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Prior to developing expensive prototype systems in engi-
neering and sciences, it is well known that computational
methods are often called into inquiry. Therefore, in order
to allow prototyping of engineering systems to be in greater
confidence, the degree of correlation between computational
modeling predictions and experimental results has to be
adequate. Accordingly, new and efficient computational
methods help in determining the validation of the exper-
imental results giving rise to a reliable and timely design
systems.

The aim of this special issue is to bring together the
leading researchers of dynamics and vibration area including
applied mathematicians, and allow them to share their
original research work. Mathematical theory, numerical
simulation, physical experiments with advanced computa-
tional investigations, engineering design, and their various
engineering applications are included in the main program
of the issue.

Accordingly, various papers on vibration analysis have
been included in this special issue after completing a
careful rigorous peer-review process. In particular, a new
actuator for reducing rotor vibrations in electrical machines
is investigated in one of the papers. In addition to the
traditional prediction error method, a new knowledge-based
artificial Fish-Swarm optimization algorithm (AFA) with
crossover, CAFAC, is proposed to identify the parameters
in the new model. The prediction error method (PEM) is
also employed to identify the induction motor to produce
a black box model with correspondence to input-output
measurements.

Another paper is of use of particle Swarm optimization
to find the best teeth modifications for multimesh helical
gears, which are crucial for the static transmission error
(STE). Robustness of the solutions toward manufacturing
errors and applied torque is analyzed by the particle Swarm
algorithm to access to the deterioration capacity of the tested
solution.

In another paper, the homotopy analysis method (HAM)
is employed to propose a highly accurate technique for
solving strongly nonlinear aeroelastic systems of airfoils in
subsonic flow. The frequencies and amplitudes of limit cycle
oscillations (LCOs) arising in the considered systems are
expanded as a series of an embedding parameter. Numerical
examples show that the HAM solutions are obtained very
precisely.

Then stochastic BEM has been used to handle geomet-
rical uncertainties within the classic BEM formulation. As
a result, the solution shows deterministic behaviour at low
frequencies; decreasing the wavelength, the effect of the
uncertainties smooths the response.

In order to assess the dynamic behavior of the high-
speed vibratory drilling system, this study develops a rotor-
based finite element model, integrated with the modelling of
component interfaces. The current results indicate that the
simulations are consistent with the experimental measure-
ments.

The automotive gearbox rattle noise resulting from
vibro-impacts that can occur between the idle gears under
excessive velocity fluctuations of the shaft-driving gears
imposed by engine torque fluctuation is also studied. This
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study presents various effect components on the dynamic
response of the idle gear.

As of today, vibration analysis of complex systems is
commonly encountered in science and engineering practice.
Analysis and design of such structures call for efficient
computational tools. As such, the present issue has addressed
recent trends of the computational methods that may be used
in the said vibration problems. Finally, it is hoped that the
present special issue would certainly ignite researchers new
problem domain and enhance efficiency and accuracy of the
solution methods in use to-day.

Snehashish Chakraverty
Atma Sahu

Choong Kok Keong
Saleh M. Hassan
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This paper presents a variational formulation for the free vibration analysis of unsymmetrically laminated composite plates with
elastically restrained edges. The study includes a micromechanics approach that allows starting the study considering each layer
as constituted by long unidirectional fibers in a continuous matrix. The Mori-Tanaka method is used to predict the mechanical
properties of each lamina as a function of the elastic properties of the components and of the fiber volume fraction. The resulting
mechanical properties for each lamina are included in a general Ritz formulation developed to analyze the free vibration response
of thick laminated anisotropic plates resting on elastic supports. Comprehensive numerical examples are computed to validate the
present method, and the effects of the different mechanical and geometrical parameters on the dynamical behavior of different
laminated plates are shown. New results for general unsymmetrical laminates with elastically restrained edges are also presented.
The analytical approximate solution obtained in this paper can also be useful as a basis to deal with optimization problems under,
for instance, frequency constraints.

1. Introduction

Fiber-reinforced composite laminated plates are extensively
used in many engineering applications. The free vibration
analysis of these plates plays a very important role in the
design of civil, aerospace, mechanical, and marine structures.
In addition to the favorable high specific strength and high
specific stiffness, fiber-reinforced composite laminates offer
the possibility of optimal design through the variation of
stacking pattern, angle of fiber orientation, fiber content, and
so forth, known as composite tailoring. All these mechanical
and geometrical characteristics, as well as the various cou-
pling effects that take place, must be considered in the predic-
tion of the laminates dynamical response to assure that this is
reliable, accurate, and adequate to the design requirements.

It is well known that laminated composite plates have
relatively low transverse shear stiffness, playing the shear de-
formation an important role in the global and local behavior
of these structures. Among the numerous theories used for
laminated plates that include the transverse shear strain,

the first-order shear deformation theory (FSDT) [1, 2] is
adequate for the computation of global responses (such as
natural frequencies) and simultaneously has some advan-
tages due to its simplicity and low computational cost. Many
investigations have been reported for free vibration analysis
of moderately thick composite laminates using the FSDT
kinematics (see for instance [3–13]). However, the results
are, in most cases, limited to certain lamination schemes and
boundary conditions. As far as the study of thick plates with
elastically restrained edges is concerned, most of the previous
works are limited to isotropic ones ([14–19] among others).
But, limited information is found for the case of thick
anisotropic laminated plates resting on elastic supports. For
instance, Setoodeh and Karami [20] implemented a layer-
wise laminated plate theory linked with three-dimensional
elasticity approach for vibration and buckling of symmetric
and antisymmetric fiber-reinforced composite plates having
elastically restraint edges support and results for cross-ply
laminates are presented, whereas Karami et al. [21] applied
the differential quadrature method for the free vibration
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analysis of moderately thick symmetric laminated plates
with elastically restrained edges. For the same boundary
conditions, semianalytical solutions for the free vibration
of angle-ply symmetrically laminated plates were presented
by Ashour [22]. Nallim and Grossi [23] also studied the
vibration of symmetric laminated plates resting on elastic
support employing the Ritz method and beam orthogonal
polynomials as approximated functions. These kind of
approximate functions (in one or two variables) have been
used by many authors to the free vibration analysis of, both
homogeneous and nonhomogeneous, plates (Chakraverty
et al. [24–26] and Chow et al. [27], among others).

In this paper, a general Ritz formulation for the free
vibration analysis of anisotropic laminated plates is devel-
oped. All kind of boundary conditions including elastically
restrained edges are considered enhancing the study. This
feature allows a more realistic analysis of some structural
problems. The analysis includes a micromechanical approach
(according to the classification of Altenbach et al. [28]),
where the average mechanical properties of each anisotropic
lamina are estimated from the known characteristics of the
fibers and the matrix materials taking into account the
fiber volume ratio and the fiber-packing arrangement. At
structural level, the dynamic response of the unsymmetrical
laminated plate, with elastically restrained edges, is analyzed
using the first-order shear deformation theory and the Ritz
method with beam orthogonal polynomials as coordinate
functions. The approximate analytical solution developed
here is very useful to understand, both qualitatively and
quantitatively, the behavior of complex laminated plates.

2. Formulation

2.1. Effective Elastic Moduli of Long Fiber-Reinforced Laminae.
The micromechanics-based Mori-Tanaka method [29] is
used in this section to predict the elastic mechanical proper-
ties of the orthotropic unidirectional laminae. This method
may be viewed as the simplest mean field approach for
inhomogeneous materials that encompass the full physical
range of phase volume fraction.

Eshelby’s results [33] show that if an elastic homogeneous
ellipsoidal inclusion in an infinite linear elastic matrix is
subjected to an eigenstrain εT , uniform strain states εC is
induced, and it is related to the eigenstrain by the expression

εC = SE : εT , (1)

where SE is the Eshelby tensor, which depends on the rein-
forcement dimensions and the Poisson ratio of the matrix
νm. The components of this tensor for a circular, cylindrical
inclusion with an infinite length-to-diameter ratio parallel to
the 1-axis (parallel to the fiber direction, Figure 1) are

S1111 = S1133 = S1122 = 0, S3333 = S2222 = 5− 4νm
8(1− νm)

,

S3322 = S2233 = 4νm − 1
8(1− νm)

, S3311 = S2211 = νm
2(1− νm)

,

S3232 = 3− 4νm
8(1− νm)

, S1313 = S1212 = 1
4
.

(2)

y

x
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4
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Figure 1: General laminated plate resting on elastic supports.

The transformations strains are obtained considering the
equivalent homogeneous inclusion for inhomogeneous
inclusions developed by Eshelby [33] together with the inter-
action effects of Mori-Tanaka [29]. These transformations
strains are used to equate the total stresses in the inhomo-
geneities and their equivalent inclusions, as described in the
following equation:

C f :
(
εa + εint + εC

)
= Cm :

(
εa + εint + εC − εT

)
, (3)

where C f and Cm are the stiffness tensors of fiber and matrix,
respectively, εa is the uniform far field strain applied to the
domain at infinity, and εint is the average elastic strain defined
by Mori-Tanaka which is given by

εint = −k f
(
εC − εT

)
, (4)

where k f is the fiber volume fraction.
Finally, the stiffness tensor C for different unidirectional

laminae can be obtained from energy considerations [34]
and (1) to (4) as

C = Cm ×
{

I− k f
[(

C f − Cm

)(
SE − k f

(
SE − I

)
+ Cm

)]−1

×
(

C f − Cm

)}−1

,

(5)

where I is the fourth order identity tensor.
Using this method the mechanical properties of unidirec-

tional carbon/epoxy laminae are found considering various
fiber volume fractions, and they are depicted in Table 1.
These properties, for each unidirectional lamina, are then
used in the next section to obtain the reduced constitutive
matrix.

2.2. General Laminated Plate Resting on Elastic Supports.
Let us consider a rectangular fiber-reinforced composite
laminated plate, of dimension a × b and total thickness h
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Table 1: Mechanical properties of unidirectional laminae (AS4-
3501-6), obtained using Mori-Tanaka method. Fiber and matrix
properties Ef 1 = 225 GPa, Ef 2 = 15 GPa, Gf 12 = 15 GPa, Gf 23 =
7 GPa, ν f 12 = 0.20; Em = 4.2 GPa, νm = 0.34 ([30]).

k f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E1 26.29 48.38 70.46 92.54 114.62 136.70 158.78 180.86

E2 5.11 5.69 6.31 7.01 7.81 8.76 9.87 11.23

G12 = G13 1.84 2.17 2.57 3.07 3.70 4.54 5.68 7.35

G23 1.75 1.97 2.22 2.52 2.88 3.32 3.88 4.61

n12 0.32 0.31 0.29 0.28 0.27 0.25 0.24 0.23

(h = ∑
hk , hk represents the thickness of a layer). The

laminated plate is composed of an arbitrary number of Nc

orthotropic layers and fibre orientation βk (k = 1, 2, . . . ,Nc)
as shown in Figure 1. A rectangular Cartesian coordinate
system (x, y, z) is used to represent the plate geometry and
the strain–displacement relations. The x-y plane coincides
with the middle plane of the plate. The displacement field of
the first-order shear deformation theory is assumed to be of
the form [1, 2]

u
(
x, y, z, t

) = u0
(
x, y, t

)
+ zφx

(
x, y, t

)
,

v
(
x, y, z, t

) = v0
(
x, y, t

)
+ zφy

(
x, y, t

)
,

w
(
x, y, z, t

) = w0
(
x, y, t

)
,

(6)

where t is the time dimension u0, v0 and w0 denote the mid-
surface translational displacements along the x, y, and z axes,
and φx, φy are the rotations about y- and x-axes, respectively.
The displacement model (6) yields the following kinematic
relations:

{ε} =
⎡⎣{ε0}{
ε∗0
}
⎤⎦ + z

⎡⎣{ε1}
{0}

⎤⎦, (7)

where

{ε}T =
{
εx, εy , γxy , γyz , γxz

}
,

{ε0}T =
{
∂u0

∂x
,
∂v0

∂y
,
∂u0

∂y
+
∂v0

∂x

}
,

{
ε∗0
}T = {

∂w0

∂y
+ φy ,

∂w0

∂x
+ φx

}
,

{ε1}T =
{
∂φx
∂x

,
∂φy

∂y
,
∂φx
∂y

+
∂φy

∂x

}
.

(8)

The stress-strain relation of each layer is given by the gener-
alized Hooke’s law as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx

σy

τxy

τyz

τxz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(k)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx

εy

γxy

γyz

γxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

where Qij are the components of the plane-stress reduced
constitutive matrix [35] which are function of the elastic
constant determined in Section 2.1 and the ply angle βk.

