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1. Introduction

In the past, many computing technologies have been pro-
posed and utilized to accelerate biologists/chemists to analyze
biological and chemical data, such as homology detection,
evolutionary analysis, function prediction, computer-aided
drug design, and cheminformatics. Leveraging a power of
these technologies, a lot of tools and services are valuable for
biologists/chemists to efficiently analyze large-scale and com-
plicated data. However, today’s data is being generated and
collected at an incredible scale, the buzzword “big data.” For
instance, an individual laboratory can generate terabase
scales ofDNAandRNAsequencing datawithin a day bynext-
generation sequencing technologies. It is difficult to manage
and process big biological and chemical data using conven-
tional methods due to not only their size but also their com-
plexity. It requires entirely different thoughts, while themajor
obstacle could be the complexity, size, or integration of vari-
ous data sources. These barriers spur the revolutions of both
storage and computing technologies whereby the developed
tool and service can be highly scalable, totally reliable, more
elastic, and so on.

Therefore, the computing technologies required to main-
tain, process, and integrate the large amounts of data are
beyond the reach of small laboratories and introduce serious
challenges even for large institutes. Success at the bioinfor-
matics and cheminformatics fields will heavily rely on an abil-
ity to explain these large-scale and great diversification data,

which encourage biologists/chemists to adopt novel comput-
ing technologies.The research papers selected for this special
issue represent recent progresses in the aspects, including
theoretical studies, practical applications, novel strategies
and framework, high performance computing technolo-
gies, method and algorithm improvement, and review. All
of these papers not only provide novel ideas and state of-the-
art technologies in the field but also stimulate future research
for Bioinformatics and Cheminformatics.

2. Large-Scale Biomedical Analysis

Recent progress in high-throughput instrumentations has led
to an astonishing growth in both volume and complexity
of biomedical data collected from various sources. The
planet-size data brings serious challenges to the storage and
computing technologies.The paper by Y.-C. Lin et al. entitled
“Enabling large-scale biomedical analysis in the cloud” indi-
cates the coming age of sharp data growth and increasing data
diversification is a major challenge for biomedical research
in the postgenome era. Cloud computing is an alternative to
crack the nut because it gives concurrent consideration to
enable storage and massive computing on large-scale data.
Developing cloud-based biomedical applications can inte-
grate the vast amount of diversification data in one place and
analyze themon a continuous basis.Thiswouldmake a signif-
icant breakthrough to launch a high quality healthcare. This
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review paper briefly introduces the data intensive computing
system and summarizes existing cloud-based resources in
bioinformatics. These developments and applications would
facilitate biomedical research to make the vast amount of
diversification data meaningful and usable.

With the rapid growth of next generation sequencing
technologies, more and more data have been discovered and
published. To analyze such huge data, the computational
performance is an important issue. The paper by C.-L. Hung
and G.-J. Hua entitled “Local alignment tool based on hadoop
framework and GPU architecture” combines two different
heterogeneous architectures, software architecture-Hadoop
framework and hardware architecture-GPU, to develop a
high performance cloud computing service, called Cloud-
BLASTP, for protein sequence alignment. Cloud-BLASTP
takes advantage of high performance, availability, reliability,
and scalability. Cloud-BLASTP guarantees that all submitted
jobs are properly completed, even when running job on an
individual node or mapper experience failure. The perfor-
mance experiment shows that Cloud-BLASTP is faster than
GPU-BLASTP and is desirable for biologists to investigate the
protein structure and function analysis by comparing large
protein database under reasonable time constraints.

Organ segmentation is a crucial step prior to computer-
aided diagnosis, since it is fundamental for further medical
image processing such as cancer detection, lesion recogni-
tion, and three-dimensional visualization. However, organ
extraction is considered as a challenge task due to huge shape
variations, heterogeneous intensity distribution, and low
contrast of CT image. The paper by H. Jiang et al. entitled “A
priori knowledge and probability density based segmentation
method for medical CT image sequences” briefly introduces
a novel segmentation strategy for CT images sequences. In
their strategy, a priori knowledge is effectively used to guide
the determination of objects and amodified distance regular-
ization level set method can accurately extract actual contour
of object in a short time.Their proposedmethod is compared
to other seven state-of-the-art medical image segmentation
methods, GAC, C-V, SPLS, HLS, SDLS, CCRG, and IVLS,
on abdominal CT image sequences datasets. The evaluated
results demonstrate their method performs better and has
the potential for segmentation in CT image sequences.

3. Novel Strategies for Drug Design

Quantitative structure-activity relationships (QSAR) is a
widely adapted computational method that correlates the
structural properties of compounds with their biological
activities, such as the affinity between the ligand and protein
and the toxicity of existing/hypothetical molecules. Recently,
the prediction quality using the QSARmethod was improved
by considering the three-dimensional structure (3D-QSAR)
of targeted inhibitors. The paper by C.-Y. Lin and Y.-L.
Wang entitled “Novel design strategy for checkpoint kinase
2 inhibitors using pharmacophore modeling, combinatorial
fusion, and virtual screening” proposes a novel design strategy
for drug design by applying combinatorial fusion into phar-
macophore hypotheses and virtual screening techniques.
They first used 3D-QSAR study to build pharmacophore

hypotheses for Chk2 inhibitors by HypoGen Best, Fast, and
Caesar algorithms, respectively. Then, they used the combi-
natorial fusion to select and combine prediction results for
improving the predictive accuracy in biological activities of
inhibitors. Finally, all of feasible compounds in NCI database
were selected by using ligand-based virtual screening.

Aptamers are an interesting alternative to antibodies in
pharmaceutics and biosensorics, because they are able to bind
to a multitude of possible target molecules with high affinity.
Therefore, the process of finding such aptamers, which is
commonly a SELEX screening process, becomes crucial.
The standard SELEX procedure schedules the validation of
certain found aptamers via binding experiments, which is
not leading to any detailed specification of the aptamer
enrichment during the screening.The paper by R. Beier et al.
entitled “New strategies for evaluation and analysis of SELEX
experiments” uses sequence information gathered by next
generation sequencing techniques on SELEX experiments.
They propose a motif search algorithm which helps to
describe the aptamers enrichment in more detail. The exten-
sive characterization of target and binding aptamers may
later reveal a functional connection between thesemolecules,
which can be modeled and used to optimize future SELEX
runs in case of the generation of target-specific starting
libraries.

4. Computational Genomics

Human and other primate genomes consist of segmental
duplications due to fixation of copy number variations.
Structure of these duplications within the human genome has
been shown to be a complex mosaic composed of juxtaposed
subunits, called duplicons. These duplicons are difficult to
be uncovered from the mosaic repeat structure. In addition,
the distribution and evolution of duplicons among primates
are still poorly investigated. The paper by T.-J. Chuang et al.
entitled “A novel framework for the identification and analysis
of duplicons between human and chimpanzee” develops a
statistical framework for discovering duplicons via integra-
tion of a Hidden Markov Model (HMM) and a permutation
test. Their experimental results indicate that the mosaic
structure composed of duplicons is common in copy number
variations and segmental duplications of both human and
chimpanzee. Gene ontology analysis, hierarchical clustering,
and phylogenetic analysis of duplicons also were used in their
work and then suggested that most copy number variations/
segmental duplications share common duplication ancestry.

Due to the availability of abundant genomic resources,
rice has become a model species for the genomic study.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae
(Xoo), is a worldwide devastating disease, and bacterial
blight resistance genes have been cloned by a map-based
cloning approach. It is important to find a more effective
way to locate vital resistant genes. The text mining strategy
represents another effective way to improve the efficiency
of gene discovery. The paper by J. Xia et al. entitled “Gene
prioritization of resistant rice gene against Xanthomas oryzae
pv. oryzae by using textmining technologies” proposes a hybrid
strategy to enhance gene prioritization by combining text
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mining technologies with a sequence-based approach. Their
scheme consists of two sieves, the text-mining sieve and the
classifier sieve. The text-mining sieve is to screen candidate
gene according to the important phrase evaluation through
TF ∗ IDF and voting scheme. The classifier sieve is a built-in
classifier based on chaos games representation. Their experi-
ment results show that the hybrid strategy achieves enhanced
gene prioritization.

5. Computational Systems Biology

Genome-wide association studies for the analysis of gene-
gene interaction are important fields for detecting the effects
of cancer and disease. Such studies usually entail the collec-
tion of a vast number of samples and SNPs selected from
several related genes of disease in order to identify the asso-
ciation amongst genes. A method for searching high-order
interactions is needed to determine the potential association
between several loci. Statistical methods are widely used
to search for a good model of gene-gene interaction for dis-
ease analysis; however, the huge numbers of potential combi-
nations of SNP genotypes limit the use of statistical methods
for analysing high-order interaction. It remains a challenge to
find an available high-order model of gene-gene interaction.
The paper by C.-H. Yang et al. entitled “Double-bottom
chaotic map particle swarm optimization based on chi-square
test to determine gene-gene interactions” presents an improved
particle swarm optimization with double-bottom chaotic
maps (DBM-PSO) to assist statistical methods in the analysis
of associated variations to disease susceptibility. Analysis
results supported that the DBM-PSO is a robust and precise
algorithm, and it can identify good models and provide
higher chi-square values than conventional PSO.

Using microarray technology combined with computa-
tional analysis is one of the most efficient and cost-effective
methods for studying cancer. Most studies focus primarily on
identifying differential gene expressions between conditions,
for discovering themajor factors that cause diseases. Previous
studies have not identified the correlations of differential
gene expression between conditions; crucial but abnormal
regulations that cause diseases might have been disregarded.
The paper by T.-H. Chang et al. entitled “A novel approach
for discovering condition-specific correlations of gene expres-
sions within biological pathways by using cloud computing
technology” proposes a novel approach for discovering the
condition-specific correlations of gene expressions within
biological pathways. An Apache Hadoop cloud computing
platform was implemented to reduce the time for analyz-
ing gene expression correlations. The experimental results
showed that breast cancer recurrence might be highly asso-
ciated with the abnormal regulations of these gene pairs,
rather than with their individual expression levels. Their
proposed method was computationally efficient and reliable
for identifying meaningful biological regulation patterns
between conditions.

6. Conclusions

All of the above papers address either cloud computing ser-
vice or novel strategies for large-scale biomedical analysis and

drug design.They also develop related method and approach
improvements in applications of computational genomics
and systems biology. Honorably, this special issue serves as
a landmark source for education, information, and reference
to professors, researchers, and graduate students interested
in updating their knowledge about or active in biomedical
analysis, drug design, computational genomics, and systems
biology.
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This paper briefly introduces a novel segmentation strategy for CT images sequences. As first step of our strategy, we extract a priori
intensity statistical information from object region which is manually segmented by radiologists.Then we define a search scope for
object and calculate probability density for each pixel in the scope using a voting mechanism. Moreover, we generate an optimal
initial level set contour based on a priori shape of object of previous slice. Finally the modified distance regularity level set method
utilizes boundaries feature and probability density to conform final object. The main contributions of this paper are as follows: a
priori knowledge is effectively used to guide the determination of objects and a modified distance regularization level set method
can accurately extract actual contour of object in a short time. The proposed method is compared to other seven state-of-the-art
medical image segmentation methods on abdominal CT image sequences datasets. The evaluated results demonstrate our method
performs better and has the potential for segmentation in CT image sequences.

1. Introduction

Organ segmentation is a crucial step prior to computer-aided
diagnosis, since it is fundamental for further medical image
processing such as cancer detection, lesion recognition, and
three-dimensional visualization. However, organ extraction
is considered as a challenge task due to huge shape variations,
heterogeneous intensity distribution, and low contrast of CT
image [1]. Especially complicated surrounding andweak edge
cause serious impediment to accurately segment pancreas.

Variousmethods are proposed to solve themedical image
segmentation problem.Themain categories of thesemethods
can be classified as statistical shape model (SSM) [2], level set
[3–8], probabilistic atlases [9], histogram-based approaches
[10], and region growing method [11, 12].

The statistical shape model and probabilistic atlases
seriously depend on the shape and intensity distribution of
objects in training dataset, so that they suffer from large varia-
tions of shape and intensity.The histogram-based approaches
always use a classification system to differentiate target object

from other tissues; the leakage problem exists in these
systems.

Level set methods can represent complex topology of
contours and handle topological changes in a natural and
effectiveway, such that various level setmethods are proposed
to solve the medical image segmentation problem.The shape
detection level set method [3] applies a shape modeling
scheme in level set evolution. The geodesic active contour
(GAC) [4] model employs edge feature to guide segmen-
tation. However these edge-based level set methods easily
cause leakage in weak boundaries of objects. The C-V model
[5] which seeks global optimization is not suitable for local
optimization segmentation. A hybrid level set method [6]
combines both boundary and region information to achieve
segmentation results. It utilizes a predefined parameter to
indicate the lower bound of the gray level of the target object
in region term. Its boundary term is similar to the one in
GAC method. However its predefined parameter is not easy
to be accurately defined and reinitialization of zero level set is
needed. A priori shape based level setmethod [7] uses a priori
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shape knowledge to guide the segmentation, but it suffers
from large variations of shape and intensity distribution.
Moreover, level setmethods have a high requirement to locate
initial zero level set near final contour.The similarity between
nearby slices in CT image sequences is ignored in level set
methods. The problem of leakage easily happens in weak
boundary area.

In order to solve these problems, this paper proposes
a novel segmentation strategy that regards similarity of
intensity distribution, shape, and location between nearby
slices as a priori knowledge to guide the segmentation of
image sequences.The kernel of this paper is that a probability
density map which is generated using the novel application
strategy of a priori knowledge is used to modify a distance
regularization level set method. The proposed method is
compared to geodesic active contour model, C-V model,
shape detection level set method, the hybrid level set method,
and confident connected region growing method. Finally
the novel method is compared to our previous improved
variational level set method [8]. The evaluated results prove
that our method is effective to segment organs from abdom-
inal CT image sequences. The rest of this paper is arranged
as follows. The proposed method is explained in Section 2.
Evaluation and discussion of our method are presented in
Section 3, and Section 4 concludes this paper.

2. Materials and Methods

2.1. Distance Regularity Level Set. A distance regularity level
set method is proposed in [13]. This method inherently
maintains a signed distance profile near the zero level set,
such that it eliminates the requirement of reinitialization of
level set function. It is able to provide accurate numerical
calculation in level set evolution.

The energy function of level set is define by

𝐸 (𝜙) = 𝜇𝑅𝑝 (𝜙) + 𝛽𝜂 (𝜙) , (1)

where 𝜇 > 0 is a constant, 𝑅𝑝(𝜙) is level set distance
regularization term, and 𝜂(𝜙) is external force term.

𝑅𝑝(𝜙) is defined in [11] by

𝑅𝑝 (𝜙) ≜ ∫
Ω

𝑝 (
∇𝜙

) 𝑑𝑥, (2)

where 𝑝 is a double-well potential function for the distance
regularization term 𝑅𝑝 and is constructed as

𝑝 (𝑠) =

{{{{

{{{{

{

1

(2𝜋)
2
(1 − cos (2𝜋𝑠)) , if 𝑠 ≤ 1

1

2
(𝑠 − 1)

2
, if 𝑠 > 1.

(3)

𝛿𝜀 and 𝐻𝜀 are smooth functions in level set methods
proposed in [14, 15]. Moreover,𝐻

𝜀
= 𝛿𝜀 and 𝜀 is set to 1.5.

𝛿𝜀 (𝑥) =

{

{

{

1

2𝜀
[1 + cos(𝜋𝑥

𝜀
)] |𝑥| ≤ 𝜀

0 |𝑥| > 𝜀,

𝐻𝜀 (𝑥) =

{{{

{{{

{

1

2
(1 +

𝑥

𝜀
+
1

𝜋
sin(𝜋𝑥

𝜀
)) |𝑥| ≤ 𝜀

1 𝑥 > 𝜀

0 𝑥 < −𝜀.

(4)

The 𝑅𝑝(𝜙) makes the level set evolution have a unique
forward-and-backward diffusion effect, which eliminates the
need for reinitialization, such that its induced numerical
errors are avoided.Therefore level set evolution ismore stable
and robust.

2.2. A Priori Information Extraction. The traditional a priori
knowledge such as shape and intensity distribution is always
extracted from training dataset, which represents the com-
monness of object but cannot directly represent the individ-
ual characteristics of the current object inmedical image.The
differences between commonness and individuality usually
cause errors in finial segmentation results. Moreover, the
large variation of shape and intensity distribution of organs
bring a great difficulties in using traditional commonness to
guide the segmentation.

In order to overcome these problems, a new scheme is
proposed to extract the individuality feature of object as a
priori knowledge which is then employed to optimize the
segmentation process of level set method. As the first step
of processing, we check through the input abdominal CT
volume to find out a slice in which object organs have a
largest cross-section. A radiologist defines the boundary of
organs in this slice. The shape of boundary and the intensity
distribution parameters of this object organ region are used
as a priori knowledge in the next step of segmentation.

Though variation of shape and intensity is obvious
between different volumes or slices that have a large imaging
distance in the same volume, these features in neighbor slices
which belong to the same volume are similar.Thus, we follow
the a priori shape of previous slice to segment next slice. The
statistics dataset is initial as the manually segmented slice.
Subsequent segmented results will be added into the statistics
dataset as statistical sample.

Each segmented sample in the training dataset is regarded
as a scope of statistics. Mean intensity and intensity variance
for each sample are calculated:

𝑢 =
1

𝑛

𝑛

∑

𝑖=1

𝑝𝑖 𝑝𝑖 ∈ 𝑅𝑠,

𝜎 =
1

𝑛
√

𝑛

∑

𝑖=1

(𝑝𝑖 − 𝑢)
2

𝑝𝑖 ∈ 𝑅𝑠.

(5)

𝑝𝑖 is the intensity value of pixels in samples. All
the pairs of parameters make a statistical feature set
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(a) Original image (b) Search region (c) Edge feature map

(d) Probability density map (e) Initial pancreas region (f) Segmentation result

(g) 3D visulization of pancreas

Figure 1: Segmentation example: necessary reprocessing for pancreas segmentation. (a) Denoised CT image. (b) The mask of previous slice.
(c) The search region of pancreas based on mask of previous slice. (d) Edge feature map. (e) Probability density map. (f) Initial pancreas
region used in our level set method.

𝐹 = {(𝑢𝑖, 𝜎𝑖) | 𝑖 = 1, 2, . . . , 𝑛}, which plays an important role
in processing of segmentation. Through amount of statistical
experiments, the statistics indicate that about 92.4% of pixels
in object region is located in [𝜇 − 2𝜎, 𝜇 + 2𝜎].

2.3. A Priori Based Distance Regularity Level Set. Some
defects exist in the original distance regularization level set
method. It is sensitive to initial position of the zero level set
contour.The initial zero level set is required to locate near the
final contour. Otherwise, the curve evolution needs amount
of iterative calculation to pull curve toward object contour.
Moreover, original distance regularization level set method
has oversegmentation problem of leakages into nearby tissue
in weak boundary area. Especially object is always connected
to neighbor organs and boundary usually is fuzzy in CT
image; the original method cannot get satisfactory results in
most case.

In order to solve these problems, we employ a priori
statistical feature tomodify distance regularity level set aswell
as confirming an optimal initial level set. Then the modified
method is used to extract the object organ from CT images.

The statistical information which comes from statistical
dataset is added into the external energy term of energy

function of level set, such that new energy function is defined
as

𝐸 (𝜙) = 𝜇𝑅𝑝 (𝜙) + 𝛼𝑆 (𝜙) + 𝜆𝐿𝑔 (𝜙) , (6)

where the first term is distance regularization term, the
second and third terms are external energy terms, which are
used to pull the initial curve toward the final object curve in
evolution. 𝜆 > 0 and 𝛼 ∈ R are coefficients to control the
weight of external energy. 𝐿𝑔(𝜙) depends on image gradient
information and 𝑆(𝜙) relays on a priori statistical feature.
They correspond to 𝜂(𝜙) in function (1).

𝑆(𝜙) is defined as

𝑆 (𝜙) = ∫
Ω

𝑠 (𝐼𝑚)𝐻 (−𝜙) 𝑑𝑥 𝑑𝑦, (7)

where 𝐼𝑚 = 𝑀𝐼 is a search area which contains all pixels of
current object region.𝑀 is a mask function used to define a
search domain which includes object organ in the CT slice
𝐼. The mask 𝑀 derives from the extracted object region of
previous slice of current slice 𝐼. The previous object region
extends outward 𝑛 pixel along its shape to generate the mask
scope (see Figure 1).Thepixels inside the scope are set to 1 and
those outside the scope set to 0. Since the location and shape
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are similar between two contiguous slices, 𝑠(𝐼𝑚) is a similarity
measure function. It estimates the probability of belonging to
object tissue of each pixel in search area.

In order to measure the similarity, first a probability
density formula is defined as

𝑝 (𝑥) =

{

{

{

𝑒
−(𝑥−𝜇)

2
/2𝜎
2

, 𝑥 ∈ [𝜇 − 2𝜎, 𝜇 + 2𝜎]

−

𝑥 − 𝜇


2𝜎
, otherwise,

(8)

where 𝑝(𝑥) is probability density. 𝑥 is an intensity value of
pixel within search area. 𝜇 is mean intensity, and 𝜎 is intensity
variance. They come from statistical feature set 𝐹. For each
pixel within search area, a set of probability density 𝑃 =

{𝑝1, 𝑝2, . . . , 𝑝𝑛} is calculated based on all statistical features
{(𝑢𝑖, 𝜎𝑖) | 𝑖 = 1, 2, . . . , 𝑛}.

A voting mechanism is employed to determine the actual
probability density of a pixel. The voting mechanism is
defined as

Votes (𝐹) ≜ {
𝑉𝑥,𝑎 + 1 𝑥 ∈ [𝜇𝑖 − 2𝜎𝑖, 𝜇𝑖 + 2𝜎𝑖]

𝑉𝑥,𝑜 + 1 otherwise,
(9)

where 𝑉𝑥,𝑎 represents affirmative vote and 𝑉𝑥,𝑜 represents
negative vote. If intensity of pixel is located in [𝜇−2𝜎, 𝜇+2𝜎],
the 𝑉𝑥,𝑎 increases by one. Otherwise, 𝑉𝑥,𝑜 increase by one.
The total votes are equal to the number of statistical features
𝑉𝑥,𝑎 + 𝑉𝑥,𝑜 = 𝑛.

Based on the votes and probability density set, the actual
probability density of a pixel within search area is confirmed
as

𝑠 (𝑥) = {
𝑃𝑥,max 𝑉𝑥,𝑎 > 𝑉𝑥,𝑜

𝑃𝑥,min 𝑉𝑥,𝑎 ≤ 𝑉𝑥,𝑜,
(10)

where 𝑃𝑥,max is the maximal value in probability density set
and𝑃𝑥,min is theminimum value. If affirmative votes aremore
than negative votes, the probability density of a pixel is set to
maximum in probability density set. On the contrary, it is set
to minimum in probability density set.

A probability density map 𝑠(𝐼𝑚) is generated after proba-
bility density of all pixels within search region is ascertained
using votingmechanism. It is used to limit oversegmentation.
The 𝑆(𝜙) term can speed up the propagation motion of zero
level set when the initial contour is far away from the desired
object boundaries.

Moreover, the second energy term 𝐿𝑔(𝜙) represents edge
force which pushes the initial curve towards the boundaries
of the object. It is defined as

𝐿𝑔 (𝜙) = ∫
Ω

𝑔 (𝐼) 𝛿𝜀 (𝜙)
∇𝜙

 𝑑𝑥, (11)

where 𝑔(𝐼) is an edge detection function which is defined as

𝑔 (𝐼) =
1

1 + |∇ [𝐺 ∗ 𝐼]|
2
, (12)

where 𝐺 is Gaussian filtering operator. ∗means convolution.
𝐼 is the CT image. Edge force is minimized when the contour

of zero level set is located at boundaries of object, because
edge detection function takes small value at boundaries.

In order to generate an optimal initial level set, which can
satisfy the location requirement of initial zero level set, we
apply a mask of previous slice to define the initial contour of
zero level set. Since the shape variation is not obvious between
two adjacent slices, the extracted object region of previous
slice is regarded as a priori shape mark. The binary mask
shrinks 𝑘 pixel along its shape to generate an initial contour
(See Figure 1(e)). The initial contour is located in the object
region of current slice, because location of object organ in
adjacent slices is similar.

The initial level set function (LSF)𝜙0 is defined as a binary
step function:

𝜙0 (𝑥) = {
−𝑐, if 𝑥 ∈ 𝑅0

𝑐, otherwise,
(13)

where the 𝑅0 is the initial contour region. 𝑐 is a constant set
to 2.

The level set evolution equation in a priori based distance
regularity level set is finally defined by

𝜕𝜙

𝜕𝑡
= 𝜇 div(𝑑𝑝 (

∇𝜙
 ∇𝜙) + 𝛼𝑠 (𝐼𝑚) 𝛿𝜀 (𝜙)

+ 𝜆𝛿𝜀 (𝜙) div(𝑔 (𝐼)
∇𝜙

∇𝜙


)) ,

(14)

where div(⋅) is the divergence operator and 𝑑𝑝 is a function
defined in [11]:

𝑑𝑝 (𝑠) ≜
𝑝

(𝑠)

𝑠
. (15)

2.4. Object Organ Segmentation. A priori based distance
regularity level set method is applied to extract the object
organ in CT images. Since the intensity distribution of the
object organ is irregular due to the noise caused in the image
formation stage, a Gaussian blur filter is used to reduce the
noise in preprocess. The steps of segmentation process are
shown in Figure 3.

(1) Initialize the training dataset bymanually segmenting
a slice in which object organ has a largest cross-
section in input abdominal CT volume. Its next slice
is the first one to segment.

(2) Based on training dataset, generate the statistical
feature set which is regarded as a priori knowledge
and used to guide segmentation of pancreas.

(3) Reduce the noise in CT slice using a Gaussian blur
filter.

(4) Generate a search region based on mask of previous
slice and then calculate the probability density map
using voting mechanism.
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(5) Generate an optimal initial zero level set based on
mask of previous slice.

(6) Based on optimal initial zero level set, extract the
object using a priori based distance regularity level set
method.

The extracted object will be added into training dataset as
a priori knowledge to guide the segmentation of its next slice.

In practical process of object segmentation, a two-phase
segmentation scheme is employed to get a better result. The
first phase can be seen as a high speed level set evolution
and the second phase can be seen as a high accurate level set
evolution. In the first phase, the zero level set is initialized
as a binary step function using function (13). The level set
evolution follows function (14). After the first phase, the zero
level set contour is closed to the object boundary. In the
second phase, the main purpose is to accurately extract the
object region. The level set evolution equation is reset as

𝜕𝜙

𝜕𝑡
= 𝜇 div(𝑑𝑝 (

∇𝜙
 ∇𝜙) + 𝜆𝛿𝜀 (𝜙) div(𝑔 (𝐼)

∇𝜙

∇𝜙


)) .

(16)

Because the energy term 𝑆(𝜙) pushes the initial contour
toward the final boundary in a high speed, it is likely to
make the contour across the object boundary and then cause
oversegmentation. Thus, it is abolished in the second phase.

Through amount of experiment, we empirically define
some values of parameters of great significance to optimize
the segmentation result. In this configuration of parameters,
the average similarity index of all segmentation results can get
a high rate (SI = 0.922, introduced in Section 3.1).

In the first phase, 𝑢 = 0.2, 𝜆 = 3, and𝛼 = −1 are employed
in (14). A small coefficient 𝛼 for the energy term 𝑆(𝜙) is to
restrict contour expanding too rapidly and preserve the zero
level set contour from crossing the boundary of object region.
The iterator time in first phase is set between 5 and 10.

In the second phase, the zero level set contour is closed
to the boundary of object, such that 𝑢 = 0.2, 𝜆 = 2, and
𝛼 = 0 are employed. Level set evolution is dominated by
edge force. A large weight is assigned to energy term 𝐿𝑔(𝜙),
which means a stronger constraint force of boundary pushes
zero level set curve towards final boundary while limiting the
oversegmentation of object region. The iterator time is set
between 3 and 5 in this phase.

The segmentation results of different shape and acreage
of object are controlled by adjusting the iteration time.
Moreover, the parameters can be fine-tuned to adapt with
different CT volume to get an optimal result.

3. Results and Discussion

Theproposedmethod is compared to geodesic active contour
method (GAC), geodesic active without edge method (C-V),
shape a priori based level set method (SPLS), a hybrid level
setmethod (HLS), a shape detection level setmethod (SDLS),
confident connected region growing method (CCRG), and
improved variational level set method (IVLS). Our method
is referred to as PBDR. Our method, GAC method, shape

detection level set method, shape a priori based level set
method, and improved variational level set method are
implemented using C/C++ language. C-V method and HLS
method are implemented in Matlab code. All methods run
on a desktop PC with 8GB RAM and 2.4GHz Intel Core i7
processer. The same preprocess are applied to all methods.

The trade-off between number of manual labelling and
algorithm efficiency of proposed method is also evaluated.
Based on a volume with 161 CT abdominal images, different
numbers of manual labelling are applied as a priori knowl-
edge to guide the segmentation.

3.1. Performance Measure Standard. For evaluation of effi-
ciency and accuracy, three measures, (1) false positive error
(FPE), (2) false negative error (FNE), and (3) the similarity
index (SI), are used to measure the performance of methods.

False positive error [16] is defined as the ratio of the total
number of extracted object region pixels outside the golden
standard region to the total number of golden standard of
object region:

FPE =
𝑁 (𝑂) ∩ 𝑁 (𝐵)

𝑁 (𝐺)
× 100%, (17)

where 𝑂 represents the pixels of extracted object region. 𝐺
represents the golden standard of object organ. 𝐵 represents
the remaining areas except the region of golden standard in
the CT image. 𝑁(𝑂) ∩ 𝑁(𝐵) represents the total number of
extracted object region pixels outside the golden standard
region.𝑁(𝐺) represents the total number of golden standard
of object region.

False negative error [16] is defined as the ratio of the total
number of golden standard of object outside the extracted
object region to the total number of pixels of golden standard
of object region:

FNE =
𝑁 (𝐺) − (𝑁 (𝑂) ∩ 𝑁 (𝐺))

𝑁 (𝐺)
× 100%, (18)

where𝑁(𝑂) ∩ 𝑁(𝐺) is total number of pixels in intersection
of extracted object region and golden standard of object.
𝑁(𝐺)−(𝑁(𝑂)∩𝑁(𝐺)) is the total number of golden standard
of object outside the extracted object region.

Similarity index [17] is defined as the percentage of pixels
in intersection of extracted object region and golden standard
of object:

SI = 2 (𝑁 (𝑂) ∩ 𝑁 (𝐺))

𝑁 (𝑂) + 𝑁 (𝐺)
× 100%, (19)

where𝑁(𝑂) is the total number of extracted object region.

3.2. Experimental Datasets. Three medical image datasets
including pancreas dataset, liver dataset, and spleen dataset
are used in evaluation. Pancreas dataset contains 10 vol-
umes of CT image. Liver dataset contains 9 volumes of
abdominal CT images. Spleen dataset contains 5 volumes
of abdominal CT images. All datasets are provided by PLA
General Hospital, Shenyang, China. CT images in datasets
have a resolution of 515 × 512 pixels with a thickness
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2: Exemplary segmentation results of our proposedmethod based onpancreas, liver, and spleen datasets. Red regions are segmentation
results using proposed method and yellow outline marks the golden standard.

varied between 0.6mm and 0.7mm. Each image in the
datasets is provided corresponding golden standardmanually
delineated by experienced radiologists.

3.3. Segmentation Results and Evaluation. All the state-of-
the-art medical image segmentation methods and the pro-
posed method are applied to extract object region from the
CT volume in all the medical image datasets. Average false
positive error, false negative error, and similarity index are,
respectively, computed for each compared method based on

all segmentation results of all slices. First we calculate false
positive error, false negative error, and similarity index for
each segmentation results of allmethods.Then average values
of the three measure standard of each method are calculated
based on their respective segmentation results.

Figure 2 shows some examples of segmentation results of
our method. The extracted object regions are complete and
the edges are smooth.

Figure 3 shows examples of pancreas extraction results
based on all evaluated method.
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(a) Our method (b) GAC (c) C-V

(d) HLS (e) SDLS (f) SPLS

(g) CCRG

Figure 3: The examples of pancreas extraction result based on different methods. (a) Our method. (b) Geodesic active contour method.
(c) Shape a priori based level set method. (d) Geodesic active without edge method. (e) Hybrid level set method. (f) Shape detection level set
method. (f) Confident connected region growing method.

Figure 4 shows comparison of segmentation results of
our proposed method and the improved variational level set
method.

Figure 5 shows 3D view of the extracted object organ
using our proposed a priori based level set method.

Figures 6, 7, and 8 show histogram of average value of
each measure standard for all compared methods. Table 1
contains accurate value of measure standards of all the
compared methods. A lower false positive error value means
less pixels of background are segmented as object region, and
a lower false negative error value means less golden standard
of object has not been extracted.Moreover, a higher similarity
index means the segmentation results are more accurate. In
summary, false positive error and false negative error are
lower; the segmentation result is better. Oppositely, similarity
index is higher; the segmentation result is better.

Table 2 shows time efficiency of each evaluated method.
Table 3 shows trade-off between number of initial manual
labelling and algorithm efficiency of proposed method.

Table 1: Accurate evaluation value of FPE, FNE, and SI for each
method.

Method FNE FPE SI
PBDR 0.093458 0.100255 0.922897
HLS 0.257118 0.408528 0.696948
C-V 0.307937 0.503982 0.669372
SPLS 0.231851 0.201315 0.814745
GAC 0.263718 0.321395 0.744463
SDLS 0.286753 0.353512 0.718136
CCRG 0.495482 1.136335 0.478246
IVLS 0.185473 0.194282 0.8521478

Table 2: Quantitative measure of time efficiency for each method.

Method PBDR HLS C-V SPLS
Time (sec/slice) 0.34 3.66 2.87 1.12
Method SDLS GAC CCRG IVSL
Time (sec/slice) 0.47 0.51 0.081 0.78
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(a) Our method (b) IVLS

Figure 4: Comparison of segmentation results of our proposed method and improved variational level set method.

(a) Pancreas A (b) Pancreas B

(c) Liver A (d) Liver B

(e) Spleen

Figure 5: 3D view of extracted organs based on our proposed method. (a), (b) 3D view of different pancreas. (c), (d) 3D view of different
liver. (e) 3D view of spleen. They are reconstructed using the sequence of segmentation results based on proposed method.
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Figure 6: False negative error evaluation results of our method
(PBDR), hybrid level set method (HLS), C-V method (C-V), shape
a priori based level set method (SPLS), geodesic active contour
method (GAC), shape detection level set (SDLS), confident con-
nected region growing method (CCRG), and improved variational
level set method (IVLS).

0.100256

0.408528
0.503982

0.201315
0.321395

0.353512

1.136335

0.194282
0

0.2

0.4

0.6

0.8

1

1.2

PBDR HLS C-V SPLS GAC SDLS CCGR IVLS

PBDR
HLS
C-V

SPLS
GAC
SDLS

CCGR
IVLS

Figure 7: False positive error evaluation results of our method
(PBDR), hybrid level set method (HLS), C-V method (C-V), shape
a priori based level set method (SPLS), geodesic active contour
method (GAC), shape detection level set (SDLS) method, confident
connected region growing method (CCRG), and improved varia-
tional level set method (IVLS).

3.4. Discussion. Evaluated results indicate that the proposed a
priori based level set methods (FNE = 0.093, FPE = 0.100, and
SI = 0.922) outperform other state-of-art methods in object
organ extraction. The a priori based and edge-based level
set methods are more suitable for single organ segmentation
from a medical image which contains many other organs.
The C-V method (FNE = 0.307, FPE = 0.503, and SI = 0.669)
abandons edge constraints and intends to achieve global
optimal segmentation result, but not local optimal organ.

