss with gradient penalty [18, 19]
and Logistic loss [33] with R1 regularization [38, 39] as the
training loss function. Wasserstein distance is simple and
direct compared to the original loss function and highly
correlates with the quality of the synthesized image of the
generator. Using Wasserstein loss may be a good choice.
Logistic loss is applied in the StyleGAN paper by Karras
et al. [33]. He used this loss as the adversarial loss and gener-
ated the high-resolution face images. Both of these two loss
functions have very good performance. In order to verify
which loss function can be better applied to our virtual stain-
ing experiment, we use these functions to train the model and
evaluate the generator by the quality of the image. As shown
the results in Table 3, we find that the image quality synthe-
sized by the generator trained with the Wasserstein loss
(Equation (2)) is better.

Lgan G,D, x, yð Þ = Ex∼pdata xð Þ D x, G xð Þð Þ½ � − Ey∼pdata yð Þ,x∼pdata xð Þ
� D x, yð Þ½ � − λgpEx̂∼pdata x̂ð Þ ∇x̂ð D x̂ð Þk k2l2 − 1Þ2� �

:

ð2Þ

The traditional image translation model usually intro-
duce an additional L1 loss (Equation (3)) based on adversar-

ial loss; its function is to narrow the global gap between the
real image and the generated image. But the introduction of
this loss will make the image blurred and attenuate the qual-
ity of the generated image. To get a higher quality image, we
need a sturdy loss function to act on the generator. Wang
et al. [22] used the feature matching loss (Equation (4)) in
the high-resolution image translation task of the Cityscapes
data set and got flawless results. We introduced this loss into
the training of the generator and found that the effect has
been significantly improved through the final evaluation
results. According to the results of our experiment, we choose
Wasserstein loss in the adversarial loss, as shown in the
Equation (2), where Ex̂∼pdataðx̂Þ½kð∇x̂Dðx̂Þk2l2 − 1Þ2� represents
the gradient penalty for the x̂, which is the random interpo-
lating of the positive sample and the generated sample. In
order to reduce the global difference between the generated
image and the real image, we retain the L1 loss as shown in
Equation (3). In order to further improve the quality of the
generated image, we increase the feature matching loss, as
shown in the Equation (4), where N represents the number
of layers of the discriminator.

Lpix G, x, yð Þ = Ex∼pdata xð Þ,y∼pdata yð Þ y −G xð Þk kl1
� �

, ð3Þ

Lfm G,D, x, yð Þ = Ex∼pdata xð Þ,y∼pdata yð Þ

� 1
N
〠
N

i=1
D x, yð Þ −D x,G xð Þð Þk kl1

� �" #
:

ð4Þ
The model loss we finally get is expressed by the following

Equation (5). We use the gradient descent method to solve the
following equation: Gopt,Dopt = arg minG maxDLðG,D, x, yÞ.
Finally, we can get the optimal solution of the staining model.

L G,D, x, yð Þ = Lgan G,D, x, yð Þ + λpixLpix G, x, yð Þ
+ λfmLfm G,D, x, yð Þ:

ð5Þ

3. Results and Discussion

Through the above training, we have successfully generated
H&E staining of ovarian cancer pathological slices. Figure 7
is the result comparison between the generated virtual
stained image and the real H&E staining image. Intuitively,
the gap between the real and the fake is quite hard to distin-
guish, but for this method to be better used in medical prod-
ucts, we need to compose a series of evaluations on these
virtual stained images we generate.

3.1. Artificial Pathology Analysis. A successful virtual staining
section can express the correct pathological characteristics;
otherwise, it will seriously affect the doctor’s pathological
diagnosis. To evaluate the generated pathological slices more
subjectively, we invited three professional doctors to analyze
the difference between the image generated by our model and
the real image and evaluate whether the staining for these
images is successful. After evaluating each image, we can
roughly get the staining accuracy of our model. Since it is a

Table 3: Comparison of image quality using different loss functions
and generator network structures.