2.3. Energy Functional Components. Taking into account (7)
and (9), the strain energy due to the laminated plate deflec-
tion can be written as

Up = 1
2

∫∫
R

[
{ε0}[A]{ε0}T + {ε0}[B]{ε1}T + {ε1}[B]{ε0}T

+{ε1}[D]{ε1}T +
{
ε∗0
}

[A∗]
{
ε∗0
}T]

dx dy,

(10)

where R is the mid-surface area (Figure 1) and the stiff-
ness coefficients [35, 36] are given by (Aij ,Bi j ,Dij) =∫ h/2
−h/2 Qij(1, z, z2)dz (i, j = 1, 2, 6), A∗i j =

∫ h/2
−h/2 ki jQi jdz (i, j =

4, 5) ki j being the shear correction factors.
The strain energy corresponding to the elastic edge re-

straints is given by

Ut = 1
2

∫ a

0

[
tw1

(
w0|y=0

)2
+ tw3

(
w0|y=b

)2
+ tv1

(
v0|y=0

)2

+tv3
(
v0|y=b

)2
+ r1

(
φy|y=0

)2
+ r3

(
φy|y=b

)2
]
dx

+
1
2

∫ b

0

[
tw2 (w0|x=a)2 + tw4 (w0|x=0)2 + tu2 (v0|x=a)2

+tu4 (v0|x=0)2 + r2
(
φx|x=a

)2 + r4

(
φx|y=0

)2
]
dy,

(11)

where t•i (i = 1, . . . , 4 and • = u, v,w) are the elastic trans-
lational coefficients and ri (i = 1, . . . , 4) are the elastic rota-
tional coefficients.

The kinetic energy is expressed as

T = 1
2

∫∫
R

[
I0
(
u̇2

0 + v̇2
0 + ẇ2

0

)
+ 2I1

(
u̇0φ̇x + v̇0φ̇y

)
+I2

(
φ̇2
x + φ̇2

y

)]
dx dy,

(12)

being Ii (i = 0, 1, 2) the mass inertias of the plate defined as
[35]

Ii =
∫ h/2

−h/2
ρ(k)zidz, (i = 0, 1, 2), (13)

where ρ(k) is the material density of the k-th layer.

3. Application of the Ritz Method for
the Free Vibration Analysis

The Ritz method is applied to determine analytical approx-
imate solutions for dynamical behavior of arbitrarily lami-
nated plates resting on elastic supports. During free vibra-
tion, the displacements components are assumed split in
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with k f = 0.6.

the spatial and temporal parts, being the last one periodic
in time; that is,

u0
(
x, y, t

) = U
(
x, y

)
sinωt,

v0
(
x, y, t

) = V
(
x, y

)
sinωt,

w0
(
x, y, t

) =W
(
x, y

)
sinωt,

φx
(
x, y, t

) = Φx

(
x, y

)
sinωt,

φy
(
x, y, t

) = Φy

(
x, y

)
sinωt,

(14)

where ω is the natural frequency in radian.
Putting these displacements into the energy functional com-
ponents ((10) to (12)) the maximum values of the kinetic

Figure 4: Variation of the fundamental frequency coefficient ω
with the translational and the rotational restraint parameters Tw

i =
Ri, Tu

i = Tv
i = 0 (i = 1, . . . , 4) for square [0◦/45◦] and [0◦/90◦]

carbon-epoxy (Table 1), with k f = 0.6 and a/h = 10.

1.7

2.2

2.7

3.2

3.7

4.2

4.7

5.2

5.7

6.2

0.1 1 10 100 1000 10000

Ri

i

a/b= 1
a/b= 1.5
a/b= 2

Figure 5: Variation of the fundamental frequency coefficientω with
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energy (Tmax) and the strain energies (Up,max,Ut,max) are
derived. Then, the energy functional for free vibration of the
laminated plate is given by

Π = Up,max +Ut,max − Tmax, (15)

which is to be minimized according to the Ritz principle.

3.1. Boundary Conditions and Approximating Functions.
There are some options when choosing the unknown func-
tions of displacement components to apply the Ritz method.
Particularly, the use of orthogonal polynomials as coordinate
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functions has important advantages related to numerical
stability and fast convergence as has been demonstrated in
previous works [23, 37, 38], even for plates with complicated
boundary conditions and high degree of anisotropy. For
these reasons, in this work, the displacement components
are expressed by sets of beam characteristic orthogonal poly-

nomials {p(·)
i (x)}, {q(•)

j (y)}, (•) = u, v,w,φx ,φy , resulting
in

U
(
x, y

) ≈ UMN

(
x, y

) = M∑
i=1

N∑
j=1

c
(u)
i j p

(u)
i (x) q(u)

j

(
y
)
,

V
(
x, y

) ≈ VMN

(
x, y

) = M∑
i=1

N∑
j=1

c
(v)
i j p

(v)
i (x) q(v)

j

(
y
)
,

W
(
x, y

) ≈WMN

(
x, y

) = M∑
i=1

N∑
j=1

c
(w)
i j p

(w)
i (x) q(w)

j

(
y
)
,

Φx ≈ ΦxMN

(
x, y

) = N∑
i=1

M∑
j=1

c
(φx)
i j p

(φx)
i (x) q

(φx)
j

(
y
)
,

Φy ≈ ΦyMN

(
x, y

) = N∑
i=1

M∑
j=1

c
(φy)
i j p

(φy )
i (x) q

(φy )
j

(
y
)
,

(16)

where c(u)
i j , c(v)

i j , c(w)
i j , c

(φx)
i j , c

(φy)
i j are the unknown coefficients,

and M, N are the numbers of polynomials in each coordi-
nate.

The procedure for the construction of the orthogonal
polynomials has been developed by Bhat [39]. The first

members of the sets, p(•)
1 (x) and q

(•)
1 (y)(•) = u, v,w,φx ,φy

are obtained as the simplest polynomials that satisfy all
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Figure 7: Effect of the fiber orientation on the first vibration
frequency coefficient ω1, for two different fiber volume fraction k f
with C1C1C1C1 boundary condition and a/h = 10.
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Figure 8: Effect of the fiber orientation on the first vibration
frequency coefficient ω1, for two different fiber volume fraction k f
with S1S1S1S1 boundary condition and a/h = 10.

the geometrical boundary conditions of the plate in their
respective x and y directions. The higher members of each
set are constructed by employing the Gram-Schmidt orthog-
onalization procedure. The coefficients of the polynomials
are chosen in such a way as to make the polynomials

orthonormal. However, the functions p(•)
k (x) and q(•)

k (y) for
(•) = φx,φy are obtained from relative rotation conditions
starting from polynomials of an order lower than the chosen
for the transversal displacements and then applying the
sequence of Gram-Schmidt orthogonalization procedure.
This particular choice is made to avoid the overestimation
of the rate of elastic energy due to the shear respect to the
rate due to the bending. This concept has been applied by
Auciello and Ercolano [40], to Timoshenko beams, to avoid
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Table 2: Notations for various combinations of boundary conditions, in which n and s indicate the directions normal and tangential to the
respective plate edges.

In-plane constraints

Transverse constraints un = 0, us = 0 Nn = 0, us = 0 un = 0, Nns = 0 Nn = 0, Nns = 0

Clamped: w = 0; φn = 0 C1 C2 C3 C4

Simply supported: w = 0; Mn = 0; φs = 0 S1 S2 S3 S4

Free: Mn = 0; Mns = 0; Qn = 0 F1 F2 F3 F4

Table 3: Convergence study of frequencies ω∗i = ωia2
√
ρ/(E2h2) for a two-layered [0◦/45◦] square plate. E1/E2 = 25, G12 = G13 =

0.5E2, G23 = 0.2E2, ν12 = 0.25.

a/h
M, N Mode sequence number

(M = N) 1 2 3 4 5 6

10

4 15.487 23.582 30.182 35.243 42.217 49.098

5 15.480 23.401 30.005 33.514 38.099 44.303

6 15.478 23.359 29.960 33.217 37.825 43.331

7 15.478 23.356 29.957 33.112 37.691 42.997

8 15.478 23.356 29.956 33.104 37.679 42.901

9 15.478 23.356 29.956 33.103 37.676 42.889

10 15.478 23.356 29.956 33.103 37.675 42.887

Shi et al. [5] 15.504 23.399 29.991 33.170 37.740 42.973

20

4 19.248 30.947 42.338 50.788 71.618 81.985

5 19.227 30.415 41.788 46.288 54.225 64.750

6 19.221 30.279 41.586 45.434 53.531 62.080

7 19.219 30.271 41.572 45.047 53.090 61.032

8 19.219 30.268 41.569 45.016 53.047 60.655

9 19.218 30.267 41.569 45.008 53.032 60.600

10 19.218 30.267 41.568 45.007 53.030 60.587

Shi et al. [5] 19.350 30.490 41.769 45.400 53.385 61.035

100

4 21.348 36.366 52.130 65.773 298.228 304.052

5 21.314 35.002 50.893 56.783 68.251 86.403

6 21.291 34.676 50.155 54.927 66.919 79.733

7 21.289 34.660 50.124 53.854 65.602 76.972

8 21.288 34.655 50.107 53.792 65.504 75.800

9 21.288 34.654 50.106 53.757 65.449 75.631

10 21.288 34.654 50.106 53.754 65.444 75.553

Shi et al. [5] 21.802 35.692 51.304 55.298 67.257 77.843

Table 4: Comparison of fundamental frequency coefficient ω∗i = ωia2
√
ρ/(E2h2) for a four layered [45◦/−45◦/45◦/−45◦] plate with different

aspect ratios a/b. E1/E2 = 40, G12 = 0.6E2, G13 = G23 = 0.5E2, ν12 = 0.25.

a/h a/b

0.2 0.6 0.8 1 1.2 1.6 2

Present 9.013 13.02 15.74 18.62 21.59 27.66 34.57

10 Alibeigloo et al. [31] 8.559 12.565 15.187 17.983 20.895 27.031 33.634

Redy [32] 8.724 12.965 15.712 18.609 21.567 27.736 34.247

Present 9.965 15.409 19.293 23.638 28.377 39.062 51.480

30 Alibeigloo et al. [31] 9.420 14.790 18.487 22.637 27.200 37.534 49.499

Redy [32] 9.667 15.385 19.304 23.676 28.381 38.940 51.132

Present 10.056 15.66 19.70 24.25 29.25 40.70 54.25

50 Alibeigloo et al. [31] 9.5016 15.0261 18.8586 23.195 28.003 39.05 52.686

Redy [32] 9.816 15.689 19.759 24.343 29.321 40.653 53.989
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Table 5: (a) Frequency parameters ωi for [0◦/45◦]and [0◦/90◦] carbon-epoxy AS4-3501-6 (Table 1), with different translational restraint
parameter Tw

i , Tu
i = Tv

i = Ri = 0 (i = 1, . . . , 4), and a/h = 10. (b) Frequency parameters ωi for [0◦/45◦] and [0◦/90◦] carbon-epoxy
AS4-3501-6 (Table 1), with different translational restraint parameter Tw

i , Tu
i = Tv

i = Ri = 0 (i = 1, . . . , 4), and a/h = 100.

