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With the dramatic increase in the number of emerging Internet services, the Fog-Radio Access Network (F-RAN) has recently
emerged as a promising paradigm to enhance high-load task processing capabilities for mobile devices, such as the Internet of
things (IoT) and mobile terminals. Hence, it becomes a challenge for the F-RAN to reduce the ofoading cost by designing an
efective ofoading strategy and rational planning of limited network resources to improve the quality of experience (QoE). Tis
article investigates the F-RAN with a binary ofoad policy. It proposes an intelligent algorithm capable of optimally adapting to
task ofoad policy, fog computing resource allocation, and ofoad channel resource allocation. To evaluate the ofoading strategy
intuitively, we design a system utility metric defned as a delay-energy weighted sum.Te joint optimization problem is converted
into a convex problem based on this metric, i.e., a mixed integer nonlinear programming (MINLP) problem. A novel algorithm
based on improved double-deep Q neural networks is DDQN, which is proposed to address this problem. Furthermore, an action
space mapping method in the DDQN framework is presented to obtain ofoading decisions. Extensive experimental data indicate
that the proposed DDQN algorithm can efectively reduce the ofoading cost and is adaptable to diferent ofoading scenarios.

1. Introduction

Nowadays, with the rapid development of mobile com-
munication technologies represented by the ffth generation
(5G) and the wide application of artifcial intelligence, our
society has become increasingly intelligent, and the number
of resulting Internet of things (IoT) services [1] has increased
dramatically. However, several highly anticipated applica-
tions including virtual reality (VR), augmented reality (AR),
and the Internet of vehicles (IoV) necessitate extremely low
latency and energy consumption while being constrained by
cost and computational resources. Fog computing, also
known as the fog-radio access network (F-RAN) [2] and
mobile fog computing (MFC) [3], was established to satisfy
the needs of IoTservices, fully exploit the benefts of IoT, and
overcome the problem of limited computing resources of
user equipment (UE). Queuing delays caused by ofoading

tasks to remote cloud servers [4] through the core network
can be reduced by allowing UEs to ofoad tasks to nearby fog
access points (F-APs) for processing. Meanwhile, the ad-
dition of fog servers reduces the communications between
the base station and the core network signifcantly [5], thus
relieving the load of the backhaul network.

In practice, however, in practical applications, fog
servers’ computational and network resources are not un-
limited. Diferent resource allocation schemes signifcantly
impact users’ quality of experience (QoE) [6] of users.
Hence, it becomes a challenge in the F-RAN to design an
efective ofoading strategy with proper planning of limited
network resources. Several existing studies have proposed
ofoading methods to solve these problems. Goudarzi et al.
in [7] proposed a new technique for task layout based on the
memetic algorithm to maximize the number of tasks
computed in parallel on each server. In [8], the concept of
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distributed decision-making is proposed. Te algorithm is
distributed to each device, and the ofoading decision will be
generated directly by the local device, which dramatically
reduces the complexity of the network. However, as in-
formation is not shared among each device, it is obvious for
server congestion to occur. Lan et al. in [9] divided the
ofoading time into peak and of-peak time. Ten, diferent
ofoading algorithms are applied for each case to fnd the
ofoading decision of tasks.

1.1. Related Work. In the existing works, most of them
transform ofoading as a constrained convex optimization
(CCO) problem with diferent metrics and constraints
chosen, such as service delay, network capacity, backhaul
rate, and energy consumption [4]. Wang et al. in [10] jointly
optimize the computation of ofoading decisions, resource
allocation, and content caching policies and transform the
original problem into a convex optimization problem. Ten,
they ofered an alternating direction method of multipliers-
based to solve the convex problem. Ma et al. proposed
a genetic convex optimization algorithm (GCOA) in [11] to
satisfy the diverse quality of service requirements of diferent
users. In [12], Jiang et al. transformed the ofoading problem
into a nondeterministic polynomial solution (NDPS)
problem with the objective of minimizing the delay.

In [13, 14], the authors have provided a novel method to
solve the decision and resource allocation problems in the F-
RAN. Tey showed the ofoading decisions of tasks in bi-
nary variables. By deriving the total ofoading cost ex-
pression, the allocation problem can be converted into
a mixed integer programming (MIP) problem. In [15], the
resource optimization problem is formulated as a quadrat-
ically constrained quadratic programming (QCQP) prob-
lem. Ten, the optimal ofoading decision is obtained by
solving the QCQP problem. Tang et al. [16] innovatively
defned the ofoading optimization problem as a decen-
tralized partially observable Markov decision process (Dec-
POMDP). Each device gives the ofoading decision based on
its local observation of the environment. Meanwhile, to
reduce the computational complexity of the CCO problem,
the coordinate descent method [17] and the convex re-
laxation method [18] have been proposed.

On the other hand, game theory and its variants are also
adopted to solve ofoading problems [19–22]. In [20],
a distributed game method with group perception is studied
to ensure the maximum utilization of resources. Jie et al.
proposed a Stackelberg-based online task ofoading scheme
in [21]. Shuchen and Waqas [22] proposed a multiuser
partial computation ofoading strategy based on game
theory. Based on this, the authors in [22, 23] added in-
telligent gateways with migration functions to the network
to relieve server congestion. Te abovementioned methods,
nonetheless, are studied under the assumption that the
transfer probabilities of each state and the complete system
model can be obtained, while such assumptions are too ideal
in realistic scenarios.

Furthermore, in the F-RAN, a key research problem is
the joint design of computational resource allocation and

channel resource allocation [4, 24]. In [25], an iterative
algorithm is proposed to solve the problem of joint allo-
cation of computational and radio resources during of-
loading. In [26], a multistage stochastic planning approach
for ofoading tasks with high computational overhead is
investigated. Cao et al. [20] have studied the optimal and
suboptimal resource allocation problems in F-RANs based
on nonorthogonal multiple access techniques. In [27], the
main problem of joint computation and communication
resource allocation for a multiuser is that the multiserver
system is divided into subproblems, which are then solved
using matching and sequential convex programming algo-
rithms. In [28], Liu et al. considered a fog network with
energy harvesting, where each user gets energy from a hybrid
access point (HAP). Tey aim to maximize the minimum
energy balance among all users and jointly optimize the
ofoading time and fog resource allocation. Similarly, the
authors in [29] proposed an energy-efcient computational
ofoad-resource allocation (ECORA) scheme to optimize
computational resource allocation and transmission power
jointly. Gu et al. [30] combined the reputation mechanism
with ofoading. Te system will assign a reputation value to
each device. If a task is ofoaded, the algorithm will allocate
the computational resources to the device based on its
reputation value. Not coincidentally, in work [31], the idea of
pricing diferent resources was proposed. Gai et al. [32]
proposed an EFRO model to manage the resources in the F-
RAN.

In recent years, with the development of neural networks
[33], deep learning has been increasingly applied to of-
loading computation. For instance, the authors in [34]
proposed a joint ofoading decision and resource allocation
algorithm based on deep reinforcement learning (DRL). Te
computational ofoading strategy for the case of the F-RAN
with multiple UEs was studied in [35], and the total utility of
UEs was optimized by using the DQN algorithm. Based on
this, the authors in [35, 36] improved it by considering
a computational ofoading strategy for device-to-device
(D2D) communication between UEs in the F-RAN. Te
DDQN algorithm has been used in the literature [37] to
predict the ofoading actions of UEs in semionline distri-
bution tasks, while also calculating and updating the total
reward after each ofoading decision until it reaches its
maximum value. In [38], deep reinforcement learning for
online ofoading (DROO) was proposed to solve the
problem of generating decisions quickly in fast-fading
channel conditions. In [39], the deep Q networks were
used to predict each device with unknown channel state
information that obtains its most suitable ofoading pattern.
Similarly, the LSMT networks and the double-deep Q net-
works were combined in [40] to obtain the ofoading de-
cision of tasks. In [41], Baccarelli et al. applied a network of
CDDNs to mobile fog computing to generate ofoading
policies. However, most of the existing intelligent algorithms
are premised on the assumption that a task is an indivisible
whole. In real scenarios, parts of tasks can be split into
multiple independent subtasks, which cannot be ignored.
Other than that, the above intelligent algorithms allocate
resources equally, which is too idealistic in practice. Hence,
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a new intelligent algorithm is needed to tackle the problems
of ofoading policy and resource allocation in detachable
task ofoading.

1.2. Approach and Contributions. In this article, we propose
a novel ofoading framework in the F-RAN aiming at the
independence of detachable tasks with double-deep Q-
learning. In an F-RAN, there are multiple users, multiple
fog access points, a remote cloud server, an edge router, and
a core network layer. Users can ofoad their tasks to any
server, such as the fog server or the cloud server, to maintain
a high QoE while saving battery power.

Edge routers are arranged at the edges of the network,
which manage all-fog computation resources. By collecting
information about ofoading tasks, communication channel
status, and F-APs status, the edge router outputs ofoading
decisions for tasks and resource allocation decisions, which
contain upload channel resource allocation decisions and
fog computing resource allocation decisions, with the
DDQN algorithm. Meanwhile, the proposed DDQN algo-
rithm is being trained on the edge server. Te core network
layer consists of a large number of routes, which are mainly
responsible for data routing and forwarding.

Te main contributions of this article are as follows:

(1) A novel fog ofoading framework is proposed, where
both the ofoading decision and the resource allo-
cation policy of the task are determined by the edge
router. Te user uploads the task information to the
edge router through the F-AP. Ten, the router uses
the DDQN algorithm trained by the edge server to
give the ofoading decision and resource allocation
policy for each task based on the information.