0.922897

0.696948
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0.744463

0.718136

0.478246

0.8521478
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Figure 8: Similarity index evaluation results of ourmethod (PBDR),
hybrid level set method (HLS), C-V method (C-V), shape a priori
based level set method (SPLS), geodesic active contour method
(GAC), shape detection level set (SDLS) method, confident con-
nected region growing method (CCRG), and improved variational
level set method (IVLS).

Table 3: Trade-off between number of initial manual labelling and
algorithm efficiency of proposed method in one volume.

Number of labelling SI
1 0.726
3 0.819
5 0.923
7 0.924
9 0.924
11 0.924
13 0.925
15 0.925

The HLS method (FNE = 0.257, FPE = 0.408, and SI =
0.696) utilizes both edge and region information to segment
object. It performs better than C-V method due to the edge
constraints.TheGACmethod (FNE = 0.263, FPE = 0.321, and
SI = 0.744) and SDLSmethod (FNE = 0.286, FPE = 0.201, and
SI = 0.718) performbetter than region-based level setmethod,
but it is easy to cause oversegmentation at week boundary.

The a priori based level set methods perform better than
edge-based level set method; especially our method gets
highest accuracy and makes less false segmentation. The
SPLS employs a mean statistical shape model to guide the
segmentation. But the mean shape cannot adapt to the huge
shape variance of object organs, such that leakage problem
still exists in results.

The CCRGmethod and IVLS method both apply statisti-
cal feature, average intensity value, and the standard deviation
to guide segmentation. In CCRG method, the mean and
standard deviation of intensity value are used to define a
value range. Neighbor pixels whose intensity values fall inside
the range are included in the object region. This rule makes
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the neighbor pixels whose intensity is similar with object
are easily classified into object region. This causes serious
oversegmentation which is difficult to control.

IVLS method uses average intensity value and the stan-
dard deviation as a constraint parameter to optimize the
evolution of level set. But the statistical information is fixed
and not changed through the whole segmentation process;
it cannot reflect the gradual change of intensity in image
sequence.Thismethod also applied a region growingmethod
to generate an initial object region, but the initial region
is not good enough in some cases. This causes error in
segmentation.

The proposed method employs a priori statistical feature
set and the shape of extracted object in previous slice to guide
the segmentation. A probability density map is generated
based on feature set. The probability density map is used
in energy term of level set evolution function to overcome
problem of leakage in segmentation results. New segmented
results are added into training set to update the statistical
feature. A voting mechanism is used to support the update
and it can reduce the effect of singular value to the statistical
features. The initial contour which is product based on
shape mask of previous slice can satisfy the requirement
of locating initial zero level set closed to the final contour.
Therefore, our a priori based distance regularization level
set method outperforms other evaluated methods in object
organs extraction. On the time efficiency comparison, our
method is fastest and needs least time to process a slice.

In the time efficiency comparison, among all evaluated
level set methods, the proposed method is the fastest (0.34 ±
0.02 sec/slice). Because the initial zero level set is closed to the
final contour and probability density map makes the contour
propagate of level set has a high speed. The shape detection
level set method costs 0.47 ± 0.02 sec/slice and GAC method
costs 0.51 ± 0.05 sec/slice. They both just need to calculate
the edge feature, but not depend on region information. C-V
method andHLSmethod needmore execution time, because
they depend on the global information whose calculation is
time consuming.

Evaluation of trade-off between number of initial man-
ual labelling and algorithm efficiency of proposed method
indicates that equilibrium exists. Assuming that𝑁 big shape
variations exist in a volume, the volume is divided into𝑁+ 1

segment. In each segment, the slice in which object organ has
a largest cross section is found out and manually labelled.
Such that total 𝑁 + 1 samples are applied to guide the
extraction. Under this strategy, good algorithm efficiency can
be achieved while the manual labelling is marked as little as
possible.

4. Conclusion and Future Work

The proposed method effectively incorporates a priori statis-
tical feature of intensity distribution and a modified distance
regularized level set (MDRLS) method to extract object
organs from CT image. Our main contribution is coming
up with a novel application strategy of a priori knowledge
for segmentation and achieving better accuracy and time

efficiency in object organ extraction. Our method needs
fewer and simple human-computer interaction.

Based on a priori shape of previous slice, an optimal
level set contour is generated for the modified distance
regularized level set. A probability density map is employed
in MDRLS for further preventing the oversegmentation in
object region of nonideal edges. Moreover, the proposed
method is simultaneously time efficient due to high speed
propagation and less iteration time.
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With the rapid growth of next generation sequencing technologies, such as Slex, more and more data have been discovered and
published. To analyze such huge data the computational performance is an important issue. Recently, many tools, such as SOAP,
have been implemented on Hadoop and GPU parallel computing architectures. BLASTP is an important tool, implemented on
GPU architectures, for biologists to compare protein sequences. To deal with the big biology data, it is hard to rely on single GPU.
Therefore, we implement a distributed BLASTP by combining Hadoop and multi-GPUs. The experimental results present that
the proposed method can improve the performance of BLASTP on single GPU, and also it can achieve high availability and fault
tolerance.

1. Introduction

In the past decade, the sequencing technologies have been
improved dramatically. An entirely new technology was
developed, next generation sequencing (NGS), a fundamen-
tally different approach to sequencing DNA and RNA much
more cheaply and quickly than traditional Sanger sequenc-
ing. Meanwhile, NGS is well known as a high-throughput
sequencing technology.The number of output data produced
by NGS data has increased more than double each year
since it was invented. In 2007, a single sequencing run could
produce around one gigabase (Gb) of sequence data. By 2011,
it approaches a terabase (Tb) of data produced in a single
sequencing run—nearly a 1000× increase in four years. With
the ability to rapidly generate large amount of sequencing
data, NGS has enabled the researches in the field of biology
and other closely related fields can be done at a large-scale
level and also can move quickly from an idea to full data sets
in amatter of hours or days [1]. AsNGS becomes key player in
modern biological research, the analysis of the vast amount of
produced data is not an easy task and a great challenge in the

field of bioinformatics. Therefore, efficient tools to cope with
these big data to provide the knowledge easier and faster are
essential.

With the rapid development of multicore hardware,
graphics processing units (GPUs) are being used in numerous
applications to enhance computational performance. GPUs
have a low design cost and the increased programmability of
GPUs allows them to be more flexible than FPGAs. General-
purpose graphics processing units (GPGPU) programming
has been successfully used in scientific computing domains,
which involve a high level of numeric computation. The
greatest benefit of GPUs is that the number of processing
units is immense compared to those of CPUs (CPU, approx-
imately 2–16; GPU, approximately 128–512). In 2006, Nvidia
proposed the compute unified device architecture (CUDA).
CUDA uses a new computing architecture named single
instructionmultiple threads (SIMT).This architecture allows
threads to execute independent and divergent instruction
streams, thus facilitating decision-based execution, which
is not provided by the more common single instruction
multiple data (SIMD). Many well-known tools have been
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reimplemented based on GPU architecture [2–4]. One of the
wild-use alignment tools, BLASTP, is a heuristic algorithm
to produce a local alignment for protein. BLASTP has three
implementations on GPU, GPU-NCBI-BLASTP [5], CUDA-
BLASTP [6], and GPU-BLASTP [7]. All three implemen-
tations achieve 4x∼40x speedup over a single-thread CPU
implementation of NCBI-BLAST.

Meanwhile, the software architectures of distribution
computing have been developed rapidly as well. The cloud
computing as a new distribution computing service concept
has become popular for providing services with availability,
reliability, and on-demand computation to users. The cloud
computing environment can be a distributed system that has
massively scalable IT-related capabilities, providing multiple
external customers many services on Internet. In addition,
cloud computing can be used to copy with big data and
maintain high availability and fault tolerance. Hadoop [8] is
one of the commonly used open source software frameworks
intended to support data-intensive distributed applications.
Hadoop adopts Map/Reduce programming model to process
petabytes of data with thousands of nodes. Map/Reduce
programming model is useful to develop parallel com-
puting applications on cloud computing environment. In
Map/Reduce model, mappers and reducers complete a task.
Each mapper performs a map operation and each map oper-
ation is independent of the others. A task is split into many
subtasks, and each mapper processes its subtask. Similarly,
a set of reducers can perform a set of reduce operations.
Reducers deal with the data produced by mappers. An
important benefit of usingHadoop to develop the application
is fault tolerance. Hadoop can guide jobs toward a successful
completion even when individual nodes experience failure
in computation. In these situations, Hadoop platform is
considered as a much better solution for these real-world
applications. Currently, Hadoop has been applied in various
domains in bioinformatics [9–13]. Cloud-PLBS [14] is a
cloud service that combines the SMAP [15–17] and Hadoop
frameworks for 3D ligand binding site comparison and
similarity searching of a structural proteome. This platform
is computationally more efficient than standard SMAP. Hung
and Lin [12] proposed a parallel protein structure alignment
service based on the Hadoop distribution framework. This
service includes a protein structure alignment algorithm,
a refinement algorithm, and a Map/Reduce programming
model. The computational performance of their service is
proportional to the number of processors used in their cloud
platform.

In this paper, we combine these two different hetero-
geneous architectures, software architecture-Hadoop frame-
work and hardware architecture-GPU, to develop a high
performance cloud computing service for protein sequence
alignment. In this cloud service, each mapper performs
BLASTP and a reducer collects all resulting alignments
produced by mappers. The mappers work simultaneously. By
usingHadoop, the proposedGPUbased bioinformatics cloud
service can recover the comparison job from a crashed GPU
host by assigning this job to other health GPU hosts. This
cloud platform can achieve high performance, scalability,
and availability. The experimental results present that the

computational performance of the proposed service can be
enhanced by using Hadoop and GPU architecture.

2. Method

In the work, we integrate BLASTP with Hadoop. Hadoop
framework works with mappers and reducer. Mappers per-
form BLASTP on GPU, and reducer collects all alignment
results produced by mappers. Despite Hadoop distribution
computing framework, performance of BLASTP can be
enhanced bymultiplemappers. Hadoop guarantees that all of
BLASTP computational jobs on mappers can be completed,
even if some of the mappers stop.

2.1. GPU Programming. As theGPUhas become increasingly
more powerful and ubiquitous, researchers have begun devel-
oping various nongraphics or general-purpose applications
[18]. Traditionally, the GPUs are organized in a streaming,
data-parallel model in which the coprocessors execute the
same instructions on multiple data streams simultaneously.
ModernGPUs include several (tens to hundreds) of each type
of stream processor; both of graphical and general-purpose
applications thus are faced with parallelization challenges
[19].

Nvidia released the compute unified device architecture
(CUDA) SDK to assist developers in creating nongraphics
applications that run on GPUs. CUDA programs typically
consist of a component that runs on the CPU, or host, and
a smaller but computationally intensive component called
the kernel that runs in parallel on the GPU. Input data for
the kernel must be copied to the GPU’s on-board memory
from CPU’s main memory through the PCI-E bus prior to
invoking the kernel, and output data also should be written
to the GPU’s memory first. All memory used by the kernel
should be preallocated.

Kernel executes a collection of threads that computes a
result for a small segment of data. To manage multiple thr-
eads, kernel is partitioned into thread blocks, with each
thread block being limited to a maximum of 512 threads. The
thread blocks are usually positioned within a one- or two-
dimensional grid. Each thread can be positioned within a
given blockwhere it belongs, and this given block can be posi-
tioned within the grid. Therefore, each thread can calculate
which elements of data to operate on and which regions of
memory to writhe output to by an algebraic formula. Each
block is executed by a single multiprocessor, which allows all
threads within the block to communicate through on-chip
shared memory. The parallelism architecture of GPGPU is
illustrated in Figure 1.

2.2. Hadoop Framework. Hadoop is a software framework
to copy with distributed data in parallel by communicating
computing nodes. Hadoop runs data-intensive applications
through the Map/Reduce parallel processing technique. This
framework has been used inmany cloud industry companies,
such as Yahoo, Amazon EC2, IBM, and Google. The example
of computation of Map/Reduce framework is illustrated in
Figure 2. In the mapper stage, the input data is split into
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Figure 2: Computation of Map/Reduce framework of Hadoop.

smaller chunks corresponding to the number of mappers,
and each mapper performs the operation on the data chuck.
Output of each mapper has the format of ⟨key, value⟩ pairs.
Outputs from all mappers, ⟨key, value⟩ pairs, are classified by
key before being distributed to reducer. Reducer adds values
by the same key. Outputs of reducers are ⟨key, value⟩ pairs
where each key is unique.

Hadoop cluster consists of a single master and multiple
slave nodes. The role of the master node is a jobtracker, task-
tracker, namenode, and datanode. A slave node, as computing
node, is a datanode and tasktracker.The jobtracker is the ser-
vice within Hadoop that manages Map/Reduce tasks that can
be completed on computing nodes in the cluster, the nodes
that already have the data. A tasktracker is a node in the
cluster that accepts tasks and maps, reduces, and shuffles
operations from a jobtracker. The architecture of Hadoop
cluster is shown in Figure 3.

Hadoop distributed file system (HDFS) is the distribution
file system used by Hadoop framework in default. Each input
data file is split into data blocks that are distributed on data-
nodes by HDFS. HDFS can create multiple replicas of data
blocks and distributes them on datanodes usually in the same
rack as the source datanode throughout a cluster to enable

reliable, extremely rapid computations.The namenode serves
as both a directory namespace manager and a node metadata
manager for the HDFS. There is a single namenode running
in the HDFS architecture.The architecture of HDFS is shown
in Figure 3.

2.3. BLASTP. The basic local alignment search tool (BLAST)
[20], as it is commonly referred to, is a database search
tool, developed and maintained by the National Center for
Biotechnology Information (NCBI). The web-based tool for
BLAST searches is available at http://blast.ncbi.nlm.nih.gov/
Blast.cgi.

The BLAST suite of programs has been designed to find
high scoring local alignments between sequences, without
compromising the speed of such searches. BLAST uses a
heuristic algorithm which seeks local as opposed to global
alignments and is therefore able to detect relationships among
sequenceswhich share only isolated regions of similarity [20].
The first version of BLAST was released in 1990 and allowed
users to perform ungapped searches only.The second version
of BLAST, released in 1997, allowed gapped searches [21].
BLASTP is used for both identifying a query amino acid
sequence and finding similar sequences in protein databases.
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BLASTP has three implementations on GPU, GPU-NCBI-
BLAST, CUDA-BLASTP, and GPU-BLASTP. All three imple-
mentations achieve 4x∼40x speedup over a single-thread
CPU implementation of NCBI-BLAST.

2.4. Cloud-BLASTP. To enhance the performance of CUDA-
BLASTP on single GPU is to scale with multiple GPUs. In
the proposed distributed GPU system, we utilized Hadoop
framework to manage multiple GPUs. The Cloud-BLASTP
architecture is demonstrated in Figure 4. Each single GPU
server has aGPUcard. To derive these distributedGPUcards,
Hadoop is suitable formanaging these cards. Everymapper in
a node performs BLASTP and a reducer collects all the results
produced by mappers. In this architecture, the sequence
database is separated into several parts and uploaded to
servers by HDFS. The features of Hadoop BLASTP are high
performance, availability and reliability, and scalability.

2.4.1. High Performance. In Hadoop BLASTP, the BLASTP
jobs are performed in parallel by Map/Reduce framework.
The number of the BLASTP jobs can be performed simulta-
neously which is the same as the number of the mappers. If
the number of the BLASTP jobs is greater than the number
of the mappers, then the number of mappers will assign
the rest of unperformed BLASTP jobs to available mappers
immediately.

2.4.2. Availability and Reliability. Hadoop BLASTP is able to
avoid the BLASTP jobs stop when mappers are down. By

using Hadoop fault tolerance mechanism, when a datanode
(mapper) is down during BLASTP computation, its BLASTP
job will be reassigned to another slave node (mapper) by
namenode.Therefore, all of the submittedBLASTP jobs never
stop because one of the datanodes fails in Hadoop BLASTP.
A hardware failure on the physical server causes a disastrous
failure as all mappers running on it die. One way is that all of
these jobs can be reassigned, and another way is that several
new mappers are created on available hosts and then these
jobs are reassigned to these new mappers. Thus, Hadoop
BLASTP has high availability.

2.4.3. Scalability. By Hadoop framework, Hadoop BLASTP
can create new slave mappers as datanodes according to the
number of submitted BLASTP jobs. When large amounts of
the BLASTP jobs are submitted, Hadoop BLASTP can create
more mappers to copy with more BLASTP jobs to enhance
the performance.

3. Cloud-BLASTP Platform

Cloud-BLASTP is a protein alignment cloud service under
Hadoop framework, BLASTP, and GPU architecture. The
cloud computing platform is composed of one NFS server
and 4GPU servers in the Providence University Cloud Com-
putation Laboratory. Each server is equipped with an Intel i7
3930 3.2GHz CPU, 16G RAM, and Nvidia GeForceGTS 480
graphics card (Fermi architecture). Each server is running
under the O.S. Ubuntu version 10.4 with Hadoop version 0.2
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Map/Reduce framework. Each server is responsible for amap
operation and a reduce operation. The total number of the
Map/Reduce operations is up to 4, respectively.

4. Performance Evaluation

To assess the performance of the proposed cloud service, we
compared the execution time between stand-alone BLASTP
and Cloud-BLASTP. The performance of both programs
depends upon the amount of data set and the number of
computing mappers. Therefore, the performance between
the programs is tested with respect to these two factors.
In the first experiment, the data size of protein database is
841MB, and the numbers of query sequences are 102, 204,
and 408. The number of query sequences processed by each
mapper is the number of query sequences divided by the
number of mappers. For example, suppose there are two
mappers, and mapper 1 has to process 26 sequences and
mapper 2 has to process 25 sequences. The results are shown
in Figure 5. As shown in the figure, the execution time of
comparing 102 sequences can be reduced from 318 seconds
(consumed by the single GPU-BLASTP) to 187 seconds
and 88 seconds by executing Cloud-BLASTP with 2 and 4
mappers, respectively. Also, the execution time of comparing
204 sequences can be reduced from 622 seconds to 318
seconds and 164 seconds by executing Cloud-BLASTP with
2 and 4 mappers, respectively. For querying 408 sequences,
the execution time can be reduced from 1236 seconds to
622 seconds and 318 sequences by executing Cloud-BLASTP
with 2 and 4 mappers, respectively. It is obvious that with
less mappers (GPU servers) the performance is much worse.
Clearly, the execution time is effectively reduced when more
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Figure 5: The performance of Cloud-BLASTP in the various num-
bers of mappers.

mappers are involved. In general, more mappers achieve a
faster processing speed.

In Cloud-BLASTP, the important features are reliability
and availability. The computing process at the failed node
is able to continue at another node that has the replica of
data of the failed node.Therefore, we performed a simulation
to evaluate the reliability and availability of the proposed
cloud service when mappers fail. In this simulation, we
make half of the mappers fail in the duration of executing
BLASTP. In this simulation, the heartbeat time is set to one
minute, and the number of replicas is set to three as default.
Therefore, all of jobs can be completed even when some
of the nodes fail. Figures 6(a) and 6(b) demonstrate the
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performance of the proposedmethodmeeting corresponding
half of mappers fail and quarter of mappers fail for querying
102, 204 and 408 sequences when failures happen at duration
of 50% execution, respectively. The execution time with no
failure is shown as the blue bar, and the execution time with
failure in a half of mappers is shown as red bar. From the
experiment results, it shows that the jobs can be completed
when mappers fail, but the execution time is more than
normal execution time because the failed jobs have to be
assigned to other health mappers. Figures 7(a) and 7(b)
demonstrate the performance when the failures happen at
the duration of 25% execution. Although the mappers fail,
the execution time of redundancy is related to the number of
mappers too.Thereby, Cloud-BLASTP ismapper failure-free.

5. Conclusion

In the past few years, sequencing technologies have grown
rapidly. The amount of produced sequence data is from
gigabase increased to terabase, and the duration is from
months decreased to days. Therefore, the performance of the
bioinformatics tools is important to analyze data efficiently.
Sequence alignment is the basic and common analysis step
for biologists to practice further experiment. BLASTP is one
of the wild-used local alignment tools for protein sequences.
It is now provided on NCBI organization. BLASTP has
also been implemented on GPU to enhance the alignment
performance. Although BLASTP outperforms most existing
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Figure 7: Execution time of node failure at 25% of execution
duration of Cloud-BLASTP. (a) Two mappers; (b) four mappers.

local sequence alignment tools, it does not satisfy the need
of high scalability and high availability for searching huge
protein database.

Hadoop framework has become popular for providing
efficient and available distributed computation to users.
In this paper, we propose a cloud computing tool, called
Cloud-BLASTP, for protein local alignment by integrating
Hadoop framework and BLASTP tool. Cloud-BLASTP takes
advantage of high performance, availability, reliability, and
scalability. Cloud-BLASTP guarantees that all submitted jobs
are properly completed, even when running job on an
individual node or mapper experience failure. The perfor-
mance experiment shows that it is desirable for biologists
to investigate the protein structure and function analysis
by comparing large protein database under reasonable time
constraints.
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Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs) of
genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease
analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the
huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction,
and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm
optimization with double-bottom chaotic maps (DBM-PSO) was applied to assist statistical methods in the analysis of associated
variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight
genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-
gene interaction for the risk association with breast cancer (odds ratio > 1.0; 𝑃 value < 0.05). Analysis results supported that the
proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates
that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer.

1. Introduction

Genome-wide association studies (GWAS) for the analysis of
gene-gene interaction are important fields for detecting the
effects of cancer and disease [1–4]. Such studies usually entail
the collection of a vast number of samples and SNPs selected
from several related genes of disease in order to identify
the association amongst genes. Disease effect, in general,
is influenced by the best association between SNPs from
several genes; these SNPs could have a potential association to
provide information for disease analysis.Therefore, amethod
for searching high-order interactions is needed to determine
the potential association between several loci.

Good models of the association between SNPs from
several genes are usually hidden in the large number of

possiblemodels.The sumof all possiblemodels of association
between case data and control data can be computed by
𝐶(𝑛,𝑚) × 𝑔

𝑚, where 𝑛 represents a total number of SNPs,
𝑚 is a selected number of SNPs, and 𝑔 is the number of
genotypes. Data mining and machine learning methods have
been proposed for use in GWAS data analysis. These com-
putational approaches were developed to examine epistasis
in family-based and case-control association studies [5–12].
The genetic algorithm (GA), particle swarm optimization
(PSO), and chaotic particle swarm (CPSO) methods were
proposed to identify the models of gene-gene interaction.
However, the ability to determine the relative model quality
needs to be improved. In mathematics, the problem space
for identifying good models is not linear and the algorithm
converges easily to a local optima, since no better models are
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found near the best model in that region. PSO often leads
to premature convergence, especially in complex multipeak
search problems. Therefore, the use of chaotic sequences to
improve the PSO has been proposed to identify models of
gene-gene interaction [7]. An improved PSO using a double-
bottom chaotic maps (DBM-PSO) [13] has been shown to
overcome the respective disadvantages of PSO and CPSO. In
this study,DBM-PSO is applied to assist statisticalmethods in
the analysis of associated variations to disease susceptibility.

A total of 26 SNPs obtained from eight related genes
of breast cancer (EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10,
TGFB1, and VEGF) were used to test the various methods for
comparison of the association models. It is proposed that the
interactions between polymorphisms of breast cancer-related
genes may have synergistic effects on the pathogenesis of
cancer and disease; this would explain differences in disease
susceptibility.The quality of amodel of gene-gene interaction
can be assessed by determining its odds ratio (OR), confi-
dence intervals, and 𝑃 value. We systematically evaluate the
model effects from two- to five-order interactions to compare
the DBM-PSO with other PSOs methods.

2. Methods

2.1. Problem Description. To identify the quality of the mod-
els of gene-gene interaction problem, the model includes
SNPs and their corresponding genotypes. The set 𝑋 =

{𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝐷} represents a possible model as a solution
in the problem space; each parameter 𝑥 is a real number.
The chi-square test is used to design the PSO and DBM-
PSO fitness functions. The objective is to search for a vector
𝑋
∗ which has its own best fitness value according to the

evaluation of fitness function 𝑓(𝑋)(𝑓 : 𝛿 ⊆ 𝑅𝐷 → 𝑅); that
is, 𝑓(𝑋∗) > 𝑓(𝑋), for all 𝑋 ∈ 𝛿, where 𝛿 is a nonempty large
finite set serving as the search space and 𝛿 = 𝑅𝐷.

2.2. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is a population-based stochastic optimization
technique [14]. The conception of PSO is based on a robust
theory of swarm intelligence to search for an optimal res-
olution of complex problems. Swarm intelligence describes
an automatically evolving system based on simulating the
social behaviour of organisms, for example, knowledge shar-
ing. Therefore, valuable information can be shared amongst
swarm members to suggest a common objective which leads
individuals toward an optimal direction. PSO has been used
to solve several types of optimization problems [15], including
function optimization and parameter optimization [16] and
shows promise for nonlinear function optimization [17–22].
In PSO, possible solutions are represented as the particles.
During generation, particle positions are adjusted according
to the updated velocity toward a significant objective. The
objective of each particle is defined based on the particle’s
previous experience (𝑝𝑏𝑒𝑠𝑡) and knowledge commonly held
by the population (𝑔𝑏𝑒𝑠𝑡). Thus, particles can effectively
converge into a solution-rich area to find the better solution.
Finally, the particles follow the current best particle in the
search space until a predefined number of generations are

reached. The PSO procedure entails (1) population initial-
ization, (2) objective function evaluation, (3) identification
of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, (4) particle updating, and (5) the
termination condition. These steps are described in detail in
the following section.

2.3. Double-Bottom Map Particle Swarm Optimization.
Double-bottom map particle swarm optimization (DBM-
PSO) was proposed by Yang et al. in 2012 [13]. While PSO
is easily complicated by the existence of nonlinear fitness
function with multiple local optima, this is not an issue for
DBM-PSO. A local optima, 𝑓𝑖 = 𝑓(𝑋𝑖), can be described
as ∃𝜀 > 0 ∀𝑋 ∈ 𝛿 : ‖𝑋 − 𝑋𝑖‖ < 𝜀 ⇒ 𝑓(𝑋) ≤ 𝑓𝑖 ≤ 𝑓(𝑋

∗
),

where ‖ ⋅ ‖ represents any 𝑝-norm distance measure. In PSO,
the flexibilities of given constraints and vector space in the
problem influence the determination of the best solution.
Generally speaking, 𝑟1 and 𝑟2 independently influence search
exploitation and exploration, and the effect of 𝑟1 and 𝑟2
on the convergence behaviour is very important in PSO.
Recently, chaos approaches have been proposed to overcome
the inherent disadvantages of PSO. Chaotic maps are easily
applied in PSO to prevent entrapment of the population
in a local optima [23]. DBM-PSO proposes a new type of
chaotic map, called double-bottom maps, to improve the
search ability of PSO. Double-bottom maps are used to
design an updating function to balance the exploration and
exploitation for PSO search capability. The superiority of the
double-bottom map over other chaotic maps lies in the fact
that it provides high frequencies in the three regions over
time, that is, 0.0, 0.5, and 1.0. Ideally, the distribution ratios
of 0.0, 0.5, and 1.0 can be effective in balancing the search
behaviour; however, the double-bottom map is designed to
satisfy this PSO property.

Algorithm 1 shows the DBM-PSO pseudocode and
explains all processes in DBM-PSO to identify the best
model of gene-gene interaction. The difference between PSO
and DBM-PSO is that the proposed double-bottom map is
applied in the updating function of the PSO process (symbol
14 of Algorithm 1). All steps in DBM-PSO for identifying
the models of gene-gene interaction problems are explained
below.

2.4. Initializing Particles and DBMr. In DBM-PSO, a point
in the search space is a set which includes the real element
𝑥, 𝑥 ∈ 𝑅. Each particle is a possible solution to the
corresponding problem. The subsequent iteration is denoted
by 𝑖 = 0, 1, . . . , Iterationmax. Since the elements in a set are
likely to change over a sequence of iterations, (1) represents
the 𝑗th particle in the population of 𝑖th iteration as

𝑋𝑗,𝑖 = {𝑥𝑗,𝑖,1, 𝑥𝑗,𝑖,2, . . . , 𝑥𝑗,𝑖,𝐷 | 𝑥 ∈ 𝑅} . (1)

In this study, a particle in the population represents a
solution, that is, a model of gene-gene interaction. A particle
contains two separate sets: a set of selected SNPs and a set
of genotypes. For each element in 𝑋𝑗, a certain range within
the value is restricted.The values are related to physical com-
ponents or measurement, that is, natural bounds. The initial
population (at 𝑖 = 0) process covers a certain range as much
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(01) begin
(02) Randomly initialize particles swarm and DBMr
(03) for 𝑖 = 1 to the number of iteration
(04) Evaluate fitness values of particles by FITNESS(𝑋𝑗, 𝑃,𝑁)
(05) for 𝑗 = 1 to number of particles
(06) Find pbest by (13)
(07) Find gbest by (14)
(08) for 𝑑 = 1 to the number of dimension of particle
(09) Update the velocities of particles by (15)
(10) Update the positions of particles by (16)
(11) next 𝑑
(12) next 𝑛
(13) Update the inertia weight value by (17)
(14) Update the value of DBMr by (18)
(15) next 𝑖
(16) end

Algorithm 1: DBMPSO pseudocode.

(01) FITNESS(𝑋𝑗, 𝑃,𝑁)
(02) Compute 𝑎 using (4)
(03) Compute 𝑏 using (5)
(04) Compute 𝑐 using (6)
(05) Compute 𝑑 using (7)
(06) Compute RorP using (9)
(07) if the objective is search of risk association model
(08) Compute fitness value using (10)
(09) else if the objective is search of protection association model
(10) Compute fitness value using (11)
(11) End if
(12) Return fitness value
(13) End

Algorithm 2: Fitness value computation pseudocode.

as possible by uniformly randomizing individuals within
the search space constrained according to the minimum
and maximum bounds, which are represented by 𝑆𝑁𝑃min
and 𝑆𝑁𝑃max and𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒min and𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒max, respectively.
Equation (2) shows all genotypes.The homozygous reference
genotype is represented as 1, while the heterozygous genotype
is represented as 2, and the homozygous variant genotype is
represented as 3:

Genotype =
{{

{{

{

1, AA type,
2, Aa type,
3, aa type.

(2)

The particles are generated by (3). Particles are initialized
by generating the random set in a particle:

𝑥𝑗,𝑑 =

{{

{{

{

Random (𝑆𝑁𝑃min, 𝑆𝑁𝑃max) , 𝑑 ≤
𝐷

2

Random (𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒min, 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒max) , 𝑑 >
𝐷

2
,

(3)

where 𝑆𝑁𝑃max and 𝑆𝑁𝑃min represent a limited SNP, while
𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒max and 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒min represent the limited possible
genotypes. For example, let 𝑋𝑗,0 = (1, 3, 4, 2, 1, 2); thus
𝑋𝑗,0 represents the 𝑗th 𝑋 in the first generation (at 𝑖 = 0)
of selected SNPs (1, 3, 4) and genotypes (2, 1, 2) and can
be described by the SNPs associated with the genotypes as
follows: (1, 2), (3, 1), and (4, 2).

All random values (DBMr) in the particles are generated
with a random value between 0.0 and 1.0 for each indepen-
dent run.

2.5. Evaluating the Qualities of Particles Using Fitness Func-
tion. In theDBM-PSOprocess, the fitness functionmeasures
the quality of particles in the population.The studies of gene-
gene interaction focus on the combinations of SNP genotypes
to identify the highest chi-square (𝜒2) value between breast
cancer cases and noncancer cases; the value is called the
fitness value in DBM-PSO. Algorithm 2 shows the fitness
value computation pseudocode. In (4) and (5), symbols 𝑝
and 𝑛 are, respectively, the sizes of case data and control data,
while in (4), (5), (6), and (7),𝑃 and𝑁 are, respectively, the sets
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of case data and control data.The 𝑎 in (4) is used to count the
number of 𝑃 including the𝑋𝑗; that is,𝑋𝑗 ⊆ 𝑃𝑘. The 𝑏 in (5) is
used to count the number of𝑁 including the𝑋𝑖; that is,𝑋𝑗 ⊆
𝑁𝑘. The 𝑐 in (6) represents the total number of unmatched
𝑋𝑗 in the 𝑃; that is, 𝑋𝑗 ̸⊂ 𝑃𝑘. The 𝑑 in (7) represents the total
number of unmatched𝑋𝑗 in the𝑁; that is,𝑋𝑗 ̸⊂𝑁𝑘. Equation
(9) computes the difference between case data and control
data and is used to determinewhether themodel is associated
with risk or protection. Equation (10) is used to compute the
fitness value if the objective is to search the risk association
model. Equation (11) is used to compute the fitness value if
the objective is to search the protection association model.
Equation (12) is the chi-square (𝜒2) function and is used
to compute the 𝜒2 value between breast cancer cases and
noncancer cases in this study. Consider

𝑎 = 𝑓 (𝑋𝑗) =

𝑝

∑

𝑘=1

𝑢 (𝑋𝑗, 𝑃𝑘) , (4)

𝑏 = 𝑓 (𝑋𝑗) =

𝑛

∑

𝑘=1

𝑢 (𝑋𝑗, 𝑁𝑘) , (5)

𝑐 = 𝑝 − 𝑎, (6)

𝑑 = 𝑛 − 𝑏, (7)

where

𝑢 (𝑋𝑗, 𝐴) = {
1, ∀𝑥 ⊆ 𝐴,

0, ∀𝑥 ̸⊂ 𝐴,
∀𝑥 ∈ 𝑋𝑗 (8)

𝑅𝑜𝑟𝑃 =
100

(𝑝 × 𝑛) (𝑛 × 𝑎 − 𝑝 × 𝑏)
, (9)

fitness risk = {0, 𝑅𝑜𝑟𝑃 < 1,

𝜒
2
, 𝑅𝑜𝑟𝑃 > 1,

(10)

fitness protection = {0, 𝑅𝑜𝑟𝑃 > 1,

𝜒
2
, 𝑅𝑜𝑟𝑃 < 1,

(11)

𝜒
2
=
(𝑎 + 𝑏 + 𝑐 + 𝑑) (𝑎 × 𝑑 − 𝑏 × 𝑐)

2

(𝑎 + 𝑏) (𝑐 + 𝑑) (𝑎 + 𝑐) (𝑏 + 𝑑)
. (12)

2.6. Updating the pbests of Particles and 𝑔𝑏𝑒𝑠𝑡 of Popula-
tion. Each particle can be improved according to the two
objectives, 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, to search for a better solution.
𝑝𝑏𝑒𝑠𝑡𝑗 indicates the best value of a position previously visited
by the 𝑗th particle, and its position is denoted by 𝑃𝑗 =
(𝑝𝑗,1, 𝑝𝑗,2, . . . , 𝑝𝑗,𝑑). Equations (13) are the updating functions
for a particle’s 𝑝𝑏𝑒𝑠𝑡 position and 𝑝𝑏𝑒𝑠𝑡 value, respectively, as
follows:

𝑃𝑗 = {
𝑋𝑗, 𝑓 (𝑋𝑗) ≥ 𝑝𝑏𝑒𝑠𝑡𝑗,

𝑃𝑗, 𝑓 (𝑋𝑗) < 𝑝𝑏𝑒𝑠𝑡𝑗,

𝑝best𝑗 = {
𝑓 (𝑋𝑗) , 𝑓 (𝑋𝑗) ≥ 𝑝𝑏𝑒𝑠𝑡𝑗,

𝑝𝑏𝑒𝑠𝑡𝑗, 𝑓 (𝑋𝑗) < 𝑝𝑏𝑒𝑠𝑡𝑗,

(13)

where 𝑔𝑏𝑒𝑠𝑡 indicates the best value of all 𝑝𝑏𝑒𝑠𝑡 values for a
particle and its position is denoted by 𝐺 = (𝑔1, 𝑔2, . . . , 𝑔𝑑).
Equations (14) provide the updating function for 𝑔𝑏𝑒𝑠𝑡
position and 𝑔𝑏𝑒𝑠𝑡 value, respectively, as follows:

𝐺 = {
𝑃𝑗, 𝑝𝑏𝑒𝑠𝑡𝑗 ≥ 𝑔𝑏𝑒𝑠𝑡,

𝐺, 𝑝𝑏𝑒𝑠𝑡𝑗 < 𝑔𝑏𝑒𝑠𝑡,

𝑔𝑏𝑒𝑠𝑡 = {
𝑝𝑏𝑒𝑠𝑡𝑗, 𝑝𝑏𝑒𝑠𝑡𝑗 ≥ 𝑔𝑏𝑒𝑠𝑡,

𝑔𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡𝑗 < 𝑔𝑏𝑒𝑠𝑡.