(a)

k f Mode
Translational restraint parameter Tw

i

0.1 1 10 100 1000 10000 1.00E + 10

a/h = 10

[0◦/45◦]

0.2

1 0.060 0.187 0.520 0.969 1.161 1.191 1.195

2 0.085 0.266 0.803 1.827 2.380 2.470 2.481

3 0.085 0.267 0.822 2.079 2.930 3.063 3.078

4 0.754 0.810 1.224 2.609 3.776 4.004 4.032

0.4

1 0.083 0.256 0.689 1.219 1.419 1.448 1.452

2 0.117 0.367 1.083 2.284 2.829 2.912 2.922

3 0.117 0.368 1.125 2.723 3.638 3.767 3.782

4 0.890 0.978 1.590 3.325 4.530 4.735 4.759

0.6

1 0.101 0.310 0.824 1.443 1.671 1.705 1.709

2 0.142 0.445 1.303 2.685 3.290 3.382 3.393

3 0.142 0.447 1.364 3.274 4.342 4.492 4.509

4 1.040 1.151 1.903 3.936 5.292 5.517 5.543

[0◦/90◦]

0.2

1 0.060 0.188 0.528 0.942 1.084 1.104 1.106

2 0.085 0.267 0.814 1.970 2.657 2.756 2.768

3 0.085 0.267 0.814 1.970 2.657 2.756 2.768

4 0.628 0.697 1.164 2.642 3.708 3.888 3.909

0.4

1 0.083 0.258 0.705 1.181 1.321 1.340 1.342

2 0.117 0.368 1.110 2.546 3.251 3.344 3.355

3 0.117 0.368 1.110 2.546 3.251 3.344 3.355

4 0.750 0.858 1.540 3.424 4.519 4.675 4.675

0.6

1 0.101 0.313 0.847 1.395 1.553 1.574 1.577

2 0.142 0.446 1.343 3.035 3.829 3.932 3.944

3 0.142 0.446 1.343 3.035 3.829 3.932 3.944

4 0.910 1.040 1.864 4.089 5.329 5.514 5.536

(b)

k f Mode
Translational restraint parameter Tw

i

0.1 1 10 100 1000 10000 1.00E + 10

a/h = 100

[0◦/45◦]

0.2

1 0.060 0.187 0.525 1.014 1.276 1.329 1.340

2 0.085 0.268 0.813 1.928 2.708 2.881 2.908

3 0.085 0.269 0.832 2.214 3.489 3.771 3.815

4 0.804 0.858 1.266 2.774 4.519 5.027 5.098

0.4

1 0.083 0.256 0.697 1.292 1.577 1.633 1.646

2 0.117 0.369 1.099 2.445 3.269 3.440 3.468

3 0.117 0.370 1.142 2.952 4.444 4.746 4.794

4 0.947 1.032 1.642 3.588 5.531 6.011 6.073

0.6

1 0.101 0.310 0.835 1.531 1.859 1.925 1.940

2 0.142 0.447 1.324 2.880 3.804 3.995 4.028

3 0.143 0.450 1.385 3.555 5.304 5.654 5.711

4 1.104 1.210 1.962 4.255 6.457 6.980 7.046
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(b) Continued.

k f Mode
Translational restraint parameter Tw

i

0.1 1 10 100 1000 10000 1.00E + 10

[0◦/90◦]

0.2

1 0.060 0.188 0.533 0.981 1.161 1.190 1.194

2 0.085 0.268 0.823 2.086 3.043 3.212 3.233

3 0.085 0.268 0.823 2.086 3.043 3.212 3.233

4 0.666 0.732 1.197 2.805 4.365 4.732 4.782

0.4

1 0.083 0.258 0.714 1.239 1.422 1.449 1.453

2 0.117 0.370 1.126 2.738 3.783 3.948 3.969

3 0.117 0.370 1.126 2.738 3.783 3.948 3.969

4 0.797 0.901 1.583 3.699 5.418 5.774 5.821

0.6

1 0.101 0.313 0.857 1.464 1.674 1.706 1.710

2 0.143 0.449 1.363 3.271 4.453 4.638 4.661

3 0.143 0.449 1.363 3.271 4.453 4.638 4.661

4 0.967 1.093 1.917 4.427 6.392 6.797 6.851

the shear locking effect and is extended here for laminated
plates.

The classical boundary conditions considered in this
study are depicted in Table 2. By keeping in mind that in
the Ritz method only the geometric boundary conditions
need to be satisfied, it is possible to work with any sets of
required edge boundary condition and also is very simple the
consideration of elastically restrained edges where there are
not essential boundary conditions to satisfy.

Upon inserting the displacement forms (16) into the
energy functional of the system (15), the minimization with
respect to the coefficients of the displacement functions is
given by

∂Π

∂c
(u)
i j

= 0,
∂Π

∂c
(v)
i j

= 0,
∂Π

∂c
(w)
i j

= 0,

∂Π

∂c
(φx)
i j

= 0,
∂Π

∂c
(φy)
i j

= 0.

(17)

From (17) a set of algebraic simultaneous equations is ob-
tained. The number of these equations becomes 5×M ×N .
The algebraic equations obtained are given as follows, in the
form of the generalized eigenvalue problem:(

K− ω2M
){C} = {0}, (18)

where K and M are stiffness and inertia matrices, respectively
(their expressions are given in the Appendix, {C} contains
the unknown coefficients of (16).
For a nontrivial solution, the eigenvalues which make the
determinant equal to zero, correspond to the free vibration
frequencies.

4. Verification of the Formulation and
Numerical Applications

4.1. General Description. The variational algorithm devel-
oped in this paper was programmed in Fortran language and

used for the free vibration analysis of generally laminated
thin and moderately thick laminated plates having different
geometric parameters, stacking sequences, material proper-
ties, fiber volume fractions, and boundary conditions. The
examples considered in this study are confined to laminates
with layers of equal thickness, even though the procedure was
formulated for plies with arbitrary thickness. In all cases the
shear correction factor was taken a 5/6.

Let us introduce the terminology to be used throughout
the remainder of the paper for describing the boundary
conditions of the considered plates. The designation CiSiFiSi,
for example, identifies a plate with edges (1) clamped, (2)
simply supported, (3) free, and (4) simply supported (see
Figure 1) the subscript i (i = 1, . . . , 4) identifies the in-
plane constraints according to Table 2. When the edges
are elastically restrained against rotation or translation, the
following nondimensional restraint parameters are used

T•i =
a3t•i
D0

, (i = 1, . . . , 4 and • = u, v,w),

Ri = ria

D0
, (i = 1, . . . , 4),

(19)

where D0 = E1h3/12(1− ν12ν21).
The main purposes of the numerical applications presented
in this section are twofold. One is to demonstrate the accu-
racy, the flexibility, and the efficiency of the proposed method
and the other is to produce some results which may be
regarded as benchmark solutions for other academic research
workers and design engineers.

4.2. Validation and Convergence Studies. The accuracy and
reliability of the results obtained with the present approach
are next demonstrated by comparing them with some
selected values published by Shi et al. [5] for moder-
ately thick (a/h = 10, 20) and thin (a/h = 100) arbitrarily
clamped laminated plates. The comparison presented in
Table 3 authenticates the validity of the present method for
arbitrarily laminated plates. Very close agreement for the first
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Table 6: (a) Frequency parameters ωi for [0◦/45◦] and [0◦/90◦] carbon-epoxy AS4-3501-6 (Table 1), with different rotational restraint
parameter Ri, Tw

i = Tu
i = Tv

i = ∞ (i = 1, .., 4), and a/h = 10. (b) Frequency parameters ωi for [0◦/45◦] and [0◦/90◦] carbon-epoxy
AS4-3501-6 (Table 1), with different rotational restraint parameter Ri, Tw

i = Tu
i = Tv

i = ∞ (i = 1, .., 4), and a/h = 100.

(a)

k f Mode
Rotational restraint parameter Ri

0.1 1 10 100 1000 10000 1.00E + 10

a/h = 10

[0◦/45◦]

0.2

1 1.461 1.623 1.943 2.056 2.071 2.072 2.072

2 2.709 2.903 3.268 3.390 3.406 3.407 3.407

3 3.350 3.497 3.861 4.010 4.030 4.032 4.032

4 4.322 4.477 4.818 4.951 4.969 4.971 4.971

0.4

1 1.837 2.029 2.371 2.483 2.497 2.498 2.498

2 3.249 3.493 3.875 3.988 4.002 4.003 4.003

3 4.112 4.302 4.709 4.854 4.872 4.874 4.874

4 5.129 5.333 5.700 5.823 5.838 5.840 5.840

0.6

1 2.182 2.408 2.803 2.931 2.947 2.949 2.949

2 3.799 4.090 4.527 4.654 4.669 4.671 4.671

3 4.884 5.119 5.611 5.783 5.804 5.806 5.807

4 5.987 6.239 6.672 6.812 6.830 6.832 6.832

[0◦/90◦]

0.2

1 1.386 1.562 1.916 2.034 2.048 2.050 2.050

2 2.901 3.110 3.561 3.719 3.738 3.740 3.741

3 2.901 3.110 3.561 3.719 3.738 3.740 3.741

4 4.052 4.287 4.764 4.970 4.994 4.996 4.996

0.4

1 1.755 1.969 2.352 2.468 2.482 2.483 2.483

2 3.532 3.814 4.321 4.473 4.491 4.493 4.493

3 3.532 3.814 4.321 4.473 4.491 4.493 4.493

4 4.932 5.218 5.745 5.949 5.971 5.973 5.973

0.6

1 2.090 2.340 2.776 2.905 2.920 2.922 2.922

2 4.167 4.511 5.102 5.272 5.292 5.294 5.295

3 4.167 4.511 5.102 5.272 5.292 5.294 5.295

4 5.833 6.179 6.790 7.021 7.045 7.047 7.048

(b)

k f Mode
Rotational restraint parameter Ri

0.1 1 10 100 1000 10000 1.00E + 10

a/h = 100

[0◦/45◦]

0.2

1 1.598 1.814 2.318 2.534 2.564 2.567 2.567

2 3.108 3.410 4.115 4.415 4.457 4.461 4.462

3 4.161 4.421 5.275 5.759 5.831 5.839 5.840

4 5.366 5.689 6.611 7.100 7.173 7.181 7.181

0.4

1 2.044 2.316 2.901 3.135 3.166 3.169 3.170

2 3.783 4.185 4.997 5.311 5.353 5.358 5.358

3 5.265 5.627 6.699 7.240 7.317 7.325 7.326

4 6.450 6.911 8.018 8.523 8.594 8.601 8.602

0.6

1 2.428 2.748 3.423 3.689 3.725 3.729 3.729

2 4.418 4.896 5.821 6.171 6.217 6.222 6.223

3 6.250 6.692 7.967 8.593 8.682 8.691 8.692

4 7.498 8.058 9.337 9.897 9.974 9.983 9.983
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(b) Continued.

k f Mode
Rotational restraint parameter Ri

0.1 1 10 100 1000 10000 1.00E + 10

[0◦/90◦]

0.2

1 1.493 1.719 2.223 2.413 2.437 2.440 2.440

2 3.396 3.720 4.583 4.960 5.010 5.016 5.016

3 3.396 3.720 4.583 4.960 5.010 5.016 5.016

4 5.036 5.390 6.396 6.966 7.039 7.047 7.048

0.4

1 1.917 2.203 2.780 2.976 3.001 3.003 3.003

2 4.202 4.665 5.725 6.122 6.172 6.178 6.178

3 4.202 4.665 5.725 6.122 6.172 6.178 6.178

4 6.173 6.688 7.937 8.560 8.634 8.641 8.642

0.6

1 2.286 2.621 3.277 3.494 3.521 3.523 3.524

2 4.952 5.515 6.745 7.185 7.241 7.247 7.247

3 4.952 5.515 6.745 7.185 7.241 7.247 7.247

4 7.297 7.918 9.364 10.060 10.141 10.149 10.150

sixth nondimensional frequencies ω∗i = ωia2
√
ρ/(E2h2) is

obtained for all cases and display monotonic convergence
tendency to constant values. For thick plates, as shown in
Table 3, as number of N and M is increased from 7 to 10, the
frequency parameter decreases merely 0.002% for the first
mode and 0.26% for the sixth. For thin plates the relative
decreases of the frequency parameters are 0.004% for the first
mode and 1.88% for the sixth as the numbers of polynomials
M, N are increased from 7 to 10, exhibiting slower conver-
gence rate than that of moderately thick plates. Consequently
the number of beam characteristic polynomials used in the
following computations for thin and thick plates is chosen as
M = N = 7.
The validation of the proposed methodology for different
aspect ratios (a/b) is presented in Table 4, showing a good
agreement with Alibeigloo et al. [31] and Reddy [32].

4.3. Numerical Results and Discussion. Several examples
including new results for arbitrarily laminated plates with
elastically restrained edges are presented in this section. The
elastic properties of the composite materials used here are
those shown in Table 1. The influence of different values of
fiber volume ratios (k f ) is analyzed in several figures and
tables.

Values of the first four frequency parameters ωi = ωi(a2/

h)
√
ρ/E f 1 for square thick (a/h = 10) and thin (a/h = 100)

unsymmetric laminated plates are shown for increasing val-
ues of the translational restraint parameter Tw

i , in Tables 5(a)
and 5(b). Moreover, the influence of rotational restraint
parameter Ri in the free vibration frequency coefficients is
shown in Tables 6(a) and 6(b).

In Figures 2–4 the fundamental frequency coefficients ω
corresponding to two laminated square plates are plotted
against the restraint parameters Ri and Tw

i . Figure 2 shows
the variation ofω for various values of the rotational restraint
Ri, while Figure 3 shows the variation of ω for various
values of the translational restraint Tw

i . A major increase
of frequency occurs when the elastic restraint values are in

the interval 0.1–50. Figure 4 shows the variation of ω for
various values of the rotational and translational restraint
parameters: (a) Ri = 0, Tw

i = S; (b) Ri = S, Tw
i = ∞, and

(c) Ri = Tw
i = S. The obtained curves illustrate the restraint

parameters intervals for which the frequency coefficient ω is
sensitive to Ri and Tw

i .
To asses the influence of the aspects ratio a/b in the

laminated plate response, values of the first four frequency
parameters ωi = ωi(a2/h)

√
ρ/E f 1 for rectangular thick

(a/h = 10) unsymmetric laminated plates are shown, for
increasing values of the translational restraint parameter
Tw
i (Table 7(a)) and the rotational restraint parameter Ri

(Table 7(b)) considering a/b = 1.5 and a/b = 2.
Figure 5 shows the variation of ω for various values of

the rotational restraint Ri, while Figure 6 shows the variation
of ω for various values of the translational restraint Tw

i for
rectangular laminated plates.