(2) In the F-RAN, we model the system utility as
a weighted sum of delay and energy consumption to
compute all tasks. To minimize the system utility,
a joint ofoading decision and resource allocation
problem for the F-RAN is proposed. Te problem
jointly optimizes the ofoading decision, the fog
computation resources, and the upload bandwidth
allocated by the system to each task.

(3) A double-deep Q-learning-based ofoading algo-
rithm for the F-RAN and the DDQN algorithm is
proposed, which consists of a main network and
a target network. Te DDQN generates the action
space from the main network and uses the target
network to evaluate the action at the next moment,
improving the performance of the main network.
Besides, these generated ofoading decisions and
resource allocation policies are stored in a public
experience pool to further train and improve the
double-deep Q networks.

(4) Simulation results show that the proposed DDQN
algorithm has better convergence and lower average
cost than the benchmark. Meanwhile, it is highly
adaptive in multiuser and diferent focus scenarios.

Te rest of this article is as follows: the ofoading model
and the closed-form expressions for delay and energy are in
Section 2, as is the construction of a delay-energy weighted
sum minimization problem. Te DDQN algorithm is re-
ferred to in Section 3. Section 4 mainly provides the analysis
of the simulation. Moreover, the conclusions are given in the
last section.

2. System Model

In this article, we consider a Fog-Radio Access Network, as
shown in Figure 1, consisting of N user equipment (UE), K

fog access points (F-AP), a remote cloud server, an edge
router, and a core network layer. Te UE can be represented
by a set N � 1, 2, I, N{ }. Similarly, a set K � 1I..., K{ } is used
to denote the F-AP. Tese F-APs can provide computation
services for the device, but they do not have the decision-
making capability. Furthermore, the F-APs communicate
with local devices through wireless.

Assume that each UE has M unrelated tasks to compute,
denoted as M � 1, 2, . . . M{ }. At the beginning of time t,
a UE has only one detachable task request, noted as
Onm � (Dnm, Cnm), where Dnm denotes the size of the of-
loading data for UE n’s m-th task, i.e., the workload of the
task which needs to be transmitted from the device to the
server, and Cnm represents the number of revolutions re-
quired by the local device to process this task (expressed in
cycles).

2.1. Communication Model. It is assumed that the envi-
ronmental state of the F-RAN remains constant at the same
moment.Te wireless channel gain between the k-th AP and
the n-th UE at time t is denoted by hnk(t). Besides, the
channel gain follows the free-space path loss model. Ten,
the wireless channel gain at time t can be represented as
follows:

hnk(t) � Ad

3 × 108

4πfcdnk(t)
􏼠 􏼡

de

, (1)

where Ad denotes the antenna gain, fc is the carrier fre-
quency, and de is the path loss index. dnk(t) represents the
linear distance from the n-th UE to the k-th AP.

Without loss of generality, assume that all F-APs use the
same channel. Te total uplink channel bandwidth is noted
as B, which can be split into multiple mutually orthogonal
subchannels. Furthermore, there is no mutual interference
between these subchannels. According to Shannon’s for-
mula, the band utilization between the n-th UE and the k-th
F-AP can be represented as follows:

rnk(t) � log2 1 +
Pn · hnk(t)

σ2
􏼠 􏼡, (2)

where Pn is the transmit power of device n and σ2 denotes
the power of white Gaussian noise.

Further, bn(t) ∈ (0, 1) is used to represent the pro-
portion of channel resources allocated to the n-th UE at time
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t. Te transmission delay Tup/nm of uploading task is as
follows:

T
up
nm �

Dnm

rnk(t) bn(t) B
. (3)

Meanwhile, it is accompanied by the energy consump-
tion of the device during uploading. Let εup denote the
energy consumption to upload 1 KB of data.Te energy cost
of the local device when ofoading can be expressed as
follows:

E
up
nm � εup

Dnm. (4)

2.2. Transmission Time Allocation Model. Here, a model of
transmission time allocation for ofoading is considered, as
illustrated in Figure 2. If the computation task is generated,
the UE will frst send the data information Onm as well as the
distance dn(t) � dnk(t),∀k ∈ K􏼈 􏼉 between UE n and each
F-AP to the edge router via the nearest fog node. Te router
will use the trained DDQN algorithm to give the ofoading
decision and resource allocation policy for each task. Ad-
ditionally, the time cost of uploading the relevant in-
formation is represented as t1.

Once a detachable task Onm is ofoaded, the UE will frst
send the task to the F-AP with the optimal channel state,
forwarding it to the edge router. Te edge route computes
tasks by scheduling the computation resources of the fog
server. After the computation, the results are returned to the
device via the backhaul link. After the computation is
completed, the results are delivered by the backhaul link to
the device. Similarly, let t2 denote the transmission time of
tasks during ofoading, and t3 be the backhaul delay of the
result.

Generally speaking, the size of the uploading in-
formation and the backhaul data is much smaller than the

ofoading task [13, 38, 40], while the downlink transmission
rate is much faster than the uplink rate [40]; hence, the delay
of t1 and t3 can be ignored. Tus, the transmission delay
Ttr/nm for UE n’s m-th ofoading task can be approximated
by Ttr/nm ≈ t2.

2.3. Ofoading Computation Modes

2.3.1. Local Computing Mode. We use the binary variable
XL/nm ∈ 0, 1{ } to represent the decision of UE n’s m-th task
on the local side. XL/nm � 1 means the task will be executed
locally, while XL/nm � 0 means it will be ofoaded to the
server. Te computational capacity of device n is denoted by
λn. As there is no transmission cost for the task in local
mode, the delay TL/nm can be expressed as follows:

T
L
nm �

Cnm

λn

. (5)

Meanwhile, the tasks are computed locally with energy
consumption, defning the local energy consumption as
follows:

E
L
nm � εlocal

Cnm, (6)

where εlocal indicates the amount of energy consumed by the
CPU per cycle.

2.3.2. Fog Computing Mode. Using XF/nm ∈ 0, 1{ } to in-
dicate the decision of tasks at the fog side, if XF/nm � 1
(XF/nm � 0), the task will be computed in the fog server
(not in the fog).

Consider the detachable task, which can be divided into
multiple mutually independent subtasks, for the ofoading
decisions. Hence, multiple subtasks can be simultaneously
assigned to diferent F-APs for parallel computation, which
can fully utilize all-fog servers. Let the set f1, f2, . . . , fK􏼈 􏼉 be

Core
Router

Remote Cloud
Server

Edge Router

F-AP1 F-AP2 F-APk
F-APk

UE1

UEN-1

UE3

UEn

UEN

UE2

Wired
transmission

Cloud
Layer
Core

Network
Layer
Fog

Layer

Device
Layer

Wireless
transmission

UE: User
Equipment
F-AP: Fog

Access Point

Edge Server

Figure 1: Architecture of the Fog-Radio Access Network.
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the computation resources of KF-APs managed by the edge
router. Tus, the total computation resources F that are
scheduled by the edge router is as follows:

F � 􏽘
K

k�1
fK. (7)

Te distance from the F-AP to the edge router is close to
a high transmission rate, so the communication delay be-
tween both can be ignored. Accordingly, the time cost TF

nm in
the fog computing mode is as follows:

T
F
nm � T

up
nm +

Dnm

φn(t) F
, (8)

where φn(t) ∈ (0, 1) is the proportion of fog computation
resources allocated to the n-th UE by the edge router at
time t.

Concerning energy consumption, only the cost of the
local device side is concerned, while the server-side cost is
ignored. Tus, the energy consumption of tasks in fog
computing mode is as follows:

E
F
nm � E

up
nm. (9)

2.3.3. Cloud Computing Mode. Similarly, the variable
Xc/nm ∈ 0, 1{ } is adopted to represent the decision of tasks
in the cloud. When Xc/nm � 1, the task will be executed in
the cloud. If the task will be processed in other servers, then
Xc/nm � 0.

Without loss of generality, assume that the cloud server
has nearly unlimited computation resources and can process
multiple tasks in parallel. As the cloud server is located at the
top of the network, which is far away from the local side, the
delay of cloud computing is mainly afected by the propa-
gation delay. Te propagation delay Tfix is generally fxed
and can be expressed as a constant. Accordingly, the total
delay Tc/nm of the cloud mode is shown as follows:

T
C
nm � T

up
nm + T

fix
, (10)

and the energy consumption in this mode is as follows:

E
C
nm � E

up
nm. (11)

2.4. Problem Formulation. According to the above-
mentioned ofoading models, the expressions for the total

delay and energy consumption of ofoading can be con-
cluded, respectively, as follows:

T � 􏽘
N

n�1
􏽘

M

m�1
X

L
nmT

L
nm + X

F
nmT

F
nm + X

C
nmT

C
nm􏼐 􏼑,

E � 􏽘
N

n�1
􏽘

M

m�1
X

L
nmE

L
nm + X

F
nmE

F
nm + X

C
nmE

C
nm􏼐 􏼑.

(12)

To minimize the delay and energy consumption for all
UEs, we introduce a cost function Λ modifed as the
weighted sum of delay and energy as follows:

Λ(O, d,X, b,φ) � μT +(1 − μ)E, (13)

where O � Onm|n ∈ N, m ∈ M􏼈 􏼉, b � bn(t)|n ∈ N􏼈 􏼉,
d � dnk(t)|n ∈ N, k ∈ K􏼈 􏼉, φ � φn(t)|n ∈ N􏼈 􏼉 and
X � XL/nm, XF/nm, XC/nm|n ∈ N, m ∈ M{ }. μ ∈ [0, 1] is
weighting factor to represent the focus ratio of delay to
energy.