(14)

2.7. Updating Particle Velocities and Positions. DBM-PSO
executes a search for optimal solutions by continuously
updating particle positions in all iterations. Equations (15)
and (16) are used to update the velocity and a position of the
𝑗th particle, respectively, as follows:

Vnew
𝑗,𝑑
= 𝑤 × Vold

𝑗,𝑑
+ 𝑐1 × DBM𝑟𝑗,1 × (𝑝𝑗,𝑑 − 𝑥

old
𝑗,𝑑
)

+ 𝑐2 × DBM𝑟𝑗,2 × (𝑔𝑑 − 𝑥
old
𝑗,𝑑
) ,

(15)

𝑥
new
𝑗,𝑑
= 𝑥

old
𝑗,𝑑
+ Vnew
𝑗,𝑑
, (16)

where 𝑐1 and 𝑐2 are acceleration constants that control how far
a particlemoves in a given iteration. Randomvalues,DBM𝑟𝑗,1
andDBM𝑟𝑗,2, in (15) are generated by a function based on the
results of the double-bottommapwith values between 0.0 and
1.0; they are described in the following section. Velocities Vnew

𝑗,𝑑

and Vold
𝑗,𝑑

are a particle’s new and old velocities, respectively.
Positions 𝑥old

𝑗,𝑑
and 𝑥new

𝑗,𝑑
are the particle’s current and updated

positions, respectively. Variable 𝑤 is the inertia weight and is
described in the following section.

2.8. Updating Particle Inertia Weight Values. Variable 𝑤 in
DBM-PSO is called the inertia weightwhich is used to control
the impact of a particle’s previous velocity. Throughout all
iterations, 𝑤 decreases linearly from 0.9 to 0.4 [24], and the
equation can be written as

𝑤 = (𝑤max − 𝑤min) ×
Iterationmax − Iteration𝑖

Iterationmax
+ 𝑤min, (17)

where Iteration𝑖 represents the 𝑖th iteration and Iterationmax
represents the iteration size. Values 𝑤max and 𝑤min represent
the maximal and minimal values of 𝑤, respectively.

2.9. Updating Particle DBMr Values. In DBM-PSO, two
random values in the updating function are generated by the
following double-bottom map function:

DBM𝑟𝑗,𝑡+1 =
[sin (4𝜋DBMr𝑗,𝑡) + 1]

2
. (18)

2.10. Parameter Settings. In this study, all methods used the
same parameters to test the search ability for the identifica-
tion of the models of gene-gene interaction. The population
size is 100 and the maximal iteration is 100. The value of
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(01) begin
(02) for 𝑛 = 1 to the number of SNP
(03) compute size of “AA” genotype in n-SNP
(04) compute size of “Aa” genotype in n-SNP
(05) compute size of “aa” genotype in n-SNP
(06) generate three genotypes into a set 𝐴𝑛 according each size
(07) randomly sort the elements of 𝐴𝑛
(08) next 𝑛
(09) set dataset = {𝐴1, 𝐴2, . . . , 𝐴𝑚/𝑚 is the number of SNP}
(10) end

Algorithm 3: Genotype generator pseudocode.

inertia weight 𝑤 is set from 0.9 to 0.4 [25]. Both learning
factors, 𝑐1 and 𝑐2, are equal to 2 [26]. All tests are implemented
in Java as a single thread in a PC environment running 32-
bit Windows 7 with an Intel coreTM2 Quad CPU Q6600 at
2.4GHz and 4GB of RAM.

2.11. Statistical Analysis. The model of associations between
SNPs can be evaluated by odds ratio (OR) and its 95% CI and
𝑃 value [27]. OR can evaluate the models to quantitatively
measure the risk of disease; 𝑃 value can evaluate whether the
results are statistically significant for the difference between
the case data and control data. All statistical analyses are
implemented using SPSS version 19.0 (SPSS Inc., Chicago, IL).

3. Results and Discussion

3.1. Data Set. The growth factor-related genes of breast can-
cer, including genes of EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10,
TGFB1, and VEGF with 26 SNPs, were tested in this study.
A genotype generator is used to generate a large simulated
data set according to the genotype frequencies. Algorithm 3
shows the genotype generator pseudocode to explain how the
data set was generated.The genotype frequencies of SNPs are
collected from Pharoah et al.’s breast cancer association study
[39], which explains the significance of these SNPs of genes
in breast cancer.

3.2. Evaluation of Breast Cancer Susceptibility Using 26 SNPs
from Eight Growth Factor-Related Genes. Table 1 shows the
performance (OR and 95% CI) for estimating the effect
of a single SNP from eight growth factor-related genes
(EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10, TGFB1, and VEGF).
Amongst the 26 SNPs in the eight genes, eight SNPs in four
genes display a statistically significant OR (𝑃 < 0.05) for
breast cancer. Six SNPs have a risk (OR > 1.0) associa-
tion for breast cancer, including rs5742678-GG, rs1549593-
AA, rs6220-GG, IGFIR-10-aa, rs2132572-GA and -AA, and
rs1800470-CC.The highest and lowest OR values are 1.33 and
1.09, respectively. Two SNPs have a protection (OR < 1.0)
association for breast cancer, including rs2229765-AA and
rs2854744-CC. The highest and lowest OR values are 0.88
and 0.82, respectively. The other SNPs show no statistically
significant OR for breast cancer.

3.3. Analysis of Models for Gene-Gene Interaction with Risk
Association between the Case and Control Data Sets Using
PSO, CPSO, and DBM-PSO. Table 2 shows the 2- to 7-
order risk association models for gene-gene interaction. The
results are compared with the 𝜒2 value, with a high value
indicating a good result. The model of 2-SNPs with their
corresponding genotypes, SNPs (1, 7) with genotypes 1-3,
[rs5742678-CC]-[IGF1R-10-aa], is identified as having 9.451
𝜒
2 value to explain the difference between the case and

control data sets for three methods. However, the results of
3- to 7-SNPs clearly indicate that the DBM-PSO algorithm
exhibited an improved search ability over PSO and CPSO in
terms of the comparison with the 𝜒2 value. For example, in
3-SNPs, DBM-PSO is identified as having a 𝜒2 value of 8.772,
but those of PSO and CPSO are 3.364 and 3.997, respectively.
Table 2 shows the (OR) and its 95% CI, which estimate the
impact of the risk association model on the occurrence of
breast cancer. A bigger OR value (>1) indicates a stronger
risk association between the SNPs with combined genotypes
and the disease. DBM-PSO shows high OR (1.346–10.018)
values formodels with a high association for the risk of breast
cancer, and the 𝑃 value (<0.05) indicates that the models
have a statistically significant difference between patients and
nonpatients. Aside from a 3-SNP model of CPSO, the 𝑃
values of models in 3- to 7-SNPs of PSO and CPSO show
no statistical significance, indicating that PSO and CPSO
have difficulty in identifying statistically significant models
for risk association for breast cancer. However, DBM-PSO
successfully identifies good models for risk association for
breast cancer.

3.4. Analysis of Models of Gene-Gene Interaction with Pro-
tection Association between Case and Control Data Sets
Using PSO, CPSO, and DBMPSO. Table 3 shows the 2- to
7-order protection association models. The OR values (<1)
estimate the impact of the protection association model on
the occurrence of breast cancer. High 𝜒2 values in the models
indicate good results, and the 𝑃 value (<0.05) indicates that
the model has a statistically significant difference between
patients and nonpatients. The results of 3- to 7-SNPs show
that DBM-PSO possesses higher 𝜒2 values than PSO and
CPSO, indicating that DBM-PSO is better to search for good
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Table 1: Estimated effect (odds ratio and 95% CI) from individual
SNPs of 26 growth factor-related genes on the occurrence of breast
cancer patients.

SNP
(Genes)a

SNP
type

Case
number/
normal
numbera

Odds
ratio 95% CI

1. rs2237054
(EGF)

1-TT 4408/4418
2-TA 570/569 1.00 0.89–1.14
3-AA 22/13 1.70 0.85–3.37

2. rs5742678
(IGF1)

1-CC 2797/2866
2-CG 1844/1837 1.03 0.95–1.12
3-GG 359/297 1.24 1.05–1.46

3. rs1549593
(IGF1)

1-CC 2924/2970
2-CA 1753/1771 1.01 0.93–1.09
3-AA 323/259 1.27 1.07–1.50

4. rs6220
(IGF1)

1-AA 2643/2698
2-AG 1933/1951 1.01 0.93–1.10
3-GG 424/351 1.23 1.06–1.44

5. rs2946834
(IGF1)

1-CC 2295/2336
2-CT 2171/2150 1.03 0.95–1.12
3-TT 534/514 1.06 0.93–1.21

6. rs1568502
(IGF1R)

1-AA 2914/2955
2-AG 1840/1807 1.03 0.95–1.12
3-GG 246/238 1.05 0.87–1.26

7. IGF1R-10
(IGF1R)

1-AA 3169/3201
2-Aa 1545/1582 0.99 0.91–1.08
3-aa 286/217 1.33 1.11–1.60

8. rs2229765
(IGF1R)

1-GG 1523/1429
2-GA 2533/2489 0.96 0.87–1.05
3-AA 944/1082 0.82 0.73–0.92

9. rs8030950
(IGF1R)

1-CC 2737/2745
2-CA 1902/1917 1.00 0.92–1.08
3-AA 361/338 1.07 0.92–1.25

10. rs680
(IGF2)

1-GG 2538/2451
2-GA 2074/2183 0.92 0.85–1.00
3-AA 388/366 1.02 0.88–1.19

11. rs3741211
(IGF2)

1-TT 1936/1971
2-TC 2367/2269 1.06 0.98–1.16
3-CC 697/760 0.93 0.83–1.05

12. IGF2-05
(IGF2)

1-AA 2651/2694
2-Aa 1955/1952 1.02 0.94–1.11
3-aa 394/354 1.13 0.97–1.32

13. IGF2-06
(IGF2)

1-AA 2160/2162
2-Aa 2237/2284 0.98 0.90–1.07
3-aa 603/554 1.09 0.96–1.24

14. rs2132571
(IGFBP3)

1-GG 2415/2407
2-GA 2163/2157 1.00 0.92–1.09
3-AA 422/436 0.97 0.83–1.12

15. rs2471551
(IGFBP3)

1-GG 3225/3284
2-GC 1591/1515 1.07 0.98–1.17
3-CC 184/201 0.93 0.76–1.15

Table 1: Continued.

SNP
(Genes)a

SNP
type

Case
number/
normal
numbera

Odds
ratio 95% CI

16. rs2854744
(IGFBP3)

1-AA 1538/1469
2-AC 2487/2475 0.96 0.88–1.05
3-CC 975/1056 0.88 0.79–0.99

17. rs2132572
(IGFBP3)

1-GG 2908/3027
2-GA 1805/1728 1.09 1.00–1.18
3-AA 287/245 1.22 1.02–1.46

18. rs3024496
(IL10)

1-TT 1218/1235
2-TC 2533/2549 1.01 0.92–1.11
3-CC 1249/1216 1.04 0.93–1.17

19. rs1800872
(IL10)

1-CC 3059/3017
2-CA 1660/1722 0.95 0.87–1.03
3-AA 281/261 1.06 0.89–1.27

20. rs1800890
(IL10)

1-TT 1703/1701
2-TA 2455/2508 0.98 0.90–1.07
3-AA 842/791 1.06 0.95–1.20

21. rs1554286
(IL10)

1-CC 3400/3446
2-CT 1431/1410 1.03 0.94–1.12
3-TT 169/144 1.19 0.95–1.49

22. rs1800470
(TGFB1)

1-TT 1850/1914
2-TC 2372/2399 1.02 0.94–1.11
3-CC 778/687 1.17 1.04–1.32

23. rs699947
(VEGF)

1-CC 1236/1273
2-CA 2511/2463 1.05 0.95–1.16
3-AA 1253/1264 1.02 0.91–1.14

24. rs1570360
(VEGF)

1-GG 2278/2341
2-GA 2214/2132 1.07 0.98–1.16
3-AA 508/527 0.99 0.87–1.13

25. rs2010963
(VEGF)

1-GG 2354/2279
2-GC 2133/2157 0.96 0.88–1.04
3-CC 513/564 0.88 0.77–1.01

26. rs3025039
(VEGF)

1-CC 3744/3741
2-CT 1160/1174 0.99 0.90–1.08
3-TT 96/85 1.13 0.84–1.52

aData collected from the literature [39].

protection association models than other methods. DBM-
PSOhasORvalues ranging from0.755 to 0.850, with a𝑃 value
of <0.05 for protection with breast cancer. The 2-SNP and 3-
SNPmodels in PSO and CPSO show a statistically significant
difference between patients and nonpatients (𝑃 < 0.05), and
the 4-SNPmodel inCPSOalso shows a statistically significant
difference. Although CPSO provides better OR values than
DBM-PSO in the 5-, 6-, and 7-SNP models, the 𝑃 values
indicate that these models are not statistically significant.
DBM-PSO successfully identifies goodmodels for protection
association for breast cancer.

3.5. Discussion. Effects between SNPs from several genes
could contribute to disease development. Case-control
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Table 2: Estimation of the best risk model of gene-gene interaction on the occurrence of breast cancer as determined by PSO, CPSO, and
DBMPSO.

Combined SNP SNP genotypes Cases number Controls number 𝜒
2 value Odds ratio 95% CI 𝑃 value

2-SNP
PSO 1, 7 1-3 259 195 9.451 1.346 1.11–1.63 0.002

Other 4741 4805
CPSO 1, 7 1-3 259 195 9.451 1.346 1.11–1.63 0.002

Other 4741 4805
DBMPSO 1, 7 1-3 259 195 9.451 1.346 1.11–1.63 0.002

Other 4741 4805
3-SNP

PSO 2, 14, 25 3-1-1 84 62 3.364 1.361 0.98–1.89 0.068
Other 4916 4938

CPSO 1, 6, 7 1-1-3 148 116 3.997 1.285 1.00–1.64 0.046
Other 4850 4884

DBMPSO 7, 11, 21 3-2-1 93 57 8.772 1.644 1.18–2.29 0.003
Other 4907 4943

4-SNP
PSO 1, 14, 20, 23 3-3-1-2 2 0 1.000 3.001 0.31–28.86 0.341

Other 4998 5000
CPSO 1, 4, 11, 14 1-3-2-1 86 67 2.396 1.289 0.93–1.78 0.123

Other 4914 4933
DBMPSO 1, 7, 11, 21 1-3-2-1 87 53 8.374 1.653 1.17–2.33 0.004

Other 4913 4947
5-SNP

PSO 2, 7, 15, 18, 24 1-3-1-3-2 15 8 2.135 1.878 0.80–4.43 0.151
Other 4985 4992

CPSO 3, 10, 17, 24, 26 3-1-1-3-1 9 3 3.004 3.004 0.81–11.10 0.099
Other 4991 4997

DBMPSO 1, 2, 7, 11, 21 1-1-3-2-1 49 27 6.417 1.823 1.14–2.92 0.013
Other 4951 4973

6-SNP
PSO 2, 6, 8, 16, 18, 25 3-1-1-2-3-2 3 1 1.000 3.001 0.31–28.86 0.341

Other 4997 4999
CPSO 2, 11, 16, 18, 22, 23 1-2-1-2-3-2 14 9 1.089 1.557 0.67–3.60 0.301

Other 4986 4991
DBMPSO 1, 2, 7, 10, 11, 21 1-1-3-1-2-1 27 12 6.417 2.257 1.14–4.46 0.019

Other 4973 4988
7-SNP

PSO 1, 3, 6, 12, 21, 24, 26 1-3-2-1-3-1-1 2 0 1.000 3.001 0.31–28.86 0.341
Other 4998 5000

CPSO 1, 2, 3, 9, 19, 21, 24 1-1-3-1-1-2-3 4 1 1.801 4.002 0.45–35.82 0.215
Other 4996 4999

DBMPSO 1, 3, 5, 9, 17, 23, 24 1-3-2-1-2-2-1 10 1 7.372 10.018 1.28–78.29 0.028
Other 4990 4999

studies are the main method to determine the association
between SNPs. Many breast cancer studies have analysed
the associations between important related genes [28–34],
hypothesizing that disease risk may be associated with the
cooccurrence of SNPs displaying a jointed effect, including
genes related to DNA repair [35, 36], chemokine ligand-
receptor interactions [37], and estrogen-response genes [4].

Evolutionary algorithms are applied to identify good
models of gene-gene interaction [7, 9]. Previous studies have
used the difference between case and control data sets to
design the fitness function, allowing for the identification
of models with high difference values for all SNP combi-
nations. However, the highest difference between the case
and control data sets is not necessarily statistically significant
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Table 3: Estimation of the best protection model of gene-gene interaction on the occurrence of breast cancer as determined by PSO, CPSO,
and DBMPSO.

Combined SNP SNP genotypes Cases number Controls number 𝜒
2 value Odds ratio 95% CI 𝑃 value

2-SNP
PSO 1, 8 1-3 816 941 10.789 0.841 0.76–0.93 0.001

Other 4184 4059
CPSO 1, 8 1-3 816 941 10.789 0.841 0.76–0.93 0.001

Other 4184 4059
DBMPSO 1, 8 1-3 816 941 10.789 0.841 0.76–0.93 0.001

Other 4184 4059
3-SNP

PSO 8, 9, 22 3-1-2 225 269 4.123 0.829 0.69–0.99 0.043
Other 4775 4731

CPSO 3, 8, 9 1-3-1 319 371 4.209 0.850 0.73–0.99 0.040
Other 4681 4629

DBMPSO 1, 8, 15 1-3-1 527 624 9.238 0.826 0.73–0.94 0.002
Other 4473 4376

4-SNP
PSO 4, 8, 14, 22 2-3-1-2 76 99 3.077 0.764 0.57–1.03 0.080

Other 4924 4901
CPSO 10, 17, 21, 23 2-1-1-1 223 268 4.337 0.824 0.69–0.99 0.038

Other 4777 4732
DBMPSO 1, 10, 17, 21 1-2-1-1 692 795 8.381 0.850 0.76–0.95 0.004

Other 4308 4205
5-SNP

PSO 5, 6, 8, 9, 26 1-1-3-2-1 75 91 1.568 0.821 0.60–1.12 0.211
Other 4925 4909

CPSO 2, 4, 8, 11, 18 1-2-3-1-2 32 44 1.909 0.726 0.46–1.15 0.169
Other 4968 4956

DBMPSO 1, 2, 6, 8, 15 1-1-1-3-1 167 218 7.026 0.758 0.62–0.93 0.008
Other 4833 4782

6-SNP
PSO 4, 8, 15, 19, 22, 24 1-3-2-2-1-3 0 2 1.000 0.333 0.04–3.20 0.341

Other 5000 4998
CPSO 3, 4, 12, 16, 20, 24 1-1-1-2-2-3 21 28 1.005 0.749 0.43–1.32 0.318

Other 4979 4972
DBMPSO 1, 10, 15, 17, 21, 26 1-2-1-1-1-1 327 394 6.710 0.818 0.70–0.95 0.010

Other 4673 4606
7-SNP

PSO 5, 8, 11, 13, 14, 24, 25 1-1-3-1-1-2-1 3 6 1.001 0.500 0.13–2.00 0.327
Other 4997 4994

CPSO 10, 12, 16, 17, 19, 22, 26 2-2-2-1-2-2-1 20 27 1.047 0.740 0.41–1.32 0.308
Other 4980 4973

DBMPSO 1, 10, 13, 15, 17, 21, 26 1-2-2-1-1-1-1 141 185 6.139 0.755 0.60–0.94 0.014
Other 4859 4815

(𝑃 < 0.05). The chi-square test is a statistical tool to
evaluate the difference between the observed and expected
data sets under specific hypothetical conditions. A property
of the chi-square test is that the chi-square value is inversely
proportional to 𝑃 value.Therefore, the chi-square test is used
to design the fitness function in this study. PSO andCPSO [7]
were used to search for goodmodels based on the new fitness
function, but the results (Tables 2 and 3) fail to identify high-
order associations. However, DBM-PSO effectively identified

good risk and protection association models of gene-gene
interactions for breast cancer. Statistical methods, such as 𝑃
value, OR, and its 95% CI, provide strong validation of the
search ability of DBM-PSO.

PSO and DBM-PSO use the fitness functional compu-
tation to calculate complexity. DBM-PSO can be observed
in (15) and (18). Equation (18) is only used to amend the
original PSO updating equation (15). Therefore, DBM-PSO
does not increase the complexity of the PSO search process.
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The computational complexity of DBM-PSO is big-O(𝑛𝑚),
where 𝑛 is the number of iterations and 𝑚 is the number of
particles.

The results of DBM-PSO are influenced by its parameters,
including double-bottom chaotic maps (18), population size,
iteration size, and 𝑐1 and 𝑐2 in the updating function (15). Yang
et al. [13] tested the 22 most commonly used representative
benchmark functions, selecting the optimal parameters (4𝜋)
in the proposed double-bottom chaotic maps. Therefore, the
parameter is suggested as 4𝜋 in (18). The population and
iteration sizes could be adjusted according to the size of the
data set. Population size suggested a setting from 50 to 200
and the suggested number of iterations ranges from 100 to
1000. 𝑐1 and 𝑐2 are both suggested to be 2 [38].

4. Conclusion

We proposed a new fitness function to identify good models
of gene-gene interaction for the investigation of polygenic
diseases and cancers.Thefitness function based on chi-square
test addresses the disadvantage of previously proposed fitness
functions, in that the highest difference between the case
and control data sets is not necessarily statistically significant
(𝑃 < 0.05). Our proposed DBM-PSO showed to be able to
successfully determine the 26 SNP cross interactions for risk
and protection models of gene-gene interactions in breast
cancer. The results indicate that DBM-PSO can successfully
use the chi-square test to identify good models by evaluating
the difference between the observed and expected data sets
under specific hypothetical conditions.
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Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand
breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the
pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion
into PhModels and virtual screening techniques is a novel design strategy for drug design.We used combinatorial fusion to analyze
the prediction results and then obtained the best correlation coefficient of the testing set (𝑟test) with the value 0.816 by combining
the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening
according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally,
the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential
inhibitors for Chk2 are retrieved for further study.

1. Introduction

DNA-damage is induced by ionizing radiation, genotoxic
chemicals, or collapsed replication forks, and when DNA
was damaged or the responses of cells were failure, the
mutation associated with the breast or ovarian cancer of
genes may occur. To prevent and repair the DNA-damage,
mammalian cells will control and stabilize the genome by cell
cycle checkpoint. The checkpoint pathway consists of several
kinases, such as ataxia telangiectasia mutated protein (ATM
[1, 2]), ataxia telangiectasia and Rad3-related protein (ATR
[1, 2]), checkpoint kinase 1 (Chk1 [3, 4]), and checkpoint
kinase 2 (Chk2 [5–8]). ATM and ATR are upstream kinases
passing messages to downstream kinases and phosphorylat-
ing several proteins that initiate the activation of the DNA-
damage checkpoint. Moreover, ATM is a primarily pathway
to activate p53 (protein 53 [9]) by Chk2, and ATR may
influence the phosphorylation of Chk1. Both Chk1 and Chk2
are key components in DNA-damage; however, their cellular

activities are different. Chk1 is involved in S and G2 phases
of the cell cycle with ATR pathway. By contrast, Chk2 is
activated in all phases through ATM-dependent pathway and
plays an important role in response to DNA double-strand
breaks and related lesions. Furthermore, Chk1 is an unstable
protein and lacks the forkhead-associated domain (FHA)
which was involved in several processes that protect against
cancer and can be found in Chk2. Therefore, we concentrate
on Chk2 in this study.

Chk2 is a protein containing 543 amino acid residues
and the structure of Chk2 consists of some functional
elements, including the N-terminal SQ/TQ cluster domain
(SCD), FHA, and the N-terminal serine/threonine kinase
domain (KD) [5–8]. The SCD is known to be the preferred
site with the residue Thr68 for phosphorylation to respond
to DNA-damage by ATM/ATP kinases. The FHA domain
is a phosphopeptide recognition domain found in many
regulatory proteins and thought to bind to the phosphoThr68
segment of SCD [5–8, 10–14]. Hence it is a good candidate

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 359494, 13 pages
http://dx.doi.org/10.1155/2014/359494

http://dx.doi.org/10.1155/2014/359494


2 BioMed Research International

PV1019 NSC 109555

NH

NH

NHN

O

HNNO2

NH2

NH

NHNN

N
H

N
H

O

HN

HNH2N NH2

.2C7H8O3S

Figure 1: Two-dimensional chemical structures of known Chk2 inhibitors. The experimental IC50 of PV1019 and NSC 109555 were 138 nM
and 240 nM, respectively.

for interactions of Chk2 with its upstream regulators or
downstream targets in the cell-cycle-checkpoint signaling.
The KD occupies almost the entire carboxy-terminal half
of Chk2 and has been identified based on their homology
with serine/threonine kinases. Some studies reported that
when DNA was damaged, Chk2 is activated by ATM/ATR
through the phosphorylation of residue Thr68. Moreover,
Chk2 induces transautophosphorylation of residues Thr383
and Thr387 and then cis-phosphorylation of residue Ser516
[5–8, 10–14]. After that, Chk2 will phosphorylate several
downstream substrates, such as BRCA1 (breast cancer 1, early
onset [15, 16]), Cdc25A (cell division cycle 25 homolog A),
Cdc25C, and p53 [7, 8, 10]. Several researches indicated
that Chk2 phosphorylates Cdc25A which is considered an
oncogene on the residue Ser123 in S phase of cell cycle, and
it also phosphorylates Cdc25C on the residue Ser216 in G2
phase helping prevent mitotic entry in cells with damaged
DNA [5]. Furthermore, BRCA1 and p53 are involved in DNA
repair process in the breast or ovarian cancer. BRCA1 is a
human caretaker gene and helps repair damaged DNA or
destroys cells which cannot be repaired. The p53 is a tumor
suppressor protein involved in preventing cancer in human
and plays an important role in the G1 checkpoint in response
to DNA damaging agents. We consider that the sites of the
phosphorylations are important in the drug design for cell
survival when DNA is damaged.

Recently, several studies identified the inhibitors of Chk2
[6–8, 10–14], and they also showed the crystal structures
of Chk2 complex, such as PDB: 1GXC, 2W7X, and, and so
forth. They are selective, reversible, and ATP-competitive
Chk2 inhibitors demonstrating that they effectively restrain
the radiation-induced phosphorylation of Chk2. In addition,
several selective Chk2 inhibitors have been also identified
(two examples were shown in Figure 1) and the researches
indicated that they are potential and selective inhibitors of
Chk2 with chemotherapeutic and radiosensitization poten-
tial. On structure-based drug design, several developments
of Chk2 were published [17, 18]. Quantitative structure-
activity relationship model (QSAR model) is a regression or
classification model and is an important technique in the
rational drug design. It is used to correlate the structure
properties of compounds with their biological activities.
The method to predict the quality by QSAR was improved
by considering the three-dimensional structure QSAR (3D-
QSAR) [19–24] of targeted inhibitor. Therefore, the com-
pound structure can be directly optimized in the 3D space.

The comparative molecular field analyses (CoMFA) [18, 25–
30] and the comparativemolecular similarity indices analyses
(CoMSIA) [18, 27–32] for Chk2 inhibitors were performed by
ligand-based and receptor-guided alignment. They used the
cocrystal structure fromprotein data bank (PDB code: 2CN8)
[7], and then they identified new plausible binding modes
used as template for 3D-QSAR [18].There is another research
of Chk2 studied in QSAR/QSPR [17] providing structures
that will improve reducing the side effects of Chk2 inhibitors.

Pharmacophore [20–24, 33–35] is a set of structural
features responsible for the biological activity of a molecule.
It allowed compounds with diverse structures to find the
common chemical features by ligand pharmacophore map-
ping, and that is different from CoMFA and CoMSIA with
the common structure constraint. Thus, pharmacophore can
explain how diverse ligands bind to a receptor site by these
features and visualize the feature of potential chemical inter-
actions between ligands and receptors. Moreover, pharma-
cophore can easily and quickly identify candidate inhibitors
for a target protein based on 3D query. Therefore, in this
work, we first used 3D-QSAR study to build pharmacophore
hypotheses (denoted as PhModels) for Chk2 inhibitors by
HypoGen Best, Fast, and Caesar algorithms, respectively.
Then we used the combinatorial fusion to select and combine
prediction results for improving the predictive accuracy
in biological activities of inhibitors. Virtual screening is a
computational technique used in drug discovery research.
There are two categories of screening techniques: ligand-
based and structure-based. In this work, for ligand-based
virtual screening, we used the selected PhModels as 3D
structure query by pharmacophore hypothesis screening that
each compound in National Cancer Institute (NCI) database
will be mapped onto the pharmacophoric features of selected
PhModels. When the chemical features of a compound fit
the generated PhModels, it will be selected. All of feasible
compounds in NCI database were selected in this work.
Finally, the potential inhibitors were retrieved from selected
compounds by using molecular docking program to predict
the conformation and interaction energy between Chk2 and
ligand. Applying combinatorial fusion into PhModels and
virtual screening techniques is a novel design strategy for
drug design and can help medicinal chemists to identify or
design new Chk2 inhibitors. Besides, the potential inhibitors
of Chk2 retrieved in this work can be estimated by biologists
for further study.
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2. Materials and Methods

2.1. Biological Data Collection. In order to construct the
PhModels, at first, we collected the Chk2 inhibitors with
two-dimensional structures and the biological activity values
from the ChEMBL database [36]. Then, according to the
structure variations and chemical differences in the kinase
inhibitor activity, 158 known Chk2 inhibitors were selected
and retrieved. The biological activity of 158 known Chk2
inhibitors was represented as IC50 (nanomolar, nM). There
are 260,071 compounds from the NCI database (release
version 3, http://cactus.nci.nih.gov/download/nci/) which
were used in the database screening and molecular docking
approach in this work.

2.2. Training and Testing Sets Selection. Before generating
PhModels, we should divide the 158 Chk2 inhibitors into the
training set and testing set, respectively. The rules used to
select training set inhibitors are according to the following
requirements as suggested by the Accelrys Discovery Studio.
(1) All selected inhibitors should have clear and concise
information including structure features and activity range.
(2) At a minimum, 16 diverse inhibitors for training set were
selected to ensure the statistical significance. (3)The training
set should contain the most and the least active inhibitors.
(4) The biological activities of the inhibitors spanned at least
4 orders of magnitude. Based on the above four rules, the
158 Chk2 inhibitors were divided, and the scatter diagram of
training set and testing set inhibitors was shown in Figure 2.
Figure 2 demonstrates the distribution of the inhibitors in
the training set and testing set, and the representative points
of the testing set are close to those of the training set. The
training set with 25 inhibitors is used to construct PhModels,
and the IC50 values of these 25 inhibitors are ranged from 2.3
to 100,000 nM (Table 1). The testing set with remaining 133
inhibitors is used to test the predictive ability of generated
PhModels, and the IC50 values of the 133 testing set inhibitors
are ranged from 3.4 to 74,000 nM (Table 2). After selecting
the training set and testing set inhibitors, we established
PhModels at first, and then we used the correlation analysis
to estimate the prediction abilities of PhModels.

2.3. Pharmacophore Generation. The workflow of PhModel
generation for Chk2 inhibitors was shown in Figure 3. In
this study, we used the HypoGen program [37] in Accelrys
Discovery Studio 2.1 to generate PhModels. At the initial step,
3D conformations of the training set inhibitors were gener-
ated by using “3D-QSAR Pharmacophore Generation proto-
col” with the Best, Fast, and Caesar generating algorithms,
respectively, based on the CHARMm-like force field. The
conformational-space energy was constrained ≤20 kcal/mol
which represented the maximum allowed energy above the
global minimum energy. For each training set inhibitor, the
number of the diverse 3D conformations was set to ≤255. All
other parameters were set as default values. Following the
above rules, the 3D conformations were generated, and then
we can construct the PhModel by using “Ligand Pharma-
cophore Mapping protocol.” Each of the ten PhModels using

HypoGen Best, Fast, and Caesar algorithms were generated
in this study.

2.4. Combinatorial Fusion. In this study, we use a combinato-
rial fusion technique to facilitate prediction results selection
and combination for improving predictive accuracy in bio-
logical activities of inhibitors. The combinatorial fusion we
take is analogous to that used in information retrieval [38,
39], pattern recognition [40], molecular similarity searching
and structure-based screening [41], and microarray gene
expression analysis [42]. These works have demonstrated the
following remark [43].

Remark 1. For a set of multiple scoring systems, each with
a score function and a rank function, we have that (a) the
combination of multiple scoring systems would improve the
prediction accuracy only if (1) each of the systems has a
relatively high performance, and (2) the individual systems
are distinctive (or diversified), and (b) rank combination
performs better than score combination under certain con-
ditions.

Given an inhibitor and for each prediction result 𝐴, let
𝑠𝐴 be a function as the predicted biological activity and it
is represented as a real number. We view the function 𝑠𝐴
as the score function. Since 𝑠𝐴 only assigns a number not
a set of numbers, in this work, no rank function would be
used for an inhibitor. Therefore, the rank combination and
the rule (b) in Remark 1 are not considered in the study.
Suppose we have𝑚 prediction results (𝑚 scoring functions).
There are combinatorially 2𝑚 − 1 combinations for all 𝑚
individual prediction results (∑𝑚

𝑘=1
(
𝑚

𝑘
) = 2
𝑚
− 1) with score

functions.The total number of combinations to be considered
for predicting biological activity of an inhibitor is 2𝑚 − 1.
This number of combinations can become huge when the
number of prediction results 𝑚 is large. Moreover, we have
to evaluate the predictive power of each combination across
all inhibitors. This study would start with combining only
two prediction results which still retain fairly good prediction
power.

Suppose 𝑚 prediction results 𝐴 𝑖, 𝑖 = 1, 2, . . . , 𝑚, are
given with score function 𝑠𝐴𝑖; there are several different
ways of combination. Among others, there are score com-
bination, voting, linear average combination, and weighted
combination [38–42]. Voting is computationally simple and
better than simple linear combinations when applied to the
situation with large number of prediction results. However,
a better alternative is to reduce the number of prediction
results to a smaller number and then these prediction results
are combined. In this paper, we reduce the set of prediction
results to those which perform relatively well and then use
the rank/score function to decide whether to combine by
score. In this paper, we use the rules (a) (1) and (a) (2) stated
in Remark 1 as our guiding principle to select prediction
results and to decide on the method of combination. After
generating each of the ten PhModels by using HypoGen
Best, Fast, and Caesar algorithms for training set inhibitors,
each of the best PhModel (denoted as Besttrain, Fasttrain, and
Caseartrain) was evaluated by its correlation coefficient of the
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Figure 2: The scatter diagram of training set and testing set inhibitors.
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Figure 3: The workflow of PhModel generation for Chk2 inhibitors.

training set (𝑟train). Then these best PhModels were used to
predict the biological activities of testing set inhibitors by
using HypoGen Best, Fast, and Caesar algorithms.Therefore,
there are nine prediction results (denoted as 𝑍train × 𝑍test,
𝑍 = {Best, Fast,Caesar}, that is, BesttrainBesttest) generated
for testing set inhibitors. Using data fusion, results from
various prediction results are combined to obtain predictions
with larger accuracy rate. The diversity rank/score function
is used to select the most suitable prediction results for
combination. If these three best PhModels were selected,
there are nine prediction results and then there are 29 −
1 = 511 combinations. According to the rule (a) (1) in
Remark 1, the 𝑟train of Caseartrain is far less than those of
Besttrain and Fasttrain (Table 1); then, the Caseartrain was not

considered in the combinations. Therefore, there are six
prediction results (𝑍1train × 𝑍2test, 𝑍1 = {Best, Fast} and
𝑍2 = {Best, Fast,Caesar}) and 2

6
− 1 = 63 combinations. A

special diversity rank/score graphwas used to choose the best
discriminating prediction results for further combination.