To evaluate the effect of different fiber orientation angles
(β) and fiber volume fraction on the dynamic properties of
the laminates, the variation of the first free vibration coeffi-
cient ω1 is plotted in Figures 7 and 8, considering two lami-
nation stacking sequences, [β/−β] and [0/β]. Two boundary
conditions have been included, C1C1C1C1 in Figure 7 and
S1S1S1S1 in Figure 6. It is observed that the [β/−β] laminate
is more sensitive to the fiber orientation angle than [0/β]
lamination scheme. The adimensional frequency parameter
is noticeable higher as the fiber volume fraction k f increases
and as the boundary conditions become clamped.

Finally, the first four free vibration coefficients are pre-
sented in Table 8 to illustrate the influence of various fiber
volume fractions and boundary conditions on the dynamical
behavior of an unsymmetric [0◦/45◦] laminated plate.

5. Concluding Remarks

A Ritz approach for free vibration analysis of general lam-
inated plates with edges elastically restrained against trans-
lation and rotation is presented in this work. The study
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Table 7: (a) Frequency parameters ωi for [0◦/45◦] carbon-epoxy AS4-3501-6 (Table 1), with different translational restraint parameter Tw
i ,

Tu
i = Tv

i = Ri = 0 (i = 1, .., 4), and a/h = 10. (b) Frequency parameters ωi for [0◦/45◦] carbon-epoxy AS4-3501-6 (Table 1), with different
rotational restraint parameter Ri, Tw

i = Tu
i = Tv

i = ∞ (i = 1, . . . , 4), and a/h = 10.

(a)

k f Mode
Translational restraint parameter Tw

i

0.1 1 10 100 1000 10000 1.00E + 10

a/b = 2

1 0.158 0.464 1.043 2.045 2.778 2.903 2.917

0.2 2 0.184 0.574 1.625 3.592 4.520 4.704 4.726

3 0.255 0.793 2.167 3.948 6.915 7.139 7.149

4 1.652 1.823 2.838 5.127 7.177 7.419 7.449

1 0.199 0.578 1.268 2.392 3.046 3.144 3.156

0.4 2 0.233 0.723 1.999 4.175 5.024 5.169 5.186

3 0.322 0.999 2.649 4.774 7.759 8.125 8.148

4 1.832 2.071 3.374 6.021 7.973 8.173 8.196

1 0.235 0.681 1.487 2.757 3.455 3.557 3.569

0.6 2 0.275 0.853 2.347 4.837 5.763 5.915 5.933

3 0.380 1.179 3.115 5.589 8.864 9.309 9.342

4 2.104 2.394 3.945 6.992 9.186 9.408 9.434

a/b = 1.5

1 0.111 0.341 0.904 1.724 2.239 2.345 2.364

0.2 2 0.141 0.443 1.335 3.326 4.739 5.023 5.067

3 0.171 0.539 1.627 3.705 5.946 6.580 6.673

4 1.423 1.542 2.285 4.768 7.832 8.845 8.980

1 0.140 0.429 1.108 2.012 2.501 2.598 2.617

0.4 2 0.178 0.559 1.664 3.964 5.396 5.649 5.686

3 0.216 0.681 2.037 4.480 6.688 7.229 7.313

4 1.587 1.731 2.729 5.680 8.857 9.749 9.869

1 0.165 0.506 1.296 2.316 2.847 2.954 2.976

0.6 2 0.210 0.660 1.957 4.587 6.194 6.469 6.509

3 0.256 0.804 2.400 5.243 7.625 8.198 8.292

4 1.815 1.989 3.182 6.582 10.085 11.034 11.163

(b)

k f Mode
Rotational restraint parameter R

φx ,φy
i

0.1 1 10 100 1000 10000 1.00E + 10

a/b = 2

0.2

1 3.444 3.858 4.588 4.806 4.833 4.835 4.836

2 5.467 5.742 6.278 6.450 6.472 6.474 6.474

3 8.161 8.349 8.750 8.890 8.908 8.909 8.910

4 8.357 8.741 9.485 9.722 9.751 9.754 9.754

0.4

1 3.854 4.314 4.989 5.183 5.183 5.185 5.186

2 6.061 6.362 6.855 7.009 7.009 7.011 7.011

3 8.971 9.187 9.552 9.678 9.678 9.680 9.680

4 8.987 9.437 10.142 10.37 10.347 10.349 10.349

0.6 1 4.421 4.946 5.682 5.866 5.887 5.889 5.889

2 6.961 7.309 7.858 8.006 8.024 8.026 8.026

3 10.160 10.584 10.999 11.124 11.139 11.140 11.141

4 10.352 10.720 11.512 11.709 11.732 11.734 11.735
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(b) Continued.

k f Mode
Rotational restraint parameter R

φx ,φy
i

0.1 1 10 100 1000 10000 1.00E + 10

a/b = 1.5

0.2

1 2.764 3.203 4.114 4.438 4.479 4.483 4.484

2 5.686 6.122 7.270 7.771 7.839 7.846 7.847

3 7.047 7.669 9.272 9.946 10.035 10.045 10.046

4 9.588 10.107 11.673 12.471 12.586 12.598 12.599

0.4

1 3.188 3.703 4.631 4.925 4.961 4.965 4.966

2 6.470 7.016 8.260 8.739 8.801 8.807 8.808

3 7.847 8.632 10.324 10.927 11.003 11.011 11.012

4 10.679 11.329 13.007 13.742 13.843 13.853 13.854

0.6

1 3.663 4.252 5.272 5.585 5.624 5.628 5.628

2 7.394 8.040 9.448 9.973 10.040 10.047 10.048

3 8.920 9.842 11.721 12.360 12.440 12.448 12.449

4 12.113 12.873 14.748 15.537 15.643 15.654 15.655

Table 8: Frequency parameters ωi for [0◦/45◦] carbon-epoxy AS4-3501-6 (Table 1), with different fiber volume fraction k f and boundary
conditions. a/h = 10.

Boundary conditions k f
Mode sequence number

1 2 3 4

S1S1S1S1

0.1 1.198 2.379 0.193 2.872

0.2 1.435 2.683 0.166 3.337

0.3 1.628 2.951 0.154 3.723

0.4 1.804 3.212 0.148 4.092

0.5 1.973 3.475 0.145 4.463

0.6 2.143 3.754 0.145 4.859

0.7 2.319 4.054 0.146 5.290

0.8 2.489 4.344 0.148 5.724

C1C1C1C1

0.1 1.826 3.091 3.560 4.502

0.2 2.073 3.407 4.032 4.961

0.3 2.287 3.702 4.452 5.387

0.4 2.498 4.003 4.874 5.824

0.5 2.715 4.321 5.317 6.290

0.6 2.949 4.671 5.807 6.809

0.7 3.207 5.062 6.359 7.396

0.8 3.466 5.449 6.934 7.982

S2S2C1C1

0.1 1.446 2.825 3.037 3.975

0.2 1.651 3.137 3.469 4.621

0.3 1.830 3.417 3.847 5.045

0.4 2.002 3.697 4.213 5.470

0.5 2.173 3.987 4.587 5.912

0.6 2.351 4.303 4.989 6.395

0.7 2.541 4.651 5.430 6.933

0.8 2.724 4.989 5.876 7.464

includes the effective elastic moduli of each lamina obtained
using the Mori-Tanaka mean field theory, which allows tak-
ing into account the influence of the fiber volume ratios and
the elastic properties of the components (fiber and matrix)
into the vibration behavior. The formulation is based on

the first-order shear deformation theory, and the generalized
displacements are approximate using sets of characteristic
orthogonal polynomials generated by the Gram-Schmidt
procedure. The consideration of all possible rotational
and translational restraints allows generating any classical
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boundary condition, only approaching the corresponding
spring parameter to zero or infinity. The algorithm is com-
putationally efficient, and the solutions are stables and
convergent. Close agreement with existing results in the
literature is shown and new results are presented in tables
and figures which could be useful for design and optimiza-
tion problems of general long fiber-reinforced laminated
plates.

Appendix

The matrices K and M in (18) are given by

[K] =
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[
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i jkh

] [
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] [
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] [
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] [
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]
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] [
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vφx
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] [
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]
[
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i jkh

] [
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i jkh

] [
K
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i jkh

]
[
K
φxφx
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] [
K
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]
sym

[
K
φyφy
i jkh

]
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,

(A.1)
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with K = 5/6
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We consider the automotive gearbox rattle noise resulting from vibro-impacts that can occur between the idle gears under excessive
velocity fluctuations of the shaft-driving gears imposed by engine torque fluctuation. Even if the rattling phenomenon has no
consequence on reliability, it may be particularly annoying for vehicle interior sound quality and acoustic comfort. The main
parameters governing such kind of vibrations are the excitation source associated with engine torque fluctuation which can be
modeled by an imposed displacement of the driveline, the inertia of the idle gear, the drag torque acting during the free flight
motion, and the impact laws. In the case of rattle, it is reasonable to assume that duration of impacts between teeth is very short
compared to the excitation period. Then, these impacts are modeled by a coefficient of restitution law. The excitation source is not
composed only with fundamental component but also with other harmonic components. This study presents some effects of these
additional components on the dynamic response of the idle gear.

1. Introduction

Acoustic comfort is an important sales point, in particular in
car industry [1]. For many years, the research efforts allowed
reduction of acoustic levels, in particular those related to
interior sources like the engine-related noise and to exterior
sources as tire and wind-related noises [2]. Consequently,
noise sources that were previously masked emerge, because
of the total reduction of the acoustic level. Among those,
rattle noise in automotive gearboxes needs to be reduced.
Actually, it is perceived like an unpleasant noise, more for its
intrusive character, than for the acoustic levels generated.

Rattle noise results from the dynamic behavior of idle
gears induced by the fluctuations of the driveline velocity.
Under certain operating conditions, the idle gears can vibrate
through their functional backlashes. Consequently, rattle
noise is mainly related to impacts between gear teeth. The
only harmful effect is radiated noise since impacts between
gears do not change the dynamic behavior of the drivelines
and do not lead to excessive loads and damage.

The key parameters governing rattle noise are the inertia
of the idle gears, the drag torque acting on the idle gears,
the elastic, and damping characteristics during impacts and
free flights and the velocity fluctuations of the driving
gears. These last ones result from velocity fluctuation of
the engine which mainly depends on the engine type,
driveline design, and car running conditions [3]. Frequency
content is dominated by harmonics of the engine rotational
velocity.

There are several studies concerning rattle noise [3–9].
Among these, some deal with the analysis of the complete
dynamic behavior of the entire driveline in relation with
design [4–6], whereas others remain localized on the idle
gears dynamics [7, 8]. Two ways are retained for introducing
the impact force [10]: it is modeled by stereo-mechanical
impact with the introduction of a coefficient of restitution [7,
8, 11–13], or by elastic and damping characteristics during
impacts [5]. Other authors concentrate their analysis on drag
torque [14]. In all these studies, the excitation source is
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generally introduced as a purely harmonic excitation related
to the engine torque fluctuations. Few experimental studies
recently considered multiharmonic excitations [13, 15, 16].

In this context, the main objective of this paper is to
present some theoretical results in relation with the effects of
multiharmonics excitation related to the acyclic fluctuations
induced by engine torque.

2. Assumptions

Several assumptions for modeling the motion of the idle
gear can be done as follows. Impacts duration is supposed
infinitely short so that impacts are described by a coefficient
of restitution. Drag torque is assumed to be constant during
the gear-free flight. This assumption remains valuable as long
as velocity fluctuation of the driving gear remains negligible
compared with the average velocity. In addition, interactions
between the dynamic response of the idle driven gear and
the motion of the driving gear are neglected. The motion
of the driving gear is assumed to be a periodic function
and corresponds to the excitation source. Finally, backlash
between teeth is assumed to be constant. Based on these
assumptions, a single-degree-of-freedom nonlinear model is
built to describe the idle gear dynamics.

3. Dynamic Modeling

3.1. Equation of Motion. The nonlinear single-degree-of-
freedom model of rattle gear is displayed in Figure 1. x(t)
is the equivalent displacement along the line of action
corresponding to angular fluctuations of the idle gear around
its theoretical position, m is an equivalent mass associated
with its inertia, F is the constant force associated with
the drag torque, y(t) is the periodic displacement function
taking into account the engine velocity fluctuation, and j
is the constant backlash between teeth. Equation of motion
during the idle gear free flight can be written in the following
form:

mẍ = −F, y(t) < x(t) < y(t) + j. (1)

A simple and usual law describing stereo-mechanical impact
is introduced:

ẋt+δt − ẏt+δt = −r
(
ẋt − ẏt

)
, (2)

with

δt −→ 0, (3)

where superdot denotes derivative respect to time and r is
the coefficient of restitution taking into account dissipation
during impact.