For each input O and d, we are interested in minimizing
the cost function to obtain the desired suboptimal decision
( X, b,φ􏼈 􏼉) as follows:

Λ∗(O, d) � minimize
X,b,φ
Λ(O, d,X, b,φ), (14a)

subject to X
L
nm + X

F
nm + X

C
nm � 1, (14b)

0≤ 􏽘
N

n�1
bn(t)≤ 1, (14c)

0≤ 􏽘
N

n�1
φn(t)≤ 1. (14d)

Equation (14b) restricts the task to be computed in only
one of the local, fog, or cloudmodes at time t. Equation (14c)
represents that the sum of the allocated upload channel
resources cannot be more than the total channel resources.
Equation (14d) means that the sum of allocated fog com-
putation resources cannot exceed the total in the F-RAN.

Specifcally, there are binary variables along with con-
tinuous variables of [0, 1] and nonlinear terms of multi-
plication of unknown variables in equation (14). Tus, the
minimization cost function problem can be attributed to the
mixed integer nonlinear programming (MINLP) problem,
which is a nonconvex problem with a difcult solution.

In the next section, we will transform this problem into
a tractable convex problem and propose a deep Q-learning-

UE UE UEEdge F-AP/Cloud Server

update ofoad

Tnm

t1 t20 t3 0

transmit

download

Figure 2: An example of transmission time allocation in the F-RAN for the m-th task of user n.
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based algorithm to solve it. Additionally, the meaning of
symbols in Section 2 is shown in Table 1.

3. Offloading Solution

In this section, to address the MINLP problem, a model-free
ofoading algorithm based on a double-deep Q network,
DDQN, is proposed that enables ofoading decision-making
and the allocation of resources in the F-RAN.

It is assumed that at the beginning of time t, the edge
router will collect the environmental information of N
devices to get the state st of the F-RAN, such as the following:

st � Dnm,Cnm,dn(t),Br
, Fr,Un

􏼈 􏼉, (15)

where Fr is the remained fog computation resources and Br

is the remained channel bandwidth in the F-RAN. Un de-
notes the number of unprocessed tasks for UE n.

After that, the DDQN algorithm will generate numerous
possible actions based on st. Once an action is implemented,
the algorithm will feed a reward based on the current state
and the taken action. According to equation (13), the reward
rt for time t is defned as follows:

rt � − [μT +(1 − μ)E]. (16)

3.1. Design of Mapping-Based Action Vector. In equation
(15), there are three constraint variables that determine the
loss function, namely, the ofoading decision X, the allo-
cated fog computation resource b, and the allocated uplink
channel resource φ, respectively. Hence, at time t, let the
edge router output the following decision:

(1) In the ofoading location of UE n’s m-th task,
wnm ∈ 1, 2, 3{ }. wnm � 1 represents the UE n’s m-th
task that will be processed locally. Moreover, wnm �

2 indicates that this task will be ofoaded to the fog
server, while wnm � 3 means it will be processed in
the cloud server.

(2) Te channel resources are assigned to UE n:
bn(t) ∈ 0, 0.2, 0.4, . . . , 4{ } × B/N. As Q-learning
does not apply to the continuous action space, the
resources cannot be allocated in a continuous per-
centage manner, e.g., the proportion of channel
resources and the fog computation resources allo-
cated. Hence, intending to improve the sample
quality and speed up the convergence, this article
proposes using the average allocation as the
benchmark. It indicates that the channel resources
allocated to a UE are distributed between 0 and
4 times the average channel resources at intervals
of 0.2.

(3) Te allocated fog computation resources for UE n:
φn(t) ∈ 0, 0.2, 0.4, . . . , 4{ } × F/N are given.

Furthermore, we refer to wnm, bn(t), and φn(t) as the
ofoading subactions, which are denoted as
at � wnm, bn(t),φn(t)􏼈 􏼉. at represents the decision action of
the UE at time t. Te action space A contains the set of all

decision actions that may be output. Since the number of
possible actions for output is {3, 21, 21}, we can calculate the
size of the total action space A to be 1323.

For the DDQN algorithm, we use the single-intelligence
approach to output actions. First, the edge router collects the
current state st. Ten, the DDQN algorithm outputs the
action with the maximum Q-value in the action space A.
Finally, the DDQN algorithm maps the output actions into
the corresponding ofoading subactions to get the execut-
able decision. Hence, we construct a one-to-one mapping
relationship with the iterative approach, as shown in
Algorithm 1.

3.2. DDQN Algorithm. Te structure of the proposed
DDQN algorithm is shown in Figure 3. It consists of two
networks, namely, the main neural network and the target
neural network. Te DDQN uses the main network to
generate the action space with the largest Q-value.Te target
network is for updating the main network and evaluating the
next action to confrm whether the generated action space is
the suboptimal solution or not.

3.2.1. Main Neural Network. As a frst step, we construct
a main neural network with policy π as the decision crite-
rion, whose network parameter is θ. Assume that if the
DDQN algorithm generates a decision action at at time t
with the policy π, noted as π: θt⟶ at, it will still adopt the
same policy to generate the decision action later. We note
the expected value of the rewardQπ , which is obtained by the
algorithm after completing a trajectory τ with policy π, as the
Q-value of the algorithm. Te Q-value is given as follows:

Qπ st, at; θt( 􏼁 � Eπ Gt|At � a, St � s􏼂 􏼃, (17)

where θt is the parameter of the main network at time t.
Once the Q-value is calculated, the main network will

record the Q-values corresponding to all selectable actions.
Ten, the main network selects the action space, which
corresponds to the maximumQ-value, as the current output
action.

at � argmin
a

Q(s, a; θ). (18)

However, if the action selection is only based on
equation (18), it will lead to the conclusion that in the it-
erative computation, the DDQN algorithm always follows
the same policy for decision-making. Tus, the output will
still be the same decision action. Te policy π cannot be
efciently updated by the main network as well.

To avoid only following the same strategy π while
outputting the same actions, we import an ε-greedy method
to extend the exploration of actions as follows:

at �
argmin

a
Q(s, a; θ), P � ε,

RandomAction, P � 1 − ε.

⎧⎪⎨

⎪⎩
(19)

where P represents the probability of adopting current ac-
tion selection methods. Equation (19) states the main
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network will select the action with the highest Q-value as at
with probability ε or random action with probability 1 − ε.

3.2.2. Target Neural Network. In the deep Q algorithm, if
only the main network evaluates the Q-value, it will result in
an overestimation after several iterations. Here, a target
neural network is additionally added, which has precisely the
same structure as the main network but with diferent

parameters. Te action space is generated by the main
network. Additionally, the target network is responsible for
making corrections to the main network while selecting the
least costly action for output.

Specifcally, if the main network determines a new de-
cision action at the t-th time, it will frst pass the action to the
target network. Ten, the target network will evaluate the Q-
value of that action according to a specifc prediction
function. Meanwhile, the Q-value will be substituted into the
loss function to determine whether the main network should
be updated or not. Te prediction function is shown as
follows:

yt � rt + cQ st+1, at; θt( 􏼁; θ−
t( 􏼁, (20)

where yt is the Q-value calculated by the target network
based on the current action, θ−

t is the parameter of the target
network. (at; θt) denotes the action of the main network,
which is selected according to the ε-greedy method in the
context of the parameter θt.

Separately, in this article, the mean squared deviation
function is used as the loss function to update the parameters
θt of the main network. Te loss function is as follows:

L θt( 􏼁 � E yt − Q st, at; θ
−
t( 􏼁( 􏼁

2
􏽨 􏽩, (21)

where Q(st, at; θ
−
t ) is the Q-value of the target network

output under the old parameter θ−
t .

After generating all possible action spaces, the target
network will select the action with the lowest cost Λ for
output. Furthermore, the action outputs by the target net-
work are recorded as the suboptimal decision a∗ /t in the
state at time t.

a
∗
t � argmin

a
Λ∗ O, d, at( 􏼁,∀at ∈ a. (22)

3.2.3. Network Improvement and Training. About updating
network parameters, this article uses the empirical replay
method. Te suboptimal decision obtained in equation (22)
will be for updating the ofoading policy of the main net-
work. Specifcally, after outputting each suboptimal decision
by the target network, the DDQN algorithmwill store a set of
samples, noting as DATA � st, at, rt, st+1􏼈 􏼉, into a fnite
storage space. Tis storage space is called the public expe-
rience pool, from which the main network randomly selects
DATA to update its parameters θ. Meanwhile, if the public
experience pool is full, the oldest DATAwill be replaced with
the new one.

As an example, suppose that in the DDQN algorithm
interacting with the environment, one trajectory τ is able to
generate 100 sets of transfer samples. Meanwhile, assuming
that the size of the public experience pool is 500, it will be
flled up after 5 complete trajectories. When the pool is flled,
the algorithm randomly draws a certain batch of DATA
from it and gives them to the network for learning. Trough
learning, the parameters of the main network are updated,
which results in improving its policy π. Besides, the updated
policy continues to interact with the environment and
generate new DATA. Accordingly, the DDQN replaces the

Table 1: Te meaning of symbols in Section 2.