For an inhibitor 𝑝𝑖 in the testing set 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑡}
and the pair of prediction results 𝐴 and 𝐵, the diversity score
function 𝑑𝑖(𝐴, 𝐵) is defined as 𝑑𝑖(𝐴, 𝐵) = ∑ |𝑠𝐴 − 𝑠𝐵|. When
there are 𝑞 prediction results selected (in this study, 𝑞 =
6), there are ( 𝑞

2
) = 𝑞(𝑞 − 1)/2 (in this study, the number

is 15) diversity score functions. If we let 𝑖 vary and fix the
prediction result pair (𝐴, 𝐵), then 𝑑𝑖(𝐴, 𝐵) is the diversity
score function 𝑠(𝐴,𝐵) from 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑡}. Sorting
𝑠(𝐴,𝐵) into descending order would lead to the diversity
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Table 1: Experimental and estimated IC50 values of training set inhibitors.

CHEMBL ID Experimental IC50 (nM) Estimated IC50 (nM)
Besttrain Fasttrain Caesartrain

CHEMBL195041 2.3 15 9.9 1129
CHEMBL193990 6.6 6.8 6.2 942
CHEMBL248935 14 20 20 833
CHEMBL195320 18 8.5 6.2 942
CHEMBL176164 23 19 23 1151
CHEMBL250765 37 30 22 950
CHEMBL362677 47 23 23 1153
CHEMBL249959 70 110 20 1000
CHEMBL250992 72 47 6.9 72
CHEMBL251155 110 220 23 756
CHEMBL588536 270 670 790 78578
CHEMBL400772 470 2200 268 231
CHEMBL367390 640 2000 2237 1028
CHEMBL608262 830 1200 1456 94262
CHEMBL401105 900 1000 235 20
CHEMBL176115 1100 970 1044 1449
CHEMBL253542 1200 1100 189 3.8
CHEMBL592490 1800 860 1275 93360
CHEMBL589090 6700 1700 1419 3561
CHEMBL199299 15000 22000 233 1745
CHEMBL251629 19000 3600 615 411
CHEMBL259084 28000 6800 31827 5300
CHEMBL251628 37000 63000 1360 24786
CHEMBL438485 50000 16000 320 243
CHEMBL589501 100000 160000 48276 96926
Correlation coefficient (𝑟train) 0.955 0.840 0.238

rank function 𝑟(𝐴,𝐵). Consequently, the diversity rank/score
function 𝑓(𝐴,𝐵) is defined as 𝑓(𝐴,𝐵) = (𝑠(𝐴,𝐵) ∘ 𝑟

−1

(𝐴,𝐵)
)(𝑗) =

𝑠(𝐴,𝐵)(𝑟
−1

(𝐴,𝐵)
(𝑗)), where 𝑗 is in 𝑇 = {1, 2, 3, . . . , 𝑡}. We note that

the set 𝑇 is different from the set 𝑃 which is the testing set
considered.The set 𝑇 is used as the index set for the diversity
rank function value and |𝑇| = 𝑡 is indeed the cardinality
of 𝑃. The diversity rank/score function 𝑓(𝐴,𝐵) so defined
exhibits the diversity trend of the prediction result pair (𝐴, 𝐵)
across the whole spectrum of input set of 𝑡 inhibitors and
is independent of the specific inhibitor under study. For
two prediction results 𝐴 and 𝐵, the graph of the diversity
rank/score function𝑓(𝐴,𝐵)(𝑗) is called the diversity rank/score
graph. This study aims to examine all the 𝑞(𝑞 − 1)/2 diversity
rank/score graphs to see which pair of prediction results
would give the larger diversity measurement according to the
rule (a) (2) in Remark 1.

2.5. Database Screen. After examining 15 diversity rank/score
graphs, the PhModels 𝐴 and 𝐵 determined from the best
prediction result pair were used to screen the NCI database
for new Chk2 inhibitor candidates. Under the PhModel,
pharmacophore hypothesis screening can be used to screen
small molecule database to retrieve the compounds as
potential inhibitors that fit the pharmacophoric features.

In this study, the “Search 3D Database protocol” with the
Best/Fast/Casear Search option in Accelrys Discovery Studio
2.1 was employed to search the NCI database with 260,071
compounds. We could filter out and select the compounds
in the NCI database based on the estimated activity and
chemical features of PhModel.

2.6. Molecular Docking. After the database screening
approach, the selected compounds can be further estimated
according to the interaction energy between a receptor and
a ligand through the molecular docking approach. In this
study, selected compounds in the NCI database were docked
into Chk2 active sites by CDOCKER docking program, and
then their CDOCKER interaction energies were estimated.
Finally, new potential candidates were retrieved from the
NCI database with high interaction energy. The workflow
of database screening and molecular docking approach was
shown in Figure 4.

3. Results

3.1. PhModel Generation Results. Each of the ten PhModels
using 25 training set inhibitors and HypoGen Best, Fast, and
Caesar algorithms was generated by selecting hydrogen bond
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Figure 4: The workflow of database screening and molecular docking approach for new Chk2 inhibitor candidates.

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

D
iv

er
sit

y 
sc

or
e

Testing set inhibitors

BB + BC
BB +  BF
BB + FB
BB + FC
BB + FF

BC + BF
BC + FB
BC + FC
BC + FF
BF + FB

BF + FC
BF + FF
FB + FC
FB + FF
FC + FF

Figure 5: The diversity rank/score graphs for 15 combinations of prediction results.

acceptor (A), hydrogen bond donor (D), and hydrophobic
(H) and hydrophobic aromatic (HYAR) features. Each of
the best PhModels, Besttrain, Fasttrain, and Caseartrain, was
evaluated with the best 𝑟train, and the predicted biological
activities of training set inhibitors and 𝑟train were listed in
Table 1, respectively. FromTable 1, the Besttrain obtained better
𝑟train of value 0.955 than those by Fasttrain and Caseartrain.
Moreover, the 𝑟train of Caseartrain is far less than those of
Besttrain and Fasttrain. Hence, HypoGen Best algorithm was
used individually to generate the PhModels for most of target
genes in the past. According to rule (a) (1) in Remark 1, the
Caseartrain was not considered to be used for the prediction
of testing set inhibitors.

3.2. Correlation Analysis of Testing Set Inhibitors. The testing
set inhibitors were predicted by Besttrain and Fasttrain with
HypoGen Best, Fast, and Caesar algorithms. Therefore, there

are six prediction results, BesttrainBesttest (denoted as BB),
BesttrainFasttest (denoted as BF), BesttrainCaseartest (denoted as
BC), FasrtrainBesttest (denoted as FB), FasttrainFasttest (denoted
as FF), and FasttrainCaseartest (denoted as FC), for testing set
inhibitors. The predicted biological activities of testing set
inhibitors and 𝑟test by these six prediction results were listed
in Table 2, respectively. From Table 2, for the Besttrain, the
best 𝑟test of value 0.81 was achieved by the BesttrainBesttest;
for the Fasttrain, the best 𝑟test of value 0.728 was achieved by
the FasttrainFasttest. However, the BesttrainBesttest obtained the
best 𝑟test in overall; moreover, the prediction results in the
Besttrain all outperform those in the Fasttrain.

3.3. Combinatorial Fusion Analysis. Under the six prediction
results, the diversity score function 𝑑𝑖(𝐴, 𝐵) was calculated
for each testing set inhibitor by a pair of prediction results
(𝐴, 𝐵). There are 15 diversity score functions 𝑠(𝐴,𝐵) that were
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Table 2: Experimental and estimated IC50 values of testing set inhibitors.

CHEMBL ID Experimental
IC50 (nM)

Estimated IC50 (nM)
Besttrain Fasttrain BesttrainBesttest +

FasttrainFasttestBesttest Fasttest Caesartest Besttest Fasttest Caesartest
CHEMBL195177 3.4 3.9 5.2 5.1 14.8 6.2 12.3 6.2
CHEMBL359881 4.4 12.0 46.1 42.3 17.3 22.5 29.4 22.5
CHEMBL179717 4.5 9.0 42.1 43.2 14.3 21.9 29.3 21.9
CHEMBL175553 5.5 11.2 57.8 43.1 17.6 20.5 29.1 20.5
CHEMBL192161 7 183.4 74.6 36.7 258.7 253.9 291.4 253.9
CHEMBL191969 8.2 6.4 15.3 14.3 10.5 9.4 13.5 9.4
CHEMBL175472 9.8 7.9 48.4 9.9 12.4 22.5 29.1 22.5
CHEMBL361378 12 9.9 48.1 43.7 14.7 21.7 29.3 21.7
CHEMBL362255 12 11.9 55.4 42.3 15.5 22.9 29.4 22.9
CHEMBL369254 12 70.2 51.3 45.6 38.0 23.7 31.5 23.7
CHEMBL364978 13 4.8 4.9 5.1 13.5 6.5 12.3 6.5
CHEMBL195846 14 3.9 5.0 5.1 12.8 6.2 12.3 6.2
CHEMBL179583 16 12.2 48.5 43.1 13.4 23.2 28.9 23.2
CHEMBL178972 17 15.9 52.5 43.1 18.0 23.3 29.1 23.3
CHEMBL250360 23 19.8 46.8 43.7 17.6 21.7 29.4 21.7
CHEMBL175879 24 21.6 57.0 42.3 24.0 23.2 29.2 23.2
CHEMBL179267 31 7.4 63.5 42.8 20.5 21.2 29.4 21.2
CHEMBL192022 32 20.3 47.5 42.6 23.9 22.4 29.4 22.4
CHEMBL250158 39 10.1 20.4 43.7 19.1 21.5 29.3 21.5
CHEMBL363339 41 10.1 59.8 42.2 18.1 24.0 29.5 24.0
CHEMBL250555 45 26.3 48.2 42.9 24.5 22.7 29.4 22.7
CHEMBL250359 52 3.7 5.2 3.5 20.6 7.0 28.8 7.0
CHEMBL251585 52 4.5 3.0 3.1 11.9 4.9 10.7 4.9
CHEMBL398529 53 23.0 48.4 43.5 21.4 22.4 29.4 22.4
CHEMBL178971 55 62.4 44.9 43.1 41.7 22.1 29.3 22.1
CHEMBL427879 55 13.7 45.4 42.4 16.9 19.9 29.5 19.9
CHEMBL250963 57 8.6 44.1 42.9 17.8 21.5 27.2 21.5
CHEMBL251170 60 51.3 45.3 43.1 26.3 21.5 29.4 21.5
CHEMBL250759 61 45.6 47.4 43.3 36.6 23.2 29.5 23.2
CHEMBL367263 61 19.7 50.3 9.6 17.3 23.9 29.1 23.9
CHEMBL250159 67 55.7 45.3 43.1 25.7 17.2 29.4 17.2
CHEMBL398467 70 11.4 46.5 42.7 21.0 20.4 29.4 20.4
CHEMBL250796 73 3.3 3.4 4.2 14.7 6.0 14.4 6.0
CHEMBL250957 74 36.1 44.9 43.7 30.5 20.4 29.5 20.4
CHEMBL206609 77 25.9 51.0 44.0 9.6 16.3 17.8 16.3
CHEMBL400755 78 8.8 26.6 43.0 12.9 22.5 29.4 22.5
CHEMBL249569 80 11.1 48.3 43.3 17.0 22.9 28.0 22.9
CHEMBL193397 81 9.9 43.8 42.8 14.5 21.2 28.4 21.2
CHEMBL438868 82 18.9 42.0 43.1 13.1 19.0 29.3 19.0
CHEMBL249566 86 17.6 48.8 43.1 23.5 22.8 29.6 22.8
CHEMBL249345 90 23.2 47.6 43.0 20.9 20.0 25.0 20.0
CHEMBL399146 90 29.8 47.9 42.7 28.4 22.1 29.3 22.1
CHEMBL602931 92 483.6 560.1 506.8 645.9 594.0 588.2 594.0
CHEMBL249347 95 10.1 46.3 43.1 27.2 20.1 29.2 20.1
CHEMBL193476 100 951.1 914.5 925.8 2435.2 1027.4 1981.9 1027.4



8 BioMed Research International

Table 2: Continued.

CHEMBL ID Experimental
IC50 (nM)

Estimated IC50 (nM)
Besttrain Fasttrain BesttrainBesttest +

FasttrainFasttestBesttest Fasttest Caesartest Besttest Fasttest Caesartest
CHEMBL250361 100 14.2 6.6 14.5 14.9 20.9 29.6 20.9
CHEMBL248934 109 20.0 52.5 43.3 14.0 22.4 29.4 22.4
CHEMBL249750 110 12.7 49.3 43.5 20.7 21.6 29.3 21.6
CHEMBL208463 133 10.4 46.0 41.0 968.6 2768.3 2670.7 2768.3
CHEMBL250566 140 5.2 17.3 26.3 18.4 20.9 29.6 20.9
CHEMBL251256 140 936.4 2453.5 2240.6 192.6 215.1 215.5 215.1
CHEMBL437331 142 471.8 521.6 450.6 64.2 222.1 60.7 222.1
CHEMBL249541 157 23.8 42.5 43.0 16.0 18.8 29.3 18.8
CHEMBL249776 158 13.9 47.2 43.7 16.7 20.9 29.4 20.9
CHEMBL249350 174 30.6 51.2 43.4 22.5 23.3 29.4 23.3
CHEMBL249546 176 10.6 47.3 42.8 17.9 21.0 29.4 21.0
CHEMBL251364 176 21.7 43.9 43.1 17.8 19.7 29.1 19.7
CHEMBL399933 180 14.8 45.0 43.5 20.8 18.9 29.4 18.9
CHEMBL400287 180 19.3 45.5 43.5 21.5 19.8 29.4 19.8
CHEMBL175780 200 61.7 47.5 42.3 36.0 21.9 29.5 21.9
CHEMBL176326 200 935.6 926.3 913.6 1896.0 986.2 1980.7 986.2
CHEMBL590335 210 791.5 721.8 807.4 616.3 639.0 644.7 639.0
CHEMBL398561 220 575.1 926.2 571.5 209.1 278.3 287.9 278.3
CHEMBL249777 231 15.0 45.7 42.5 25.5 21.7 29.4 21.7
CHEMBL442282 233 13.9 46.9 42.3 21.5 22.5 29.4 22.5
CHEMBL195599 250 981.5 908.0 925.8 2266.7 1057.6 1981.9 1057.6
CHEMBL176015 290 54.1 52.8 54.4 24.0 29.3 28.0 29.3
CHEMBL251284 310 484.8 429.7 533.7 189.6 196.8 217.4 196.8
CHEMBL600441 310 454.6 559.9 516.5 300.5 513.5 254.1 513.5
CHEMBL599581 410 594.7 496.6 509.1 506.1 252.9 299.2 252.9
CHEMBL592784 420 462.2 492.0 475.1 216.7 203.8 198.3 203.8
CHEMBL1197465 580 2492.8 8163.9 5925.9 995.1 896.8 488.9 896.8
CHEMBL590809 600 492.4 539.0 534.3 816.4 536.2 549.3 536.2
CHEMBL1197456 610 2871.8 7537.6 6733.2 615.7 4139.2 3514.6 4139.2
CHEMBL590637 610 1251.9 1786.7 1121.1 2379.0 1650.9 1262.3 1650.9
CHEMBL591518 680 1797.9 1804.0 1516.5 6075.0 4714.4 2726.5 4714.4
CHEMBL598973 700 12585.6 151896.0 84151.4 1047.3 396.5 1318.1 396.5
CHEMBL251368 710 27.7 45.9 43.8 13.4 21.2 29.1 21.2
CHEMBL1197303 800 5153.6 36481.1 6594.4 1277.8 681.9 4077.9 681.9
CHEMBL1197320 890 2537.8 7191.1 6002.7 1559.4 517.5 420.0 517.5
CHEMBL1197528 960 2752.7 7737.1 5925.9 765.7 654.9 559.0 654.9
CHEMBL215803 1000 3760.6 140257.0 74847.0 9672.7 50053.5 49263.9 50053.5
CHEMBL253324 1000 996.2 2416.5 603.1 264.7 553.1 272.4 553.1
CHEMBL589347 1100 458.3 560.2 482.3 209.7 299.1 196.7 299.1
CHEMBL604784 1100 1188.4 1365.6 1205.7 2305.3 1962.3 1307.9 1962.3
CHEMBL1197529 1120 2047.4 11678.5 8090.0 3368.8 3648.8 3659.9 3648.8
CHEMBL1197326 1130 12645.5 45428.8 7432.7 1138.2 465.0 416.0 465.0
CHEMBL176041 1200 925.0 906.8 913.6 1933.6 1040.0 1980.7 1040.0
CHEMBL590079 1350 548.9 548.5 550.6 1000.9 860.3 855.1 860.3
CHEMBL605083 1400 489.2 613.8 554.4 1224.9 1401.0 1345.6 1401.0
CHEMBL175481 1500 69.2 57.7 49.2 1853.9 1526.1 1852.1 1526.1
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Table 2: Continued.

CHEMBL ID Experimental
IC50 (nM)

Estimated IC50 (nM)
Besttrain Fasttrain BesttrainBesttest +

FasttrainFasttestBesttest Fasttest Caesartest Besttest Fasttest Caesartest
CHEMBL205906 1540 1696.1 1109.3 1153.0 980.6 17655.5 937.5 17655.5
CHEMBL590808 1600 1662.5 1799.1 1709.4 51882.2 48813.2 48302.3 48813.2
CHEMBL1170748 1700 1974.2 1940.4 1652.8 3251.4 2734.9 407.6 2734.9
CHEMBL253541 1800 43066.9 42831.1 79622.8 1255.9 1099.1 15566.3 1099.1
CHEMBL176554 1900 572.3 7226.3 9126.2 1096.1 3352.6 3926.3 3352.6
CHEMBL377597 2000 938.5 6719.7 5644.6 50.4 116.9 105.4 116.9
CHEMBL1170749 2200 10874.0 30873.8 3995.6 5835.1 25044.3 1090.5 25044.3
CHEMBL590336 2200 507.8 594.0 516.4 568.9 544.3 521.1 544.3
CHEMBL590807 2200 52944.6 70480.3 52639.4 44898.4 49196.7 36195.2 49196.7
CHEMBL600868 2200 1342.8 1603.8 1312.9 7373.6 5797.7 4864.3 5797.7
CHEMBL398759 2300 666.0 2847.2 1010.2 447.2 924.3 309.0 924.3
CHEMBL604459 2300 1176.9 2299.2 1369.3 614.2 877.8 682.5 877.8
CHEMBL179383 2400 15724.9 14621.7 14257.4 4508.5 4132.8 4023.9 4132.8
CHEMBL592489 2400 469.2 494.6 486.9 204.7 240.5 208.4 240.5
CHEMBL425904 2800 605.0 651.0 534.9 478.1 451.9 488.6 451.9
CHEMBL150894 3000 537.8 844.9 797.6 186.8 600.2 289.0 600.2
CHEMBL590793 3000 475.4 2480.4 1251.5 192.0 251.7 205.4 251.7
CHEMBL600865 4400 796.9 2072.3 1223.3 198.1 261.3 228.1 261.3
CHEMBL249253 5000 659.8 503.6 499.5 406.6 227.9 309.5 227.9
CHEMBL587506 5200 1050.8 1293.3 1083.2 2201.3 2162.7 1656.0 2162.7
CHEMBL204930 5800 755.5 1260.7 1105.5 47881.6 47912.3 47868.0 47912.3
CHEMBL554900 5900 6722.8 580526.0 807309.0 745.4 428.2 47897.1 428.2
CHEMBL176276 6000 3360.2 8955.9 8476.6 2075.6 2054.0 1970.7 2054.0
CHEMBL589091 6100 1319.5 1308.4 1172.0 579.2 603.1 600.9 603.1
CHEMBL559781 7400 91783.7 822917.0 1230010.0 414.5 6865.5 47911.9 6865.5
CHEMBL249252 8000 100671.0 38586.8 31129.8 590.5 491.6 467.9 491.6
CHEMBL589089 9800 1070.7 1321.5 1002.7 38589.3 48136.2 41143.2 48136.2
CHEMBL217090 10000 628.8 1010.9 1548.5 390.6 451.8 910.1 451.8
CHEMBL217092 10000 1030.2 1199.3 1908.8 379.9 625.6 707.2 625.6
CHEMBL382588 10000 1365.2 5880.3 5488.7 2560.7 3993.4 3649.4 3993.4
CHEMBL590581 10000 145206.0 149922.0 108067.0 50609.5 49348.5 48302.3 49348.5
CHEMBL242753 10300 1742.5 3393.1 1941.1 1202.5 2613.0 1297.3 2613.0
CHEMBL398758 11000 1582.8 187965.0 1573.6 237.0 4333.9 369.0 4333.9
CHEMBL399151 11000 812.1 1263.5 2069.9 334.5 1193.9 1271.6 1193.9
CHEMBL395080 13450 513.5 484.0 458.6 198.5 188.9 183.3 188.9
CHEMBL1171533 15000 349604.0 296515.0 159368.0 26784.5 26699.3 45506.4 26699.3
CHEMBL602729 17000 148756.0 149052.0 139465.0 224.1 324.7 229.4 324.7
CHEMBL249255 19000 182486.0 42615.8 41578.3 1698.2 616.1 683.9 616.1
CHEMBL202930 21730 12828.4 11945.6 12145.8 213.3 219.7 217.6 219.7
CHEMBL589986 22000 1167.1 1337.4 1143.5 53747.5 49155.6 49316.8 49155.6
CHEMBL251471 40000 3358.9 1946.2 2075.7 512.2 423.7 3427.4 423.7
CHEMBL560056 74000 152006.0 156723.0 208466.0 223.2 208.1 190.4 208.1
Correlation
coefficient (𝑟test)

0.810 0.771 0.783 0.710 0.728 0.714 0.816
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Figure 6: The 𝑟test for all of 63 combinations from six prediction results.

performed at first and then these diversity score functions
were sorted to become the diversity rank function 𝑟(𝐴,𝐵),
respectively. Finally, 15 diversity rank/score functions 𝑓(𝐴,𝐵)
were represented as diversity rank/score graphs shown in
Figure 5. Among 15 diversity rank/score graphs, there are
several combinations (gray color) that have less diversity
scores than those by others, such as BB + BC, BB + BF, and
FB + FB, shown in Figure 5. It means that these combinations
may have less 𝑟test than those by others according to rule (a)
(2) in Remark 1. In other words, several combinations, such
as BB + FC (purple color), BB + FF (blue color), and BF + FF
(orange color), may have larger 𝑟test than those by others due
to larger diversity scores. For the six prediction results, all of
the 63 combinations were preformed and evaluated by its 𝑟test,
respectively, as shown in Figure 6. In Figure 6, for 15 pairs of
two prediction results, the combinations BB + FB, BB + FC,
and BB + FF have larger 𝑟test than those by others. Moreover,
the combination BB + FF has best 𝑟test of value 0.816 among
15 combinations, even for 63 combinations. Besides, the
average 𝑟test by the combinations is larger than the individual
prediction results. It means that the predictive accuracy for
Chk2 inhibitors may be improved by considering the Besttrain
and Fasttrain concurrently.

3.4. Database Screen Results. The best PhModels, Besttrain
and Fasttrain, were used to screen the NCI database with
260,071 compounds for new Chk2 inhibitor candidates by
using HypoGen Best and Fast algorithms, respectively. The
BesttrainBesttest and FasttrainFasttest prediction results for NCI
database were combined in order to filter out possible
false positive candidates. Of the 260,071 compounds, 191,505
passed the screening and best fitted to the chemical features in
3D space. 23 drug-like compounds that had an estimated IC50

Table 3: The 21 drug-like compounds with their estimated
IC50 values and CDOCKER interaction energy greater than 37.786
(kal/mol).

Name Estimated IC50 (nM) Interaction energy (kal/mol)
NSC 136954 1.989 61.239
NSC 70804 1.682 58.967
NSC 158029 1.885 57.944
NSC 603427 1.87 56.963
NSC 57782 1.6855 56.54
NSC 16739 1.5385 56.342
NSC 720227 1.914 55.839
NSC 618702 1.862 55.196
NSC 195178 1.7015 51.351
NSC 653142 1.557 51.19
NSC 653143 1.577 50.055
NSC 32200 1.901 49.439
NSC 342015 1.6515 47.327
NSC 343685 1.7615 46.436
NSC 205750 1.875 45.542
NSC 96538 1.705 44.344
NSC 210455 1.7935 42.258
NSC 314654 1.947 42.082
NSC 179894 1.6135 41.707
NSC 91710 1.701 40.533
NSC 370907 1.8785 40.502

value of less than 2 nM were studied in a molecular docking
study (Figure 4).

3.5. Molecular Docking Results. 23 drug-like compounds
along with the training set compounds were docked into the
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Table 4: The structures and characteristics of the top 2 compounds.

NSC 136954 NSC 70804

Structure

Superposition

Binding sites

ALA247
VAL234

LEU226

LEU303

LYS249

305MET304
GLY307

GLY306 GLU308
LEU354

LEU301 ILE288

ILE299ILE251

ILE274

GLU273

LEU277GLY370

PHE569ASP368ILE286
THR367

GLU351

ASN352

ASP368
THR367

GLU308

GLY307

GLY227

ILE248
ILE299

ILE251
ALA247

VAL234
LEU226

LEU324
LYS249

LEU277
GLU273

LEU354

LEU303

MET304

Docking results

active sites that were defined based on the bound inhibitor,
PV1019, in a crystal structure of Chk2 (PDB: 2W7X).We used
CDOCKER program to confirm that inhibitor candidates
bind to the receptor. CDOCKER uses molecular dynamics
(MD) in conjunction with the CHARMm force field to
individually dock the compounds into the binding sites.
The coordinates of Chk2 from the Chk2/PV1019 crystal
structure were used after removing PV1019 and solvent
molecules and adding protein hydrogen atoms. After docking
each screened compound, its interaction energy value was
calculated. The PV1019 was redocked into the Chk2 binding
site by the CDOCKER program. Its-CDOCKER interaction
energy was calculated by CDOCKER and determined to be

37.786 (kal/mol). The 23 drug-like compounds were docked
into the Chk2 binding sites. Finally, there are 21 drug-like
compounds with CDOCKER interaction energies greater
than 37.786 (kal/mol). In addition, 11 drug-like compounds
had high interaction value greater than 50 (kal/mol) (Fig-
ure 4) and the top 2 are NSC136954 with 61.239 (kal/mol) and
NSC70804with 58.967 (kal/mol), respectively, kept for future
characterization as inhibitors. The 21 drug-like compounds
with their estimated IC50 values and CDOCKER interaction
energy greater than 37.786 (kal/mol) were shown in Table 3.

The structures and characteristics of the top 2 compounds
are given in Table 4, and we can find that some active
site residues were identified from the Chk2 complex. The
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interaction sites of NSC136954 were Leu226, Val234, Ala247,
Lys249, Ile251, Glu273, Ile274, Leu277, Ile286, Ile288, Ile299,
Leu301, Leu303, Met304, Glu305, Gly306, Gly307, Glu308,
Leu354, Thr367, Asp368, Phe369, and Gly370. On the other
hand, the interaction sites ofNSC70804were Leu226, Leu227,
Val234, Ala247, Ile248, Lys249, Ile251, Glu273, Leu277, Ile299,
Leu301, Leu303, Met304, Gly307, Glu308, Glu351, Asn352,
Leu354, Thr367, and Asp368. Several studies indicated that
they are involved in hydrophobic interactions with Val234,
Ile251, Leu354, Ile299, and the aliphatic portions of the side
chains of Lys249, Thr367, and Asp368, in addition to several
interactions of van der Waals or hydrophobic with Leu226,
Val234, Leu303, Gly307, Leu354, and the aliphatic portions
the side chains of Met304 and Glu308 [10, 11]. Furthermore,
the quinazoline was sandwiched between the lipophilic side
chains of Val234 and Leu354, with the side chains of Ala247,
Leu301, and Leu303 also contributing to a hydrophobic
surface surrounding the core and an interaction between the
pyrazole and Lys249 is likely to account for the increase in
Chk2 potency [12]. And residueThr367 of Chk2 is a serine in
Chk1. Portions of the glycine-rich P-loop in Chk2, which is
located directly above the inhibitor, are disordered (residues
229–231), whereas this loop is well defined in the structure of
Chk1, and Leu301 in Chk2 corresponds to the “gatekeeper”
residue in many kinases, which has been found to form
contacts with bound inhibitors and is poorly conserved [44].

4. Conclusions

In this study, a novel design strategy for drug design
was proposed to apply combinatorial fusion into PhModels
and virtual screening techniques. 158 Chk2 inhibitors were
divided into the training set and testing set, respectively.
For 25 training set inhibitors, three best PhModels, Besttrain,
Fasttrain, and Caseartrain, were generated at first, and then
six prediction results for 133 testing set inhibitors were used
for calculating 15 diversity rank/score functions. Finally, the
combination BesttrainBesttest and FasttrainFasttest prediction
results achieved the best 𝑟test of value 0.816 among 63
combinations. Through these approaches, 23 potential Chk2
inhibitors with IC50 value less than 2 nM and interaction
energy value larger than 37.786 (kal/mol) are retrieved from
NCI database. This study can help medicinal chemists to
identify or design new Chk2 inhibitors. Besides, the potential
inhibitors of Chk2 retrieved in this work can be estimated by
biologists for further study.
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Aptamers are an interesting alternative to antibodies in pharmaceutics and biosensorics, because they are able to bind to a
multitude of possible target molecules with high affinity. Therefore the process of finding such aptamers, which is commonly a
SELEX screening process, becomes crucial. The standard SELEX procedure schedules the validation of certain found aptamers
via binding experiments, which is not leading to any detailed specification of the aptamer enrichment during the screening. For
the purpose of advanced analysis of the accrued enrichment within the SELEX library we used sequence information gathered by
next generation sequencing techniques in addition to the standard SELEX procedure. As sequence motifs are one possibility of
enrichment description, the need of finding those recurring sequence motifs corresponding to substructures within the aptamers,
which are characteristically fitted to specific binding sites of the target, arises. In this paper a motif search algorithm is presented,
which helps to describe the aptamers enrichment inmore detail.The extensive characterization of target and binding aptamers may
later reveal a functional connection between these molecules, which can be modeled and used to optimize future SELEX runs in
case of the generation of target-specific starting libraries.

1. Introduction

The inhibition of protein interactions, such as receptor-ligand
interactions or the interplay during pathogen infections,
is one main functional principle of therapeutics to influ-
ence biologically relevant processes. In this context usually
antibodies are used to bind to specific target proteins and
thus wield biological influence. Although antibodies and
corresponding technologies are widely distributed, they are
accompanied with some major drawbacks. A first hindrance
is the antibody’s large size that limits the access to smaller
biological compartments and thus also its bioavailability. It
is also problematic that antibodies are often immunogenic
and cannot be used after their denaturation. If we consider
the production process of antibodies, it becomes apparent
that this process is difficult to scale up and susceptible to
bacterial or viral contamination [1, 2]. The need of finding
other target-binding molecules as alternatives for antibodies

draws the attention now to another surrogate, the aptamer,
which is also qualified for target binding [1].

These aptamers are short and stable, single-stranded
nucleotide oligomers folding into complex three-dimen-
sional structures. They are composed of helical parts and
different variants of loops like hairpins, inner loops, bulges,
and junctions, which allow branching of the structure.
Unpaired nucleotides have a higher potential to take part in
intermolecular, noncovalent chemical bonding via hydrogen
bonds, hydrophobic, and electrostatic interactions on the
nucleotides preferred binding sites [3]. Aptamers can target
a diverse multitude of particles from small molecules like
organic dyes [4] and amino acids [5] and larger molecules
like antibiotics [6] and proteins [7] as well as whole cell
surfaces [8]. The focus on therapeutically applied aptamers
lies especially on proteins as target molecules. Notably, in
respect of binding affinity they are comparable to antibodies.
While a study has shown that an aptamer with an affinity of
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𝐾𝑑 = 50 pM could be found for vascular endothelial growth
factor as target, an antibody for the same target in comparison
shows an affinity of 𝐾𝑑 = 54 pM [9, 10]. Furthermore
there is growing evidence of a connection between regions
of unpaired nucleotides and the concrete biological function
of RNAmolecules.This can analogously be assumed forDNA
aptamers [11].

Since the production process of aptamers is purely
chemical, it is readily scalable and less prone to bacterial or
viral contamination, which poses an advantage over artificial
synthesis of antibodies [1, 2]. The resulting aptamers are
usually not immunogenic and smaller in size, which allows
a less elaborate administration of aptamer based medication
[12]. Although the aptamer denaturation is reversible, their
half-life is limited by nuclease degradation. This vulner-
ability can only be opposed by chemical modification of
the aptamers [1]. In summary, aptamers are an attractive
alternative to antibodies and will lead to new issues in the
fields of bioinformatics.

With the introduction of next generation sequencing
(NGS) technologies it is possible to massively parallelize
the sequencing process. That makes it easy to gather large
amounts of sequence data in relatively short periods of time
[13]. In this manner the NGS technology can be used for
genome sequencing to speed up and enhance the shotgun
sequencing. But that is not the only use of NGS.The sequenc-
ing technology is also applicable in fields of aptamer research,
especially in the process of finding high affinity aptamers for a
desired targetmolecule. Caused by the high complexity of the
conformational space of aptamers it is a hard problem to find
target-binding aptamers. Commonly a screening technology
needs to be utilized to find these unique aptamers that
are capable of binding to a specific target molecule. This
technique is called SELEX (Systematic Evolution of Ligands
by Exponential Enrichment) [14]. During the multiple steps
of the experimental process there are several opportunities
for performing NGS to gather sequence data useful for the
purpose of later analysis.

The SELEX screening process starts with a chemically
synthesized, random library of nucleotide oligomers of a fixed
size. Although the size of this starting library is fairly large
with a range of typically 1013 to 1016, it can in practice only
cover a small fraction of the possible sequence and structure
space, because these spaces are growing exponentially with
the desired aptamers lengths. Based on this library multiple
subsequent selection rounds are performed, in which library
and target molecules are incubated. As the multitude of
aptamers contained in a rounds library is competing for the
fewer binding sites available on the relatively small number of
target molecules added, the arising selection pressure leads to
the preferred binding of the highest affinity oligonucleotides
of the library. Commonly some experimental parameters
are adjusted during the execution to increase this selection
pressure during the incubation. After each SELEX itera-
tion nonbinding candidates are washed out and the bound
aptamers are prepared for the next round. This includes the
elution of aptamer candidates from target molecules and a
following amplification to obtain a library sufficient in size

for the next round. Only oligonucleotides capable of binding
to the target or background materials necessary for carrying
out the experiment are enriched during that process [14].This
leads to the enrichment of specific and affine aptamers and
thus a decrease of diversity in the resulting library can be
observed.

NGS techniques now provide the possibility to better
analyze such SELEX experiments. Benefits are provided by
the magnitudes of higher sequencing coverage of the real
library sequence diversity compared to classic sequencing
technologies, such as Sanger sequencing [15], and the pos-
sibility to gain information from all SELEX rounds with
reasonable effort. Hence, it is no longer only the final round
that can be analyzed, but rather the development of the
library during the whole experiment, which provides new
chances in bioinformatics analysis. Nevertheless, the next
generation sequencing technology is despite its advantages
accompanied by some major drawbacks. NGS is a high
throughput sequencing technique, which means that one has
to consider sequencing errors. Although the probability of
each single base being sequenced incorrectly is quite low,
denoted by Phred values up to 41, the large number of
single base reads within each data set will induce many
sequencing errors [16]. Another problem is that the lim-
its of conventional algorithms and their implementations
can easily be reached when processing large NGS data
sets.