In addition, a limit impact velocity is defined for
which there are no rebounds anymore. Therefore, conditions
leading to a permanent contact between driven and driving
gears need to be expressed. Beyond this limit velocity, contact
between gears is preserved as long as the reaction force acting

F

y(t) + j

x(t)

y(t)

m

Figure 1: Rattle gear modeling.

on the free driven gear R(t) remains positive. Thus, for the
active flank, the following condition must be verified:

0 < R(t) = F +mÿ(t), (4)

and for the reverse flank,

0 > R(t) = F +mÿ(t). (5)

Finally, the displacement excitation is described in the fol-
lowing subchapter.

3.2. Displacement Excitation. In the case of heat reciprocat-
ing engine, torque fluctuations are periodic and character-
ized by high levels. As example, for a four-stroke internal
combustion engine with four cylinders, the fundamental
period is twice the period of the rotation of the engine output
shaft. Induced dynamic responses of every fixed gear driving
the idle gears correspond to periodic functions with a rich
spectral content. Then, y(t) can be written as follows:

y(t) =
∞∑
k=1

Hk cos
(
kωt − ϕk

)
, (6)

where ω is the fundamental circular frequency, and Hk and
ϕk are, respectively, amplitude and phase of the harmonic
components of order k. A stationary regime is considered.
Amplitude and phase are assumed to be independent of the
rotational speed of the engine and the dynamic response of
the entire driveline.

3.3. Impulse. Dimensionless impulse associated with impacts
is introduced in order to characterize excitation forces trans-
mitted to the gearbox.

As the impacts duration is assumed to be very short, the
impulse can be expressed as follows:

I = lim
δt→ 0

{m(ẋ(t + δt)− ẋ(t))}. (7)
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3.4. Dimensionless Equations. Introducing dimensionless
variables,

x̃ = x

H
, ỹ = y

H
,

j̃ = j

H
, t̃ = ωt,

R̃ = R

F
.

(8)

The dimensionless number Λ depends on the equivalent
mass m, the constant force associated with the drag torque
F, the amplitude of the excitation H , and the fundamental
circular frequency ω:

Λ = mHω2

F
. (9)

Equations (1), (2), (4), and (5) can be returned as follows:

Λ ¨̃x = −1, ỹ < x̃ < ỹ + j̃,

˙̃xt+δt − ˙̃yt+δt = −r
(

˙̃xt − ˙̃yt
)

,

R̃ = 1 + Λ ¨̃y.

(10)

And the dimensionless impulse can be written as follows:

Ĩ = I

mωH1
. (11)

4. Dynamics Induced by
a Purely Harmonic Excitation

Figure 2 displays dimensionless impulse versus parameter Λ
for an harmonic excitation. Five parts are observed and, so,
five different dynamic responses of the idle gear. The part
A corresponds to a permanent contact motion. The part
B corresponds to periodic responses with impacts on the
active flank followed by a permanent contact. The part C
corresponds to a periodic response with one impact on the
active flank per period. The part D corresponds to chaotic
motion. Finally, the part E corresponds to the periodic
response with two impacts per period, one on the active
flank (positive impulses) and the other on the reverse one
(negative impulses). The idle gear crosses the entire backlash.
This kind of response exists for a large range of Λ.
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Figure 2: Impulses versus Λ for an excitation purely harmonic, r =
0.65 and j = 8.

Dynamic response histories are displayed on Figure 3.
They correspond to the different parts described on the
dimensionless impulse map (except permanent contact mo-
tion).

5. Effects of a Multiharmonics Excitation

In this section, the second harmonic component is intro-
duced, in order to impose an excitation more representative
of the velocity fluctuation. The ratio of second harmonic
H2 to first harmonic amplitude H1 is 0.25 and its phase
ϕ2 is equal to 45◦. Compared to purely harmonic case
shown in Figure 2, dynamic behavior is very different (see
Figure 4). The parts C and E have disappeared. Beyond
solutions corresponding to successions of permanent contact
and impacts, chaotic responses solutions characterized by
impacts on the active and reverse flanks are observed.

The phase of the second harmonic plays also a significant
role. Figure 5 displays the dimensionless impulses versus Λ
for ϕ2 equal to 90◦. Periodic responses are observed. The
large range of chaotic responses disappears. The effect of the
phase on the dynamic response is highlighted on Figure 6
which displays the evolution of the dimensionless intensity
versus phase for fixed parameter Λ.

Figure 7 displays the Poincaré map for Λ equal to 3.3
(ratio of H2 to H1 is 0.25, ϕ2 is 45◦). The strange attractor
indicates that the idle gear response is chaotic. Time response
history and corresponding Poincaré map are displayed on
Figure 8 for the dynamic response corresponding to Λ equal
to 3.3 (ratio of H2 to H1 is 0.25, ϕ2 is 90◦). The dynamic
response of the idle gear is periodic with two impacts per
period, one impact on the active flank and the other on the
reverse flank, as observed for a purely harmonic excitation
with the same value Λ (Figure 3).

Finally, frequency contents and phases of the excitation
source play a significant role on the dynamic of the idle gear.
Various kinds of responses are observed, from periodic ones
with impacts on the active and reverse flanks to chaos.
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(d) Periodic response with two impacts per period

Figure 3: Time response histories of the idle gear for r = 0.65 and j = 8. Upper and lower sinusoidal curves correspond to the motion of
the driving gear teeth separated by constant clearance.
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Figure 4: Impulses versus Λ for a multiharmonics excitation ϕ2 =
45◦, r = 0.65, and j = 8.
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Figure 5: Impulses versus Λ for a multiharmonics excitation ϕ2 =
90◦, r = 0.65, and j = 8.
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Figure 6: Impulses versus ϕ2 for Λ = 1.95, r = 0.65, and j = 8.
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Figure 7: Poincaré map for a multiharmonics excitation ϕ2 = 45◦

for Λ = 3.3, r = 0.65, and j = 8.

6. Conclusion

Noise and vibration due to gear rattle are an irritating
problem. In this paper, a nonlinear single-degree-of-freedom
system modeling the idle gear dynamics has been built.
Some effects of a multiharmonics excitation are analyzed.
Dynamic responses are compared to the ones obtained in
the case of a purely harmonic excitation. Results show that,
for usual amplitudes of the second harmonic of excitation,
significant modifications of responses are observed, includ-
ing emergence or extinction of chaotic motions. Further, we
show that phases play an important role on the dynamic
of the idle gear. We can conclude that controlling the rattle
noise requires the precise knowledge of the excitation source
corresponding to the driving fixed gear response spectral
content. Finally, the variety of responses (periodic, chaotic
responses, impact occurrences on reverse and active flanks,
etc.) play an important effect on the resulting noise emitted
from the gearbox, and more particularly on its sound quality.
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Figure 8: Time response history (a) and Poincaré map (b) for a
multiharmonics excitation ϕ2 = 90◦ forΛ = 3.3, r = 0.65, and j = 8.
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The machining of deep holes is limited due to inadequate chip evacuation, which induces tool breakage. To limit this drawback,
retreat cycles and lubrication are used. An alternative response to the evacuation problem is based on high-speed vibratory drilling.
A specific tool holder induces axial self-maintained vibration of the drill, which enables the chips to be split. The chips are thus
of a small size and can be evacuated. To anticipate the potential risk of decreased spindle lifespan associated with these vibrations,
a model of the behavior of the system (spindle—self-vibrating drilling head—tool) is elaborated. In order to assess the dynamic
behavior of the system, this study develops a rotor-based finite element model, integrated with the modelling of component
interfaces. The current results indicate that the simulations are consistent with the experimental measurements. The influence of
spindle speed and feed rate on bearing lifespan is highlighted.

1. Introduction

High-speed vibratory drilling allows chips to be split thanks
to self-maintained vibration during cutting [1]. When these
vibrations have a magnitude greater than the advance per
tooth, the drill continuously enters and exits the material,
which allows the fragmentation of the chips, as shown by
Tichkiewitch et al. [2]. The chips are small and can thus be
removed easily without retreat cycles or lubrication. High-
speed vibratory drilling enables productivity to increase by a
factor of three compared to traditional techniques. Currently,
high-speed vibratory drilling is the only process capable of
producing deep holes using high-speed machining centers,
without lubricants, and with high productivity [3].

However, the excitation generated by the cutting process
can also be a source of damage to the self-vibrating drilling
head and the spindle. So the industrialization of high-speed
vibratory drilling requires the effects of vibration on the
machine, and more particularly on the spindle, to be predict-
ed. For this purpose, a model of the dynamic behavior of
the system (self-vibrating drilling head spindle) is elaborated
from a realistic assembly of the components, in order to
predict spindle bearing lifespan.

The SVDH is composed of an axial vibrating system, con-
sisting of the SVDH vibrating subsystem, mounted on a spe-
cific HSK 63 taper, and called the SVDH body. The SVDH-
vibrating subsystem is composed of the vibrating parts of
the drill holder. The SVDH body guides the axial vibrating
subsystem through a ball retainer and a classic HSK63 taper
connexion with the spindle head. The self-excited vibrations
must be tuned and controlled in order to have a magnitude
greater than the advance per tooth. Mathematical models of
the SVDH dynamics appearing in most of previous works
lead to a one-dimensional linear or nonlinear model in the
axial vibration direction governed by the mass, damping,
and stiffness of the considered system [3]. In these studies,
damping, which plays an important role in SVDH dynamic
behaviour, is estimated but not experimentally identified.
Moreover, the spindle behaviour and the interfaces between
the spindle and the SVDH are assumed to be rigid and have
not been taken into account. However, many works have
showed that tool point dynamics can be significantly influ-
enced by spindle dynamics, as well as the spindle-holder—
tool interfaces. This creates a demand for predictive knowl-
edge models that are capable of investigating the influence of
cutting conditions on high-speed spindle-SVDH system.
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Many authors have investigated the dynamic behaviour
of machine tool spindle-bearing systems, both analytically
and experimentally. They show that spindle dynamics are in-
fluenced by a large number of factors, including holder char-
acteristics [4], spindle shaft geometry and drawbar force
[5, 6], and the stiffness and damping provided by the bear-
ings [7]. Most of these factors are independent of spindle
speed, contrary to bearing properties [8, 9] and the spindle
rotor dynamics, which change according to spindle speed.
Such rotating systems have been successfully modelled
through rotor-dynamics studies [10, 11]. In previous works
[12, 13], a dynamic high-speed spindle-bearing system mod-
el based on rotor dynamics prediction was presented. Ele-
ment kinematics were formulated in a corotational coordi-
nate frame and enabled a special rotor beam element to be
developed. Model results showed that spindle dynamics are
influenced by the gyroscopic coupling and the spin softening
of the rotating shaft due to high rotation speeds.

The literature on the modelling and analysis of spindles
shows that the tool tip FRF is also greatly influenced by the
contact dynamics of the spindle-holder-tool interfaces. The
flexibility of the afore-mentioned interfaces can dominate
the dynamics of the spindle. The tool tip FRF is usually ob-
tained using experimental measurements, which require sig-
nificant testing time to take into account the large number
of spindle, holder, and tool combinations. Thus, semi-ana-
lytical approaches have been proposed to minimise experi-
mental approaches. Erturk et al. [14] use a receptance cou-
pling (RC) and structural modification method to connect
the spindle shaft and the tool holder. Schmitz et al. [15]
model the spindle holder experimentally and couple it with
an analytical model of the overhang portion of the tool.
Recent approaches consider distributed springs and dampers
between the tool and the holder along the interface contact.
[15, 16]. Contact stiffness and damping values alter the
frequencies and peak values respectively of dominant tool
tip vibration modes. The fast and accurate identification of
contact dynamics in spindle-tool assemblies has become an
important issue. Ren and Beards [17], Schmitz et al. [15],
and Movahhedy and Gerami [18] treat identification as a
nonlinear optimisation problem. Movahhedy and Gerami
[18] uses a genetic algorithm to find the global minimum of
the optimisation function

∣∣g∣∣ =
∣∣∣∣∣∣
⎧⎨⎩Re

(
gp − gm

)
Im

(
gp − gm

)⎫⎬⎭
∣∣∣∣∣∣, (1)

where gp and gm are, respectively, predicted and measured
receptances of the assembly. Ozsahin et al. [19] present
an original identification procedure based on experimental
measurements. In their work, the elastic RC equations allow
the stiffness and damping parameters of the spindle-tool as-
semblies to be obtained in closed-form expressions. In order
to predict the drill dynamics and the adequate cutting con-
ditions that lead to controlled self-excited vibrations, an
accurate comprehensive dynamic model of the cutting proc-
ess and spindle-SVDH dynamics is required.