Symbol Defnition
N Te number of UEs
M Te number of tasks generated for each UE
K Te number of F-APs
Onm Te data size of UE n’s m-th task
Dnm Te size of the ofoading data for UE n’s m-th task
Cnm Te size of the required computation for UE n’s m-th task

hnk(t)
Te wireless channel gain between the k-th F-AP and n-th UE

at time t

dnk(t) Te linear distance from the k-th F-AP to n-th UE at time t

rnk(t)
Te band utilization between the k-th F-AP and n-th UE at

time t

bn(t)
Te proportion of channel resources allocated to the n-th UE

at time t

Ad Te antenna gain
fc Te carrier frequency
de Te path loss index
Pn Te transmit power of device n

σ2 Power of the white Gaussian noise
εup Te energy consumption to upload 1 KB of data
εlocal Te amount of energy consumed by the CPU per cycle
t1 Te time cost of uploading the relevant information
t2 Te transmission time of tasks during ofoading
t3 Te backhaul delay of the result
Ttr/nm Te total transmission delay for UE n’s m-th task
Tup/nm Te transmission delay of UE n’s m-th uploading task
TL/nm Te time consumption of UE n’s m-th task in local side
TF/nm Te time consumption of UE n’s m-th task in fog side
TC/nm Te time consumption of UE n’s m-th task in cloud side
Eup/nm Te energy consumption of UE n’s m-th uploading task
EL/nm Te energy consumption of UE n’s m-th task in local side
EF/nm Te energy consumption of UE n’s m-th task in fog side
EC/nm Te energy consumption of UE n’s m-th task in cloud side

XL/nm

Ofoading decision of UE n’s m-th task in local side

XL/nm �
0 offloadi ng
1 local computing􏼨

XF/nm

Ofoading decision of UE n’s m-th task in fog side

XF/nm �
0 offloading
1 fog computing􏼨

XC/nm
Ofoading decision of UE n’s m-th task in cloud side

XC/nm �
0 offloadi ng
1 cloud comupting􏼨

λn Te computational capacity of UE n

F Te computation resources managed by the edge router
B Te total upload channel resources
fK Te computation resources of the K-th F-AP

φn(t)
Te proportion of fog computation resources allocated to the

n-th UE at time t

Tfix Te propagation delay to the cloud server
Λ(·) Te weighted sum cost function
T Te time consumption of computing all tasks
E Te energy consumption of computing all tasks
μ Te focus ratio of delay to energy
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oldest DATA with the new DATA and repeats this step over
and over again.

In the next section, the performance and accuracy of the
proposed DDQN algorithm are evaluated based on nu-
merous simulations. Furthermore, the pseudocode of the
DDQN is shown in Algorithm 2.

4. Simulation and Evaluation

In the simulation, we construe a F-RAN with 30 UEs and
5 F-APs, where each UE has 100 unrelated and detachable
tasks to compute. Te range of values for uploading data
Dnm is [150KB, 1024KB], and the amount of computation
needed to process locally Cnm is in [100MHz, 500MHz].
Moreover, all-local devices are assumed to have the same
processing power of 1GHz. Besides, the distance dnk(t) from
a UE to a F-AP is evenly distributed within [20m, 200m].
Other parameters are set in Table 2.

We adopt the deep Q network model of a fully connected
network with 4 hidden layers, where each layer contains 80
neurons. Te hidden layer uses Relu as the activation
function.Te learning rate is 0.001, and the size of the public
experience pool is 512. During each training, the algorithm
will randomly pick up 32 DATAs. Besides, we consider 500

episodes, i.e., Emax � 500, where each episode has 1000
DATAs, i.e., tmax � 1000.

4.1. Convergence and Performance Evaluation. Te conver-
gence of the DDQN algorithm was evaluated under diferent
algorithm settings. Te simulation results are shown in Fig-
ure 4. In the subplots, the x-axis represents each episode, and
the y-axis shows the average cost of ofoading for each episode.

Te convergence performance of the DDQN algorithm
under diferent public experience pool sizes is shown in
Figure 4(b), where the size of the pool is noted as memory.
Lacking sufcient DATAs, the converged cost of the algo-
rithm is pretty high with small memory (e.g., 256). As the
memory gradually increases (from 512 to 4096), the average
cost of ofoading is kept at a low state. However, the larger
memory corresponds to a slower convergence speed. Hence,
in the next simulation, we adopt a memory size of 512.

In Figure 4(c), we investigate the convergence perfor-
mance under diferent batch sizes, i.e., the number of
DATAs sampled in each training round. As the batch size
increases from 4 to 32, the algorithm converges at a signif-
icantly faster speed. As it further increases from 32 to 128,
the performance does not improve signifcantly in terms of

(1) Initialization: Let a � 0;
(2) for i � 1 to len (wnm) do
(3) for j � 1 to len (bn(t)) do
(4) for k � 1 to len (φn(t)) do
(5) Mapping [a]� [ij, k];
(6) a+ � 1;
(7) end for
(8) end for
(9) end for

ALGORITHM 1: Te mapping relationship between at and ofoading subaction.

Input for the
t-th time Main net

Target net

Training
DATA

ε-greedy

Train

Each H
tasks do

Update

Loss Functionθt
– = θt

(at; θt)

ar (1)

ar
*

at (Emax)

at (e)at

Afer
the
Emax
times
episode

St+1

Random Select

Environment Action

Public Experience
Pool

Select

Ofoading action
generation

Evaluate Output for the
t-th time

(wnm, bn (t), φn (t))

yt&Q (St,at; θt
–)

Ofoading policy
update

Figure 3: Te schematics of the proposed DDQN algorithm.
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Input: Number of UEs N, size of tasks O and distance between UE and F-AP d;
Output: Suboptimal decision a∗t ;

(1) Initialization: Initialize the parameter of themain network with randomweight θ and the parameter of the target network with
random weight θ− and empty the public experience pool;

(2) Set training interval H;
(3) for episode � 1 to Emax do
(4) Reset starting environment information s1;
(5) for t � 1 to tmax do
(6) Reset remaining channel resources Br and remaining fog computation resources Fr;
(7) for n � 1 to N do
(8) Te main network generates action at with the ε-greedy method according to st;
(9) Map at to subactions wnm, bn(t),φn(t)􏼈 􏼉 and implement them in the environment;
(10) Obtain status st+1 and reward rt based on the environmental changing (at);
(11) Mark DATA � st, at, rt, st+1􏼈 􏼉 and store it in the public experience pool;
(12) if (the public experience pool is full) then
(13) Te target network calculates yt � rt + cQ(st+1, (at; θt); θ

−
t );

(14) Update the main network parameter θt based on L(θt) � E[(yt − Q(st, at; θ
−
t ))2] and replace the oldest data with the

new one;
(15) end if
(16) while (episode mod H � 0) do
(17) Assign the main network parameters to the target network, i.e., θ−

t � θt;
(18) end while
(19) end for
(20) end for
(21) end for
(22) Te target network picks the action with the smallest Λ O( , d, at) as the suboptimal decision a∗ /t:

a∗ /t � argmin
a
Λ∗(O, d, at), a � a1, a2, ..., atmax

􏽮 􏽯.

ALGORITHM 2: Te DDQN algorithm.

Table 2: Simulation parameters involved in this article.

Parameters Values Parameters Values
Pn 0.5w σ2 10− 3 w [38]
B 20MHz F 30GHz
Tfix 1s fc 915MHz [38]
H 32 μ 0.5
Ad 4.11 [38] de 2.8 [38]
εloacl 1.37J/Gigacycles εup 1.39 × 104/KB
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Figure 4: Continued.
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convergence speed and cost. Furthermore, a larger batch size
means more training time is required. Tus, in this article,
we can choose a suitable batch size that not only reduces the
training time of one round but also does not signifcantly
decrease the performance of the DDQN algorithm, such as
batch size� 32.

Figure 4(d) shows the convergence performance under
diferent loss functions, including gradient drop (GD), mean
square deviation (MSD), and adaptive moment estimation
(Adam). Just as shown in Figure 4(d), the performance of the
CD function is poor, which may not be suitable for the
DDQN algorithm. Te MSD and Adam functions lead to
similar convergence speed and cost. From the above sim-
ulation results, in Figure 4, our proposed DDQN algorithm
exhibits a stable convergence performance under diferent
parameter settings.

Figure 5 shows the impact on the ofoading strategy of the
DDQN under diferent numbers of UEs. When the number of
UEs is small, the tasks aremainly ofoaded to the fog server. As
the number increases, the percentage of the fog server gradually
decreases while the percentage of local execution increases.
Meanwhile, the cloud is only involved in a small amount of
computation in this process. Under the conditions of Table 2
(the main infuencing parameter is the computational volumes
of tasks), the cost of computing locally is lower than ofoading
to the cloud server regardless of the number of UEs (as shown
in Figure 6). Hence, when fog computation resources are
insufcient, the overloaded tasks will be processed locally
without the option of ofoading to the cloud.

In Figure 7, we compare the impact of diferent com-
putational volumes on the ofoading strategy of the DDQN
algorithm. With an increase in the computation volume, the
proportion of tasks computed locally is decreasing dra-
matically, while the proportion on the cloud is increasing
rapidly. When the computational volume is small, the
DDQN algorithm mainly allocates tasks to be computed
locally or in the fog. As the computational volume grows,

the computation resources at the fog and the local are
insufcient to support the current demand. Tus, the
DDQN algorithm ofoads more tasks to the cloud server,
where computation resources are abundant for process-
ing. It illustrates that the proposed algorithm can be
applied in scenarios with diferent computational
requirements.