If one is able to handle these difficulties, the additional
information source provided by the NGS technology when
performing SELEX experiments allows a deeper analysis
and understanding of the SELEX process. So the analysis
of only the first rounds of a SELEX experiment may show
specific enrichment of the library and thus draws a deduction
towards the enrichment of the final round. This could be
a first hint for sequence characteristics that yield target-
specific binding affinity. Those observations would allow
interrupting a running SELEX experiment, skipping some
intermediate selection rounds, and instead continuing with a
computationally enriched pool at later position, saving time
andmaterial expenses.The enrichment of the aptamer library
during the SELEX process can be observed when analyzing
the sequence data gained from the different rounds. Using
the NGS data, a diversity indicator can be calculated and
compared, showing that the number of different sequences
effectively decreases. It is very important to find a proper
description for the observed aptamer enrichment in the
later SELEX rounds. Though the simple description of the
enrichment as a list of most frequently observed aptamers
in the data set is sufficient for conventional validation of the
experiments success through concrete binding experiments,
a better way of description has to be found when aiming at
the improvement of prospective SELEX runs.

The enrichment has to be characterized and more
detailed, because occurring commonalities between the dif-
ferent found aptamer sequences indicate characteristics of
the aptamers at different physical positions, which are rel-
evant for binding to the target. Sequence motifs are one
opportunity to describe those shared features on sequence
level.Thesemotifs are in turn corresponding to substructures
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within the aptamers, which are characteristically fitted to
specific binding sites located on the target molecules surface
and therefore are present in all binding aptamers. Using
a position specific scoring matrix as motif representation
allows the definition of variable regions, which better reflects
the natural divergence and thus preserves the informational
content gained from the NGS sequence data. Once found,
the sequence motifs can be utilized to generate an enriched
and thus improved and target-specific starting library for
SELEX experiments, which will positively affect the progress
of future SELEX runs on the same targetmolecule.Thiswould
imply that for each improved SELEX run another experiment
has to be performed to gain the information needed for gen-
erating the target-specific starting library for the main exper-
iment. The real practical benefit of the motif description of
the sequence libraries enrichment during the SELEX exper-
iments becomes apparent, when later using the motifs as
descriptors for the targetmolecule.The effect can be extended
by using multiple bioinformatics technologies, ranging from
sequence analysis by employing sequence alignment strate-
gies and clustering techniques to secondary and tertiary
structure prediction as well as the aforementioned motif
search. Other technologies like electrostatic calculation and
docking simulation are utilizing concrete three-dimensional
structure information, which can be acquired fromdatabases,
through own structural clarification or structure prediction.
Combining all these techniques it will be possible to extract
a set of descriptors for both, target molecule and found
aptamers, which characterize the aptamer-target-binding.
These descriptors now need to be correlated appropriately
to build an abstract model describing the aptamer-target-
binding relation. The model can then be applied to an
unknown target molecule in an effort to obtain information
on the composition and architecture of binding aptamers
only based on information about the desired target. The
generation of target-specific SELEX starting libraries without
the need of concrete performed previous experiments with
the desired target would greatly improve the aptamer finding
process.

This paper will present a search technique using suffix
trees to find recurring motifs in large NGS nucleotide
sequence data sets as one methodology besides the other
mentioned techniques allowing deriving target-related
descriptors for the later generation of target-specific SELEX
starting libraries. This method is exemplarily attempted on
anNGS data set supplied from a SELEX experiment targeting
a Norovirus capsid protein.

2. Data Set and Investigated Target

In the past a SELEX experimentwas performed to find aDNA
aptamer capable of binding to the Norovirus genotype II.4
capsid protein VP1 as its target [17]. This aptamer may be
used for efficientNorovirus detection or infection control. For
validation of the successful enrichment of sequences during
the experiment and further analysis profiting from the much
higher coverage, next generation sequencing was performed
to gather sequence data for all screening rounds.

2.1. Target. The Norovirus has been detected in 1972 in
Norwalk, USA, for the first time. Since then this virus could
be found in a variety of different genotypes spread all over
the world. The Norovirus belongs to the family Caliciviridae
and is genetically diverse. Noroviruses are the major cause
of viral epidemic gastroenteritis worldwide, often resulting
in large and persisting outbreaks. Two of the five major
genogroups, GI and GII, especially the genotype GII.4, are
responsible for the majority of human infections. Since only
few viruses are already able to cause an infection, they are
highly contagious. To the present there is no vaccine available,
which could prevent a Norovirus disease outbreak [18]. The
Norovirus contains a single-stranded, positive-sensed RNA
genome with an approximate size of 7.7 kb, which is enclosed
in a nonenveloped protein coat. This coat exhibits distinct
cup-shaped depressions. Its icosahedral capsid structure is
formed by 90 dimers of the capsid viral protein 1 (VP1),
which is assembled of two domains. The inner S domains
form a shell around the RNA, whereas the P domains are
protruding on top of the shell [19]. Another minor capsid
protein (VP2) is only present in a few copies. The overall
construct leads to thermal stability of the virus, allowing it
to survive temperatures up to 55∘C and a pH in the range of
3–7 [20].

At present, a Norovirus infection is usually diagnosed
by reverse transcription PCR (RT-PCR) or enzyme-linked
immunosorbent assay (ELISA) using anti-Norovirus anti-
bodies. Although the cost-intensive RT-PCR is the most
sensitive method known so far, the genetic diversity of
Noroviruses does not allow testing for all genotypes in one
assay. Attributable to their low sensitivity ELISA assays can
only be used for screening, where the results are confirmed
by a following RT-PCR [21]. In a recent development an
immunochromatographic detection assay based on antibod-
ies was rated to have a high sensitivity and specificity [22].
As there is still a strong need for point-of-care methods for
Norovirus detection, a solution using aptamers as receptor
units may be another chance to develop real-time, label-
free, and possibly low-cost biosensor systems for Norovirus
detection. Targeting the attachment and internalization of
the virus, one interesting approach would be to inhibit the
binding of the P2 subdomain to its receptor molecules by
competitive interacting molecules. Hence,Norovirus binding
aptamers might also be used in vivo to control Norovirus
infection.

2.2. Origin of Sequence Data. The target capsid protein VP1
of Norovirus genotype II.4 was expressed as a recombinant
with polyhistidine-tag appended for later immobilization.
The sequences of the initial library contained a 49 nt long
random section enclosed by the necessary primers. So the
initial library is described by the following template sequence:
5 GCC TCT TGT GAG CCT CCT AAC -N49- CAT GCT
TAT TCT TGT CTC CC 3. The SELEX experiment was
performed in twelve rounds. After every third selection
round an additional negative selection was performed to
remove aptamer candidates binding to background materials
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of the experiment or to fecal specimen, the later sample
matrix.

For each round of the SELEX experiment the next
generation sequencing supplied a sequencing file in FASTQ
format containing the aptamer sequences remaining after this
round. For each sequenced base the file further contains an
additional coded quality value which approximates the error
probability at this position.The sequences are flanked by parts
of the Illumina primer sequences.

2.3. Preparation of Sequence Data. Prior to any concrete
sequence analysis a preprocessing step of the raw data
produced by the sequencer needs to be done. The aptamer
sequences are flanked by primer sequences. At first these
primer sequences, either fully preserved or just fragments,
have to be recognized and removed. Raw sequences that did
not contain the given primer sequences have been rejected.
The remaining inserts are the object of the intended motif
search.

Each sequenced base is annotated with a coded qual-
ity value which approximates the error probability at this
position. Although these quality values are not regarded
as an absolute quality indicator, conspicuously low values
or continuous sections exhibiting low values may indicate
sequencing errors. As themain goal of a SELEX experiment is
the enrichment of the sequence pool with binding aptamers, a
sequence occurring only with very small quantity can also be
considered as deficient. Based on this information a filter can
be applied, which discards sequences of possibly low qual-
ity. After preparation the data set contained approximately
233000 sequences, from which 5500 sequences were distinct.

3. Motif Search

As intended, this study is aimed at developing a search
technique using suffix trees to find recurring sequence
motifs, which are corresponding to concrete binding areas
of the aptamers. The prepared sequence data of the SELEX
experiment described above is the basis for the following
search strategy, which will be presented in three main steps.
After a short overview of different approaches of motif search
utilizing suffix trees, the generation of a generalized suffix
tree, which is used by a later exhaustive search, is described.
Here, also the possibility of using only subsequences located
on loop regions of the predicted structures is mentioned.
Thereafter the benefit of the tree structure in doing a full
search is outlined. The last part explains a couple of termi-
nation criteria for the search. Afterwards a possible way to
handle the results of a motif search easier is specified.

3.1. Suffix Tree Based Motif Search. Over the last three dec-
ades suffix trees have been repeatedly utilized for sequence
matching as they are known to provide very fast string
operations [23]. The most simplistic problem is to find the
exact motifs occurring in a subset of the given sequences.
In particular, this can be done by traversing the tree to find
nodes visited by the denotedminimumnumber of sequences.
This basic problem increases in complexity when more

meaningful biological demands are considered.This includes
the incorporation of character mismatches and sequence
gaps during computation. With respect to DNA sequences
and their corresponding structures, single motif elements
can interact spatially and may be important for structure
stabilization or even for defining the three-dimensional fold.
However, such motif elements are not necessarily located in
direct sequence neighborhood, which requires considering
long gaps between elements. A number of approaches target
the finding of such gap-containing motifs. Early algorithms
permitted only fixed gap lengths—a restriction, which limits
the number of possible motif arrangements. More sophisti-
cated algorithms are also able to handle motifs interrupted
by gaps of variable lengths [24–26]. In addition, integrating
sequence-specific biological relevance to the problem of pat-
tern and motif identification requires an appropriate ranking
and processing scheme [27].The other aspect of this problem
lies in definingmismatch acceptance withinmotif hits, which
would allow regarding mutations occurring in evolutionary
processes, such as SELEX. These algorithms are usually
intended to find motifs containing up to a fixed number
of mismatches within each occurrence. In most cases, the
mismatches are not restricted by special rules [28, 29]. The
aforementioned algorithms directly aim at finding motifs
within the suffix tree. An alternate approach affords ranking
the search space to find a subspace (subtree) containing
appropriate motif hits [30].

Brazma et al. introduced the Pattern Discovery Algo-
rithm, which realizes an exhaustive search for three different
classes of motifs. One of these classes called “patterns with
character groups” describes mismatches by means of a well-
defined regular expression syntax, which helps to specify
the motif variability more precisely. The algorithm uses
a suffix tree where nodes are annotated with symbols of
the employed regular expression syntax, which means the
character groups. This massively increases the tree size and
thereby limits its practice [31]. Following the example of an
exhaustive search over all possible patterns including variable
regions within a huge number of nucleotide sequences, the
single string search for one pattern in a single sequence
needs to be optimized in order to minimize computational
costs. In contrast to the Pattern Discovery Algorithm, our
approach uses the generalized suffix tree annotated with
the letters of the sequence alphabet. The consideration of
variability is realized by merging nodes during the later
search phase, which reduces memory usage and avoids the
creation of unnecessary subtrees that would be created in the
character group based tree. In this study, biological relevance
is derived from predicted secondary structure information.
In particular, free energy estimations of predicted structures
are employed to ranking corresponding sequences prior to
motif search, which, to our knowledge, poses a novelty in this
field.

3.2. Tree Construction. To project sequences onto this tree
structure, each edge of the generalized suffix tree is annotated
with one of the possible characters of the underlying alphabet.
Internally each character is mapped onto a number to allow
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Figure 1: One example of the stepwise construction of the generalized suffix tree is shown, which later will be used within the search process.
Parts (a), (b), and (c) of the graphic show the state of the tree after inserting the sequences ACCAG as s1, ACTAG as s2, and AGCAG as s3.
Each edge is annotated by the corresponding letter of the underlying alphabet. The nodes themselves contain the list of sequence identifiers
for all sequences containing the subsequence denoted by the path leading to the particular node. Starting from part b the coloring of the
nodes indicates their status of update. Red colored nodes have been added in the latest construction step; orange nodes have been modified.

fast and direct access to the edges via arrays. This means that
each path connecting a node with the tree root describes a
designated subsequence, which is simply the concatenation
of all annotated characters of the edges. This subsequence is
implicitly assigned to the node, which itself comprises a list
of all sequences containing its assigned subsequence. To find
all relevant sequences containing a particular subsequence, it
suffices to walk along the tree choosing the edges according
to the successive characters of the searched subsequence.The
last node now contains the list of all relevant sequences.

The tree is constructed by the repeated insertion of all
sequences of the data set. As its model is not intended to
map variable positions, all sequences containing variable
characters are discarded as a first filtering step. The quality
of today’s sequencing technologies and appropriate prepro-
cessing keeps the impact of the filtering insignificant. A single
sequence is inserted into the tree by traversing the tree,
beginning from the root node. The depth of this insertion
traversal is limited by the maximum allowed motif length. If
the next edge and connected node, which are chosen by the
next character in the inserted sequence, do not exist during
traversal, they are created and the procedure is continued.
Each node that is traversed during the insertion process will
have placed the sequence ID of the inserted sequence into its
internal list. Duplicate entries in the nodes internal lists are
avoided. Aswe are creating a suffix tree, not only the sequence
itself but also all possible suffixes of the inserted sequence
need to be processed in the same manner to complete the
insertion of a single sequence. According to this principle all
sequences of the data set are inserted consecutively as shown
in the example of tree creation in three steps in Figure 1.
The time and space complexities of tree creation are within
𝑂(𝑛 ⋅ 𝑙 ⋅ 𝑟), where 𝑛 is the number of sequences, 𝑙 the sequence
length, and 𝑟 the maximal allowed motif length.

In particular loop regions of nucleotide aptamers are
likely to interact with target molecules [11]. As the unpaired

nucleotides in loop regions do not take part in Watson-
Crick or other kinds of nucleotide pairs, the related binding
sites remain available for intermolecular chemical bonding.
Loop regions should therefore be preferred when search-
ing for common binding motifs. To adapt the presented
strategy towards possible loop regions and potential binding
motifs, the construction process of the tree was modified.
To determine which parts of the sequences are placed on
unpaired regions, the corresponding secondary structures
need to be predicted. However, taking only into account the
best predicted structure may lead to unintended findings,
because predictions can only be trusted to the extension
of their predictive performance. In the concrete binding
situation many external impacts will influence the folding
of the aptamer, so that the structure of the highest binding
affinity does not necessarily correspond to the structure
yielding minimal free energy. However, the latter is the
objective in structure prediction algorithms. Thus, in the
context of developing aptamer-target-binding models, RNA
structure predictions have to be regarded with care and
caution. Therefore a set of suboptimal structures is used as
basis, which is predicted with the tool RNAsubopt of the
Vienna RNA toolbox [32]. Hence the RNAsubopt application
is primarily designed to be applied on RNA sequences; the
prediction of DNA secondary structures requires a different
energy parameterization [33, 34]. As the primer sequences are
attached to themain aptamer sequence during the incubation
phase, they are influencing its structural fold. Due to that the
primer sequences need to be attached prior to predicting the
aptamer secondary structures and neglected after prediction.
For each of the predicted structures of each sequence, all
loop subsequences are extracted and separately inserted into
the tree. Loop regions that are contained in more than
one suboptimal structure are now inserted multiple times.
For a correct interpretation in the later pattern search, the
inserted loop regions have to be weighted. The selection
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Figure 2: The selection and weighting of secondary structure
information prior to tree creation is illustrated. The top row shows
the sequence of interest. In the following rows, for each secondary
structure predicted by the Vienna RNA tool RNAsubopt [23], a
representation in dot-bracket notation is placed. Mutual matching
pairs of brackets denote base pairs, whereas dots are standing for
unpaired bases. Each structure 𝑥 is annotated with an energy value
𝐸(𝑥) and the calculated probability 𝑃(𝑥) used for weighting. The
nonpaired subsequences, which will be inserted into the tree, are
highlighted yellow. It is obvious that some subsequences are inserted
multiple times and others are overlapping, which necessitates the
mentioned weighting.

and weighting of unpaired structure elements is depicted in
Figure 2. Besides a standard equal weighting of all structures,
a special weighting according to the secondary structures
annotated free energy values can be realized. Therefore a
kind of probability for each sequence to be found in a
natural mixture is calculated by the following formula using
Boltzmann factors based on these energy values [35]:

𝑃 (𝑥 ∈ 𝑋) =
1

𝑍
⋅ 𝑒
−1/(𝑘

𝐵
⋅𝑇)⋅𝛽⋅𝐸(𝑥)

𝑍 = ∑

𝑥∈𝑋

𝑒
−1/(𝑘

𝐵
⋅𝑇)⋅𝛽⋅𝐸(𝑥)
.

(1)

For each of the structures 𝑥 of the ensemble𝑋, an energy
value 𝐸(𝑥) needs to be available. The Boltzmann constant 𝑘𝐵
and the absolute temperature 𝑇 in kelvin are also required
for calculation. The temperature value should be consistent
with the settings used in secondary structure prediction. An
additional parameter 𝛽 allows customizing the characteristic
of the weighting function. Larger values of 𝛽 increase the up-
weighting of better energy values; smaller values weaken the
influence of the predicted free energy.A value of 0 for𝛽 comes
to an equal weighting of all structures.The partition function
𝑍 can be seen as a normalization factor, so that the sum of all
calculated probabilities will not exceed the limit 1.

Now the tree can be constructed either with or without
using the information provided by the predicted secondary
structures.

3.3. Motif Search Using Node Merging. The motif search
algorithm shall be able to find motifs containing variable
regions. As the underlying tree structure only models non-
variable strings, the variability needs to be realized within the
search process.Therefore a new composite alphabet is created
and used as basis for the following search. This composite
alphabet contains all standard characters taken from the
normal sequence alphabet and all possible combinations as

special, variable characters.The composite alphabet can easily
be restricted to only 2-letter or 3-letter combinations. With
the help of this composite alphabet, the search now is able to
cover variable motifs.

Performing the full search with the help of a suffix tree
allows a very fast substring search strategy for both, normal
and variable substrings. This strategy uses the principle of
progressive node merging, which is a depth-first search.
Each search process starts with the empty string, which is
represented by the root node of the tree. As we are using
node sets, the starting node set only consists of the trees
root node. For each possible following character the search is
continued.The following character can also be a combination
of more than one character of the original sequence alphabet,
because a composite alphabet is used. To continue the search,
a new set of nodes covering the next searched substring
with all variabilities needs to be found. This is done by
aggregating all subnodes of nodes contained in the current
node set, whose edges correspond to the composite character
currently processed. The obtained node set is now merged
to retrieve a single list of sequences containing the pattern
represented by the nodes. This principle is demonstrated on
two simple examples in Figure 3. Since a single sequence
may occur in multiple nodes, the merged list of sequences
has to be cleaned from redundant entries. Instead of holding
a sorted list or linearly searching for each sequence prior
to inserting it, an index list helps to ignore doublets with
minimal time overhead, only requiring the sequences to carry
a serial number. Now the merged node holds all sequences
containing the searched pattern. The search effort for a
pattern with one additional character is therefore minimal,
because neither an actual string search nor a full tree traversal
needs to be accomplished for each step of the motif search.
The space complexity is within 𝑂(𝑛), where 𝑛 is the number
of sequences. However, due to the exhaustive search the
maximum time complexity of the search is within 𝑂(|Σ∗|𝑟),
where Σ∗ is the compound alphabet and 𝑟 the maximal
allowed motif length. The following termination criteria will
reduce the required computational effort.

3.4. Termination Criteria. Two straightforward termination
criteria are defined when starting the search procedure. The
first criterion is the maximal motif length, which bounds
the depth-first search at a specific depth. The second is the
quantity of sequences containing the currentmotif. As amotif
extended by one additional character must be equal or less
frequent than the original, the search branch can be cut when
the limit of quantity is reached.

For all further criteria, the motif actually contained in
the found sequences needs to be constructed. Therefore all
actual occurrences of the motif, which are located in the
merged nodes internal list, are analyzed position by position.
A result of this analysis is a position specific scoring matrix
(PSSM), which now can be used for comparison and further
calculation.

Another termination criterion is the formal integrity of a
discovered motif. That means the exact match of the found
motif with the motif actually contained in the sequences
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Figure 3:The search process within the suffix tree in two examples using variable motif positions is illustrated. In both examples parts of the
tree have been omitted for visual perspicuity purposes.The basis is the tree, which was constructed in Figure 1.The changing colors from one
row to another are for visual distinction of the consecutive node sets during search. Letters corresponding to the chosen edges are printed
in bold font weight. In (a) the motif A[CG]CA is searched, which leads to a fork in the tree at step two. It is not necessary to traverse the
tree down to the leaves. Merging the green nodes on the last marked row offers the list of search results (s1, s3). (b) searches for the motif
[CT]A[GT]. In the last step there is no suitable edge found for the second allowed character T. Merging the cyan nodes on the last marked
row offers the list of search results (s1, s2, s3).

which is denoted by the PSSM. If these motifs do not match,
because at some position of the actual motif an original
character is missing, the branch can also be rejected, because
the presence of another (namely, the actual) motif covering
that branch is mandatory.

Some other restrictions are only applicable for motif
filtering, but not for termination of the search branches.
Besides the minimal motif length, the entropy based total
information of single positions of a motif and the average
total information of all positions of the motif can be men-
tioned here. As the entropy𝐻 of an event, in this case of the
event described by the probability distribution of one position
in the PSSM, is a measure of the uncertainty, its complement
can be used as a measure of expressiveness. We have chosen
the Shannon entropy 𝐻 = −∑𝑁

𝑖=0
𝑝𝑖 ⋅ log2𝑝𝑖 which uses

𝑝𝑖 as the values for probability or relative frequency of the
characters in one column of the PSSM and𝑁 as the original
alphabets length. It has a maximum value of 𝐻max = log2𝑁.
The total information 𝐸 is then simply the difference 𝐸 =
𝐻max−𝐻, which leads to values from0 at uniformdistribution
to 2 for a nonvariable position [36].

However, a limitation of the total information values as
described would result in the avoidance of possible gaps,
which means positions of low total information. If they are
desired to be found, defining another upper limit of total
information to identify gaps, which are not validated by the
standard total information criterion, will help.Motifs starting
or ending with such a gap can be discarded without any
consequence.

3.5. Aggregation of Motif Results. In consequence of the
allowed variability and the used naive search strategy, a very
large number of motifs will be eventually found, and thus the
result of the algorithm will be difficult to manage. However,
the resulting motif hits will naturally form a number of
motif groups offering high mutual similarity, because the
variability at each position leads to some kind of vacillation
around a main motif. One possible solution to relieve the
manageability is to group found patterns together by using
an easy derivable consensus sequence of each pattern. A
directed graph connecting a motif to other motifs, which are
substrings of itself, is the preferred visual representation as
seen in Figures 4 and 5.

4. Results

4.1. Normal Motif Search. For a motif search, the most
frequent 1000 distinct sequences of the last round of the
SELEX run have been chosen. The search was limited to
motifs of length 7 to 11 and shall only show results with
minimal total information of 1.8 bits, which occur in at
least 95% of the approximately 233,000 concerned sequences.
The variability was constrained by allowing only one or
two original characters in each character of the composite
alphabet.

Themotif search results in approximately 150,000 motifs,
which can be separated into 18 groups. The 18 groups are
shown in Figure 4. The two longest consensus sequences of
the groups are overlapping and thereby forming the motif
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Figure 4: The result of the performed motif search is shown. In the lower part of the figure, the consensus sequences of the 18 discovered
groups, which contain the actualmotifs, are depicted.This is done in the formof a directed graph showing a substring relation.Thatmeans that
a consensus sequence is connected to all other sequences, which are substrings of itself. The emerging hierarchy facilitates the understanding
and selection of relevant finds. The upper part shows two concrete motifs in the form of weblogos, which have been picked one from each
of the top consensus groups and then have been aligned to each other. The height of each column of the two motif weblogo representations
corresponds to themotif positions total information according to the scale on the left side.The letters are then sized by their relative frequency
within that motif position.
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Figure 5: The result of the performed motif search using the secondary structure restrictions is shown. In the lower part of the figure, the
consensus sequences of the 6 discovered groups, which contain the actual motifs, are depicted. This is done in the form of a directed graph
as in Figure 4. The upper part shows one concrete motif in the form of a weblogo, which has been picked from the top consensus group. See
Figure 4 for further explanation of the weblogos representation.
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(A)GGTGGTCCGG(G). The other 16 found groups show
consensus sequences, which are subsequences of the two
largest finds.Themain focus shall therefore be laid on the two
longest finds. Looking at the concrete formation of themotifs
contained in these two groups shows that the only noticeable
variability lies in positions 1 and 3 of the motifs. This yields
the overall motif description of [AG]G[AG]TGGTCCGGG.

The sequence data set was also submitted to different
motif search webservices. Only two of the tested services
were able to handle the large data set. DREME returned 50
motifs offering 4600 to 40 matches within the given 5500
distinct input sequences [37]. The DRIMust online service
resulted in a list of overrepresented k-mers and one motif
hit [38]. The first motif hit reported by DREME as well as
the top elements of the overrepresented k-mers provided by
DRIMust corresponds to the motif found by this approach,
whereas the DRIMust motif and later motif hits reported by
DREME do not match to our result. The extended use of
variability in combination with the exhaustive search strategy
facilitates the finding of motifs that fit the natural variation
more precisely. Due to this a very strict threshold could be
applied to sequence coverage (95%) during the motif search.

4.2. Using Secondary Structure Information. In a second run,
the secondary structure information was used to select only
subsequences for motif search, which are likely to be located
on loop regions of the structure. For that reason a suboptimal
secondary structure prediction with an allowed energy delta
of 1 kcal/moL was chosen. The absolute temperature 𝑇 was
set to 310 K and parameter 𝛽 was set to 1. As this selection
restricts the number and length of subsequences, which
provide the basis for the motif search, using the same severe
parameters as above will cause the search to reveal a reduced
result focused on the loop regions.

With the altered base set the algorithm discovers approx-
imately 125 motifs, which are aggregated into 6 consensus
groups shown in Figure 5. The group with the longest con-
sensus sequence is TGGTCCGG, which is a subsequence
of the motif discovered without using secondary structure
information. The other finds are subsequences of this motif.
The circumstance that the motif discovered with structural
restrictions is a subsequence of the one found without such
restraints supposes that the found motif is relevant for
binding to the target.

As we initially introduced a weighting based on the
predicted free energy of the secondary structures, each found
motif now contains a value describing a kind of propensity or
probability for this motif to be found on loop regions of the
aptamers structure. The longer the desired motif, the lower
the expected propensity. So the longest motif TGGTCCGG
is accompanied by a value of around 65%.Themost common
group TGGTCC in contrast ranges from values of 71% to 80%
and is therefore probably assembled of unpaired nucleotides.

4.3. Validation. As a manual validation the 25 most fre-
quently occurring sequences of the data set have been
checked. After the aggregation of the sequences into six
groups of mutual global similarity, the consensus sequences

of these groups were inspected. All except one sequence did
contain themotif [AG]G[AG]TGGTCC[GA]GG, where only
a small percentage is responsible for the last variable position.
The one remaining sequence does only contain the motif
TGGTC[]GGG with one missing C in the middle of the
motif. One aptamer containing the foundmotif has also been
experimentally confirmed to bind to the target.

For the top sequences of the groups determined above,
secondary structures have been predicted separately to map
the found motif onto the possible aptamer structures. The
visualization of the structures was done with the online
tool VARNA [39] and is presented in Figure 6. In some
cases the optimal predicted structure contained the motif
positioned on an unpaired region. Although the motif was
positioned partially or even fully on paired regions in
the other considered cases, a suboptimal structure with
small energy difference existed, on which the motif was
found nearly or fully on a structure element consisting of
unpaired nucleotides. This finding can be attributed to the
new methodology incorporating the predicted secondary
structure information into the motif search process.

4.4. Library Generation. The SELEX experiment resulted in
a final library with decreased diversity. Using the NGS data
this decrease has been validated by calculating the diversity
measures Simpson index and Shannon-Weaver index [40].
Corresponding to that diversity an enrichment of a number
of aptamer sequences within the library can be observed.
Besides a simple grouping of the sequences by global simi-
larity, another approach, the motif search, was pursued. As
a result of this performed motif search a short motif was
revealed, which could be found in more than 95% of the
investigated sequences. This motif is furthermore positioned
on a loop region of suboptimally predicted secondary struc-
tures in themajority of the cases.This leads to the assumption
that the motif TGGTCCGG is especially relevant for target
binding, because loop regions offer unpaired nucleotides
whose binding sites remain available for intermolecular
chemical bonding.

As shown above, the motif corresponds to similar sub-
structures within the different enriched aptamers, whichmay
fit characteristically onto a specific binding site located on
the target protein. This circumstance can be used to generate
an enhanced SELEX starting library, which in turn will
positively affect the progress of future SELEX runs on the
same target molecule. As the discovered motif is described
by a position specific scoring matrix, the natural divergence
is captured and can be used when creating the new library.
Themotif itself represents a kind of indication for a preferred
aptamer binding site; it is not a fully qualified predefinition
of the optimal and exact binding aptamer. A SELEX library
should therefore be enriched by the motif. One possibility
is to create a small preliminary library highly enriched with
that motif, which is modified and thereby inflated in the
process of postrandomization. Another way would be a
randomized sequence generation with the restriction, so that
the resulting sequences have to contain a small number of
possible variant instances of the desiredmotif. By this means,
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Figure 6:The result ofmapping the foundmotif TGGTCCGGonto different predicted secondary structures of aptamers frequently occurring
within the final SELEX round is shown.This is done using two examples. In both cases, based on the output of the VARNA [27] online tool, the
optimally predicted secondary structure is schematically drawn with the following coloring. Light gray circles are nucleotides of the primer
sequences, whereas dark gray and yellow circles are nucleotides of the actual aptamer. The latter are containing the searched motif. The area
containing the motif is shaded in a light green tone and additionally presented in a separated detail view besides. In (a), the motif is exactly
matching a hairpin loop. In (b) the motif is distributed over paired and unpaired nucleotides. A second detailed view (b) shows the same
part based on a suboptimal structure instead providing a larger loop as an only difference, which holds the motif.

the highly complex conformation space of the aptamers is
filled diversely with structures containing different config-
urations of the potential binding motif. This ensures that
also conformational changes of the aptamers induced by the
influence of the target molecule and other environmental
impacts while binding are abstractly regarded in the libraries
creation process. Following SELEX runs can eventually profit
from the target-specific enhanced starting library, which was
designed by using the additionally gathered NGS sequence
data.

5. Discussion

In a narrow sense, the correct application of the described
method would imply that for each SELEX run, which shall
profit from the target specifically generated new libraries,
another SELEX experiment has to be performed to gather
the sequence data required for finding the relevant motifs.
In the direct manner this can be used after a performed
SELEX experiment offering only aptamers of relatively low
affinity. If motifs can be determined, a following SELEX
experiment with optimized library could be used to find

aptamers with higher affinity in fewer rounds. Another
application is the optimization of the SELEX procedure. In
normal cases the diversity decreases slowly in the later rounds
of the experiment. The strategy discussed in this paper could
reduce the number of necessary SELEX runs by introducing
a sequence analysis step. After the analysis the experiment
will be continued with a motif-based enriched library to have
better chances to capture higher affinity aptamers.

The found motifs can be seen as one descriptor for the
target, because aptamers containing that motif are likely to
bind to that intended target molecule. This can be a con-
sequence of physiochemical preferences of the amino acids
and nucleotides as well as concrete structural preferences of
the motif. The shown method can be extended and thereby
practically enhanced bymaking use of other available, mostly
complex descriptors for the target and also for the aptamers.
This starts with descriptors based on the pure sequence, for
example, sequence alignments, consensus sequences, cluster-
ings, and base or amino acid distributions, but is not limited
to these. It is also possible to use available secondary or
tertiary structures of the binding partners or to predict these
structures, which then can be analyzed in terms of physical
surface formation, electrostatics, buriedness, and availability
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target-specific SELEX starting library only based on information
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of the different amino acids and nucleotides. It is also
surmisable to use a docking simulation to validate or even
identify potential binding sites, which then can be described
in more detail. After describing both, target and aptamer, in
an appropriatemodel by quantifiable descriptors, these values
can be correlated in a new model abstractly describing the
aptamer-target-binding relationship. Now the real practical
benefit of the basic strategy becomes obvious. At this point,
the model can significantly contribute to dry and wet lab
investigations, since it is applicable to other, even structurally
unknown target proteins, and can aid in gaining knowledge
on the composition and architecture of binding aptamers
only based on information about the desired target. The
generation of target-specific SELEX starting libraries without
the need of concrete performed previous experiments with
the desired target as illustrated in Figure 7 would greatly
improve the aptamer finding process in fields of biosensor
development and medical treatment.

6. Conclusion

Performing NGS on SELEX experiments can yield benefits.
Although this sequencing is not part of the standard SELEX
procedure, the technique and following sequence analysis can
help to find a better description of the developed enrichment
within the library. In this paper the enrichment of a specific
sequencemotif has been shown by performing amotif search
on the sequenced last round of a SELEX experiment. The
high enrichment of sequences containing this motif and its

likelihood to be located on unpaired regions of the aptamers
indicate themotifs relevance for binding to the target protein.
According to that the motif corresponds to a specific charac-
teristic of the target. This kind of target description is only a
first step towards an abstract model describing the aptamer-
target-binding relationship, which then can be utilized to
predict information on composition and architecture of
binding aptamers. Based on this information SELEX starting
libraries can be generated target-specific, which in turn will
save time and financial expenses.
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Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene
expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because
previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal
regulations that cause diseasesmight have been disregarded.This paper proposes an approach for discovering the condition-specific
correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an
Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from
the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for
discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the
computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast
cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast
cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual
expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different
data sets were used.The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

1. Introduction

Using microarray technology combined with computational
analysis is one of themost efficient and cost-effectivemethods
for studying cancer. Using this method has enabled scien-
tists to investigate and understand a vast array of cancer
information [1–5], and it is used to analyze the functionality
of specific genes during the development of a disease. In a
high-throughput and parallel manner, expression profiling
is performed by monitoring the expression levels for the
thousands of genes that are simultaneously on an array.

One of the most common and extensively used methods
for determining the biological significance of genes when
comparing cancerous and normal conditions is the identifi-
cation of differential gene expressions. Multiple technologies,
such as cloud computing, parallel systems, and data analysis
strategies, have been developed to identify differential gene
expressions by using microarray gene expression data [6–10].

In microarray experiments, the gene expression levels of
the samples can be detected using the intensity of probes [6].
Heretofore, most studies have focused only on finding the
differential gene expressions of various conditions; however,
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lack of methods focused on analyzing the correlations of
differential gene expressions between conditions. Therefore,
some abnormal regulations causing the diseases might have
been disregarded. In addition, the major challenge accom-
panying this broad approach is computational complexity,
because toomany differential gene expressions (probes)must
be calculated.

Cloud computing and parallel processing are considered
valuable techniques because using them can greatly reduce
the computation time of a program by efficiently combining
multiple computers and processors in parallel. Therefore, we
implemented cloud computing techniques to complete the
program in considerably little time. Apache Hadoop is a
distributed parallel data-processing framework that supports
MapReduce-type computations, enabling users to perform
distributed computations effectively in increasingly brittle
environments [11]. We propose an approach for discovering
the condition-specific correlations of gene expressions within
biological pathways that implement anApacheHadoop cloud
computing platform. Three microarray data sets of breast
cancer were collected from the Gene Expression Omnibus
(GEO), and pathway information from the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) was applied for
discovering meaningful biological correlations.