Network Loss function FID ↓ IS ↓

UNet

Ll2 57.6092 1.3405

Lwgan 54.1733 1.4687

Llogistic 56.1733 1.4687

Ll2 + Lfm 59.4684 1.4720

Lwgan + Lfm 58.1196 1.4720

Llogistic + Lfm 56.1639 1.4432

UNet6

Ll2 54.1436 1.3928

Lwgan 50.8299 1.4256

Llogistic 52.4708 1.3865

Ll2 + Lfm 51.3790 1.3907

Lwgan + Lfm 55.2754 1.4852

Llogistic + Lfm 49.3387 1.4073

PFFN (ours)

Ll2 54.8384 1.3835

Lwgan 49.1167 1.3903

Llogistic 49.6818 1.4124

Ll2 + Lfm 49.3575 1.3238

Lwgan + Lfm 47.0977 1.3505

Llogistic + Lfm 48.8730 1.2158
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heavy task to evaluate a large number of images, we only
randomly selected 200 images as the evaluation data, and
the final results obtained are shown in Table 4. According
to the doctor’s evaluation results in Table 4, the staining
accuracy of our method reaches 97%, which proves that our
method has achieved a perfect staining effect. However, our
verification case is only 200 cases, which cannot well repre-
sent the overall effect. We need to add evaluation cases in
the next period of treatment.

3.2. Visual Simulation Analysis. It was mentioned in the pre-
vious section that direct subjective analysis by doctors can
certainly get a good score result, but it will consume a lot of
time and work, and the results of the evaluation using a small
number of samples do not have a good overall representative-
ness. In particular, our model can generate a large number of
H&E staining models in a short time, which is very unrealis-
tic for doctors to perform analysis and evaluation.

To overcome this problem, we propose a method based
on deep learning to simulate the visual analysis of doctors.
The H&E staining sections of real ovarian cancer we selected
have detailed pathological analysis results, and each section
doctor clearly marked a cancer lesion and tumor type. We
can train a classification network based on the data set com-
posed of real images based on the above annotations. We can
think that the trained classification network has the doctor’s
focus classification ability. Since the generated pathological
stained slices should have the same pathological characteris-
tics as the corresponding real stained slices, we use the
pretrained classification network to make inference and pre-

diction tumor type results for the corresponding generated
virtual stained images. Finally, we calculate the difference
between the result of the generated image and the real result
to get the final accuracy. This accuracy can approximately
represent the quality of the lesion features based on the image
generated by our model.

First of all, each stained image in our data set is annotated
by professional doctors according to the four types of tumors.
Next, we use these labeled data sets to train a VGG16 classi-
fication network. The classification accuracy of the trained
network reached about 97%. We can think that this VGG
network has a strong ability to distinguish ovarian cancer
tumor types. Then, we use the trained VGG network to
predict the stained ovarian cancer sections we generated
and calculate the accuracy. If the prediction of the generated
image is correct, it can indicate that the virtual stained
slice we synthesized expresses the correct feature of the
lesion. We think it is reasonable to apply such images to
pathological analysis. Finally, the accuracy of the proposed
method reached 95%. We can conclude the final difference
of virtual staining to be 2%. It can be proved that our
method has reached the standard of pathological analysis
of ovarian cancer.

4. Conclusions

We provide a more efficient solution for H&E staining of
ovarian cancer pathological sections. Using our method can
be very effective to save time and quickly assist the doctor
in diagnosis. We have used many evaluation methods. From
the results, the quality of the stained image generated by our
method is very perfect. At the same time, we have also
proposed an effective autofluorescence image generation
algorithm in the absence of valid data, which can save time-
consuming and laborious data preparation time in many
cases. In the next research, we will carry out research on

Input unstained ovarian tissue image Virtual H&E stained image Real H&E stained

Figure 7: Virtual staining result display on pathological sections of ovarian cancer.

Table 4: Staining accuracy of our model analyzed by three doctors.

Doctor 1 Doctor 2 Doctor 3

Samples with successful staining 190 196 194

Accuracy 95% 98% 97%
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virtual staining of more pathological tissues in order to real-
ize a more extensive virtual staining technology.

Data Availability

The data we use is mainly composed of the TCGA ovarian
cancer database and the clinical data. TCGA ovarian cancer
data can be obtained from https://portal.gdc.cancer.gov/.
Considering the privacy of patients, we cannot open access
to our clinical data.
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