Figure 8 studies the efect of diferent weight values μ on
the ofoading strategy. When μ � 0, it means that we only
care about the ofoaded energy consumption. In this situ-
ation, most tasks are ofoaded to the fog or cloud server,
with the energy costs being lower. When the weight is in-
creased to 0.1, we can observe that the proportion of cloud
servers decreases signifcantly, while the proportion of the
fog side increases. With the introduction of time utility, for
the current computation volumes (as shown in Table 2), the
task takes much less time to compute in the fog than the
propagation delay Tfix for the cloud. Moreover, the time
cost in the local computing is smaller than the time cost in
the fog with current settings, but the local energy con-
sumption is much higher than the conditions of the fog.Tat
is why the processing percentage of the fog server decreases
with increasing μ while the local has been rising. Besides,
Figure 8 shows that the DDQN algorithm can be well applied
to scenarios with diferent foci.

In Figure 9, we further study the average computation
time of the DDQN algorithm under diferent numbers of
UEs. For DDQN employed with a diferent number of UEs,
the time cost is almost the same for each ofoading task,
which stays at 0.27s. Since the number of UEs does not
afect the time cost of the algorithm, it can be applied in
massive user ofoading scenarios, such as unmanned
factories.

4.2. System Utility Comparison. Regarding the practical
performance of the system, our DDQN algorithm is com-
pared with fve representative benchmarks as follows:
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Figure 4: Convergence of the proposed DDQN algorithm under diferent criteria as follows: (a) learning rate; (b) public experience pool
size; (c) batch size; (d) loss function.
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(i) Te coordinate descent (CD) algorithm [13] itera-
tively swaps the ofoading patterns of the UE,
resulting in minimal delay and energy cost in each
round. Te iterations will stop when the ofoading
mode swapping does not further improve the sys-
tem performance. Moreover, the CD algorithm is
proven to achieve near-optimal decisions at
diferent N.

(ii) Te Joint Computation ofoading, Data compres-
sion, Energy harvesting, and Application scenarios
(JCDEA) algorithm [18] is a comprehensive of-
loading algorithm that solves the joint computation
ofoading, data compression, energy harvesting,
and application scenario optimization problems in
the F-RAN. Te JCDEA algorithm obtains the
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Figure 5: Te impact on the ofoading strategy of the DDQN
algorithm under diferent number of UEs.
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optimal ofoading decision and resource allocation
policy by transforming the problem of fnding an
ofoad policy into solving the minimum cost of local,
fog, and cloud computing. We assume that the data
compression ratio is 1, i.e., the task is not compressed
when introducing this benchmark algorithm. Te
energy harvesting efciency is 0, i.e., the local device
does not collect energy from the outside.

(iii) Te greedy algorithm prioritizes all tasks to a spe-
cifc F-AP and invokes all of the computation re-
sources of the current fog node. If the fog node has
reached its maximum processing capacity, the
priority is randomly assigned to the next empty

F-AP. If all the fog computation resources are
overloaded, the task will be processed locally or in
the cloud, depending on which mode has the lower
average cost.

(iv) All-local computing tasks are processed on the local
device.

(v) All-fog computing tasks are randomly ofoaded to
the fog server in the F-RAN for processing.

(vi) All-cloud computing, the remote cloud server,
processes all user’s tasks.

As shown in Figure 6, while the number of UEs changes,
the average cost of all-local computing remains stable.
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However, for the other benchmarks, the average cost of
ofoading increases as the user grows. As for the increasing
number, the problem of bandwidth resource competition for
uplink channels arises, which leads to a decrease in the
upload rate allocated to tasks that increases the time cost of
ofoading. Moreover, when the limited fog computation
resources are insufcient to support numerous tasks, ad-
ditional queuing delays are forced to sufer, which further
adds to the extra ofoading delay. Hence, the algorithm with
a single ofoading mode, for the ofoading of multiuser
scenarios, is not suitable.

For the CD algorithm, the change in the number of UEs
has little infuence on the average cost, and even the cost in
the multi-UE state (N � 60) is lower than in the few-UE
state (N � 10). Tus, the CD algorithm is more inclined to
be applied in multiuser scenarios. For the greedy algorithm,
we conclude that with the increasing of UEs, it is no longer
efective in arriving at the optimal ofoading decision. Te
JCDEA algorithm outperforms other benchmark algorithms
but the average cost consumption is always higher than that
of the DDQN algorithm. In summary, the DDQN algorithm
ofers a lower ofoading cost scheme with better perfor-
mance, compared with the benchmark algorithms.

Figure 10 investigates the impact of diferent compu-
tational volumes on the average cost. For the cloud server
with abundant computing resources, the main time cost is
determined by the propagation delay, which does not vary
with the computation volume.Tis is why the average cost of
all algorithms, except the all-cloud computing model, rises
linearly with the amount of computation. Te performance
of the greedy algorithm is weaker in comparison, especially
when the fog servers are overloaded. Te DDQN, CD, and
JCDEA algorithms increase their average cost relatively
slowly as the amount of computation adds, eventually
converging to the cost of all-cloud computing. However, the
proposed DDQN algorithm consistently maintains a lower
average cost than other benchmark algorithms. In contrast,
the task ofoading will have better performance, which
always maintains a lower cost in the diferent focused of-
loading scenarios by employing our DDQN algorithm.

5. Conclusions

In this work, a novel model-free ofoading algorithm, the
DDQN, is proposed for the ofoading scenario of detachable
tasks in the F-RAN, which is based on the double-deep Q
network, to allocate the ofoading decision of the task, the
uplink channel bandwidth, and the fog computation re-
sources that arrive at a minimized cost. By importing binary
variables in the ofoading strategy, we transform the of-
loading into a problem of fnding binary ofoading decisions
with resource allocation. Next, we design the delay-energy
weighted summetric and further convert the above problem
into a mixed integer nonlinear programming (MINLP)
problem based on delay and energy, i.e., obtaining suitable
ofoading decisions and resource allocation strategies that
minimize the cost. Furthermore, a delay-energy weighted
summetric is designed for evaluating the ofoading strategy.
Moreover, we further convert the above problem into

a mixed integer nonlinear programming (MINLP) problem
based on the delay and energy weighted sum, i.e., to obtain
a reasonable and efcient ofoading decision and resource
allocation strategy to minimize the ofoading cost. Since the
MINLP problem is intractable to resolve in a general way,
the DDQN algorithm is proposed to generate decisions.
Meanwhile, we innovatively combine the action space
mapping method with deep reinforcement learning. Nu-
merical simulations illustrate that the DDQN algorithm,
compared to the benchmark algorithm, can signifcantly
reduce the ofoading cost of task execution.

Finally, it is hoped that the proposed DDQN ofoading
framework can be expanded in future F-RANs, such as smart
IoTs and driverless cars, to optimize real-time ofoading for
various scenarios with multiple users.
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Component corrosion is one of the potential safety hazards in transmission lines in mining areas. In order to solve the problem of
poor detection accuracy caused by the large proportion of small targets and complex background in the current distant view
corrosion inspection task by UAV, we propose a PWR-YOLOV5 detection method for corrosion components based on the
YOLOV5 algorithm. Firstly, a new feature fusion network, WA-PANet, is reconstructed on the basis of the path aggregation
network (PANet) to make full use of the features at di�erent stages and advance the detection accuracy of small targets in distant
view by deepening the process of feature fusion and introducing the skip layer connections and adaptive feature fusion factors.
Secondly, the pyramid split attention (PSA) module is introduced into the deep layers of the network to highlight the feature
expression of corrosion targets and enhance the ability to detect pixel-level objects. �en, we construct a receptive feature
enhancement network (RFENet), which can heighten the feature fusion e�ect of the WA-PANet and alleviate the problem of the
feature expression ability weakening due to the fusion of di�erent receptive �eld features. Finally, the EIoU Loss is adopted to
optimize the loss function and improve the positioning accuracy of the bounding box. �e experimental results show that the
mAP of the PWR-YOLOV5 algorithm can reach up to 95.37%, which is 5.22% higher than YOLOV5, and the detection speed is
64.9FPS. Compared with the algorithms such as YOLOV4, Faster R-CNN, and YOLOX, the improved algorithm has better overall
detection performance for the corrosion components of transmission lines in the mining area.

1. Introduction

At present, mineral security has risen to the level of a na-
tional strategy [1]. As an important branch of the national
power system, the maintenance of the power supply system
in mining areas plays a key role in the safety of mineral
production work. Transmission lines in mining areas are
mostly erected between mountains, rivers, and hills, and the
climate is humid. Antivibration hammers, insulators, and
other metal components are prone to rust on account of
exposure to a harsh environment for long term and may
even cause power supply faults such as components falling
and line breakage, which will a�ect the normal operation of
the power system in the mining area and seriously threaten
the mineral security [2]. �erefore, it is necessary to e�ec-
tively recognize and detect the corrosion £aws of trans-
mission line components and timely �nd rust spots and

repair corrosion problems, so as to ensure the safe and stable
running of the power supply equipment in mining areas.

With Jones in [3] and Araar et al. in [4] introducing
small unmanned aerial vehicles (UAV) into the inspection
task of transmission lines, the inspection method of “UAV
inspection +manual processing” appeared. A UAV was used
instead of manual work to collect images, which could
greatly reduce front-end labor costs. However, the way of
manual detection was greatly in£uenced by subjective
consciousness, resulting in serious missed and false detec-
tion [5].�e rapid development of computer technology had
realized the combination of computational pattern recog-
nition and power supply system inspection tasks, and then, a
new inspection method of “UAV inspection + image pro-
cessing” came into being [6]. In the task of detecting the
corrosion components by using image processing technol-
ogy, Recky and Leberl [7] used color space combined with a
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k-nearest neighbor window to realize the detection of
corrosion defects. A detection method for corrosion flaws of
antivibration hammers was given in [8] by introducing
histogram equalization, median filtering, morphological
processing, and the RGB color model. *e authors of [9]
studied the color and texture features of corrosion images
and applied the HSI color model and grey level co-occur-
rence matrix to identify corroded areas of images. Huang
et al. [10], respectively, adopted edge features’ enhancement
algorithms such as local difference and anisotropic Gaussian
kernel directional derivative, and threshold segmentation
and morphological processing techniques on grayscale
images to obtain the corrosion area ratio and color shadow
index of antivibration hammers, which realized the classi-
fication of corrosion grade. On the basis of texture features
of images, the authors in [11] also combined Fourier
transform and multiple color models to distinguish corro-
sion areas. *e methods mentioned above improve the
accuracy of corrosion detection to a certain extent, but they
are only applicable to detecting corrosion components with
a relatively simple background, sparse target distribution,
and obvious edge features.