2. Related Work

Previously, several methods have been developed to identify
differential gene expressions in biological pathways. Most
of these methods focus on diagramming gene expression
levels and calculating the correlation of clustered genes.
Kanehisa et al. proposed an approach, Pathway Miner, which
extracts gene-association networks frommolecular pathways
for predicting the biological significance of gene expres-
sion microarray data [12]. When pathways are extracted
from Pathway Miner, the levels of gene expression can be
discerned, but four samples could be shown at a time.
ArrayXPath functions by focusing on mapping and visu-
alizing microarray gene-expression data with biomedical
ontologies and integrated biological pathway information
and by displaying the results using Scalable Vector Graphics
[13]. The genes can be annotated using different colors in
a pathway according to condition. In addition, ArrayXPath
can be used for conducting clustering analysis of the time
series data of gene expression. Another function, PathMesh,
facilitates analyzing the association between gene and disease
terms by using MeSH. Thus far, however, lack of tool exists
for clearly discerning coexpressional changes under different
conditions.

The KEGG consists of a suite of databases that record
an extensive amount of information on genes, enzymes, and
regulation pathways [12], facilitating the retrieval of gene
names and information on their interactions within biologi-
cal pathways. The KEGG application programming interface
(API) is essential for accessing the KEGG system and enables
searching and computing the biochemical pathways involved
in cellular processes or the analysis of all genes from a
completely sequenced genome.

Apache Hadoop is an open source implementation of
the Google MapReduce technology that simplifies program-
ming tasks by automatically performing duties such as job
scheduling, distributed aggregation, and fault tolerance [11,
13]. The Apache Hadoop software library is a framework
that facilitates the distributed processing of enormous data
sets across clusters of computers. Apache Hadoop involves
using simple programming models such as the Hadoop
Distributed File System, which provides high-throughput
access to application data and duplicates the data on multiple
nodes so that failures of nodes containing a portion of the
data do not affect the computations [14]. Apache Hadoop
is designed to scale from single servers to thousands of
machines, with each offering local computation and storage.
Recently, Hadoop platform has been widely applied for cloud
computing of biological, genomics, and drug design [15–19].

3. Materials

Several experimental studies have examined the genetic pro-
files of breast cancer samples, and most of them have focused
on identifying the differential gene expressions between
relapse and nonrelapse breast cancer samples [20–24]. Previ-
ous studies have not identified the correlations of differential
gene expressions between different conditions; therefore,
some abnormal regulation correlations may not have been
detected. The proposed approach focuses on discovering the
condition-specific correlations of gene expressions within
biological pathways, thus providing a more macroscopic
result than that from using a single-gene approach and
potentially facilitating the discovery of greater biological
meaning from a microarray data. We collected three breast-
cancer-related data sets (GSE2034, GSE1456, and GSE4922)
from multiple arrays from the GEO [25] to determine the
correlations of differential gene expressions between relapse
and nonrelapse breast cancer samples. In addition, GSE2109,
of which numerous samples were available, was used for
examining the performance of the cloud computing platform.
Table 1 lists the information and materials extracted from the
GEO.

4. Methods

The system flow of the proposed approach is depicted in
Figure 1.Threemicroarray data sets of breast cancer were col-
lected from the GEO. An Apache Hadoop cloud computing
platform was implemented for decreasing computation time,
and pathway information from the KEGG was applied for
discovering meaningful biological correlations. The aim of
this study was to develop a system that can identify abnormal
regulations within the biological pathways of the relapse
and nonrelapse breast cancer samples by using microarray
data. These selected differential correlations can facilitate
identifying the factors involved in breast cancer relapse. The
system was divided into three major parts: receiving and
preprocessing data, analyzing gene expression correlations,
and mapping condition-specific correlations within biolog-
ical pathways.



BioMed Research International 3

Table 1: Statistical data of used data set.

GEO no. Sample no. (nonrelapse/relapse) Platform Probe no. Description Reference no.
GSE2034 288 (179/109) Affymetrix U133a (GPL96) 22,283 Breast cancer [20]
GSE1456 159 (119/40) Affymetrix U133a (GPL96) 22,283 Breast cancer [21]
GSE4922 249 (160/89) Affymetrix U133a (GPL96) 22,283 Breast cancer [22]
GSE2109 2,158 Affymetrix U133a Plus 2.0 (GPL570) 54,675 Different types of cancer [23]
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Figure 1: The flow chart of the system.

The microarray data were extracted from the GEO and
segregated into a nonrelapse condition and relapse condition
according to the sample descriptions. Gene profiling was
performed using Affymetrix U133A arrays, and microarray
quality control was performed using an R package affyQCRe-
port [26]. The gcrma function of the R package affy was
applied to normalize the CEL files by using the Robust
Multiarray Averaging (RMA) method [27].

The master node divides the computation into multiple
smaller subproblems and distributes them to worker nodes.
The master node collects all of the answers submitted by
the worker nodes and combines these answers into the
output result. Two MapReduce programs were implemented
to compute the linear regression validation and correlations
for each pair of genes based on Hadoop Version 1.1.1. We
used our programs to conduct a performance evaluation on
a Hadoop cluster of 10 Xen virtual machines, where nine
are the data nodes and one is the name node. Based on
our settings, every two virtual machines were deployed on
a physical machine. A physical machine was equipped with
two CPUs with Intel Xeon E5504 4C 2.0GHz and 16GB of
RAM; each virtual machine for the data nodes was equipped
with a virtual CPU (VCPU) with two cores and 1GB of

RAM; the virtual machine for the name node was equipped
with a VCPU with four cores and 4GB of RAM. To evaluate
the scalability of our MapReduce implementations, we also
implemented two corresponding sequential Java programs as
the basis for performance comparisons. In the performance
evaluation experiments, we partitioned the data set into
several pieces, uploaded them to the Hadoop file system, and
submitted several MapReduce jobs to analyze the pieces of
data.

The KEGG [25] Java APIs were used to obtain both
pathway and interaction data. A gene map may possibly
have more than one accession number, and we used the
KEGG API to map the gene designations according to the
KEGGMarkup Language (KGML) file of each pathway. After
mapping the gene expressions and interacting gene pairs,
we identified substantial differences under the conditions of
nonrelapsed and relapsed. The detailed steps are shown in
Figure 2.

For example, the correlation of the gene pair A-B was
calculated under different conditions. First, we used the
expression intensity of genes A and B as the values of the 𝑥-
axis and 𝑦-axis, respectively, for drawing a node.The number
of nodes represented the number of samples. Subsequently,
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Figure 2: The process flow for identifying differential correlation of gene expression.

linear regression analysis was applied to discard outliers
based on the least square value of each node. If the least
square value of a node is greater than the average least
square value-added threefold standard deviation, then the
node would be discarded when calculating the correlation of
gene expression. Eighty percent of the data was reserved, at
least for the setting of the threshold, to make the data more
representative.

After discarding the outliers, Pearson’s correlation coef-
ficients were calculated for each gene pair. Pearson’s corre-
lation, 𝑟, ranges between −1 and 1, and the greater the value
of 𝑟, the stronger the coexpression between the members of
the gene pair. In this study, coexpressed genes were defined
as genes with a correlation greater than 0.45, and reverse-
expressed genes were defined as genes with a correlation less
than −0.45. Unrelated genes were defined as genes with a
correlation between −0.45 and 0.45. Genes with differential
correlations between the nonrelapse and relapse conditions
were collected when the difference of the correlation of
the genes in the two conditions was greater than AVG +
3 ∗ SD or less than AVG − 3 ∗ SD, where AVG and SD
are, respectively, the average and standard deviation of the
correlations of differential gene expressions between the two
conditions.

5. Results

5.1. Performance Evaluation of Cloud Computing. GSE2109
was used for evaluating the performance of the cloud com-
puting platform. The size of the data set for analysis was
54,675 (probes) × 2,158 (samples) of floating numbers. Our
MapReduce implementation for linear regression validation
and correlation computation is a map-only program. It
iteratively issues a MapReduce job by setting the number of
Reducer to be zero, and the number of iterations depends
on the input data size. That is, the outputs of the map tasks
are written directly to the files system. At each iteration,
our MapReduce implementation generates different number
of map tasks for different input size. Based on our Hadoop
MapReduce setting, it generates 2, 3, 6, 12, and 17 map
tasks for 5,000, 10,000, 20,000, 40,000, and 54,675 probes,
respectively.

Figure 3(a) shows the execution times of linear regression
validation for each pair of genes by using the Hadoop
MapReduce implementation and the sequential Java imple-
mentation, given different numbers of genes. Based on the
measured performance values, the MapReduce program was
generally faster than the sequential Java program that was
executed on the name node, particularly when the input data
became extremely large. The sequential Java program was
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Figure 3:The execution times of linear regression validation and correlation computation by using the HadoopMapReduce implementation
and the sequential Java implementation, given different numbers of genes.

faster than the MapReduce program when the number of
genes was smaller than 10,000. In addition, the execution
time of the MapReduce program exhibited a linear growth
for different numbers of genes, indicating that the Hadoop
MapReduce framework was scalable in this case. By contrast,
the execution time of the sequential Java program represented
a quadric growth. Figure 3(b) shows a similar result to
those of Figure 3(a), indicating that the Hadoop MapReduce
framework is scalable for computing the correlations of gene
pairs. The only difference is that the correlation computation
jobs are more CPU-intensive than the linear regression
validation jobs. The MapReduce program can accomplish
tasks approximately 10 times as fast as the sequential Java
program can.

5.2. Analysis Results of Differential Gene Expression Corre-
lations between Relapse and Nonrelapse Samples of Breast
Cancer. The number of differential gene expression corre-
lations between the relapse and nonrelapse breast cancer
samples from GSE2034, GSE1456, and GSE4922 is shown
in Table S1 (see the Supplementary Material available online
at http://dx.doi.org/10.1155/2014/763237), and Table 2 lists the
differential gene expression correlations in the pathways,
and there were 33, 32, and 50 gene expression correlations
mapped in the KEGG pathways of GSE2034, GSE1456, and
GSE4922, respectively. The pathways of the differential gene
expression correlations are listed in Table 3. Several known
cancer-related pathways were identified, including pathways
in cancer, the PI3K-Akt signaling pathway, MAPK signaling
pathway, and Wnt signaling pathway. The results showed
that the number of correlations decreased as the number
of samples increased. For example, there were 40 and 107
relapse samples in GSE1456 and GSE2034, respectively, and
there were 3,630,906 and 1,595,963 positive correlations
discovered within GSE1456 and GSE2034, respectively.These
results indicated that using more samples may conduct more
reliable correlations within pathways. As shown in Table 3,

two pathways, pathways in cancer and the PI3K-Akt sig-
naling pathway, contained four correlated gene expressions
between the relapse and nonrelapse breast cancer samples,
and we used pathways in cancer for the demonstration and
discussion of the discovery results presented in the following
section.

5.3. Differential Gene Expression Correlations between Relapse
and Nonrelapse Samples of Breast Cancer in Pathways in
Cancer of the KEGG. As shown in Figure S1, four correlations
of gene expression, NFKB2-PTGS2, JUN-MMP1, RUNX1-
CEBPA, and JUN-FIGF, were identified in pathways in
cancer. Table S2 shows the average log2-fold change in the
gene expressions of NFKB2, PTGS2, JUN, MMP1, RUNX1,
CEBPA, and FIGF between the relapse and nonrelapse
samples, which were 0.02, −0.13, −0.16, 0.7, −0.08, −0.01,
and −0.09, respectively. It shows that the differences of
gene expression values between the two conditions were not
substantial in these genes. However, the correlations between
these genes were substantially different, and the differen-
tial correlations of NFKB2-PTGS2, JUN-MMP1, RUNX1-
CEBPA, and JUN-FIGF were 0.37, 0.29, 0.29, and −0.27,
respectively. The results imply that breast cancer recurrence
may be induced by the abnormal regulations of these gene
pairs, rather than their individual expression levels.

NF-kappa-B is a pleiotropic transcription factor and
can be initiated by a vast array of stimuli related to many
biological processes such as inflammation, immunity, differ-
entiation, cell growth, tumorigenesis, and apoptosis through
a series of signal transduction events. PTGS2 is regulated
by specific stimulatory events and is responsible for the
prostanoid biosynthesis involved in inflammation and mito-
genesis. JUN is a putative transforming gene of avian sarcoma
virus 17 and interacts directly with specific target DNA
sequences to regulate gene expression. JUN is intronless and
mapped to 1p32-p31, which is a chromosomal region involved
in both translocations and deletions in human malignan-
cies. The proteins of the matrix metalloproteinase (MMP)
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Table 2: Correlations of gene expressions between nonrelapse and relapse samples in three data sets mapped in the KEGG pathway.

Condition
(no. of samples)

Number of correlated gene
pairs mapped in the KEGG pathway

Number of differential
correlations of gene pairs

(AVG ± 3∗SD)Positive (+)
Cor. > 0.45

Negative (−)
Cor. < −0.45

GSE2034 Nonrelapse (179) 606 35 33
relapse (107) 473 21

GSE1456 Nonrelapse (119) 491 21 32
relapse (40) 747 133

GSE4922 Nonrelapse (160) 575 40 50
relapse (89) 677 84

Table 3: Pathways containing different correlated genes between relapse and nonrelapse breast cancer patients.

ID Pathway names Differential correlation genes (cor Dif∗)

hsa05200 Pathways in cancer

NFKB2 → PTGS2 (+0.37)
JUN → MMP1 (+0.29)

RUNX1→ CEBPA (+0.29)
JUN → FIGF (−0.27)

hsa04151 PI3K-Akt signaling pathway

FGF4 → EGFR (−0.32)
IRS1 → PIK3CB (−0.3)
CSF1 → KIT (+0.3)

EFNA1 → IGF1R (−0.28)

hsa04722 Neurotrophin signaling pathway
IRS1 → PIK3CG (+0.34)
RPS6KA2 → NRAS (+0.3)
IRS1 → PIK3CB (−0.3)

hsa04062 Chemokine signaling pathway GNB5 → PIK3R5 (+0.31)
CCL18 → XCR1 (−0.29)

hsa04150, mTOR signaling pathway
IRS1 → PIK3CG (+0.34)
IRS1 → PIK3CB (−0.3)

hsa04910, Insulin signaling pathway
hsa04930, Type II diabetes mellitus

hsa04960 Aldosterone-regulated sodium
reabsorption

hsa04010 MAPK signaling pathway DUSP2 → MAPK8 (−0.34)
hsa04060 Cytokine-cytokine receptor interaction IL17A → IL17RA (−0.32)
hsa04310 Wnt signaling pathway SFRP5 → WNT11 (+0.3)
hsa04520 Adherens junction WAS → ACTB (−0.39)
hsa04530 Tight junction PRKCQ → ACTB (−0.34)
hsa04612 Antigen processing and presentation HLA-E → KIR2DS1 (−0.29)
hsa04620 Toll-like receptor signaling pathway RIPK1 → TRAF6 (+0.31)
hsa04630 Jak-STAT signaling pathway STAT6 → SOCS1 (+0.31)
hsa04666 Fc gamma R-mediated phagocytosis WASF3 → ARPC2 (+0.3)
hsa04725 Cholinergic synapse GNB5 → PIK3R5 (+0.31)
hsa05012 Parkinson’s disease SLC25A4 → CYCS (+0.28)
hsa05020 Prion diseases PRNP → BAX (+0.29)
hsa05152 Tuberculosis MAPK3 → IL23A (+0.31)
hsa05211 Renal cell carcinoma EGLN3 → EPAS1 (+0.28)
∗cor Dif: average correlation of genes in nonrelapse samples − average correlation of genes in relapse samples.
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family are involved in the breakdown of the extracellular
matrix in normal physiological processes, such as tissue
remodeling, embryonic development, and disease processes,
such as arthritis and metastasis. Core binding factor (CBF)
is a heterodimeric transcription factor binding to the core
element of many enhancers and promoters. Chromosomal
translocations involving CBF are well documented and have
been discovered to be associated with several types of
leukemia. The protein encoded by FIGF is a member of the
platelet-derived growth factor/vascular endothelial growth
factor (PDGF/VEGF) family and is active in angiogenesis,
lymphangiogenesis, and endothelial cell growth.

As mentioned, most of the discovered genes were related
to cancer pathways and cancer regulations, including immu-
nity, cell growth, tumorigenesis, and apoptosis. Although the
gene expressions between relapse and nonrelapse samples
were not substantially different, their correlations were sub-
stantially different.Thus, we believe these regulations of genes
may be essential for regulating breast cancer recurrence.

6. Discussion and Conclusions

This study proposes an approach for discovering condition-
specific correlations of gene expressions. An Apache Hadoop
cloud computing platform was implemented to reduce the
computation time. By using microarray data from the GEO,
we discovered numerous differential gene expression cor-
relations between the nonrelapse and relapse conditions of
breast cancer. The results show that breast cancer recurrence
is highly associated with the abnormal regulation of these
gene pairs, rather than their individual expression levels. The
pathways in cancer specifically show that NKFB2-PTGS2,
JUN-FIGF, and RUNX1-CEBPA possess higher correlations
of gene expression in nonrelapse samples and that JUN-
MMP1 possesses higher correlations of gene expression in
relapse samples. In addition, using the cloud computing tech-
nology successfully reduces the time required for conducting
gene expression correlation analysis of microarray data, and
it can be further applied for analyzing the correlation between
different transcript isoforms using RNA sequencing data,
which is helpful for deciphering the regulatory mechanisms
of genes. The results show that our method is effective and
can be extended to areas of biological analysis beyond that
of breast cancer nonrelapse and relapse. We believe that
the proposed method is effective for identifying meaningful
biological regulation patterns between conditions and can be
applied for developing coexpression networks and protein-
protein interactions in the future.
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To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is
proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining
technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect
biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under
the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the
combination of these two methods achieves enhanced gene prioritization.

1. Introduction

Due to the availability of abundant genomic resources, rice
has become a model species for the genomic study. Taking
into account that rice has been the main food for a large
section of the world population, research issues related to
yielding and antidisease have drawn much attention [1].
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae
(Xoo), is a worldwide devastating disease, which is second
only to the Pyricularia grisea, and causes yield losses ranging
from 20% to 30%, and in some areas of Asia the loss can be as
high as 50% [2].

Traditionally, bacterial blight resistance genes have been
cloned by a map-based cloning approach. To date, thirty
bacterial blight resistance genes in rice have been identified.
Among them, six genes, namely, Xa1, Xa5, Xa13, Xa21,
Xa3/Xa26, and Xa27, have been reported to be isolated for
bacterial blight resistance [3–6]. While on one hand the
results of resistant gene discovery with map-based cloning

approach are accurate, these laboratory experiments take
years of endeavor and a huge amount of input in terms of
human and material resources. It is important to find a more
effective way to locate vital resistant genes.

For a quicker discovery of R genes, the sequence-based
approach in bioinformatics is an alternative strategy. In our
previous work, Xia et al. [7] presented a novel disease-resist-
ant gene predictor by using chaos games representation
(CGR), and the predictor achieved a high accuracy of 98.13%
by using a small database with 107 samples. Moreover, Xia et
al. also applied this classifier onto the whole KOME data-
base (Knowledge-based Oryza Molecular Biological Ency-
clopedia, ftp://cdna01.dna.affrc.go.jp/pub/data//20081001/
20081001/INE FULL SEQUENCE DB 20081001.zip) and lo-
cated the top 10 candidate genes, most of which own abund-
ant annotation information in conserved domain infor-
mation. Unfortunately, direct application of the classifier to
the whole database shows a lack of confidence or reliabi-
lity.
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Additionally, the text mining strategy represents another
effective way to improve the efficiency of gene discovery.
This strategy usually adopts gene prioritization information
among texts to find genes that are possibly related to R gene.
For better use of the textual information about the gene, both
structural and domain information for Xoo-resistant genes
should be considered. According to the experimental results
in literature [4], most of Xoo-resistant genes encode proteins
containing conserved nucleotide binding site (NBS) domain
and/or leucine-rich repeat (LRR) domain [8] or encode LRR
receptor kinase-like proteins. These phenomena suggest a
possible internal relation between the gene function and gene
structure and offer clues for the text mining strategy [7].

Unfortunately, though both the sequence-based approach
and the text mining strategy aim to improve the efficiency of
discovery of the targeted R gene against Xanthomonas oryzae
pv. orzyae (Xoo) in rice, the two methods have their own
disadvantages. For example, the precision of the sequence-
based methods is not high while the recall rate of text
mining methods is low. It still has room for enhancement.
Henceforth, the purpose of the research to be reported next
is to integrate the above two methods into a combined gene
discovery strategy so as to achieve a better precision of
sequence-based methods and a higher recall of text mining
methods as well.

In this paper, large-scale gene prioritization is enhanced
with biomedical text mining technology. After extracting
the 31 most distinguished terms in Medline files with term
frequency-inverse document frequency, we retrieved 443
candidate proteins with 31 terms. With the classifier built
in [7], 74 highly candidate proteins were screened. After
searching in Conserved Domains and Protein Classification
[9] (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml),
most of these proteins are proved to be related to Xoo-
resistant gene in structure and super family information.

2. Related Work

Gene discovery based on bioinformatics and text mining are
all related to gene prioritization. The definition of a standard
definition of gene prioritization is given in [10], that is, given
disease D, candidate gene set C, and training data set T;
input all these data to a predictor or classifier and the gene
prioritization method will compute a score for each of the
candidate genes. Genes with higher scores are those with
higher probability of being disease D.

According to the type of input data, methods for gene
prioritization can be classified into text and data mining
methods, as well as network-based methods. Text and data
mining methods use training data that includes gene expres-
sion [11–13], phenotypic data [14], PubMed abstracts [11],
spatial gene expression profiles [12], gene ontology, and other
resources [15, 16]. Subsequent computation then will produce
scores of candidate genes by mining the genomes or process-
ing currently available biomedical literature. Network-based
methods use biological networks [17, 18] as the basis of the
prioritization process.There are also network-basedmethods
that combine data and text mining techniques to improve
system performance [13, 19].

We can also divide current gene prioritization tools into
two classes from the perspective of their working principles
into functional annotation-based [11, 14, 20–22] and sequence
feature based [15, 23]. There are also some studies, like [13],
that try to combine these two methods together. Functional
annotation tools are usually based on gene expression data.
Its underlying principle is that; if a gene is found to be
coexpressed with other genes that are involved in a given
biological process, this gene can be predicted to be involved
in the same process [24]. This principle proceeds from the
observation that there is a strong correlation between co-
expressions and functional relatedness [24].Thebiggest prob-
lem for the functional annotation basedmethod is annotation
bias, as some genes lack sufficient annotation while others
are annotated with abundant information [13]. On the other
hand, sequence-based methods utilize information that can
be readily computed from the gene sequence, such as gene
length, homology and base composition [13]. This method
avoids the limitation of annotation bias by making use of
intrinsic characteristics of genes. However, it is based on the
assumption that these genes have potential involvement in
general diseases only rather than some specific disease in
which the user is interested [13].

Gene seeker [14] is a useful tool to generate a starting
list of candidate genes involved in human genetic disorders
by gathering positional and expression/phenotypic data from
9 databases automatically. As a controlled vocabulary of
anatomical terms, eVOC anatomical system ontology is
designed in [11] to integrate clinical and molecular data
through a combination of text and data mining methods.
The candidate disease genes are selected according to their
expression profiles by matching tissues associated with dis-
eases to genes expressed in the tissues. Piro et al. [12] proves
that spatially mapped gene expressions are suitable for can-
didate gene prioritization. The results demonstrate that spa-
tial gene expression patterns have been successfully exploited
to predict gene-phenotype associations for both mouse
phenotypes and human central nervous system-related
Mendelian disorders.

PROSPECTR [15] is a classifier based on sequence fea-
tures to rank genes involved in Mendelian and oligogenic
disorders. It uses a collection of features representing the
structure, content, andphylogenetic extent of candidate genes
without prior detailed phenotypic knowledge of the disease.
In 2005, SUSPECT [13] combined annotation- and sequence-
based approaches to prioritize genes on the principle that
genes involved in that disease tend to share the same or
similar annotation, so as to reflect common biological path-
ways. It tries to achieve higher precision of annotation-based
methods and the better recall of sequence-based methods
through four lines of evidence to score genes, that is, sequence
features, extent of coexpressions, domain information, and
semantic similarity.

3. Materials and Methods

3.1. Data Set Construction. To prepare the data set for litera-
ture text mining, texts are collected fromNCBI PubMed data
base (http://www.ncbi.nlm.nih.gov/pubmed) with MedLine
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Table 1: Searching strategy for PubMed literature in rice.

Searching content PubMed hit
Binding 1428
Catabolism 47
Expression 5170
Localization 816
Phosphorylation 226
Regulation 4067
Transcription 2624
All of the above events 6810
Xanthomonas oryzae pv. oryzae or Xoo 402
(Oryza sativa) or rice 33349

format. In order to evaluate the effectiveness of terms for
future extraction, ten sets ofMedline textswere collectedwith
different keywords, each of which represented fundamental
biological function or event for rice gene/protein in literature.
As can be seen from Table 1, the first document has a collec-
tion of literature related to binding events for rice, and 1428
hits were found, and the following documents collect corre-
sponding biological event-related papers for rice, including
catabolism, expression, localization, phosphorylation, regu-
lation, transcription, all events, Xoo-related, and rice-related.
Among these features, the first seven represent standard
active biomedical events, the eighth one is the sum of the
above events, and the last two features focus on Xoo gene and
rice. In sum, the ten text databases reflect sufficient impor-
tance and relevance of the active Xoo resistant gene in rice.

3.2. Text Mining Based Approach: Choosing Controlled Phrase
and Evaluation with Term Frequency-Inverse Document
Frequency (TF∗ IDF)

3.2.1. Preparation of Phrase Dictionary for Candidate Gene
Annotation. In order to extract candidate genes from the
whole data base, a phrase dictionary for candidate gene
annotation is built on the annotation line in FASTA file for
rice. A record in its standard format is shown as follows.

>gi|313507159|pdb|1CCR|A Chain A, Structure Of
Rice Ferricytochrome CAt 2.0 Angstroms Resolution

There are 5 sections of information annotated in each
record line.

(1) “>gi” indicates the beginning of annotation line in
NCBI.

(2) “|313507159|” indicates the accession number in
NCBI.

(3) “pdb” indicates database Protein Data Bank (http://
www.rcsb.org/pdb/home/home.do).

(4) “|1CCR|” indicates the protein name in pdb database.
(5) “A Chain A, Structure Of Rice Ferricytochrome C

At 2.0 Angstroms Resolution” provides additional
description.

In essence, the phrase dictionary collects information
that can be automatically extracted from Section 5. The basic
principle is to extract meaningful phrases. In the examples
above for record 1, the 5th section is “A Chain A, Structure Of
Rice Ferricytochrome C At 2.0 Angstroms Resolution”; there
are two parts separated by a comma. In these cases, they will
be considered as two separate phrases, that is “A Chain A”
and “Structure Of Rice Ferricytochrome C At 2.0 Angstroms
Resolution”.

However, for those fragments extracted, some are mean-
ingful themselves and somedonot have any specificmeaning.
For example, in record 2, record 3, and record 4, there are
“unknown protein”, “hypothetical protein”, and “unnamed
protein” used in Section 5 for description. In these cases,
they are not collected into the phrase dictionary because they
lack specific reference. From the original annotation line of
FASTA file for each rice protein, 12037 phrases were chosen
on the basis of the above rules.

3.2.2. Phrases Evaluation and Sequences Retrieving. The term
frequency-inverse document frequency (TF ∗ IDF) is a
statistical measure for evaluating the importance or relevance
of a specificword to a document among a series of documents
or corpus.

For a given term 𝑡 and a specific document 𝑑 among a
series of document 𝐷, we denote 𝑡𝑓(𝑡, 𝑑) as term frequency
which means the occurrence of term 𝑡 in document 𝑑 and
denote 𝑖𝑑𝑓(𝑡, 𝐷) as inverse document frequency; that is,

𝑖𝑑𝑓 (𝑡, 𝐷) = log |𝐷|

|{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| + 1
. (1)

Here, 𝑖𝑑𝑓(𝑡, 𝐷) is a measure of the general importance
of the term 𝑡 in documents 𝐷. Meanwhile, the TF ∗ IDF is
defined as

TF ∗ IDF (𝑡, 𝑑, 𝐷) = 𝑡𝑓 (𝑡, 𝑑) × 𝑖𝑑𝑓 (𝑡, 𝐷) . (2)

The smaller value of TF ∗ IDF shows more relevance
between term 𝑡 and document 𝑑. Therefore, related protein
sequences can be retrieved according to vital phrases in
conjunction with TF ∗ IDF value, after ranking top vital
phrases among phrases in the built dictionary.

3.3. Gene Priority with Hybrid Strategy. We combine the text
mining strategy and sequence-based approach to propose a
hybrid algorithm for gene prioritization. See Algorithm 1.

Here, candidate proteins are chosen according to mean-
ingful annotation screening. Afterwards, the candidate
sequences are sent into a built-in classifier, and predictive
values will be obtained. This classifier is a sequence-based
predictor developed by Jingbo et al. [7] and is available for
public use. In this classifier, proteins with a positive value will
be regarded as possible Xoo-resistant rice gene.

Those proteins passing both tests in text-mining screen-
ing and the built-in classifier are chosen as the highly possi-
ble Xoo-resistant rice gene. Finally, standard bioinformatics
methods are applied onto those positive samples for further
evaluation.
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Step 1. Collect NCBI literature in the rice research field, denote the text database as 𝑑𝑗, here 𝑑1,2,...,10 = “rice”, “Event”,
“Binding”, “Catabolism”, “Expression”, “Localization”, “phosphorylation”, “regulation”, “transcript”, ”Xoo”;

Step 2. Build phrase dictionary, denote the terms as 𝑡𝑖.
Step 3. Evaluate the relevance between 𝑡𝑖 and 𝑑𝑗 by computing TF∗IDF(𝑡𝑖, 𝑑𝑗, 𝐷), here𝐷 is the total text data set.
Step 4. Rank important 𝑡𝑖.
Step 5. Retrieve protein in NCBI with annotation include 𝑡𝑖.
Step 6. Rank candidate protein by using the built-in classifier [17] which is sequence-based.
Step 7. Use Conserved Domain Data (CDD) and Gene Ontology (GO) to verify the result of prioritization.

Algorithm 1: Gene prioritization algorithm.

Thus, by combining both text mining candidate selec-
tion approach and sequence-based classifier, a novel hybrid
strategy is proposed for gene priority with a specific function
protein.

4. Results and Discussion

4.1. Experiments Results. As illustrated in Section 3, a phrase
dictionary is built based on the annotation file for the whole
rice protein sequence. The whole dictionary compromises
12037 terms, and 𝑡𝑖 (𝑖 = 1, 2, . . . , 12037) is the 𝑖th term,
𝑑𝑗 (𝑗 = 1, 2, . . . , 10) refers to “rice”, “rice event”, “bline”,
“catabolism”, “expression”, “localization”, “phosphory”, “regu-
lation”, “transcription”, and “Xanthomas oryzae versus oryzae”,
respectively, and 𝐷 = 𝑑1, 𝑑2, . . . , 𝑑10. So TF ∗ IDF (𝑡𝑖, 𝑑𝑗, 𝐷)
is counted. The sample results are listed in Table 2.

In order to screen the key phrases with the most general
importance, a voting strategy is used. For each 𝑡𝑖 (𝑖 =
1, 2, . . . , 12037) and 𝑑𝑗 (𝑗 = 1, 2, . . . , 10), TF ∗ IDF (𝑡𝑖, 𝑑𝑗,
𝐷) represents the relevance between 𝑡𝑖 and 𝑑𝑗, the smaller
the value, the higher the relevance, whereas zero means the
nonexistence of 𝑡𝑖 in 𝑑𝑗. For each fixed 𝑑𝑗, the value of TF
∗ IDF (𝑡𝑖, 𝑑𝑗, 𝐷) is sorted and the relevance of 𝑡𝑖 and 𝑑𝑗 is
ranked, numbered as Rank (𝑡𝑖, 𝑑𝑗, 𝐷). The voting strategy is
to choose 𝑡𝑖 which satisfies

# {𝑑𝑗,(𝑗=1,2,...,10) Rank (𝑡𝑖, 𝑑𝑗, 𝐷) < 100} > 5, (3)

where # means the order/scale of the set. By using this voting
strategy, only those 𝑡𝑖 which are in the top 100 among at least
6 out of 10 documents can be chosen as the key phrases.
Taking the construction rule of documents corpus into
consideration, the majority agreement of relevance ensures
the most general importance of chosen 𝑡𝑖.

After voting, thirty key phrases are chosen, which are
“CR4”, “thioesterase”, “WRKY2”, “exonuclease-1”, “fibrillarin”,
“kinase-like”, “WRKY10”, “WRKY30”, “AML1”, “arginase”,
“constans”, “decoy”, “glutaredoxin-like”, “glutathione-S-
transferase”, “H2A”, “Metalloendopeptidase”, “PDR20”,
“RISBZ5”, “SNF2P”, “YY2”, “CIA”, “CR9”, “EL3”, “MtN21”,
“NPKL1”, “prohibitin”, “Ramy1”, “UreD”, “UreF”, and “UreG”,
respectively. All of the key phrases with greatest importance
are listed in Table 3.

By tracing these key phrases in FASTA annotation, 423
rice proteins are retrieved, each of which includes at least
one key phrase in the annotation line. For simplicity and

clarity, the result of a small subset with 10 retrieved samples
is listed in Table 4. Here, the entries in the first column refer
to the NCBI numbers, the second column contains the key
phrases, and the third column contains the corresponding
gene annotations.

As an example, the GI code for the first sample sequence
is 15721862 and its annotation line in FASTA file is “>gi
15721862 dbj BAB68389.1 CR4 [Oryza sativa]”, which includes
the phrase “CR4”.

Through the text mining approach, 423 rice protein
sequences were chosen as the candidate genes which are
regarded as relevant and functionally active. Finally, we test
the Xoo-resistance for each candidate by using the built-in
CGR classifier, and 74 sequences passed the testing proce-
dure. Thus, they show possible positive effects on resistance
with the screening ratio of 17.49%. With these 74 proteins,
we obtain a candidate gene data set for resistant gene against
Xanthomonas oryzae pv. orzyae (Xoo) in rice. In the following
section, we aim to identify its positive resistance so as to
obtain useful material for rice breeding.

4.2. Validation Evaluation of the Candidate Gene Data Set
by Conserved Domain Data and Gene Ontology Matching
Results. To evaluate the performance of gene prioritization
method, the traditional method is map cloning which is
time consuming, as mentioned in Section 1. Therefore, some
popular bioinformatics validation methods are used. We use
Conserved Domain Data (CDD) [9] and Gene Ontology
(GO) [25] to observe information hidden in each gene
sequence of candidate gene data set by checking both in
conserved construction and function.

First, to observe the structure information of 74 screened
proteins, CDD matching results are shown in Table 6. Hits
in multidomain and super family in Table 6 clearly show
a consistent tendency for the proteins we obtained. Most
of the 74 proteins show a high consistency in CDD infor-
mation. For simplicity and clarity, the domain information
of the top 10 proteins is listed as below: the domain hits
consist of 6 categories, that is, PLN00113, PKclike super
family, LRRNT 2, PLN03150, PKc, and LRRRI, which are
closely relevant with leucine-rich repeat or protein kinase. As
mentioned in Section 1, most of Xoo-resistant genes encode
proteins containing conserved nucleotide binding site (NBS)
domain and/or leucine-rich repeat (LRR) domain or encode
LRR receptor kinase-like proteins. Taking this evidence into
account, five domains or super families (PLN03150 excluded)
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Table 2: Sample list of evaluation of vital phrase by TF∗IDF (𝑡𝑖, 𝑑𝑗, 𝐷).