In this paper, a hybrid model based on numerical and ex-
perimental approaches of the dynamic behavior of the system

is proposed. This finite element model takes into account
rotor dynamics effects, bearing stiffness and the real behavior
of interfaces between different system components. The sim-
ulation allows achieving the best possible cutting parameters
without damaging the bearings of the spindle.

In the second section, the spindle-SVDH rotor dynamics
model is presented. A special rotor-beam element is imple-
mented. The rolling bearing stiffness matrices are calculated
around a static function point on the basis of Lim and
Singh’s [20] formulation and then integrated into the global
finite element model. The identification of contact dynamics
in tool-SVDH-spindle assemblies is carried out using the
RC method on the basis of experimental substructure char-
acterisation. The identified models are then integrated into
the global spindle-SVDH-tool model. Finally, numerical and
experimental tool tip FRF, in radial and axial directions, is
compared in order to validate the global assembled model.

Section 3 is dedicated to the definition of optimal cutting
conditions with respect to industrial objectives. The studied
industrial context requires the maximum material cutting
rate and a rational use of the tool-SVDH-spindle set in order
to guarantee adequate rolling bearing lifespan. As a result,
a recommendation for the use of a spindle-SVDH-tool set
which respects the defined zone of interest, combining reli
ability and productivity constraints, is proposed.

Finally, conclusions are presented.

2. Model Building

The vibratory drilling system is composed of a SVDH body
clamped to the spindle by a standard HSK63A tool-holder in-
terface. A SVDH-vibrating subsystem is jointed to the SVDH
body with a specific spring and axially guided by a ball retain-
er. Finally, a long drill is held in the SVDH-vibrating sub-
system with a standard ER25 collet chuck. The spindle has
four angular bearings in overall back-to-back configuration
(Figure 1).

The spindle-SVDH-tool finite element model is restrict-
ed to the rotating system composed of the spindle shaft,
the SVDH and the drill. An experimental modal identifica-
tion procedure was carried out on the different spindle sub-
structures and showed that spindle behaviour can be re-
stricted to rotating structure behaviour [12]. The interfaces
represented by the HSK63 taper, spring and ball retainer, and
collet chuck were taken into account in the model. The CNC
milling machine structure was assumed to be infinitely rigid
compared to the other parts of the system.

The numerical model of the spindle SVDH tool is based
on the integration of the rotating system’s finite element
model (FEM), the rolling bearing model, and the interface
model. Figure 2 summarises the various stages of model
development. The system substructures were modelled
through rotor-dynamics formulations. A readjustment pro-
cedure was carried out on undefined FEM material proper-
ties in order to fit model results to experimental ones. The re-
ceptance coupling method was used to identify the dynamic
parameters of the system’s interfaces. Once each structural
subsystem model was validated, the identified interface
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Figure 1: The spindle-SVDH-tool system and its finite element model.

behaviour parameters were integrated to obtain the assem-
bled global model.

2.1. Modelling of Structural Subsystems. The spindle SVDH
tool system is composed of four structural subsystems: the
drill, the SVDH-vibrating subsystem, the SVDH body, and
the spindle. The motion of the rotating structure is consid-
ered as the superposition of rigid and elastic body displace-
ments. Dynamic equations were obtained using Lagrange
formulation associated with a finite element method. Due to
the size of the rotor sections, shear deformations had to be
taken into account. Then, the rotating substructure was
derived using Timoshenko beam theory. The relevant shape
functions were cubic in order to avoid shear locking. A spe-
cial three-dimensional rotor-beam element with two nodes
and six degrees of freedom per node was developed in
the corotational reference frame. The damping model used
draws on Rayleigh viscous equivalent damping, which makes
it possible to regard the damping matrix D as a linear
combination of the mass matrix M and the spindle rigidity
matrix K

D = aM + bK, (2)

where a and b are damping coefficients.

The set of differential equations can be written as

M
(

qN
)

q̈N +
(

C
(

qN , q̇N
)

+ D
)

q̇N + KqN = F(t), (3)

where M is the mass matrix, and C matrix contains the rota-
tional dynamics effects. qN and F(t) are the nodal displace-
ment and force vectors. An accelerating rotor gives rise to
previous time-variant equations (3), but treatment of the
rotor using a pseudoconstant speed approach can still be de-
scribed by means of linear time-invariant models and is valid
in many cases (4):

M0q̈N + (2ΩG + D)q̇N +
(

K−Ω2N
)

qN = F(t), (4)

where M0 is the constant part of matrix M, and G and N
proceed from the decomposition of matrix C.

2.2. Modelling Angular Contact Ball Bearings. The rotating
system is supported by four (two front and two rear) hybrid
angular contact bearings. The rolling bearing stiffness matri-
ces were calculated using in-house software developed on the
basis of Lim and Singh’s [20] formulation. The bearing stiff-
ness model represents the load-displacement relation com-
bined with the Hertzian contact stress principle and was
calculated around a static function point characterised by
the bearing preload: δ. Based on Rantatalo’s prediction [9],
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Figure 3: Bearing stiffness variation depending on spindle speed [12].

the initially calculated bearing stiffness is spindle speed de-
pendent because of the gyroscopic and centrifugal force
Fc, which acts on each ball (Figure 3(a)). As the speed
increased, the load conditions between the balls and the
rings in the bearing changed because of the centrifugal force
(Figure 3(a)). Then, speed-dependent bearing stiffness was
integrated into the global spindle FEM and influenced the
natural frequencies of the spindle-SVDH-tool unit under
consideration.

2.3. Structural Systems Dynamic Readjustment. While de-
tailed knowledge of the spindle-SVDH-tool system is in gen-
eral not available in a manufacturing environment, models
need to be readjusted in order to fit experimental results.
The readjustment parameters are the Young modulus: E,
the damping coefficients: (a, b), and the rolling bearing pre-
load: δ. The readjustment procedure is proposed to tune
the previous variable in order to fit the model results to
the experimental frequency response function (FRF). These
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Figure 4: Receptance coupling notation.

parameters are readjusted by minimizing the gap between the
measured and the modelled tool tip node FRF for nonro-
tating components, using an optimisation routine and a least
squares type objective function defined as

r =
ωmax∑

ω=ωmin

(
Hnum(ω, (E, a, b, δ))−Hexp(ω)

)2
, (5)

where Hnum(ω, (E, a, b, δ)) and Hexp(ω) are, respectively, the
numerical and experimental FRF.

2.4. Modelling and Identification of Spindle-SVDH-Tool Inter-
faces. The dynamic behaviour of the interfaces represented
by the HSK63 taper, spring and ball retainer, and collet
chuck was taken into account. The identification procedure
of the interface models was based on the receptance coupling
method.

2.4.1. Receptance Coupling Background. In this section, the
RC equations are established. At the top of Figure 4, the
substructure A and the substructure B are represented,
connected by interface H. At the bottom of Figure 4, the
assembled structure is represented. This figure enables the
excitation point and the measurement points used in the
receptance coupling approach to be located.

The notation Aij(ω) = (xai(ω)/Faj,Ext→A(ω))|Fak,Ext→A=0,∀k /= j

refers to the spatial receptance vector, whose output is the
translation of point ai and whose input is the force at point
a j, when all other forces applied to substructure A are
zero. The receptance of the assembled structure ABij can be
expressed according to the receptance of substructures Aij

and Bij and the receptance of interface H. The movement
equations of each end point of substructures A and B and
of structure AB are written as shown in (6) to (8). The
behaviour of the interface, assuming zero mass, is given in
(9), and the compatibility conditions are written in (10).

Substructure A:

xa1 = A11Fa1,Ext→A + A12Fa2,H→A,

xa2 = A21Fa1,Ext→A + A22Fa2,H→A.
(6)

Substructure B:

xb1 = B11Fb1,H→B + B12Fb2,Ext→B,

xb2 = B21Fb1,H→B + B22Fb2,Ext→B.
(7)

Substructure AB:

xab1 = AB11Fab1,Ext→AB + AB12Fab2,Ext→AB,

xab2 = AB21Fab1,Ext→AB + AB22Fab2,Ext→AB.
(8)

Interface:

xh2 − xh1 = HFh2,B→H ,

Fh2,B→H = −Fh1,A→H.
(9)

Compatibility conditions:

xa1 = xab1,

xb2 = xab2,

xh1 = xa2,

xh2 = xb1,

Fa2,H→A = Fh1,A→H ,

Fb1,H→B = Fh2,B→H ,

Fa1,Ext→A = Fab1,Ext→AB,

Fb2,Ext→B = Fab2,Ext→AB.

(10)

By integrating the compatibility and interface equations ((9)
and (10)) into (6) to (8), system (11) is obtained

Fab1,Ext→AB(A11 − AB11) + Fa2,H→A(A12)

+Fab2,Ext→AB(−AB12) = 0,

Fab1,Ext→AB(A21) + Fa2,H→A(A22 + B11)

+Fab2,Ext→AB(−B12) = 0,

Fab1,Ext→AB(−AB21) + Fa2,H→A(−B21)

+Fab2,Ext→AB(B22 − AB22) = 0,

(11)

AB11 and AB21 are elaborated from the definition of
ABij(ω) = (xabi(ω)/Fab j,Ext→AB(ω))|Fabk,Ext→AB=0,∀k /= j

, when
Fab2,Ext→AB = 0 in (11). The receptance equations are
obtained ((12)-(13))

AB11 = A11 − A12[B11 + A22 + H]−1A21, (12)

AB21 = A21[B11 + A22 + H]−1B21. (13)

Similarly, to obtain AB22 and, AB12 it is sufficient to impose
Fab1,Ext→AB = 0 in (11). Then the standard receptance
equations are obtained(14)

AB22 = B22 − B12[B11 + A22 + H]−1B21,

AB12 = A12[B11 + A22 + H]−1B12.
(14)

From the receptance of the system substructures Aij, Bij,
associated with the interface model H, the reconstruction of
the assembled structure FRF: ABij is possible.
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tem) and interfaces (spring and ball retainer), (b) identification of
the stiffness: k and the damping factor: c by minimizing the gap
between AB11-reconstructed and AB11-direct.

2.4.2. Application to the SVDH-Vibrating Subsystem/SVDH
Body Interface. The interface between the SVDH-vibrating
subsystem and the SVDH body is a prismatic joint whose
axial stiffness is controlled by a spring. The SVDH-vibrating
subsystem is guided in axial translation through a ball
retainer, which controls the radial stiffness of the interface.
Figure 5(a) shows these components. The axial dynamic
behaviour of the interface was modelled using a spring
damper: Hmodel = 1/(k + icω). This interface was assumed
to be rigid in the radial direction.

The k and c values were determined by minimizing the
following r criteria:

r =
ω0+ε∑

ω=ω0−ε
(AB11-reconstructed(ω, k, c)− AB11-direct(ω))2,

(15)

where AB11-reconstructed and AB11-direct represent, respectively,
the RC-constructed FRF obtained by (12) and the measured
FRF on the assembled system. ω0 is the interface mode
pulsation. The optimisation procedure was carried out on a
3 dB bandwidth around ω0. In Figure 5(b), it can be noticed

that the AB11-reconstructed and AB11-direct curves are in good
agreement, which enables the spring-damper interface model
and the identified values (k = 1.13 × 106 N/m and c =
24 Ns/m) to be validated.

2.4.3. Application to the Collet Chuck Interface. The interface
between the drill and the SVDH-vibrating subsystem is
a collet chuck joint. Receptance AB21-direct is preferred to
AB11-direct in order to facilitate the experimental identifica-
tion procedure. Moreover, the mass of the accelerometer is
not negligible compared to the mass of the drill. In addition,
the SVDH-vibrating subsystem is not in the same material
configuration when the collet chuck is tightened on a drill as
when it is not. For these reasons, receptance AB21-reconstructed

(13) was obtained using numerical receptance for compo-
nents A and B. The identification procedure provided collet
chuck stiffness and damping factors of, respectively, 14.8 ×
106 N/m and 4 Ns/m.

2.4.4. Application to the HSK 63 Taper Interface. The exper-
imental modal analyses carried out on the spindle/SVDH
body system in the axial direction allow the HSK 63 interface
to be considered as a rigid connection (Figure 6). Indeed, no
specific mode for the HSK 63 taper interface appears between
0 and 3000 Hz.