In recent years, machine learning has developed rapidly
owing to the successive optimization of calculation capacity
and computational overhead. In [12], the authors extracted
color, gradient amplitude, and direction histogram, respec-
tively, by letting the aggregation channel feature algorithm to
build amultiscale ACF pyramid and also integrated it with the
AdaBoost classifier, Graph Cuts algorithm, and RGB color
model to judge whether the antivibration hammers were
corroded. *e algorithm achieved higher detection accuracy,
but it requested the way of manual design to extract features,
which was complicated in steps and heavy in workload.
Keeping up with the boom of object detection technology in
deep learning, Petricca et al. in [13] led a convolutional neural
network into the field of corrosion detection, providing a new
thought for corrosion component recognition.*e authors of
[14] first used Retinex, an image enhancement algorithm, to
decrease the interference of light and shadow on the corrosion
color and then employed FPN and RPN structures to redesign
the Faster-RCNN to achieve the defects classification and
position regression of anti-vibration hammers, which opti-
mized positioning accuracy of the algorithm to a certain
degree. Combined with the attention mechanism, a light-
weight corrosion targets’ detection method for power
equipment based on the SSD was presented in [15], realizing
the identification of rusted areas with fewer parameters, but
the average precision was only 71.35%. In [16], the authors
advanced an attention-guided multitask convolutional neural
network and connected it with the RPN structure to identify
the corrosion degree and abnormal state of power line
components. *e methods mentioned above lack specific
classification, and the shapes and appearances of different
components are disparate, resulting in a high detection error
rate.

To sum up, there are few studies on the detection of
specific corrosion components of transmission lines at
present, and the detection effect of related corrosion studies
is not satisfactory. So, we put the YOLOV5 [17] to the task of

detecting two corrosion components of transmission lines in
mining areas, including antivibration hammers and insu-
lators. According to the problems that there are a high
proportion of small targets and a great many background
interferents all caused by long-range shootings in image
acquisition by UAV, we propose four improvements and
optimizations as follows:

(i) *e weight adaptive path aggregation network
(WA-PANet) is constructed. On the basis of the
PANet, we deepen the process of feature fusion and
inlet skip layer connections and adaptive feature
fusion factors to enhance the detection accuracy of
different scale objects.

(ii) We introduce the PSA mechanism to fuse context
information of different scales and meanwhile
generate pixel-level attention for the targets, so as to
highlight the feature expression of small corrosion
targets.

(iii) *e RFENet is built to strengthen the fusion effect of
the WA-PANet and alleviate the weakening of the
feature expression ability induced by feature fusion
at different stages.

(iv) *e loss function of bounding box regression adopts
the EIoU Loss, which can improve the positioning
accuracy and convergence rate of the network.

2. Materials and Methods

2.1. Data Acquisition and Processing. *e data of trans-
mission line components in the mining area required for the
experiments in this study are provided by the Hemei Group
Power Supply Department. We use the Pr software to extract
frames from the video shot by the UAV and filter out a large
number of similar and background pictures. *ere are two
kinds of image resolutions 5184× 3888 pixels and
5472× 3078 pixels, respectively. On account the fact that the
data given above covers all components of overhead
transmission lines, we further screen out a total of 2705
images containing antivibration hammers and insulators
and then adopt the LabelImg, a deep learning target an-
notation tool, to mark the objects. *e labels are set to
FangRust (corrosion antivibration hammers), Fang_NoRust
(noncorrosion antivibration hammers), Jue_Rust (corrosion
insulators) and Jue_NoRust (noncorrosion insulators), and
the tagging format is VOC format. *e data processing part
applies the adaptive image scaling method to uniformly scale
the read images of different scales to the network input size
and accomplishes online data augmentation through ran-
dom clipping, mosaic data enhancement, etc., which en-
hances the robustness of the model and improves the
detection performance of the algorithm for different scale
targets, especially the small ones.

2.2. PWR-YOLOV5 Network. Although the YOLOV5 al-
gorithm shows a good performance in generic object
detection tasks, the color of corrosion is easily confused
with background items such as dead leaves and dust and is
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also greatly affected by the intensity of light. In addition,
the shooting distance of the UAV is not flexible to control,
leading to many small targets in the distant view, all of
which have a poor influence on the recognition of rusted
components. In order to adapt to the corrosion targets’
detection task in the actual scene, in this study, we first re-
design the feature fusion network WA-PANet by deep-
ening the feature fusion process and setting skip layer
connections and learnable feature fusion arguments,
which not only retains more details but also improves the
feature fusion effect. *en, the PSA mechanism is pulled
into the deep layers of the network, in which the softmax is
used to adaptively fuse the spatial features of different
scales and channel attention weights to generate pixel-
level attention to the objects. Next, we apply bottleneck
structures and dilated convolutions to construct the
feature enhancement network RFENet to capture the
multiscale features under different receptive fields in order
to strengthen the fusion effect of the WA-PANet and
enhance the detection accuracy of corroded targets at
different scales. Finally, the bounding box regression loss
function is optimized by the EIoU Loss, which solves the
problem of ambiguous definition of aspect ratio loss in
CIOU Loss and advances the positioning accuracy of the
network. Based on the innovations mentioned above, the
PWR-YOLOV5 detection algorithm for corrosion com-
ponents is proposed. *e structure of the PWR-YOLOV5
is shown in Figure 1.

2.2.1. Weight Adaptive Path Aggregation Network. *e
YOLOV5 algorithm uses the PANet for feature fusion, and
its structure is shown in Figure 2(a). In this module, the
method of bidirectional fusion is deployed to integrate deep
semantic information and shallow location information,
which promotes detection accuracy to a certain extent.
However, this fusion method does not distinguish the fea-
ture information at different stages, inducing negative fea-
ture fusion results. For the purpose of solving the problem
and boosting the detection performance of the rusted small
targets, on the basis of the PANet, we make the process of
feature fusion deeper, and meanwhile, import skip layer
connections and adaptive feature fusion factors [18] to es-
tablish the weight adaptive path aggregation network. *e
specific structure of the WA-PANet is shown in Figure 2(b),
where Pi represents the ith feature produced in the backbone
and Fi and Ni are the intermediate features generated during
the fusion procedure.

*e WA-PANet feature fusion network consists of two
branches. *e one top-down branch is used to transmit the
powerful semantic information and perform the fusion of
deep and shallow features, where the fusionmode of channel
cascade is applied to preserve more feature information. In
this study, we add an up-sampling operation to form the
feature map F2, which is fused with the feature map P2
yielded in the backbone to generate the large-scale feature
N2 with rich semantic and location information so as to
improve the performance of the network to identify small
corroded targets. *e other bottom-up branch is employed

to transfer detailed information with the purpose of en-
hancing the ability to locate objects at different scales. For
the sake of obtaining refined features, the skip layer con-
nections from input to output are set at nodes N3, N4, and
N5, respectively. Furthermore, due to the multiple input
features of these three nodes coming from different stages of
the network and contributing differently to the fusion re-
sults, we also introduce a learnable feature factor for each
branch of each node so that the algorithm adaptively learns
the importance of different stage features in the training
process. *e features of each node of the WA-PANet can be
expressed as the following equations (1)–(5):

F5 � Conv P5( 􏼁, (1)

Fi � Conv Concat Pi,Upsample Fi+1( 􏼁( 􏼁( 􏼁, i � 2, 3, 4, (2)

N2 � Conv F2( 􏼁, (3)

Ni � Conv
w1 × Pi + w2 × Fi + w3 × Resize Ni−1( 􏼁

w1 + w2 + w3 + ε
􏼠 􏼡, i � 3, 4,

(4)

N5 � Conv
w1 × F5 + w2 × Resize N4( 􏼁

w1 + w2 + ε
􏼠 􏼡, (5)

where Conv refers to a series of convolution operations
involved in feature processing, Upsample stands for the
nearest neighbor interpolation up-sampling, Concat means
that two features from different stages carry out splicing and
fusion on the channel dimension, that is, channel cascade,
and Resize means to adjust the size of the feature maps in the
two dimensions of space and channel. And wi is a learnable
parameter, which is multiplied by the input feature of the
corresponding branch at each node, so the larger the value of
wi is, the greater the influence of the branch on the fusion
results is, and ε is a constant, much less than 1, which is set to
prevent the denominator from being 0.

2.2.2. Pyramid Split Attention Mechanism. *ere are a large
number of interruptions in the actual scene, and the
background is complicated. At the same time, with the
deepening of the network, the features of small objects with
fewer pixels are gradually blurred, and the location infor-
mation is also less and less obvious. In an effort to effectively
suppress the complex background information and over-
come the influence of light intensity, the pyramid split at-
tention mechanism [19] is introduced into the deep layers of
the network to promote the detection accuracy for corroded
components. *e implementation of the PSA module is
shown in Figure 3.