𝑡𝑖 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8 𝑑9 𝑑10

WRKY14 0.79 0.79 0 0 0.79 0 0 0.79 0.79 0
RadA 3.02 2.41 2.41 0 2.41 2.41 0 2.41 0 0
UreD 0.6 0.6 0.6 0.6 0.6 0 0 0.6 0 0
CC-NBS-LRR 4.22 2.41 1.21 0 2.41 0 0 0.6 1.21 0
Urease 18.45 1.35 0.9 0.45 0.9 0 0 0.45 0.45 0
Hd6 7.85 3.02 0 0 3.02 0 0.6 3.02 0.6 0
Carboxypeptidase 15.85 8.56 0.32 0.95 6.02 0.95 0 5.07 0.63 0
EUI 2.2 1.8 0.2 0.2 1.6 0.2 0 1.6 0.6 0.2
H2A 1.9 1.59 0.32 0 0.95 0.32 0.32 0.32 0.95 0
Prolin 34.73 22.11 2.85 0.19 20.97 2.85 0.57 16.99 16.61 0.57
Polypeptide 36.82 18.6 5.69 0.19 14.14 2.85 1.14 8.92 7.78 0.66
Reductase 110.37 47.45 7.21 1.23 37.3 5.31 0.76 26.19 15.75 0.66
(𝑑1,2,...,10 = “rice”, “event”, “binding”, “catabolism”, “expression”, “localization”, “phosphorylation”, “regulation”, “transcript”, and “Xoo”.)

Table 3: Voting results of key phrases with greatest importance.

Term 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8 𝑑9 𝑑10 Vote
CR4 219 7 13 73 7 2 7 3 1 1 9
Thioesterase 106 6 1 63 6 1 6 14 20 8 9
WRKY2 88 62 4 65 74 9 130 91 96 21 9
Exonuclease-1 1 1 14 74 1 20 133 6 6 130 8
Fibrillarin 2 2 15 75 2 21 134 7 7 131 8
Kinase-like 204 149 2 64 76 16 40 16 2 79 8
WRKY10 3 3 16 76 3 247 267 10 9 43 8
WRKY30 4 4 17 77 4 248 268 11 10 44 8
AML1 95 16 42 98 15 254 274 31 29 148 7
Arginase 91 60 19 32 66 292 310 12 11 133 7
Constans 96 17 43 99 16 255 275 32 30 149 7
Decoy 206 5 18 78 5 22 135 8 8 132 7
Glutaredoxin-like 6 9 35 94 11 38 149 20 362 376 7
Glutathione-S-transferase 227 181 32 91 196 17 12 92 3 7 7
H2A 103 145 5 66 75 10 20 4 95 211 7
Metalloendopeptidase 54 15 41 97 14 39 150 21 363 377 7
PDR20 7 10 36 95 12 252 272 29 27 146 7
RISBZ5 40 58 84 138 69 76 175 81 86 203 7
SNF2P 8 11 37 96 13 253 273 30 28 147 7
YY2 41 59 85 139 70 77 176 82 87 204 7
CIA 297 168 33 92 166 4 8 156 22 10 6
CR9 224 61 86 140 71 78 177 83 88 205 6
EL3 71 117 20 79 68 294 47 126 14 136 6
MtN21 55 85 462 463 24 43 153 24 25 144 6
NPKL1 5 8 445 446 22 41 65 17 360 374 6
Prohibitin 202 148 6 67 26 260 92 151 5 20 6
Ramy1 58 88 48 104 99 315 332 37 33 152 6
UreD 9 12 38 38 8 249 269 26 365 379 6
UreF 10 13 39 39 9 250 270 27 366 380 6
UreG 11 14 40 40 10 251 271 28 367 381 6
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Table 4: The sample of retrieving protein sequences.

NCBI Term Annotation
15721862 CR4 >gi 15721862 dbj BAB68389.1 CR4 [Oryza sativa]
56201806 Thioesterase >gi 56201806 dbj BAD73256.1 putative acyl-(acyl carrier protein) thioesterase [Oryza sativa Japonica Group]
50843956 WRKY2 >gi 50843956 gb AAT84156.1 transcription factor WRKY24 [Oryza sativa Indica Group]
54111120 Exonuclease-1 >gi 54111120 dbj BAD60834.1 exonuclease-1 [Oryza sativa Japonica Group]
18071363 Brillarin >gi 18071363 gb AAL58222.1 AC09088225 putative brillarin [Oryza sativa Japonica Group]
1586408 Kinase-like >gi 1586408 prf 2203451 A receptor kinase-like protein
50843970 WRKY10 >gi 50843970 gb AAT84163.1 transcription factor WRKY100 [Oryza sativa Indica Group]
58042751 WRKY30 >gi 58042751 gb AAW63719.1 WRKY30 [Oryza sativa Japonica Group]
52076187 AML1 >gi 52076187 dbj BAD46727.1 putative AML1 [Oryza sativa Japonica Group]
30134457 Arginase >gi 301344557 gb ADK74000.1 arginase [Oryza sativa Indica Group]

Table 5: Multi Domain and Super family Data for Top 10 Sequence in CDD Hit.

Query Hit type Short name Description Evidence?
Q#1->gi|53793299 Multidom PLN00113 LRR Yes

Q#2->gi|2586087

Superfamily PKc like superfamily LRR and kinase Yes
Superfamily LRRNT 2 superfamily
Multidom PLN00113
Multidom PLN03150

Q#3->gi|343466349

Specific PKc LRR and kinase Yes
Superfamily PKc like superfamily
Superfamily LRRNT 2 superfamily
Superfamily LRR RI superfamily
Multidom PLN00113

Q#4->gi|343466347

Specific PKc LRR and kinase Yes
Superfamily PKc like superfamily
Superfamily LRRNT 2 superfamily
Superfamily LRR RI superfamily
Multidom PLN00113

Q#5->gi|63098460 Superfamily PKc like superfamily LRR and kinase Yes
Multidom PLN00113

Q#6->gi|63098462 Superfamily PKc like superfamily LRR and kinase Yes
Multidom PLN00113

Q#7->gi|63098474 Superfamily PKc like superfamily LRR and kinase Yes
Multidom PLN00113

Q#8->gi|63098472 Superfamily PKc like superfamily LRR and kinase Yes
Multidom PLN00113

Q#9->gi|63098486 Superfamily PKc like superfamily LRR and kinase Yes
Multidom PLN00113

Q#10->gi|63098454 Superfamily LRR and kinase Yes
Multidom PLN00113

can be regarded as indirect structural evidence for resist-
ance.

In terms of occurrence of LRR or kinase structure, all of
the 10 proteins in Table 5 show consistent evidence, which
shows that the genes in candidate gene data set demonstrate
a good possibility of being resistant to Xoo.

Second, the functional information of the screened pro-
teins is also considered by using the search engine of Gene
Ontology (GO) [25], which is a popular bioinformatics

ontology aiming at standardizing the representation of gene
and gene product attributes across species and databases
(http://www.geneontology.org/). GO is also a powerful anno-
tation tool providing a controlled vocabulary of functional
terms and describing gene product characteristics. The
annotation was performed with BLAST2GO [26, 27] which
is based on sequence similarity. For the annotation, the
configuration settings are as follows: BLASTP against NCBI
nonredundant (nr) protein database, 𝐸-value filter ≤10−3,
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Table 6: Sequence distribution for biological process in GO database.

Go term #Seq Score Parents Evidence?
Cellular response to stimulus 50 30 Res, Cep Yes
Regulation of biological process 50 18 Bir, Bip
Response to stress 44 44 Res Yes
Multicellular organismal development 41 72.4 Muo, Dep
Response to biotic stimulus 40 40 Res Yes
Primary metabolic process 38 21.4 Mep
Response to external stimulus 37 37.8 Res Yes
Anatomical structure development 37 31.2 Dep
Cell death 34 34 Death, Cep
Response to abiotic stimulus 33 33 Res Yes
Establishment of localization 33 19.8 Loc, Bip
Catabolic process 30 30 Mep
Reproductive process 30 6.48 Bip, Rep
Response to endogenous stimulus 10 10 Res Yes
Macromolecule metabolic process 10 3.6 Mep
Cellular metabolic process 10 3..42 Mep, Cep
Cell cycle 5 5 Cep
Regulation of biological quality 4 0.88 Bir
Biosynthetic process 3 3 Mep
Cell communication 3 3 Cep
Nitrogen compound metabolic process 3 1.08 Mep
Cellular homeostasis 1 1 Hop, Cep

HSP length cutoff of 33, maximum 20 BLAST hits per
sequence to sequence description tool, and annotation cutoff
of 55.The sequence distribution results for biological process
in GO are listed in Table 6.

As can be seen from Table 6, 50 out of 74 gene sequences
are connected with GO terms related to cellular response to
stimulus, and the hitting ratio is 67.57%. As cellular response
to stimulus is a clear clue for resistant gene, the recall ratio
is considerable. Observing entries in the first column of
Table 6, which reflect gene function information, there are
other five entries relevant to gene resistance, that is, “response
to stress”, “response to biotic stimulus”, “response to external
stimulus”, “response to abiotic stimulus”, and “response to
endogenous stimulus”. Among them, 44 genes are hit for
response to stress, 40 for response to biotic stimulus, 37
for response to external stimulus, 33 for response to abiotic
stimulus, and 10 for response to endogenous stimulus. These
results strongly support the hypothesis that proteins ranked
in top list show evidence of resistance response. Since the final
validation should be verified by the traditional laboratory
experiment, the intensively selected candidate data set holds
great potentials worthy of empirical testing and verification.

5. Conclusion

In this research, a hybrid strategy of gene prioritization is
proposed, and reasonable results have been obtained. The
flowchart of this strategy is shown in Figure 1. The protein

 Second sieved
candidate gene

  First sieved
candidate gene

Retrieving sequence
     from NCBI

Built-in classifier 
    (i.e., CGR)

   Collect Medline 
from NCBI/PubMed

Evaluate phrase/term via TF∗IDF

Rank vital phrase/term via voting

Construct phrase/term dictionary

Figure 1: Flowchart of the Hybrid Strategy.

sequences and literature texts are both automatically collected
from NCBI database, and our scheme consists of two sieves,
the text-mining sieve and the classifier sieve. The first sieve is
to screen candidate gene according to the important phrase
evaluation through TF ∗ IDF and voting scheme. After this
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step, only those protein sequences with vital annotation are
retained in the candidate set. Furthermore, the second sieve
is a built-in classifier based on chaos games representation,
and sequences predicted to be positive in this step show
sufficient sequence similarity with 13 known Xoo-resistant
proteins. The two sieves represent two popularly used but
totally different methods for gene prioritization. After both
sieving steps, the remaining sequence corresponds to those
highly possible candidate genes. Thus a hybrid strategy for
gene prioritization is proposed.

The effectiveness of this hybrid strategy stems from the
successful combination of both a sequence-based classifier
and text-mining based candidate screening. Generally, for
a mere sequence-based predictor, the fraction of retrieved
genes relevant to resistance is small, which leads to a low
precision value and a high false positive rate. Meanwhile, for
a mere text-mining based candidate screening method, the
fraction of retrieved genes relevant to resistance is also low,
which means a low recall rate. By balancing the high false
positive rate and low recall rate, the hybrid strategy proposed
in our work achieves a considerably accurate gene screening.
The validation test of the candidate dataset shows that our
proposed strategy is a significant attempt in large-scale gene
prioritization.

The success of the hybrid strategy also benefits from the
abundant information about the targeted gene. On the one
hand, the disease resistant gene is quite a popular research
model and there has been an increasingly large number of
text and sequence resources about R gene. On the other
hand, the disease gene resistance possesses many bio-specific
properties which make it clear and convenient to locate
resistance through texts by using key phrasematching during
text mining.

More significantly, the strategy proposed in this paper is
domain free, which means that it shows good potentials for
use in other cases for different functional gene prediction.
Currently, besides disease resistant gene, like Xoo resistant
gene,more andmore resistant genes are being investigated for
better functional annotation or gene discovery, including cold
resistant, drought resistant, and herbicide resistant genes.
Therefore, the proposed hybrid methods are expected to
be highly successful in achieving enhanced gene prioritiza-
tion.
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Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of
biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing
technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and
high-performance computing on large-scale data.Thiswork briefly introduces the data intensive computing systemand summarizes
existing cloud-based resources in bioinformatics.These developments and applicationswould facilitate biomedical research tomake
the vast amount of diversification data meaningful and usable.

1. Introduction

In more and more cases, the ability to gain experimental data
has far surpassed the capability in doing further analyses.
DNA sequencing presents a particularly good example of
this trend. By current next-generation sequencing (NGS)
technologies, an individual laboratory can generate terabase-
scales of DNA and RNA sequencing data within a day at a
reasonable cost [1–3]. However, the computing technologies
required to maintain, process, and integrate the massive
datasets are beyond the reach of small laboratories and
introduce serious challenges even for larger institutes. Success
at all fields will heavily rely on the ability to explain these
large-scale and great diversification datasets, which drives us
to adopt advances in computing methods.

The coming age of sharp data growth and increasing data
diversification is a major challenge for biomedical research
in the postgenome era. Cloud computing is an alternative
to crack the nut because it gives concurrent consideration
to enable storage and massive computing on large-scale data
[4–6]. More than this cloud platform can considerably save
costs in server hardware, administration, and maintenance
by the virtualization technology, which allows systems to

act like real computers with flexible specification of the
number of processors, memory, and disk size, operating
system, and so on. With flexible cloud architectures that can
harness petabyte scales of data, Internet-based companies,
such as Google and Amazon, offer on-demand services to
tens of thousands of users simultaneously. In addition, cloud
storages allow large-scale and potentially shared datasets to
be stored on the same infrastructure where further analyses
can be run [7]. A good example is the data from the 1000
Genomes Project, which has grown to 200 terabytes of
genomic data including DNA sequenced from more than
1,700 individuals, and it is now available on the Amazon
cloud [8]. Developing translational biomedical applications
with cloud technologies will enable significant breakthroughs
in the diagnosis, prognosis, and high-quality healthcare.This
study introduces the data-intensive computing system and
summarizes existing cloud-based resources in bioinformat-
ics. These developments and applications would facilitate
biomedical research tomake themassive datasetsmeaningful
and usable.

This paper is organized as follows. Section 2 introduces
the state of the art in the cloud developments of trans-
lational biomedical science. Subsequently, we review the
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framework and platforms formassive computing in the cloud
in Section 3. Finally, Section 4 draws our conclusion.

2. Translational Biomedical Science in
the Cloud

Over the last decades, biomedical informatics has contributed
a vast amount of data. In the genomic side, the data deluge
comes from genotyping, gene expression, NGS data, and so
on. The sequence read archive (SRA) provides the scientific
community with an archival destination for raw sequence
data, whose volume has reached 1.6 petabytes in 2013 [9].
A key goal of 1000 Genomes Project is to investigate the
genetic contribution to human disease by characterizing the
geographic and functional spectrum of genetic variation on
a great deal of sequencing data [10]. More genome-wide
association studies (GWAS) continue to identify common
genetic factors that influence health or cause disease [11–13].
On the other hand, the diagnosis side constantly generates
data from pharmacy prescription data, electronic medical
and insurance records, healthcare information, and so forth.
Electronic health record (EHR) is a digital data for the tradi-
tional document-based patient chart and has been essential
to manage the wealth of existing clinical information. US
health care data alone reached 150 exabytes (=109 gigabytes)
in 2011, while at this rate its volume would be zettabyte
(=1012 gigabytes) scale soon [14]. In many respects, the
two sides of biomedical data growth have yet to converge;
however, the biomedical infrastructure for big data analysis
lags behind the applications. The healthcare system has no
capacity yet to distill the implicit meaning of the planet-
size data for timely medical decision making. Despite the
strong challenge of big data, there are considerable works in
the bioinformatics community to develop feasible solutions.
In what follows, existing cloud-based resources and GPU
computing are summarized to the two types of biomedical
data.

2.1. Genomic-Driven Data. Today new technologies in
genomics/proteomics generate biomedical data with an
explosive rate. With data volume getting larger more quickly
than traditional storage and computation can afford, it is the
time for biomedical studies to migrate these challenges to the
cloud. Cloud computing offers new computational paradigms
to not only deal with data and analyses at scale but also reduce
the building and operation costs. By cloud technologies,
numerous works have reported successful applications in
bioinformatics (Table 1). These recent developments and
applications would facilitate biomedical studies to harness
the planet-size data.

Cloud-based tools in Table 1 combine distributed com-
puting and large-scale storage to come with an effective solu-
tion in terms of data transfer, storage, computation, and anal-
ysis of big biomedical data. By deploying applications with
these tools, small laboratories couldmaintain and process the
large-scale datasets within affordable costs, which is increas-
ingly thorny even for large institutes. For example, BioVLab
infrastructure [28, 36] built on the cloud is developed for

genome analysis by utilizing the virtual collaborative lab, a
suite of tools that allow scientists to orchestrate a sequence
of data analysis tasks using remote computing resources
and data storage facilities on demand from local devices.
Furthermore, the Crossbow [21] genotyping program applies
the MapReduce workflow on Hadoop to launch many copies
of the short-read aligner Bowtie [20] in parallel. Once the
aligned reads are generated, Hadoop automatically starts
the MapReduce workflow of consensus calling to sort and
aggregate the alignments. In the benchmark set on the
Amazon EC2 cloud, Crossbow genotyped a human sample
comprising 2.7 billion reads in less than 3 hours using a 320-
CPU cluster for a total cost of $85 [21].

2.2. Diagnosis-Driven Data. More and more requirements
to the healthcare quality raise difficulties in processing both
the heavy and heterogeneous biomedical data. For example,
the high-resolution and dynamic data of medicinal images
imply that the data transfer and image analysis are extremely
time-consuming. Several works leverage the cloud approach
to tackle the difficulties. MapReduce, the parallel computing
framework in cloud, has been used to develop an ultrafast
and scalable image reconstructionmethod for 4D cone-beam
CT [37]. A solution to power the cloud infrastructure for
digital imaging communication in medicine (DICOM) is
introduced as a robust cloud-based service [38]. Whereas
cloud-based medical image exchange is increasingly preva-
lent in medicine, its security and privacy issues to the data
storage and communication need to be improved [39, 40].

An alternative to attack compute-intensive problems
relies on the graphics processing unit (GPU), where there are
two dominantAPIs forGPUcomputing: CUDAandOpenCL
[41]. GPU architectures feature several multiprocessors with
each number of stream processors. The kernel is a function
on GPU, while it splits works into blocks and threads. Blocks
are assigned to run on multiprocessors, each of which is
composed of a user-defined number of threads. The number
of threads in a block can be different to the number of
stream processors inside a multiprocessor because they run
in groups of constant threads called warps. Stream processors
are similar to CPU cores, but they share a single fetch-decode
unit within the same multiprocessor, which forces threads
to execute in lockstep. The mechanism likes the traditional
single instructionmultiple data (SIMD) instruction; however,
any thread can diverge from the common execution path so
as to increase the flexibility. Two review papers present the
works on GPU accelerated medical image processing and
cover algorithms that are specific to individual modalities
[42, 43]. Intel quite recently unveiled its new Xeon Phi
coprocessor as their many integrated core (MIC) product,
while the China Tianhe-2 with the coprocessor inside was
announced by TOP500 as the world’s fastest supercomputer
in 2013 [44]. The new coprocessor has a dramatic impact on
the high-performance computing field and will drive more
bioinformatics applications [45].

As to the clinical informatics, a major challenge is to inte-
grate a wide range of heterogeneous data into a single and
space-saving database for further queries and analyses. EHR
could be an ideal solution because it is the patient-centered
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Table 1: Cloud-based bioinformatics tools.

Program Description URL Reference
Sequence alignment

Cloud-Coffee Multiple sequence alignment http://www.tcoffee.org/ [15]

USM MapReduce solution to sequence
comparison http://usm.github.io/ [16]

Sequence mapping and assembly
CloudBurst Reference-based read mapping http://cloudburst-bio.sourceforge.net/ [17]
CloudAligner Short read mapping http://cloudaligner.sourceforge.net/ [18]

SEAL Short read mapping and duplicate
removal http://biodoop-seal.sourceforge.net/ [19]

Crossbow Combine sequence aligner Bowtie and
the SNP caller SOAPsnp [20] http://bowtie-bio.sourceforge.net/crossbow/ [21]

Contrail De novo assembly http://contrail-bio.sourceforge.net/ [22]
Eoulsan Sequencing data analysis http://transcriptome.ens.fr/eoulsan/ [23]

Quake Quality-aware detection and
correction of sequencing errors http://www.cbcb.umd.edu/software/quake/ [24]

Gene expression

Myrna Differential expression analysis for
RNA-seq http://bowtie-bio.sourceforge.net/myrna/ [25]

FX RNA-seq analysis tool http://fx.gmi.ac.kr/ [26]

ArrayExpressHTS RNA-seq process and quality
assessment http://www.ebi.ac.uk/services [27]

Comprehensive application

BioVLab A virtual collaborative lab for
biomedical applications https://sites.google.com/site/biovlab/ [28]

Hadoop-BAM Directly manipulate NGS data http://sourceforge.net/projects/hadoop-bam/ [29]

SeqWare A scalable NoSQL database for NGS
data http://seqware.sourceforge.net [30]

PeakRanger Peak caller for ChIP-seq data http://ranger.sourceforge.net/ [31]

YunBe Gene set analysis for biomarker
identification http://tinyurl.com/yunbedownload/ [32]

GATK Genome analysis toolkit http://www.broadinstitute.org/gatk/ [33]

Cloud BioLinux A virtual machine with over 135
bioinformatics packages http://cloudbiolinux.org/ [34]

CloVR A virtual machine for automated
sequence analysis http://clovr.org/ [35]

record by integrating and managing personal medical infor-
mation from various sources. EHRs are built to share infor-
mation with other healthcare providers and organizations,
while the cloud technologies can facilitate EHR integration
and sharing. Developing EHR services on the cloud can not
only reduce the building and operation costs but also support
the interoperability and flexibility [46]. There are a great
number of works that contributed different cloud-supported
frameworks to improve EHR services. For instance, an e-
health cloud system is defined to be capable of adapting itself
to different diseases and growing numbers of patients, that
is, improving the scalability [47]. Khansa et al. proposed an
intelligent cloud-based EHR system and claimed that it has
the potential to reduce medical errors and improve patients’
quality of life [48]. A recent work introduces the state of
cloud computing in healthcare [49]. Moreover, there are a
number of security issues/concerns associated with cloud

computing, which is one of the major obstacles for the com-
mercial considerations. As the emerging cloud technology
to the healthcare system, more recent studies investigate the
security and privacy issues [50–53].

3. Massive Computing in the Cloud

Cloud computing started with the promise of inexhaustible
resources so that the data-intensive computing can be eas-
ily deployed. The three service models of cloud comput-
ing, that is, Infrastructure-as-a-Service (IaaS), Platform-as-
a-Service (PaaS), and Software-as-a-Service (SaaS), drive
more complex and sophisticated markets. What makes cloud
computing different from traditional IT technologies are
mainly service delivery and consumer utilization models.
Cloud platform is rapidly growing as a new paradigm for
provisioning both storage and computing as a utility [54].
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Based on the platforms, the IT capability is raised so that
services can be easily deployed in a pay-as-you-go model.
Subsequently, lots of resources could be acquired with a
relatively low cost to test novel ideas or conduct extensive
simulations. One could access more computing resources in
lab to carry out his innovation based on a self-service and
self-managed environment. Also, the feature of scalability for
cloud platforms allows a lab-scale tool to be extended to
a cloud application or a data-intensive scalable computing
(DISC) system with fewer efforts [55, 56].

3.1. MapReduce Framework. One cannot mention DISC
without mentioning MapReduce, while even many works
regard MapReduce as the de facto standard for DISC [55,
57]. In 2004, Google announced a distributed computing
framework,MapReduce, as the key technology for processing
large datasets on a cluster made by upwards of one thousand
commodity machines [58].TheMapReduce framework facil-
itates the management and development of massively parallel
computing applications. A MapReduce program consists of
two user-specified functions: map and reduce. The map
function processes a <key, value> pair to generate a set of
intermediate pairs, whereas the reduce function merges all
intermediate results associated with the same key. In the
beginning, the programming framework is used to assist
Google in speedy searches, and nowadays more than 10,000
distant programs have been conducted at Google for the
large-scale data analysis [57]. Once applications are modeled
to the MapReduce manner, they all enjoy the scalability
and fault-tolerance inherent in its execution platform sup-
ported by Google File System (GFS), whereas the successful
implementation of the MapReduce model, the open-source
platform Hadoop, along with the MapReduce framework,
has been extensively used outside of Google by academia
and industry [59]. Moreover, Ekanayake et al. compared
the performances of Hadoop MapReduce, Microsoft Dryad-
LINQ, and MPI implementation on two bioinformatics
applications and suggested that the flexibility of MapReduce
will become the preferred approach [60]. Recently, more and
moreMapReduce applications are proposed for bioinformat-
ics studies [16–18, 33, 37, 61].

3.2. Cloud Platform. PaaS provides a substantial boost with
the manageable cost, and there have been a number of
solutions, such asGoogleAppEngine (GAE), AmazonElastic
Compute Cloud (EC2), and Windows Azure. GAE offers a
robust and extensible runtime environment for developing
and hosting web-based applications in Google-managed
infrastructure, rather than providing direct access to a cus-
tomized virtual machine. Malawski et al. investigated how
to use GAE service for free of charge execution of compute-
intensive problems [62], while Prodan et al. compared GAE
and Amazon EC2 in performance and resource consumption
by four basic algorithms [63]. EC2 is a cloud service whereby
one can rent virtual machines from Amazon data center
and deploy scalable applications on them. Several works are
conducted to evaluate EC2 performance [64]. Wall et al.
concluded that the effort to transform existing comparative
genomics algorithms from local infrastructures to cloud is

not trivial, but the cloud environment is an economical
alternative in the speed and flexibility considerations [65].
Further, two works explore the biomedical cloud built on
Amazon service with several case studies [66, 67].

Windows Azure platform provides a series of services for
developing and deploying Windows-based applications on
the cloud, and it makes use of Microsoft infrastructure to
host services and scale them seamlessly [68–70]. Moreover,
Aneka provides a flexible model for developing distributed
applications, which can be integrated with external cloud
platforms further. Aneka presents the possibility to avoid
vendor lockin through a virtual infrastructure, a private
datacentre, or a server, so that one could freely scale to cloud
platforms when required. Its deadline-driven provisioning
mechanism also supports QoS-aware execution of scientific
applications in hybrid clouds [71]. It is handy to leverage
famous PaaS platforms for compute-intensive applications;
however, commercial cloud services charge for CPU time,
storage space, bandwidth usage, and advanced functions.
Apart from the service charge, the commercial cloudplatform
is still difficult for data-intensive applications. The critical
factor is that current network infrastructure is too slow
to enable terabytes of data to be routinely transferred. A
feasible solution for transferring planet-size data is to copy
the data into a big storage drive and then send the drive to
the destination. In addition, the private cloud solution helps
developers to construct cloud platforms for local use [72].

4. Conclusions

Recent technologies on next-generation sequencing and
high-throughput experiments cause an exponential growth
of biomedical data, and subsequently serious challenges
arise in processing data volume and complexity. Numerous
works have reported successful bioinformatics applications
to harness the big data. Developing cloud-based biomedical
applications can integrate the vast amount of diversification
data in one place and analyze them on a continuous basis.
This wouldmake a significant breakthrough to launch a high-
quality healthcare. This work briefly introduces the data-
intensive computing systems and summarizes existing cloud-
based resources in bioinformatics. These developments and
applications would facilitate biomedical applications to make
the planet-size data meaningful and usable.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Science
Council under contract number NSC-102-2218-E-035-004.

References

[1] F. Luciani, R. A. Bull, and A. R. Lioyd, “Next generation deep
sequencing and vaccine design: today and tomorrow,” Trends in
Biotechnology, vol. 30, no. 9, pp. 443–452, 2012.



BioMed Research International 5

[2] L. Liu, Y. Li, S. Li et al., “Comparison of next-generation
sequencing systems,” Journal of Biomedicine and Biotechnology,
vol. 2012, Article ID 251364, 11 pages, 2012.

[3] L. D. Stein, “The case for cloud computing in genome informat-
ics,” Genome Biology, vol. 11, no. 5, article 207, 2010.

[4] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.
Nolan, “Computational solutions to large-scale data manage-
ment and analysis,” Nature Reviews Genetics, vol. 11, no. 9, pp.
647–657, 2010.

[5] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and
P. Reynolds, “Cloud computing: a new business paradigm
for biomedical information sharing,” Journal of Biomedical
Informatics, vol. 43, no. 2, pp. 342–353, 2010.

[6] J. Chen, F. Qian,W. Yan, and B. Shen, “Translational biomedical
informatics in the cloud: present and future,” BioMed Research
International, vol. 2013, Article ID 658925, 8 pages, 2013.

[7] S. Sakr, A. Liu, D.M. Batista, andM. Alomari, “A survey of large
scale data management approaches in cloud environments,”
IEEECommunications Surveys&Tutorials, vol. 13, no. 3, pp. 311–
336, 2011.

[8] 1000 Genomes Project and AWS, http://aws.amazon.com/
1000genomes/.

[9] M. Shumway, G. Cochrane, and H. Sugawara, “Archiving next
generation sequencing data,” Nucleic Acids Research, vol. 38,
supplement 1, pp. D870–D871, 2009.

[10] 1000 Genomes Project Consortium, “An integrated map of
genetic variation from 1, 092 human genomes,”Nature, vol. 491,
pp. 56–65, 2012.

[11] E. Evangelou and J. P. A. Ioannidis, “Meta-analysis methods for
genome-wide association studies and beyond,” Nature Reviews
Genetics, vol. 14, pp. 379–389, 2013.

[12] S. J. Chapman and A. V. S. Hill, “Human genetic susceptibility
to infectious disease,”Nature Reviews Genetics, vol. 13, no. 3, pp.
175–188, 2012.

[13] G. Gibson, “Rare and common variants: twenty arguments,”
Nature Reviews Genetics, vol. 13, no. 2, pp. 135–145, 2012.

[14] W. Hoover, Transforming Health Care Through Big Data, Insti-
tute for Health Technology Transformation, 2013.

[15] P. di Tommaso, M. Orobitg, F. Guirado, F. Cores, T. Espinosa,
and C. Notredame, “Cloud-Coffee: implementation of a parallel
consistency-basedmultiple alignment algorithm in the T-coffee
package and its benchmarking on the Amazon Elastic-Cloud,”
Bioinformatics, vol. 26, no. 15, pp. 1903–1904, 2010.

[16] J. S. Almeida, A. Gruneberg, W. Maass, and S. Vinga, “Fractal
MapReduce decomposition of sequence alignment,”Algorithms
for Molecular Biology, vol. 7, article 12, 2012.

[17] M. C. Schatz, “CloudBurst: highly sensitive read mapping with
MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[18] T. Nguyen,W. Shi, andD. Ruden, “CloudAligner: a fast and full-
featured MapReduce based tool for sequence mapping,” BMC
Research Notes, vol. 4, article 171, 2011.

[19] L. Pireddu, S. Leo, and G. Zanetti, “Seal: a distributed short read
mapping and duplicate removal tool,”Bioinformatics, vol. 27, no.
15, pp. 2159–2160, 2011.

[20] R. Li, Y. Li, X. Fang et al., “SNP detection for massively parallel
whole-genome resequencing,” Genome Research, vol. 19, no. 6,
pp. 1124–1132, 2009.

[21] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with cloud computing,” Genome Biology,
vol. 10, no. 11, article R134, 2009.

[22] M. C. Schatz, A. L. Delcher, and S. L. Salzberg, “Assembly of
large genomes using second-generation sequencing,” Genome
Research, vol. 20, no. 9, pp. 1165–1173, 2010.

[23] L. Jourdren, M. Bernard, M.-A. Dillies, and S. L. Crom,
“Eoulsan: a cloud computing-based framework facilitating high
throughput sequencing analyses,” Bioinformatics, vol. 28, no. 11,
pp. 1542–1543, 2012.

[24] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: quality-
aware detection and correction of sequencing errors,” Genome
Biology, vol. 11, no. 11, article R116, 2010.

[25] B. Langmead, K. D. Hansen, and J. T. Leek, “Cloud-scale
RNA-sequencing differential expression analysis with Myrna,”
Genome Biology, vol. 11, article R83, 2010.

[26] D.Hong, A. Rhie, S.-S. Park et al., “FX: an RNA-seq analysis tool
on the cloud,” Bioinformatics, vol. 28, no. 5, pp. 721–723, 2012.

[27] A. Goncalves, A. Tikhonov, A. Brazma, and M. Kapushesky, “A
pipeline for RNA-seq data processing and quality assessment,”
Bioinformatics, vol. 27, no. 6, pp. 867–869, 2011.

[28] H. Lee, Y. Yang, H. Chae et al., “BioVLAB-MMIA: a cloud
environment for microRNA and mRNA integrated analysis
(MMIA) on Amazon EC2,” IEEE Transactions on Nanobio-
science, vol. 11, no. 3, pp. 266–272, 2012.

[29] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä, E.
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Human and other primate genomes consist of many segmental duplications (SDs) due to fixation of copy number variations
(CNVs). Structure of these duplications within the human genome has been shown to be a complexmosaic composed of juxtaposed
subunits (called duplicons). These duplicons are difficult to be uncovered from the mosaic repeat structure. In addition, the
distribution and evolution of duplicons amongprimates are still poorly investigated. In this paper, we develop a statistical framework
for discovering duplicons via integration of a Hidden Markov Model (HMM) and a permutation test. Our comparative analysis
indicates that the mosaic structure of duplicons is common in CNV/SD regions of both human and chimpanzee genomes, and
a subset of core dupliconsis shared by the majority of CNVs/SDs. Phylogenetic analyses using duplicons suggested that most
CNVs/SDs share common duplication ancestry. Many human/chimpanzee duplicons flank both ends of CNVs, which may be
hotspots of nonallelic homologous recombination.

1. Introduction

Human genome and other primate genomes consist of many
repetitive sequences.Many of these are hotspots for nonallelic
homologous recombination (NAHR) [1] or genomic rear-
rangements. Current estimates suggest that approximately
4%–6% of our human genome is composed of segmental
duplication (SD) [1–3]. SD is a DNA segment ≥1 kb in
size that occurs greater than once within the genome and
typically shares ≥90% sequence identity [1, 4]. Genomic
regions of SDs have been shown to be hotspots of copy
number variations (CNVs), which is a DNA segment 1 kb or
larger in size and presents different number of copies in the
population. A number of SDs and CNVs have been known to
highly associate with several complex diseases such as HIV-
1 infection, glomerulonephritis, Parkinson, and Alzheimer
diseases [5–8].

The completion of several sequencing projects pro-
vided abundant resources for mapping SDs in mammalian
genomes. SDs are usually identified by self-comparison of

the entire genome or by coverage analysis of overcollapsed
shotgun sequences [2, 9]. For example, a genome-wide
map of chimpanzee SDs was built by self-comparison of
chimpanzee assembly and alignment of shotgun sequences
to the human genome [10]. Through comparison of clone-
ordered assemblies of human andmouse, She et al. [11] found
that the amount ofmouse SDs is comparable to that of human
SDs. Recently, with the advent of array comparative genomic
hybridization (aCGH), numerous CNVs have been discov-
ered in several mammalian populations [12–14]. For example,
Redon et al. [15] identified a total of 1,447 CNVs from 270
individuals across four populations, covering 360 megabases
of the human genome. Perry et al. [16, 17] characterized a
map of CNVs in chimpanzees and found that human and
chimpanzee CNVs occur in orthologous regions far more
than expected.

A number of statistical and combinatorial methods have
been developed to identify SDs/CNVson the basis of compar-
ative genomics, microarray, or high-throughput sequencing
platforms. For instance, comparative approaches aim to
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Figure 1: Ancestral duplicons are first aggregated into one seeding
block that subsequently produces secondary duplication blocks.

uncover genomic sequences with high similarity fromwhole-
genome sequence alignment [3, 10, 11]. Computational meth-
ods on top of microarray platforms often identify genomic
regions with high density of unusual intensity signals [18,
19]. On the other hand, algorithms for high-throughput
sequencing platforms search for genomic segments with
ultrahigh/low read depth or aberrantmapping distances [20].