2.5. Model Assembly and Experimental Validation. As in a
classic finite element procedure, dynamic equations of the
overall system, composed of the drill, the SVDH-vibrating
subsystems, the SVDH body, and the spindle, were obtained
by assembling element matrices. The spring-damper connec-
tion parameters between the drill and the SVDH-vibrating
subsystems and between the SVDH-vibrating subsystems
and SVDH body, identified by the receptance coupling meth-
od, enabled the rotor-beam models of the components to be
assembled.

The spindle-SVDH-tool assembled model was validated
by comparison between numerical and experimental FRF, as
shown in Figure 7.

Figure 7(a) represents experimental and numerical axial
FRF of the assembled system. The 60 Hz and 4700 Hz
modes are, respectively, due to the spring-ball retainer and
collet chuck interfaces as mentioned in the previous subsys-
tem identification procedure. Some parasitical experimental
bending modes at 193 Hz, 1237 Hz, and 3433 Hz are present
in the experimental FRF.

Figure 7(b) represents experimental and numerical radial
FRF of the assembled system. The 193, 1237, and 3433 Hz
modes are related to the drill’s bending modes. The 376 Hz
mode is controlled by the bearings. Additional numerical
modes are present at 1830 and 3740 Hz. These frequency
peaks are related to the dynamics behaviour of the rear side
of the spindle. They do not appear in the experimental FRF
since the displacements of the rear side of the real spindle are
blocked by the motor. For the axial and radial FRF, a good
correspondence between the numerical and experimental
curves enabled the numerical model to be used for further
investigations.
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3. Bearing Lifespan Predictions

The industrial context of the proposed paper is to realize
high-speed vibratory drilling operation, with a drill diameter
of 5 mm, with a drill depth of 100 mm, without retreat cycles
or lubrication, in a mass production system.

In this section, the numerical model will be used to
predict bearings lifespan for various cutting conditions, in
this context. The calculated bearing lifespan, thanks to exper-
imental data, was compared to industrial recommendations

in order to give rules of uses to obtain the maximum removal
rate with respect to system lifespan.

For bearing lifespan calculations, experiments were car-
ried out to measure the cutting force for different cutting
conditions, using a three-component dynamometer (Kistler
dynamometer type 9257B). High-speed vibratory drilling
operations, representative of the industrial context, were
performed on 35MnV7 steel, with a drill of 116 mm length
and of 5 mm diameter. The experimental setup is represented
in Figure 8(a). Rotation speed and feed rate were tested,
respectively, between 5500 and 15500 rpm and between 0.05
and 0.15 mm/rev. Only the drilling operations that led to
regular chips fragmentation were used to predict bearing
lifespan, as shown in Figure 8(b). The time-variant value of
the radial forces, which depends on the angular orientation
of the cutter as it rotates through the cut, was expanded
into a Fourier series and then truncated to include only
the fundamental frequency. These forces, combined with the
numerical FRF of the model, between the excitation node
and the bearings nodes, allow the resulting rolling bearings
solicitation to be determined. The rolling bearings lifespan is

Lh = 106

60N

(
C

P

)3

, (16)

where C is the basic dynamic load and P the equivalent
dynamic load in Newtons.N is the spindle speed in rpm. The
values obtained are expressed in hours and can be compared
to an industrial objective of 20000 hours.

3.1. Effect of Cutting Conditions on Bearing Lifespan. First,
the bearings with the shortest lifespan is sought, because it is
the element upon which the lifespan of the entire spindle de-
pends. For all cutting conditions, the bearings with the short-
est lifespan is always the front bearings. From Figure 9,
which represents the extreme lifespan of the different bear-
ings, the strong influence of the cutting conditions on the
bearings lifespan can be noticed. Industrial recommenda-
tions for spindle lifespan are 20000 hours. The shortest
calculated lifespan is 55000 and corresponds to the cutting
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conditions given rise to the best material removal rate (N =
12000 rpm, f = 0.125 mm/rev). Thus, a high-speed vibra-
tory drilling operation is always compatible with industri-
al standards, even under the best material removal rate cut-
ting conditions.

Figure 10(a) shows the influence of the feed rate on bear-
ings lifespan, for a spindle speed of 12000 rpm. Only feed
rates higher than 0.05 mm/rev were tested, because for feed
rates below this limit, the productivity is too low and high-
speed vibratory drilling loses its relevance. For feed rates

higher than 0.125 mm/rev, no stable vibrations of the drill
were obtained. The bigger the feed rate, the lower the bear-
ings Lifespan. However, even the shortest bearings Lifespan
is compatible with industrial standard. Hence, the optimal
feed rate of 0.125 mm/rev is retained. Figure 10(b) shows
that cutting forces are modified by the feed rate. Similarities
between the curves in Figures 10(a) and 10(b) indicate that
the bearing lifespan is mainly influenced by the feed rate.

Figure 11(b) shows the variations in bearing lifespan de-
pending on spindle speed, for a feed rate of 0.05 mm per rev-
olution. The curve enables the determination of a spindle
speed at 8500 rpm which maximizes bearing Lifespan and a
spindle speed at 11500 rpm which minimizes it. In order to
optimize productivity, as shown on Figure 8(b), the recom-
mended cutting spindle speed is 12000 rpm.

The curves of Figure 11 illustrate the dynamic effects due
to high rotational speed, such as gyroscopic coupling and
spin softening, on system behaviour, and hence on bearing
lifespan. Figure 11(a) represents the effect of spindle speed
on the first two radial modes of the system. The dotted line
indicates the drill oscillation frequency and is plotted from
experimental data measured during high-speed vibratory
drilling operations. The critical speed, at 11500 rpm, corre-
sponds to the intersection of the radial mode frequencies
with the excitation line due to the drill oscillations.

4. Conclusions

In this paper, a comprehensive approach to developing a hy-
brid model of the dynamic behavior of the spindle self-vibra-
tory drilling head—tool system has been proposed. This ap-
proach has resulted in a numerical model enriched with
physical data. The various components of the system are
modelled using a specific beam element, taking into account
the gyroscopic effects, centrifugal forces, and shear deflec-
tion. The receptance coupling method is used to identify the
dynamic behavior of the interface. The complete system is
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then obtained by assembling the beam model of each com-
ponent using spring-damper elements. Finally, the assem-
bled model is validated by comparisons between numeri-
cal and experimental FRFs. The model is used to predict the
influence of a high-speed vibratory drilling operation on the
bearing lifespan. The predictions of bearing lifespan are used
to give rules of uses of the high-speed vibratory drilling head.

Nomenclature

Aij: receptance vector of system A
xai: translation of point i of system A
Faj,Ext→A: force applied to system A at point j
Hmodel: interface model receptance
k: interface stiffness
c: interface damping factor
ABij-reconstructed: system AB receptance, reconstructed

using receptance-coupling equations
ABij-direct: system AB receptance, directly

measured
D: damping matrix
a, b: damping coefficients
M: mass matrix
K: stiffness matrix
C: rotational dynamic effects matrix
G: gyroscopic matrix
N: spin softening effects matrix
Ω: rotor angular velocity
qN : nodal displacement
F: force vector
E: Young modulus
δ: rolling bearing preload
N : spindle speed in rpm
Lh: bearing lifespan
C: basic dynamic load
P: equivalent dynamic bearing load.
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Nowadays, extending the NVH prediction reliability to the whole frequency range is an attractive goal of vibroacoustics. Deter-
ministic methodologies are well established for the low-frequency range, but, decreasing the wavelength, energy-based methods
are necessary. In such a range, a crucial role is played by small perturbations which highly influence the response sensitivity.
Moreover, taking into account these variations allows to make the product design more robust and even quicker. Introducing
geometrical uncertainties within the classic BEM formulation allows to obtain the so-called stochastic BEM. As a result, the
solution shows deterministic behaviour at low frequencies; decreasing the wavelength, the effect of the uncertainties smooths the
response. Consequently, it is possible to obtain an averaged trend over the whole frequency range which asymptotically tends to the
deterministic one. In this paper, we deal with three-dimensional acoustic SBEM. First, the formulation and its basic assumptions
are presented. Secondly, they are applied to academic cases to show its potentialities in predicting vibroacoustic behaviour over a
wide frequency range.

1. Introduction

To correctly predict the midfrequency behaviour of struc-
tures is a crucial objective of vibro-acoustics. Generally, a me-
chanical structure is a system made by several components
with different geometrical and material properties which
consequently exhibit different vibro-acoustic behaviours.
The prediction becomes even more problematic if uncertain-
ties and perturbations are taken into account in the analysis.

Depending on the structure dimension, the whole fre-
quency range can be split in three domains. The low-frequen-
cy domain is characterized by a long wavelength in in respect
to the system dimension. In the high-frequency range, the
wavelength is much smaller respect to such a dimension.
Finally, a transition region exists, the so-called midfrequency
range.

Deterministic techniques as finite element method (FEM)
[1] and boundary element method (BEM) [2, 3] guarantee a
reliable prediction at low-frequencies. The current compu-
tational resources allow these numerical methods to be effi-
cient even for complex structures as far as the low-frequency

domain is concerned. Nevertheless, the smaller the wave-
length, the more refined the discretization required and is
obtaining an accurate prediction becomes very demanding.
However, deterministic methods can be pushed up in fre-
quency by means of stabilization and accelerating techniques,
and it becomes possible to use them in the middle range.
Fast multipole methods [4] and domain decomposition and
stabilized FE [5] are enhancements of, respectively, classic
BEM and FEM to shift their usage up to higher frequencies.
A novel wave based method (WBM) [6] allows avoiding large
computational resources and model discretization.

At low frequencies, material properties and geometry
behaviour are known with sufficient precision and the
response is not so sensitive to variations. At high-frequencies
model properties are highly uncertain, and the solution is
very sensitive to small perturbations. Manohar and Keane
[7, 8] highlight these effects computing the eigenfrequency
density functions of a beam whose mass density is affected
by random uncertainty. Moreover, according to Fahy and
Mohammed [9], the differences among systems, which share
the same design characteristics and the effects of these
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differences on vibrational behaviour, are individually unpre-
dictable in the high-frequency range, therefore a probabilistic
model is appropriate. The effect of this sensitiveness can be
seen in Figure 1. The FRFs of a plane plate, obtained with a
Monte Carlo simulation, varying the geometrical and phys-
ical parameters (length, thickness, width, Young modulus,
and density), show that above 100 Hz it is no more possible
to have a precise and defined response, but a spread of results
[10]. The average of the spread can be efficiently represented
by a smoothened curve which neglects the local peak but
predicts the overall trend. Consequently, using deterministic
techniques over the whole frequency range becomes mean-
ingless.

The statistical energy analysis (SEA) [11] is a widely
employed tool to solve many acoustic and vibration prob-
lems in the high frequency range [12]. For SEA, the power
transfer between subsystems is proportional to the difference
of the model energy levels in the subsystems. As a hypothesis,
the structure has to be nonzero damped, input powers un-
correlated, and the subsystems weakly coupled. Moreover,
the modal density of each subsystem has to be high. In
addition, even if large literature exists, the determination of
coupling loss factors, which regulate the energy exchange
between subsystems, and the discretization of systems are
still crucial aspects to build a reliable model [13]. Moreover,
variations in energy density within the subsystem are not
taken in account and it is not possible to control directly
the uncertainties on the model. To tackle the first issue, the
virtual SEA [14] has been carried out. The novelty of the
method consists of the development of a frequency depend-
ent procedure for defining the classic SEA subsystem.

Promising approaches are the wave and finite element
method (WFE) [15] and the waveguide finite element
method [16] to model the structure dynamics which are
piecewise homogeneous or periodic in one or two dimen-
sions or which are axisymmetric. The wave methods allow to
reduce considerably the dimension of the problem and thus
the effort for calculations.

In the midfrequency range complex structures can be
classified as comprised of two classes of subsystems, respec-
tively, exhibiting an LF and a HF behaviour. To deal with the
modelling requirements, hybrid approaches, which merge
deterministic and energy methods, have been developed.
Shorter and Langley [17] developed the a hybrid method to
couple FE and SEA. Stiff components are modelled with FE
since they have low modal density, flexible components are
analysed with SEA since they have high modal density [18].