First of all, we utilize the split and concatenation (SPC)
structure to obtain feature information of different scales
along the channel direction, and the SPC composition is
demonstrated in Figure 4. *e module divides the input
feature maps X into S parts in the channel dimension,
denoted as [X1, X2, . . . , XS−1], so each part has the same
number of channels C′ � C/S, and the feature of the ith
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Figure 2: (a) *e path aggregation network structure. (b) *e weight adaptive path aggregation network structure.
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Figure 1: *e PWR-YOLOV5 network structure. P is the PSA module; W presents WA-PANet; and R is RFENet.
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branch can be represented as Xi ∈ RC′×H×W, i � 0,

1, . . . , S − 1. In this study, the value of S is 4. After being
divided in this way, the input tensors are processed in
parallel by using convolution kernels of different scales, so as
to extract spatial information from feature maps of each
branch and gain features of different receptive fields and
depths. However, with the augmentation of the convolution
kernel size, the number of parameters also increases sig-
nificantly. In order to save computational overhead, the
group convolution is inlet; moreover, a new rule is also
designed for the selection of the grouping number. *e
relationship between the size of multiscale convolution
kernels and the number of groups can be represented as the
following formula:

G � 2(k− 1)/2
, (6)

where K is the size of the convolution kernel and G is the
number of groups. In particular, the number of groups is
defaulted to 1 when K � 3. *e generating process of the
multiscale features is given in (7), and then, the different scale
features produced by each branch are cascaded in channel to
obtain the feature map F in the following formula:

Fi � Conv ki × ki, Gi( 􏼁 Xi( 􏼁, i � 0, 1, 2, . . . , S − 1, (7)

F � Concat F0, F1, . . . , FS−1􏼂 􏼃( 􏼁, (8)

where ki � 2 × (i + 1) + 1 denotes the size of convolution
kernel applied in the ith branch, and the grouping number of
convolution operation in the ith branch is Gi � 2(ki− 1)/2, and
Fi ∈ RC′×H×W signifies the feature of different receptive fields
emerged on each branch, and F ∈ RC×H×W is the complete
multiscale feature maps acquired through the SPC module.

Secondly, the SEWeight [20] is used to pick up the
channel attention information of each branch feature, and
the attention weight vector of each branch channel is
procured by (9), in which Zi ∈ RC′×1×1 shows the channel
attention weights obtained from the different scale features
Fi:

Zi � SEWeight Fi( 􏼁, i � 0, 1, 2, . . . , S − 1. (9)

*en, the soft attention method is employed to handle
the channel attention weight vector Zi to adaptively select
the importance of multiscale spatial features across channels.
*e weight allocation pattern of soft attention is shown in
formula (10), where Softmax is adopted to weighting fusion
of the spatial and channel information of each branch to
obtain the weight atti, which contains the information of all
positions in the space and the attention weight in the
channel:

atti � Softmax Zi( 􏼁 �
exp Zi( 􏼁

􏽐
S−1
i�0 exp Zi( 􏼁

, i � 0, 1, 2, . . . , S − 1. (10)
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Figure 3: *e pyramid split attention structure.
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Finally, the fused attention weight atti of each branch is
multiplied by the corresponding scale feature Fi to fetch the
feature map Yi with multiscale pixel-level channel attention
in formula (11), and in the end, the multiscale refined output
is acquired through the concatenation operation that can
maintain the integrity of features, and the course can be
denoted as follows:

Yi � Fi ⊙ atti, i � 0, 1, 2, . . . , S − 1, (11)

Out � Concat Y0, Y1, . . . , YS−1􏼂 􏼃( 􏼁, (12)

where ⊙ indicates pixel-wise multiplication. *e PSA
module can integrate multiscale spatial information and
cross-channel attention through each split feature group,
which can not only achieve the fusion of different scales of
context information but also generate pixel-level attention to
the targets. In this study, we put the PSAmodule into the last
layer of the backbone and the top-down process of the WA-
PANet to strengthen the suppression of complex interfer-
ence information at a higher semantic level and highlight the
feature expression effect of small corrosion targets.

2.2.3. Receptive Feature Enhancement Network. In the
bottom-up course of theWA-PANet, features from different
stages need to be fused. Owing to the receptive fields of
different branch features are different, so the semantic in-
formation is dissimilar. *e fusion of multiple feature maps
at different semantic levels will greatly weaken the expres-
sion ability of multiscale features, which is not conducive to
the detection results of the algorithm. Based on the problem,
we use the bottleneck layers and dilated convolutions of
different scales to construct the receptive feature enhance-
ment network [21] that carries out enhanced extraction on
the multibranch fusion outputs of the WA-PANet to ad-
vance the feature expression of rusted targets at various
scales. *e structure of the RFENet module is shown in
Figure 5.

*e module is a multibranch structure. Firstly, a bot-
tleneck layer is adopted in each branch, namely, a 1× 1
convolution for dimensionality reduction and a n× n con-
volution to achieve the extraction of different scale features,
and then, a 3× 3 dilated convolution with a dilation rate of n
is followed to capture the feature information in a larger
receptive field area, and ultimately, the concat and shortcut
operations are applied to fuse the features of different re-
ceptive fields. With the purpose of compressing the number
of parameters, we deploy two 3× 3 convolutions, as well as
1× 7 and 7×1 convolutions to replace 5× 5 and 7× 7
convolutions, respectively. In this study, the module is
placed in the four output branches of the WA-PANet to
establish the RFENet, which can intensify the effect of
feature fusion and promote the recognition accuracy for
corrosion objects of different scales.

2.2.4. EIoU Loss. *e YOLOV5 algorithm applies the CIOU
Loss as the loss function of bounding box regression, which
takes into account three geometrical factors, including

overlapping area, center points’ distance, and aspect ratio.
Given a prediction box B and a ground truth Bgt, the CIOU
Loss can be defined as

LCIOU � 1 − IOU +
ρ2 b, b

gt
􏼐 􏼑

c
2 + α],

] �
4
π2 arctan

wgt

hgt
− arctan

w

h
􏼠 􏼡

2

,

α �
]

(1 − IOU) + ]
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(13)

where IOU is the ratio of the intersection area and the union
area of the prediction box and the ground truth, b and bgt

represent the center of B and Bgt, respectively,
ρ(·) � ‖b − bgt‖2 is the distance between b and bgt, c is the
diagonal length of the minimum bounding rectangle be-
tween the prediction box and the ground truth, and α and ]
are used to reflect the similarity of the aspect ratio between
the prediction box and the ground truth. In (13), ] reveals
the difference between aspect ratios, rather than the real
relationship between w and wgt or h and hgt. When w and h

meet formula (w � kwgt, h � khgt)|k ∈ R+􏼈 􏼉, the value of ] is
0, indicating that the length and width of the prediction box
and the ground truth are completely matched. As a result,
the loss of aspect ratio item is 0, and the bounding box
regression process is blocked, which is inconsistent with
reality. In addition, in the training process, the calculating
process of ] for w and h back propagation to obtain the
gradient is denoted in formula (14). According to the for-
mula, we can get z]/zw � −h/wz]/zh, in which the signs of
z]/zw and z]/zh are opposite. *us, if one of these two
variables (w or h) increases, the other will decrease, which
prevents the reduction of the real difference between the
prediction box and the ground truth:
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(14)

Owing to the unclear definition of ] in the last item of
LCIOU, the convergence speed and positioning accuracy of
the algorithm are limited. *erefore, we introduce the EIOU
Loss [22], an optimization version of the CIOU Loss, to
compute regression loss. It is defined as

LEIOU � LIOU + Ldis + Lasp

� 1 − IOU +
ρ2 b, b

gt
􏼐 􏼑

c
2 +

ρ2 w, w
gt

􏼐 􏼑

c
2
w

+
ρ2 h, h

gt
􏼐 􏼑

c
2
h

,

(15)

where cw and ch are the length and width of the minimum
bounding rectangle covering the prediction box and the
ground truth, respectively. *e EIOU loss also consists of
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three parts, the overlapping area loss LIOU, the center points
distance loss Ldis, and the length and width difference loss
Laps. Among them, Laps can directly minimise the length-
width gap between the prediction box and the ground truth
so that the convergence speed and the location performance
of the network are excellent.

3. Results and Discussion

3.1. Experimental Environment and Parameters’ Setting.
Based on the Ubuntu 18.04 operating system, this study
employs the PyTorch deep learning framework and Python
compiler language to carry out all the experiments. *e
specific experimental environment and training parameter
settings of the improved algorithm are shown in Table 1.

3.2. Algorithm Evaluation Index. In order to verify the ef-
fectiveness of the innovative improved method in this study,
the Average Precision (AP), the mean Average Precision
(mAP), the Frames Per Second (FPS), and the Model Size
(MS) are selected to evaluate model performance according
to the positioning accuracy of the prediction boxes and the
missed and false detection of the targets. *e AP measures
the precision and recall of a certain class, and its value is the
area of the P-R curve. *e larger the value is, the better the
detection performance of the network for this kind of target.
*e mAP is the mean value of the AP of various categories,
which is used to evaluate the overall detection accuracy of
the model. *e FPS reflects the detection speed; the greater

the value is, the better the real time of the algorithm is. *e
MS refers to the amount of memory occupied by the al-
gorithm, which represents the requirement for storage space.