Even thoughmanyduplications have been discovered and
studied in the last decade, the underlyingmechanism leading
to these large duplications is still notwell understood. To date,
NAHR and retrotransposition are twomechanisms known to
supportmany duplication events. NAHR, also termed ectopic
recombination or unequal crossover, is a recombination error
during meiosis in which the exchanged chromosomes were
misaligned, leading to gain or loss of DNA segments [1, 21,
22]. The misalignment of NAHR has been suspected due
to repetitive elements widespread in the genome. On the
other hand, the activation of retrotransposons, retrovirus,
and endogenous retrovirus (ERV) may also mediate retro-
transposition of a few genes via reversely transcribing RNAs
into DNAs and inserting them back to the genome [23].

In recent years, a few studies started to investigate the
sequence composition within large duplications and found
that the structure is a complex mosaic composed of smaller
subunits called duplicons (with a minimum length of
100 bp) [2, 24, 25]. A two-step model has been established
to explain this mosaic structure [26, 27] (see Figure 1). In
this model, ancestral duplicons are first transposed and
aggregated into one seeding block, which subsequently pro-
duces secondary duplication blocks. Duplicons within this
complexmosaic cannot be readily uncovered by conventional
multiple sequence alignment approaches.Thus, Pevzner et al.
[28] developed an A-Bruijn graph algorithm for identifying
duplicons from this mosaic structure. The A-Bruijn graph
algorithm was then revised to discover 4,692 ancestral dupli-
cons using human SDs and outgroup mammalian genomes
[24]. Subsequently, Jiang et al. [9] compiled a library of
known duplicon sequences and used this library to efficiently
annotate SDs in a new genome.

The discovery of duplicons was based on comparing
sequences of known SDs. In reality, due to the difficulty of
assembling shotgun sequences in duplicated regions, large
(>15 kb) and highly identical (>95%) SDs are often collapsed
[11]. Furthermore, because these shotgun sequences are
collected from only a few individuals in the population, SDs
of unsampled individuals would be missed in the assembled
genome [17]. Thus, a substantial amount of duplicons can
be lost. In fact, CNVs have been viewed as a drifting and

polymorphic form of SDs, and both are probably mediated
by similar mechanisms [29]. A few studies have reported
that only ∼24% of CNVs are overlapped with SDs [15, 22],
implying that CNVs may serve as alternative repository of
duplicons. Recently, analysis of a fosmid clone indicated that
a large segment of CNV is deleted owing to NAHRmediated
by flanking duplicons [9]. However, the distribution of
dupliconswithinCNVs and theirmosaic structures in human
and other primates remains poorly investigated.

In this paper, we develop a Hidden Markov Model
(HMM) for efficiently annotating duplicons within CNVs
and assess the statistical significance of each duplicon. Our
results indicate that the mosaic structure composed of dupli-
cons is common in CNVs and SDs of both human and chim-
panzee. Although our duplicons are annotated from a subset
of CNVs, other CNV regions are found to have significantly
higher density of these duplicons. Phylogenetic analyses
suggest that many CNVs/SDs share common duplicons and
ancestry, and these CNVs/SDs are usually centered around a
few core duplicons shared by majority of duplications with
common ancestry. In addition, a number of duplicons are
found to flank both ends of human and chimpanzee CNVs,
creating hotspots of nonallelic homologous recombination.
Compared with previous functional analysis on CNVs, these
duplicons are also enriched for regulation of immune process
and response to stimulus but underrepresented in cell adhe-
sion.

2. Method

2.1. Data Preprocess and Problem Formulation. We down-
loaded a total of 50,339 human SDs from the Univer-
sity of California Santa Cruz genome browser (http://www
.genome.ucsc.edu) [2]. 1,447 human CNVs screened by a
tiling array and an SNP genotyping array are obtained from
Redon et al. [15]. We used Megablast [30, 31] to align all
SDs against each CNV (The parameters of Megablast are
set as follows: −e 0.0001, −F F, −W 34, and −M 1000000).
We found that megablast is able to complete the alignment
task under this setting within one week, whereas the regular
blastn is unable to finish within a reasonable period of time.
Although the speed can be theoretically improved by using
word size larger than 34 bp, we did not observe significant
differences when further enlarging the word size. According
to the alignment result, we construct an “alignment matrix”
for each CNV (Figure 2). Denote 𝑛𝑘 as the length of the 𝑘th
CNV sequence and 𝑚 as the number of SDs which can be
aligned to the 𝑘th CNV. Let 𝐴𝑘 = (𝑎𝑖𝑗) be a binary 𝑚 × 𝑛𝑘

matrix. Each element in the matrix 𝐴𝑘 is defined as 𝑎𝑖𝑗 = 1 if
the 𝑖th SD is aligned to the 𝑗th position of the 𝑘th CNV and
𝑎𝑖𝑗 = 0 otherwise, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛𝑘. Note
that gaps and mismatches are excluded in 𝐴𝑘. Theoretically,
real duplicons tend to produce segments of consecutive “1s”
with higher frequency and longer length in the matrix. On
the other hand, segments of 1s due to random or occasional
alignments are less frequent and relatively shorter. In the
following, we describe an HMM for identifying duplicon
regions with sufficient frequency and length.



BioMed Research International 3

SD4

SD3

SD2

SD1

SD4

SD3

SD2

SD1

CNV1

Potential duplicons Noise

Alignment result Alignment matrix

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 00 0 0 0 0

0 0
0 0 0 0

1 1 1
1 1 1
1 1 1
1 1

1

1
1

1

1
1

1

1
1

1

1
1

1

1 1 1
11
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Figure 3: An example of state transition probability of our HMM. We take the second and third columns as an instance and highlight the
transition probability for𝐷1 state. Note that 𝜔 = 1/6 and 𝛾 = 2/5. The expected Viterbi path in this instance is𝐷1, 𝐷1, 𝐷2, 𝐷2, 𝑁.

2.2. Hidden Markov Model. The HMM is specified by five
sets of parameters, 𝜆 = (𝑆, 𝑂, 𝜋, 𝑇, 𝐸), where 𝑆 is the set of
states, 𝑂 is the set of observation, 𝜋 is the initial state, 𝑇 is
the set of state transition probabilities, and 𝐸 is the set of
emission probabilities.We define 𝑆 = (𝐷1, 𝐷2, 𝑁) as our state
alphabet set, where𝐷1 and𝐷2 represent two duplicon states,
and𝑁 is the nonduplicon state.We use two duplicon states in
order for distinguishing adjacent duplicons. OurHMMstarts
at the initial state 𝜋 with equal transition probability to one
duplicon state and the nonduplicon state.

In our HMM, the state transition probabilities 𝑇 are
designed to approximate the length of known duplicons and
reflect the transition likelihood implied by 0/1 patterns of two
adjacent columns in the matrix. First, the average length of
known duplicons 𝐿 is computed from the duplicon library
[9]. The probability of transition from one duplicon state to
itself (e.g.,𝐷1 to𝐷1) is set to 𝑝 = 1 − 1/𝐿, which corresponds
to a geometric distribution with mean 𝐿. In addition, we also
compute the frequencies of three 0/1 patterns (𝑓1,1, 𝑓0,1, and
𝑓1,0) in two adjacent columns. For example (see Figure 3),
𝑓1,1, 𝑓0,1, and 𝑓1,0 in the first two columns of the matrix are 3,
0, and 1, respectively. Intuitively, 𝑓1,1, 𝑓0,1, and 𝑓1,0 imply the
likelihood of transition to the same duplicon state, the other
duplicon state, or nonduplicon state, respectively.

Let 𝜔 = 𝑓1,1/(𝑓1,1 + 𝑓0,1 + 𝑓1,0) and 𝛾 = 𝑓0,1/(𝑓0,1 +

𝑓1,0). For each duplicon state, we define three state transition
probabilities: (1) transition to the same duplicon state with
probability 𝑝𝜔; (2) transition to the other duplicon state with
probability (1−𝑝𝜔)𝛾; (3) transition to nonduplicon state with
probability (1 − 𝑝𝜔)(1 − 𝛾). The transition probability for the

nonduplicon state is set to be equally likely. Figure 3 illustrates
an example of our state transition probabilities.

Theoretically, the columns of a real duplicon should have
higher frequency of 1s than those of nonduplicon columns.
Thus, we define observation 𝑂 = (𝑜1, 𝑜2, . . . , 𝑜𝑛

𝑘

) as the
number of 1s in each of the 𝑛𝑘 columns, respectively. The
emission probability 𝐸 of the 𝑖th duplicon state is designed
to reflect the probability of observing 𝑜𝑖 1s, assuming that this
position is a real duplicon. First, we estimate the probability
of observing a duplicon in one SD from the known duplicon
library [9]. That is, 𝑃𝑜 = 𝐶/𝑀, where 𝐶 is the average copy
number of one duplicon and 𝑀 is the number of total SDs
in the duplicon library. Let 𝑘 be the number of 1s in the
column and 𝑛 the number of SDs in the alignmentmatrix.The
emission probability on the duplicon state is defined as 𝑃𝑑 =
∑
𝑘

𝑖=0
(
𝑛

𝑖
)𝑃
𝑖

𝑜
(1−𝑃𝑜)

𝑛−𝑖, corresponding to a cumulative binomial
distribution. And the emission probability on nonduplicon
state is defined as 1 − 𝑃𝑑.

The maximum probability path in the HMM starting
from 𝜋 and ending at state 𝑆𝑜

𝑛
𝑘

[𝑥] is given by

𝑃 (𝑉 | 𝐴𝑘, 𝜆) = 𝑃 (𝑆 [𝑥] | 𝜋)

× 𝑃 (𝑆𝑜
1
[𝑥])

𝑛
𝑘

∏

𝑖=2

𝑃 (𝑆𝑜
𝑖
[𝑥] | 𝑆𝑜

𝑖−1
[𝑥])

× 𝑃 (𝑆𝑜
𝑖
[𝑥]) .

(1)

This maximum probability path is found by the Viterbi
algorithm [32], and all positions are assigned to one of the
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three states. We identify segments with at least 100 𝐷1 or 𝐷2
duplicon states as potential duplicons.

2.3. Permutation Test. The statistical significance of each
potential duplicon is assessed by a permutation test. We
define “copy number” of a duplicon as the average number
of SDs aligned to each position of the duplicon (Figure 4(a)).
The permutation test computes the probability of observing
the copy number of a potential duplicon from permutated
data. Real duplicons tend to have sufficient number of
copies, which are less likely to be observed by chance only.
In the permutation test, each segment of consecutive 1s
in the alignment matrix is randomly relocated to create
an artificial matrix (Figure 4(b)). 100 artificial matrices are
created separately for each alignmentmatrix.Then, duplicons
of each artificial matrix are identified by applying our HMM.
The maximum copy number among all duplicons in each
artificial matrix is recorded. For each potential duplicon of
the original matrix, the 𝑃 value is defined as the fraction of
artificial matrices for which maximum copy number is larger
than that of the potential duplicon.Only those dupliconswith
𝑃 value <0.01 are retained as our final solution.

For instance, suppose we have 30 copies of a potential
duplicon observed in alignment matrix 𝐴1. After permu-
tation test, there are ten maximum copy numbers (from
artificial simulations) greater than 30 (𝑃 value = 0.1 >
0.01). This potential duplicon would be eliminated due to
its nonsignificant 𝑃 value. On the contrary, if there is no
maximum copy number of artificial duplicons in 𝐴1 greater
than 30, the duplicon (𝑃 value = 0 < 0.01) is assessed as a
potential true duplicon.

2.4. Gene Ontology Analysis. We retrieve known genes
annotated by Ensembl (http://www.ensembl.org). Duplicons
overlapped with these known genes are included in our

analysis. In order to investigate the functional bias of
these duplicons, we identified over- and underrepresented
functions defined by gene ontology (GO) term analysis
(http://www.geneontology.org). For each GO subcategory
(level 2 and level 3) of biological process, cellular component,
and molecular function, we compute the numbers of all
genes and all duplicons that fall into each subcategory. The
statistical significance of over- or underrepresentation in any
GO subcategory is computed by chi-square test. 𝑃 values are
corrected using Bonferroni correction for multiple testing.
The subcategories with 𝑃 < 0.05 are investigated in our
analysis.

2.5. Hierarchical Clustering and Phylogenetic Analysis of
Duplicons. A binary “phylogenetic profile” was constructed
based on the extent of shared duplicons for each duplication
segment composed of ten ormore duplicons.The duplication
segment is defined as the chimpanzee SDs and CNVs (chim-
panzee specific, human specific, and human/chimpanzee
shared) in which the segments are aligned by our dupli-
cons with sequence identities ≥95% and length ≥100 bp.
If a duplicon is present within a duplication segment,
we assigned “1” for that duplicon in duplication segment,
otherwise assigned “0,” generating a binary phylogenetic
profile for each duplication segment. If there is no shared
duplicon among two duplication segments, these two seg-
ments are considered to have no related evolutionary his-
tory. A duplication group is a cluster of duplication seg-
ments grouped based on the amount of shared duplicons.
Complex duplication segments were then clustered into
several duplication groups by hierarchical clustering on
the basis of the similarity of their phylogenetic profiles.
ClustalW is used to generate phylogenetic clusters of these
profiles (http://www.ebi.ac.uk/Tools/clustalw2/index.html).
Each clade in the phylogenetic tree stands for a duplication
group in our analysis.
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Figure 5: (a) The distribution of lengths of our duplicons. (b) The distribution of copy numbers of our duplicons.

3. Results and Discussion

3.1. Novel Duplicons Annotated by Our Pipeline. The bina-
ry and source code of the entire pipeline have been encap-
sulated via bash script and are available at http://www
.cs.ccu.edu.tw/∼ythuang/Tool/HMMDupFinder/. We down-
loaded a total of 50,339 human SDs from the Universi-
ty of California Santa Cruz genome browser (http://www
.genome.ucsc.edu) [2]. 1,447 human CNVs screened by a
tiling array and an SNP genotyping array are obtained from
Redon et al. [15]. We used Megablast [30, 31] to align all SDs
against each CNV and created 1,447 alignment matrices (see
Section 2). We design and implement a HMM and run the
HMM on alignment matrices for annotating duplicons. A
total of 102,405 initial duplicons were found by the HMM.
After filteration by a permutation test (𝑃 < 0.01) and
removal of identical duplicons, 56,377 unique duplicons were
retained. These duplicons are spread among 1,095 CNVs.
On average, each CNV contains approximately 54 unique
duplicons. There are 963 CNVs (88%) having two or more
identical duplicons within the genomic region, and 2,994
duplicons appear twice or more in the same CNV. ∼71% of
our duplicons are novel compared with known duplicons
in [9]. Table 1 lists numbers of duplicons on each chro-
mosome. Figure 5 illustrates the distribution of length and
copy number of all duplicons. The average length of our
duplicons is 425 bp, which is shorter than that of duplicons
annotated by A-Bruijn graph method (∼4,651 bp) [9, 24].
This is because A-Bruijn graph methods chain duplicons
in proximity or across repeats, whereas our HMM will
distinguish adjacent duplicons (see Method). On the other
hand, the average copy number of our duplicons is 644,
which is much larger than that of previous study (∼6 copies)
[24]. This is not unexpected since our method assessed the
statistical significance of each duplicon by a permutation test
on the copy number. Therefore, duplicons without sufficient
copy number are discarded. Nevertheless, even with a more

stringent criterion, we still identified many duplicons with
long length (>10,000 bp) and with high frequency of copies
(>2,000 copies).

3.2. Mosaic Structure is Common in Human and Chim-
panzee. Our duplicons were annotated by CNVs and SDs
in human. The distribution of these duplicons within CNVs
and SDs in other primates is still unclear. Therefore, we
downloaded chimpanzee and human SDs identified by self-
comparison of the chimpanzee assembly and alignment of
shotgun sequences [10]. These SDs were classified into three
categories: 219 chimpanzee specific SDs (i.e., chimpanzee SDs
that do not overlap with any human SDs), 618 human specific
SDs (i.e., human SDs that donot overlapwith any chimpanzee
SDs), and 658 human/chimpanzee shared SDs.Our duplicons
were BLAST aligned to SDs. Table 2 lists the number (and
percentage) for each type of SDs containing our duplicons.
The results indicated that our duplicons also appeared in
majority of chimpanzee specific SDs (which are not included
in our annotation process). In fact, over 98% of SDs in all
three categories contained our duplicons. Furthermore, each
SD includes an average of 24∼43 duplicons, regardless of
chimpanzee specific or human specific SDs. Consequently,
these results suggest that the mosaic structure composed
of duplicons is not only limited to human SDs but is also
common in chimpanzee SDs.

Similarly, we compare the distribution of duplicons
within CNVs between human and chimpanzee. 353 and 438
CNVs in the genomes of 30 humans and 30 chimpanzees
were obtained fromPerry et al. [17], respectively.These CNVs
were also classified into 288 chimpanzee specific CNVs, 207
human specific CNVs, and 296 human/chimpanzee shared
CNVs. As shown in Table 2, all of chimpanzee specific CNVs
also contain our duplicons, indicating that these duplicons
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Figure 6: (a) Chimpanzee specific SDs are clustered by running Neighbor-Joining algorithm on their phylogenetic profiles constructed by
duplicons. Four clades are revealed in this phylogenetic tree. (a) A cluster of chimpanzee specific SDs with shared duplicons. Different colors
denote distinct duplicons. A core duplicon shared by a majority of these SDs is highlighted by vertical dash lines.

are not limited to human CNVs. Overall, the majority
of CNVs in three categories includes our duplicons, and
each CNV contains approximately 16∼22 duplicons. This
phenomenon shows that duplicons are also common in
chimpanzee CNVs. Compared with the results on SDs, the
average numbers of duplicons on each CNV or SD are
also quite similar. Consequently, the mosaic structure of
juxtaposed dupliconsmay be commonwithin SDs and CNVs
in hominoid.

3.3. Phylogenetic Analysis and Identification of CoreDuplicons.
A number of studies suggested that secondary duplications

may have occurred recently among existing duplications,
and these recent duplications tend to share more dupli-
cons in common [24]. Thus, we reconstruct phylogenetic
history of these SDs and CNVs using a representation of
duplicons called phylogenetic profile [24]. A phylogenetic
profile is created for each SD and CNV based on the
presence or absence of each duplicon (see Method). For
each group of human specific, chimpanzee specific, and
human/chimpanzee shared SDs and CNVs from [17], a
phylogenetic tree is reconstructed by running the Neighbor-
Joining algorithm on their phylogenetic profiles constructed
by duplicons [33]. That is, the branch length reflects the
degree of SDs/CNVs having the same duplicons in common.
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Figure 7: (a) The human CNV is flanked by two identical duplicons at both ends; (b) the chimpanzee CNV is flanked by two identical
duplicons at both ends.

Figure 6(a) illustrates one phylogenetic tree reconstructed
via duplicon profiles for chimpanzee specific SDs, where
the other phylogenetic results can be found in Supple-
mentary Figures 1–6 (see Supplementary Material available
online at http://dx.doi.org/10.1155/2013/264532). Together,
these results suggested that many of these SDs and CNVs
share common ancestry of duplications, which are probably
owing to recurrent duplications from a few seeding duplica-
tion blocks.

A large fraction of recent duplications have been shown
to be centered around a small subset of “core duplicons” [24].
The structure of core duplicons with flanking duplicons is
speculated to drive the rapid expansion of SDs widespread
in hominoid genomes. The phylogenetic clustering of SDs or
CNVs with common ancestry can be further used for iden-
tifying these core duplicons, which are shared by majority
of SDs/CNVs in the same clade. A core duplicon is defined
as a duplicon shared by >67% of SDs/CNVs in the same
clade [24]. Figure 6(b) illustrates one core duplicon found
in a clade. A total of 639 core duplicons were found. In
summary, our analysis shows that many SDs and CNVs
in human and chimpanzee have a nonrandom clustering
structure of common duplicons and ancestry, and a number
of core duplicons with flanking dupliconsmay trigger further
duplications leading to novel SDs or CNVs.

3.4. Comparison of Duplicon Densities in CNVs and Non-
CNV Regions. Duplicons identified by our pipeline were
based on a subset of known CNVs in the human genome.
As novel CNVs were reported by new sequencing projects,
the power of our method can be estimated by observing
the density of our duplicons in other newly annotated
CNVs and non-CNV regions. Coordinates of 21,678 human
CNVs are obtained from the Database of Genomic Vari-
ants (http://projects.tcag.ca/variation). Overlapping CNVs
are merged and the 1,447 training CNVs used for annotating
our duplicons are excluded. Non-CNV regions are defined as
the genomic regions in between these known CNV regions.

Note that non-CNV regions may still contain some CNVs
not annotated. We first align all duplicons against the entire
human genome and compute the duplicon density in CNV
and non-CNV regions. Since core duplicons tend to be shared
by more CNVs than noncore duplicons, each duplicon is
assigned a weight reflecting its frequency in the training
CNVs.Theweighted density in one genomic region is defined
as the summation of total weights of duplicons aligned to this
region divided by the region length.

Table 3 lists average densities of all CNVs and non-CNV
regions separately for each chromosome. The average den-
sities in CNVs and non-CNV regions in the entire genome
are 4.307 and 1.767, respectively. The density is significantly
higher in CNV than non-CNV regions (𝑃 < 10−5; two-tailed
Welch’s 𝑡 test). Although our duplicons are annotated from a
subset of CNVs in the human genome, the results show that
these duplicons also pervasively appear in other known CNV
regions. And core duplicons are indeed more common in all
CNVs. In non-CNV regions, there could be some CNVs still
uncovered, because we still found a few genomic regions with
high density.

3.5. NAHR Mediated by Flanking Duplicons. A number of
studies have noted that genomic regions flanked by dupli-
cated sequences are susceptible to NAHR [1, 9, 15, 21, 22, 29].
These regions are often hotspots of genomic instability that
was prone to recurrent CNVs. A recent analysis of a fosmid
clone indicated that a CNV is flanked by a pair of duplicons
[9]. Figures 7(a) and 7(b) illustrate one human CNV and
one chimpanzee CNV with flanking duplicons annotated
by our pipeline. As a consequence, we are interested in the
distribution of duplicons that locate in flanking regions of
CNVs. A pair of duplicons is defined as flanking a CNV if
it appears within 25% regions from two ends of the CNV and
the similarity (and length) is >90%.

We first investigated 1,097 human CNVs with duplicons
annotated by our pipeline [15]. Among them, 1,035 (94%)
CNVs have two or more duplicons within their genomic
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Table 1: The total number of duplicons of each chromosome.

Chr. No. of dup. Chr. No. of dup. Chr. No. of dup. Chr. No. of dup.
1 6047 7 5329 13 216 19 2346
2 3607 8 2192 14 889 20 408
3 2142 9 4049 15 2621 21 143
4 1847 10 2039 16 5659 22 1430
5 2537 11 1873 17 3266 X 3078
6 1681 12 1989 18 599 Y 390

Table 2: The distribution of duplicons on human/chimpanzee SDs and CNVs. The number of hits stands for the number of SDs/CNVs
containing our duplicons.The percentage of hits is shown in brackets.The last column is the average number of duplicons and the percentage
of base pair in one SD or CNV.

Data set Total no. No. of hits (%) Average no.
Chimpanzee-specific SDs 219 219 (100%) 43
Human-specific SDs 618 603 (98%) 31
Human/chimp-shared SDs 658 654 (99%) 24
Chimpanzee-specific CNVs 288 288 (100%) 16
Human-specific CNVs 207 206 (99%) 23
Human/chimp-shared CNVs 296 252 (85%) 22

Table 3: The average densities of duplicons in CNV and non-CNV
regions on each chromosome.

Chr. CNV Non-CNV Chr. CNV Non-CNV
1 1.95 1.48 13 1.58 1.51
2 2.13 1.83 14 2.59 1.56
3 2.53 2.11 15 1.80 1.27
4 2.68 2.44 16 1.25 0.92
5 3.03 2.17 17 0.74 0.90
6 2.67 1.93 18 2.51 1.68
7 1.97 1.84 19 0.93 0.44
8 2.77 2.14 20 1.27 1.37
9 2.11 1.50 21 1.50 0.65
10 1.77 1.75 22 0.62 0.22
11 2.90 1.77 X 3.21 3.04
12 1.92 1.97 Y 2.77 0.89

region. 815 out of 1,097 human CNVs (74%) were found to
have paired duplicons flanking 25% of both ends. We also
analyzed 791 human and chimpanzee CNVs from Perry et al.
[17]. Our results indicated that 519 human/chimpanzeeCNVs
(66%) are also flanked by paired duplicons. Interestingly, each
of these CNVs contains averagely∼11 paired duplicons, which
could be hotspots of NAHR.This implies that further NAHR
occurred within these CNVs may create different breaking
points, leading to a complex duplication-within-duplication
structure.Thus, these genomic regionsmay be prone to recur-
rent CNVs. However, it should be noted that our analysis
is based on predefined CNV boundaries, which have been
shown to be overestimated [34].Thus, the requirement of 25%
from both ends may eliminate many paired duplicons within
real CNV boundaries. Nevertheless, our results provided
evidence that there are many paired duplicons within or

surrounding a CNV region. As a consequence, boundaries of
these complex CNVs may be hard to delineate, since NAHR
may reoccur in different breaking points.

3.6. Comparison with Duplicon Library. We compared se-
quences of our duplicons with those in the duplicon library
[9], which contains 10,291 duplicon sequences. Our duplicons
were BLAST aligned against each duplicon sequence in the
library (we considered the alignment results with sequence
identities ≥95% and length ≥100 bp). In total, 16,819 (30%)
of our duplicons were overlapped with 2,359 (23%) of the
duplicon library. It has been shown that ∼24% of CNVs are
overlapped with SDs [15]. Thus, the difference between our
duplicons and duplicon library is probably due to the fact
that our duplicons were annotated based on CNVs, whereas
duplicons in the library were identified solely based on SDs.
However, it should be noted that duplicons with insignificant
copy numbers were filtered by our permutation test.Thus, the
difference between our duplicons and the duplicon library is
not unexpected.

We further compare the distribution of duplicons on
chimpanzee specific SDs and CNVs from [17]. These chim-
panzee SDs and CNVs are not included in both studies
and thus can observe distribution of these duplicons on
nonhuman duplications. Table 4 summarizes the differences
between our duplicons and the duplication library. There are
1,048 duplicons in the duplication library overlapped with
chimp-specific SDs. Of these, 681 duplicons (65%) are also
overlapped with our duplicons. On the other hand, there
are 3,310 duplicons annotated by our HMM overlapped with
chimp-specific SDs. Of these, 2,554 (82%) are also overlapped
with duplicons in the library. In the analysis of CNVs, 1,510
duplicons in the library are located in chimp-specific CNVs.
Of these, 886 (59%) duplicons are also overlapped with our
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Table 4: Comparison of duplicons annotated by HMM and the duplication library. The numbers of (1) duplicons overlapped with each
other, (2) duplicons overlapped with chimp-specific SDs, and (3) duplicons overlapped with chimp-specific CNVs are listed for each set of
duplicons.

Our duplicons Duplib
Total No. of duplicons 56377 10291
No. of duplicons satisfying (1) 16819 2359
No. of duplicons satisfying (2) 3110 1048
No. of duplicons satisfying (1) and (2) 2554 681
Percentage 15% (2554/16819) 29% (681/2359)
Percentage 82% (2554/3110) 65% (681/1048)
No. of duplicons satisfying (3) 2645 1510
No. of duplicons satisfying (1) and (3) 2209 886
Percentage 13% (2209/16819) 38% (886/2359)
Percentage 84% (2209/2645) 59% (886/1510)

Table 5: GO analysis of biological process at levels 2 and 3. 𝑃 values are computed by chi-square test with Bonferroni correction.

GO term GO category P value Obs./exp.
Level 2

GO:0000003 Metabolic process 4.36 × 10
−9 0.75

GO:0001906 Multicellular organismal process 8.22 × 10
−8 1.36

GO:0002376 Biological adhesion 1.10 × 10
−6 0.28

GO:0008152 Cellular process 3.53 × 10
−6 1.16

GO:0009987 Developmental process 4.35 × 10
−6 1.33

GO:0010926 Positive regulation of biological process 4.70 × 10
−3 1.38

GO:0016032 Regulation of biological process 1.90 × 10
−2 0.86

GO:0022414 Locomotion 2.80 × 10
−2 0.44

Level 3
GO:0048856 Anatomical structure development 1.40 × 10

−13 1.71
GO:0051239 Regulation of multicellular organismal process 6.28 × 10

−13 2.33
GO:0043170 Macromolecule metabolic process 1.53 × 10

−9 0.65
GO:0009058 Biosynthetic process 2.64 × 10

−9 0.57
GO:0002682 Regulation of immune system process 1.10 × 10

−8 2.70
GO:0019222 Regulation of metabolic process 1.74 × 10

−8 0.53
GO:0007275 Multicellular organismal development 8.82 × 10

−8 1.53
GO:0048518 Positive regulation of biological process 5.32 × 10

−7 1.68
GO:0007154 Cell communication 4.69 × 10

−6 0.65
GO:0001816 Cytokine production 4.98 × 10

−6 2.89
GO:0051656 Establishment of organelle localization 6.84 × 10

−6 4.29
GO:0045321 Leukocyte activation 1.35 × 10

−5 2.44
GO:0032879 Regulation of localization 3.90 × 10

−5 2.14
GO:0044238 Primary metabolic process 1.62 × 10

−4 0.77
GO:0001775 Cell activation 1.92 × 10

−4 2.21
GO:0055114 Oxidation reduction 2.17 × 10

−4 0.15
GO:0048583 Regulation of response to stimulus 5.14 × 10

−4 2.24
GO:0051050 Positive regulation of transport 6.46 × 10

−4 2.84
GO:0007155 Cell adhesion 1.08 × 10

−3 0.34
GO:0032898 Neurotrophin production 6.88 × 10

−3 18.9
GO:0060033 Anatomical structure regression 1.81 × 10

−2 9.47
GO:0008283 Cell proliferation 2.39 × 10

−2 0.45
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Table 6: GO analysis of molecular function at levels 2 and 3. 𝑃 values are computed by chi-square test with Bonferroni correction.

GO term GO category P value Obs./exp.
Level 2

GO:0003824 Catalytic activity 1.53 × 10
−33 1.78

GO:0005488 Binding 1.41 × 10
−27 0.62

GO:0005215 Transporter activity 4.72 × 10
−14 2.08

GO:0030528 Transcription regulator activity 3.31 × 10
−5 0.37

GO:0015457 Auxiliary transport protein activity 4.18 × 10
−3 3.92

GO:0005198 Structural molecule activity 1.01 × 10
−2 0.40

Level 3
GO:0022857 Transmembrane transporter activity 7.32 × 10

−31 3.10
GO:0004133 Glycogen debranching enzyme activity 4.35 × 10

−30 71.2
GO:0016740 Transferase activity 4.10 × 10

−28 2.52
GO:0022892 Substrate-specific transporter activity 1.64 × 10

−25 2.83
GO:0043167 Ion binding 3.89 × 10

−24 0.12
GO:0003676 Nucleic acid binding 1.42 × 10

−14 0.23
GO:0000166 Nucleotide binding 6.41 × 10

−11 0.15
GO:0016491 Oxidoreductase activity 8.19 × 10

−9 2.31
GO:0005515 Protein binding 2.84 × 10

−6 0.67
GO:0016787 Hydrolase activity 3.77 × 10

−6 1.61
GO:0016787 Transcription factor activity 1.97 × 10

−5 0.07
GO:0016787 Channel regulator activity 9.61 × 10

−4 4.97
GO:0016787 Bacterial binding 9.69 × 10

−4 8.21
GO:0016787 Cell surface binding 3.80 × 10

−3 5.93
GO:0016787 Peptide binding 4.77 × 10

−2 1.90
GO:0016787 Signal transducer activity 9.11 × 10

−2 1.35

Table 7: GO analysis of cellular component at levels 2 and 3. 𝑃 values are computed by chi-square test with Bonferroni correction.

GO term GO category P value Obs./exp.
Level 2

GO:0032991 Macromolecular complex 4.14 × 10
−15 1.97

GO:0044422 Organelle part 8.08 × 10
−9 1.59

GO:0005576 Extracellular region 3.09 × 10
−5 0.35

Level 3
GO:0043234 Protein complex 3.42 × 10

−20 2.36
GO:0044422 Organelle part 2.22 × 10

−9 1.65
GO:0044446 Intracellular organelle part 5.95 × 10

−9 1.64
GO:0044463 Cell projection part 1.17 × 10

−8 5.17
GO:0042995 Cell projection 2.09 × 10

−5 2.48
GO:0016020 Membrane 8.17 × 10

−5 0.65
GO:0044425 Membrane part 8.70 × 10

−5 0.62
GO:0032311 Angiogenin-PRI complex 5.55 × 10

−4 21.5
GO:0043227 Membrane-bounded organelle 2.04 × 10

−3 0.71
GO:0032994 Protein-lipid complex 3.68 × 10

−3 7.18
GO:0034358 Plasma lipoprotein particle 3.68 × 10

−3 7.18

duplicons. Among our 2,645 duplicons locatedwithin chimp-
specific CNVs, 2,209 (84%) are overlapped with duplicons in
their library.

These results suggested that duplicons identified by both
approaches all appear partially in chimp-specific SDs and

CNVs. However, given the higher percentage of our dupli-
cons intersected with both chimp-specific SDs/CNVs and
duplicons in the library (82% and 84% versus 65% and 59%),
we concluded that duplicons found by our approach are
more conservative. This may be due to the requirement of
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sufficient copy number in our HMM and permutation test,
whereas duplicon copies in the library are not validated with
a statistical approach.

In terms of efficiency, it is worth mentioning that our
HMM is quite efficient compared with the A-Bruijn graph
algorithm, which requires 29 gigabytes of memory from 32
gigabyte computational cluster [24]. Our HMM can finish
the computation within hours on a standard workstation.
Consequently, novel duplicons can be efficiently annotated
when more CNVs and SDs in other primate genomes are
available.

3.7. Functional Implication of Duplicons. Our duplicons are
smaller subunits within human CNVs. The functional analy-
sis of these dupliconsmay provide new insight into functional
bias not found in previous CNV analysis. We examined
the functional bias of our duplicons in gene ontology (GO)
categories and compared results with previous analysis of
human CNVs. A total of 3,904 genes annotated by Ensembl
are overlapped with our duplicons. Tables 5, 6, and 7 list the
GO categories (at levels 2 and 3) with over- or underrepre-
sentation of our duplicons (𝑃 < 0.05; chi-square tests with
Bonferroni correction).

For functions related to biological process, we found
that eight function categories at level two were significantly
biased to our duplicons. At level three, 22 of the 184 GO
functions were over- or underrepresented with our duplicons
(Table 5). In general, regulation of multicellular organismal
process and of biological process is significantly enriched.
The highly enriched GO categories overlapped partially with
those identified in a previous analysis of CNVs [15], such
as regulation of immune system process and regulation of
response to stimulus. In contrast to previous analysis, cell
adhesion was found to be underrepresented in duplicons.
In addition, categories of neurophysiological processes and
sensory perception enriched for CNVs are not found to be
significantly enriched in duplicons. On the other hand, cell
proliferation, oxidation reduction, and metabolic process are
found to be significantly underrepresented among duplicons.
The impoverishment of these functions probably reflects that
purifying selection is against duplicons on dosage of these
genes.

In terms ofmolecular functions, six GO terms at level two
and 16GO terms at level three are over- or underrepresented
(Table 6). Specifically, duplicons are overrepresented in cat-
alytic activity, transporter activities, and auxiliary transport
protein activity. On the other hand, majority of binding
activities, including ion binding, nucleic acid binding, and
nucleotide binding are, underrepresented. These results sug-
gest that distinct levels of evolutionary constraint on dupli-
cons vary among functional categories.
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