3.3. Experimental Results and Comparative Analysis

3.3.1. Experimental Result of the PWR-YOLOV5. *e self-
made dataset of corrosion components is divided into a
training set, a validation set, and a test set in a ratio of 8 :1 :1.
In order to avoid the influence of video frame extraction on
the distribution of the dataset, all images are shuffled before
partitioning to advance the generalization of the model. In
this study, the improved algorithm is trained and tested
based on the above partitioning method. Figure 6 shows the
P-R curve of the PWR-YOLOV5 network during testing,
which is drawn from the precision and recall values under all
confidence levels of various targets. *e area below the curve
indicates the average precision of each class, so the AP of
FangRust, Fang_NoRust, Jue_Rust, and Jue_NoRust, re-
spectively, reaches up to 96.88%, 95.02%, 95.61%, and
93.96%.

3.3.2. Comparison with YOLOV5. In this study, the
YOLOV5 and the modified PWR-YOLOV5 are compared in
the following four aspects: average precision, mean average
accuracy, frames per second, and model size. *e com-
parative results are recorded in Table 2.

Compared with YOLOV5, the AP of the proposed al-
gorithm on FangRust, Fang_NoRust, Jue_Rust, and
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Figure 5: *e feature enhancement network module structure.
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Jue_NoRust is improved by 2.52%, 5.3%, 2.11%, and 10.93%,
respectively, and the mAP is increased by 5.22%. *e ex-
perimental data given above show that the improvedmethod
presented in this study can effectively advance the detection
accuracy of various targets. However, the introduced PSA
modules and RFENet in the PWR-YOLOV5 all increase the

number of parameters, resulting in the model being inferior
to the YOLOV5 in terms of detection speed and memory
overhead.

*e detection effect of the algorithm in real complex
scenes is shown in Figure 7, in which the original images are
on the left, and the YOLOV5 detection results are in the
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Figure 6: *e P-R curve for four classes of the PWR-YOLOV5 algorithm.

Table 1: Experimental environment and parameter settings.

Experimental environment Model parameter
Parameters Configuration Parameters Value
CPU Intel(R) xeon(R) E5-2680 v4 Optimizer SGD
GPU NVIDIA GeForce GTX 3080 Initial learning rate 0.001
CUDA 11.0 Size of images 640× 640
Python 3.8 Batch size 16
PyTorch 1.9.0 Epoch 350
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middle. Meanwhile, the PWR-YOLOV5 detection outcomes
are on the right. In the figure, the rectangular label boxes in
blue, orange, green, and red, respectively, indicate FangRust,
Fang_NoRust, JueRust, and Jue_NoRust, and the purple
ellipse boxes denote missed detection, and the yellow ellipse
boxes represent false detection. *e YOLOV5 has missed
detections of small objects in (a) and false detections in (a)
and (d). In the case of serious background interference in
(b), (c), and (d), some background items are mistakenly
identified as targets. In contrast, the optimized PWR-

YOLOV5 algorithm can significantly improve missed de-
tections, false detections, and object identifications in
complicated background.

3.3.3. Comparison with Other Classical Algorithms. For the
purpose of validating the performance of the PWR-
YOLOV5 algorithm, we chose representative one-stage al-
gorithms SSD [23], RetinaNet [24], YOLOV3 [25], YOLOV4
[26], and two-stage algorithms Faster R-CNN [27], and on

Table 2: Performance comparison between the YOLOV5 and the improved PWR-YOLOV5.

Models
AP (%)

mAP (%) FPS MS (MB)
FangRust Fang_NoRust JueRust Jue_NoRust

YOLOV5 94.36 89.72 93.50 83.03 90.15 109.9 14.40
Ours 96.88 95.02 95.61 93.96 95.37 64.9 26.65

(a)

(b)

(c)

(d)

Original YOLOV 5 PWR-YOLOV5

Figure 7: Detection results of the YOLOV5 and the PWR-YOLOV5 in real scenes.
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the basis of anchor-free algorithms CenterNet [28] and
YOLOX [29], we developed contrast experiments. *e test
results of each model are shown in Table 3.

It can be seen from Table 3 that the detection accuracy of
the proposed algorithm is optimal for the other three types
of targets, except that the AP of Fang_NoRust is lower than
YOLOV4 and YOLOX. Compared with the one-stage al-
gorithm YOLOV4 with better detection performance, the
AP of PWR-YOLOV5 on Fang_Rust, Jue_Rust, and Jue_-
NoRust is improved by 7.03%, 4.67%, and 26.45%, respec-
tively. In comparison with the two-stage algorithm Faster R-
CNN, the average precision of the improved algorithm for
four classes was increased by 13.34%, 2.85%, 29.07%, and
46.74%, respectively. In contrast to YOLOX based on the
anchor-free algorithm, the detection AP of the optimized
YOLOV5 for Fang_Rust, Jue_Rust, and Jue_NoRust is en-
hanced by 6.55%, 3.01%, and 22.75%, respectively. Con-
trasted with the mAP, which measures the overall detection
accuracy of the model, the PWR-YOLOV5 algorithm is the
best, reaching 95.37%. In terms of detection speed and
memory occupancy, the proposed algorithm is inferior to
the YOLOV5, but better than other common detection
models.

3.3.4. Ablation Experiment. In order to prove the influence
of the four improved methods on the detection results, an
ablation experiment is designed in this study, which chooses
the YOLOV5 algorithm as the base.*e experimental results
are shown in Table 4.

All of the four proposed methods can improve the de-
tection accuracy of various targets to a certain extent
according to Table 4.*eWA-PANet feature fusion network
constructed by deepening the feature fusion process and
introducing skip layer connections and adaptive feature

fusion factors can not only ensure the integrity of fusion
information but also take into account the influence of
features from different stages on the fusion results. Com-
pared with the YOLOV5 algorithm, the mAP advances by
2.55%.*e PSAmechanism introduces channel attention on
the feature maps of different receptive fields and adaptively
associates spatial information and channel weights with
Softmax to produce pixel-level attention on objects, and the
mAP is increased from 92.70% to 93.96%. *e RFENet
adopts bottleneck layers and dilated convolutions of dif-
ferent scales to strengthen the feature extraction for the

Table 3: Performance comparison of different algorithms.

Models
AP (%)

mAP (%) FPS MS (MB)
FangRust Fang_NoRust JueRust Jue_NoRust

SSD 83.35 91.84 78.45 51.78 76.36 44.7 96.61
RetinaNet 79.29 65.35 74.71 56.18 68.89 16.5 145.92
YOLOV3 75.43 93.83 72.50 45.12 71.72 31.4 93.83
YOLOV4 89.85 98.42 90.94 67.51 86.68 21.2 256.34
Faster R-CNN 83.54 92.17 66.54 47.22 72.37 22.4 547.02
YOLOX 90.33 96.38 92.60 71.21 87.63 25.5 36.03
CerterNet 85.94 94.41 85.45 63.76 82.39 37.8 131.01
YOLOV5 94.36 89.72 93.50 83.03 90.15 109.9 14.40
Ours 96.88 95.02 95.61 93.96 95.37 64.9 26.65

Table 4: Results of the ablation experiment.

Base WA-PANet PSA RFEnet EIoU loss
AP (%)

mAP/% FPS MS (MB)
FangRust Fang_NoRust JueRust Jue_NoRust

✓ 94.36 89.72 93.50 83.03 90.15 109.9 14.40
✓ ✓ 94.52 93.77 94.64 87.89 92.70 83.3 17.52
✓ ✓ ✓ 94.80 93.80 97.90 89.33 93.96 68.5 22.09
✓ ✓ ✓ ✓ 95.79 93.93 97.30 93.83 95.21 64.9 26.65
✓ ✓ ✓ ✓ ✓ 96.88 95.02 95.61 93.96 95.37 64.9 26.65
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Figure 8: *e training loss curves of CIOU Loss and EIOU Loss.
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fusion output of the WA-PANet, which can make full use of
features of different receptive fields and enhance the feature
expression ability of various scale targets. *e mAP of the
algorithm advances to 95.21%. *e three improvements
referred to above to the model structure increase the number
of parameters to different degrees, so the detection speed
decreases somewhat, but it can still meet the requirement of
real-time detection. In addition, the training loss curves of
the improved algorithm under the CIOU Loss and the EIOU
Loss are respectively drawn in Figure 8. By comparing the
convergence of the two curves, it can be seen that the op-
timization method of the loss function proposed in this
study makes the convergence rate faster and the positioning
accuracy more superior.

4. Conclusions

Aiming at the problems of poor detection accuracy, serious
missed detection, and false detection of corrosion compo-
nents in distant view inspection by UAV, we propose a
PWR-YOLOV5 detection method for corrosion compo-
nents based on the YOLOV5 algorithm. *is method firstly
constructs a new feature fusion network, WA-PANet, which
makes full use of the features at different stages and improves
the detection accuracy of the corroded targets in remote
view. Secondly, the PSA mechanism is led into the deep
layers of the network to effectively suppress the background
information and highlight the feature expression of the
pixel-level targets. And then, the bottleneck structures and
dilated convolutions of different scales are used to establish
the feature enhancement network RFENet to alleviate the
problem of feature expression ability weakening caused by
feature fusion at different semantic levels. Finally, we apply
the EIoU Loss to optimize the loss function of bounding box
regression, so as to improve the positioning accuracy for the
rusted targets.

*e experimental results show that the proposed algorithm
has more accurate location performance and higher detection
accuracy. Compared with the original network, the average
precision on FangRust, Fang_NoRust, JueRust, and Jue_NoRust
are heightened by 2.52%, 5.3%, 2.11%, and 10.93%, respectively.
*e mAP can reach up to 95.37%, and the detection speed is
64.9FPS. Considering the accuracy and speed comprehensively,
the proposed algorithm has higher application value, which
provides a new idea for the corrosion component inspection of
the overhead transmission line by UAV in the mining area.
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