In the high-frequency range it has been proven that the
flow of vibrational energy between weakly coupled subsys-
tems is analogous to the way in which heat flows between
two bodies of different temperature in a thermal analysis.
Starting from the previous assumption, the Energy Flow
Method (EFM) approaches the vibro-acoustic analysis in the
HF range using a heat-conduction analogy. The method is
derived from a local energy balance leading to a constitutive
relationship analogous to the heat conduction equation
[19]. Energy variations are smoother than displacement,
thus an energy flow approach is more efficient even for
high-order modes. Moreover, the numerical cost for solving
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Figure 1: From [10], FRFs functions of a plane plate, varying the
geometrical and physical parameters. Mean value (grey line) and
spread (black).

the thermal problem is reduced compared to the wave-
based approach. Many applications of these methods were
proposed in the past. In particular, Wohlever, Bouthier, and
Bernhard give some results regarding the energy models
of rods, Euler-Bernoulli beams [20], membranes [21] and
Kirchoff-Love plates [22] applying the power flow analysis.
This formulation is obtained computing the real part of the
harmonic energy flow balance. The near field contribution is
assumed equal to zero, finally the spatial average operation
allows obtaining a relation between the total energy density
and the active power flow. Lase et al. [23], Ichochou et al.
[24] developed the General Energy Method (GEM) for rods
and beams. This method consists of expliciting the different
terms of the harmonic complex energy flow balance. In this
way, energy density, active power flow, Lagrangian density,
and reactive power flow are obtained using a wave descrip-
tion. The application of some high-frequency assumptions
leads to a simplified energy method (SEM). Lagrangian
density and reactive power flow are assumed negligible, since
their frequency average are equal to zero. This corresponds
to neglecting the evanescent wave field far from the loadings
and structure discontinuities, and the interfaces between the
propagative waves are not taken for granted.

Solving the problem using these formulations requires
the definition of power boundary conditions which are diffi-
cult to evaluate. Usually they are replaced by the power asso-
ciated to infinite or semi-infinite structure. Viktorovitch et al.
[25, 26] shows that the same power flow analysis and sim-
plifed energy method formulations can be obtained intro-
ducing random parameters in the description of the geomet-
rical parameters of the structure. The stochastic approach
leads to a smooth response which is strongly influenced
by the uncertainty. As a result, the higher the uncertainty,
the smoother the response. Moreover, at high frequencies
this formulation converges asymptotically to the SEM curve
which is the response of the infinite system.

The capability to predict effects of uncertainties also has
a direct impact on the product design. Indeed, during the
industrialization process, small variations and irregularities
are present and influence the vibro-acoustic behaviour of the
whole structure, especially at high frequencies. This makes
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the classical deterministic approaches not reliable. Obtaining
the average behaviour allows to avoid a demanding Monte
Carlo analysis or other sampling procedure, but still to
deliver a robust design.

Viktorovitch et al. [27, 28] also introduced the so-
called Smooth Integral Formulation (SIF) for one- and
two-dimensional cases. This approach leads to a boundary
integral formulation coupled with a statistical approach to
account for uncertainties in the structural parameters. Intro-
ducing randomness to the geometrical or/and material prop-
erties of the structure leads to a precise description of the
deterministic low frequency response and a smooth response
in the high frequency field. This corresponds to the average
of the strongly oscillating vibratory response which is solved
in one go instead of using a sampling procedure. The starting
point for SIF is the direct BEM formulation with the addition
of supplementary equations which represent the energetic
part of the problem. Differently from the well-known statis-
tical methods, SIF allows to directly control the uncertainties
on the model shape. As a result, when the frequency increases
and the deterministic solution of the nominal structure
starts to be meaningless, the SIF response allows to take
into account effects of uncertainties presenting a smoothing
behaviour towards an energetic description. On the other
hand, if we want to use the energy methods in the midfre-
quency range, their assumptions become no longer valid. On
the contrary, the SIF provides an averaged behaviour of the
perturbed system. Since the stochastic approach is applied to
a standard BEM formulation, the method is called stochastic
boundary element method (SBEM).

Pratellesi et al. [29, 30] and Viktorovitch and Pratellesi
[31] developed a hybrid formulation to couple SBEM,
employed for the high-frequency part, with the finite element
description of the low frequency behaving subsystems. The
coupling allows to account for both deterministic and sta-
tistical contributions in the response of the structure and
therefore to obtain a consistent formulation for the midfre-
quency range. Application cases were extended to one and
two dimensions.

In this paper, SBEM methodology is applied to three-
dimensional vibro-acoustic cases. First of all, a description
of the methodology is presented. Uncertainties are applied to
the expectation of the classic BEM formulation. Successively,
additional relations are used to model the energetic part of
the system. To prove the applicability of SBEM, a rectangular
and a spherical acoustic cavity, with different degree of
uncertainty, are investigated using SBEM. Results are shown
both as deformed shape of a field mesh plane and response
function computed at a solution point. Finally, conclusions
are drawn, and further steps in research are highlighted.

2. The Boundary Element Method

Many problems related to steady-state oscillations lead to the
Helmholtz equation,

∇2p(x) + k2p(x) = 0 on D, (1)

where p is the acoustic pressure at x, k is the wavenumber
ω/c, ω is the circular frequency, c is the speed of sound

and D is the domain. The boundary element method allows
to find an approximate solution to the problem in (1)
with proper boundary conditions. In order to obtain the
boundary integral formulation, (1) is integrated twice via
Green’s theorem over one side of the domain, using free space
Green’s functions

G
(

x, y
) = e−ikr

4πr
, (2)

where r = |x − y|. This leads to the Helmholtz integral
equation

cs(x)p(x) =
∫
Df

f
(

y
)
G
(

x, y
)
dV

+
∫
∂D
p
(

y
)
dG

(
x, y

)
ds−

∫
∂D
G
(

x, y
)
dp

(
y
)
ds,

(3)

denoting with dp the derivative of the pressure p and dG
the derivative of the Green kernel, both with respect to the
variable x. Df is the domain in which f is defined. Moreover,
cs(x) is a coefficient dependent on the position of the point
x. If x is inside the domain cs is equal to 1, if it is outside
the domain cs is equal to 0, and if it is on an approximately
smooth boundary ∂D, cs is equal to 1/2. Let us apply on ∂Dp

pressure boundary condition

p(x) = p̂(x) on ∂Dp, (4)

and velocity boundary condition on ∂Dv

dp(x) = d̂p(x) on ∂Dv. (5)

∂Dp and ∂Dv constitute partitions of ∂D. A proper discretiza-
tion of the boundary allows to write the fundamental BEM
equation

cs p(x) =
∫
Df

f
(

y
)
G
(

x, y
)
dV

+
Nv∑
j=1

∫
∂Dv

[
pjdG

(
x, y

)− dp̂ jG(x, y
)]
ds

+
Np∑
k=1

∫
∂Dp

[
p̂kdG

(
x, y

)− dpkG(x, y
)]
ds.

(6)

Firstly the unknowns are computed at the nodes of the
boundary, secondly the response is evaluated projecting these
boundary contributions at a field solution point.

3. The Stochastic Boundary Element Method

3.1. Overview of the Random Formulation. Classic BEM
provides a deterministic and reliable prediction in a low-
frequency range. Decreasing the wavelength, sensitivity to
small perturbation becomes higher and BEM fails to provide
a useful representation of the vibro-acoustic phenomena.
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The SBEM formulation allows to obtain an averaged behav-
iour over the whole frequency range. Indeed, the prediction
is deterministic at low frequencies, where effect of pertur-
bations are negligible. Increasing the frequency, the SBEM
takes into account uncertainties achieving a smoothened re-
sponse.

Many kinds of uncertainties can affect the structure
characteristics. In this work we deal with geometrical ones,
thus we suppose that the shape of the model and excitation
points are perturbed. This is due to the fact that introducing
other kind of uncertainties would produce a formulation
much more difficult to handle.

Randomized boundary parameters and force application
points are expressed as follows

x̃i = xi + εi, (7)

where xi is the deterministic value of the parameter while εi
is the zero mean random variable. To solve the formulation, a
statistic probability distribution should be introduced. It can
assume different shapes, Gaussian, triangular, rectangular,
hyperbolic, and so forth. The overall density function of
the random variables can be evaluated for n independent
random variables as

fε1,...,εn
(
y1, . . . , yn

) = n∏
i=1

fεi
(
yi
)
. (8)

The expectation of a generic function of n variables
h( ỹ1, . . . , ỹn), where each variable yi has a distribution f (yi),
is

〈
h
(
ỹ1, . . . , ỹn

)〉 = ∫ +∞

−∞
· · ·

∫ +∞

−∞
h
(
y1, . . . , yn

) n∏
i=1

fεi
(
yi
)
ds.

(9)

Directly computing the expectation of the boundary el-
ement formulation (6), we can evaluate the first-order
moment (FOM) of the variable. This quantity does not give
interesting information about the system behaviour because
increasing the frequency, the first order moment vanishes to
zero. Multiplying FOM equations by well-chosen variables,
it is possible to obtain the second order Moments of the
unknowns. As we previously said, energy variations are
smoother than displacement and using an energy flow to
evaluate the response is more efficient. Since the second order
moments are quantities strictly related to an energy descrip-
tion of the vibrational behaviour, they do not converge to
zero but, as the frequency increases, give a smooth trend.
Moreover, the high the uncertainty level, the smoother the
prediction.

In order to obtain the second order moments of the varia-
bles, let us consider (6) computed at point x̃i ∈ ∂Ω̃v, multiply
it by the complex conjugate of the unknown variable p̃∗i
and finally compute the expectation of the product. Using

the linearity property of the expectation operator, we obtain
(10) expression

1
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(10)

On the other hand, we can consider (6) computed at point
x̃i ∈ ∂Ω̃p, multiply it by the complex conjugate of the

unknown variable d̃p∗i and finally compute the expectation
of the product

1
2

〈∣∣∣d̃pi∣∣∣〉 p̂i =
〈
d̃p∗i

∫
D̃ f

f
(

y
)
G
(

y, x̃i
)
dV

〉

+

〈
d̃p∗i

Nv∑
j=1

p̃ j

∫
∂D̃j

dG
(

y, x̃i
)
ds

〉

−
〈
d̃p∗i

Nv∑
j=1

∫
∂D̃j

d̂p jG
(

y, x̃i
)
ds

〉

+

〈
d̃p∗i

Np∑
k=1

∫
∂D̃k

p̂kdG
(

y, x̃i
)
ds

〉

−
〈
d̃p∗i

Np∑
k=1
k /= i

d̃ pk

∫
∂D̃k

dG
(

y, x̃i
)
ds

〉

+

〈∣∣∣d̃pi∣∣∣2
∫
∂D̃i

dG
(

y, x̃i
)
ds

〉
.

(11)

Equations (10) and (11) contain high-order statistical mo-
ments and a large number of unknowns. Since the problem
has much more unknowns than equations, cross-products
have to be simplified and some statistical assumptions have
to be introduced.

3.2. Assumptions. To reduce the number of unknown cross-
products and the amount of supplementary equations need-
ed to solve the problem, we introduce three assumptions
based on physical considerations.
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The first two assumptions are related to isolated systems
and define the dependence between contributions coming
from different sources. On the other hand, considering
systems which mutually exchange power, a third assumption
for nonisolated structures has to be used. This assumption
defines the coupling condition between two or more systems
and allows to model the power exchange from one to the
other.

To introduce the assumptions, we define two kind of
sources: power inputs as external loadings or velocity bound-
ary conditions are considered as primary sources; boundary
conditions which not describe a power transfer are named
secondary sources. The latter are constituted by the multiple
wave reflections of the wave stemming from the loadings.

Assumption 1. The contributions of two sources are statistically
independent when the positions of the sources or the target
points are distinct. The physical reasons behind this assump-
tion are the following: positions of different sources and
target points are statistically independent because the two
contributions can be supposed independent; each unknown
is naturally correlated only to the power inputs and then to
loadings and velocity boundary conditions.

Assumption 2. It is considered that a force or a displacement
variable expressed at any point of the structure is only
correlated with the contribution of the primary sources at that
point. This assumption states that Green’s function and the
related intensity of a secondary source are independent and
the average of the product is equal to the product of the
averages. It is important to explain the physical meaning of
this assumption. Let us consider two frequency-dependent
functions A and B. Each of them can be expressed as

A(ω) = 〈A(ω)〉 + εA(ω),

B(ω) = 〈B(ω)〉 + εB(ω),
(12)

where the average of the fluctuation ε is equal to zero. If we
compute the expectation of the product, we obtain

〈A(ω)B(ω)〉 = 〈A(ω)〉〈B(ω)〉 + 〈εA(ω)εB(ω)〉. (13)

The cross-products are suppressed form (13) because they
are equal to zero since they are defined as fluctuating
functions. We can discuss the physical reasons which cause
the vanishing of the second term on the right-hand side.
The convergence towards zero depends on their correlation,
amplitude, and frequency of oscillations. Let us consider
the Green functions G(x, y1) and G(x, y2) instead of A and
B. When y1 ≈ y2, the difference of amplitude fluctuations
are small and the two functions overlap as frequency
increases. On the other hand, when y1 /= y2, G(x, y1) and
G(x, y2) are different, independent and rapidly oscillate at
medium and high frequencies. If y1 is far away from y2, the
randomness introduced at y1 it is not directly correlated to
the randomness introduced at y2. In general, approaching
the mid- and high-frequency range the high modal overlap,
the high modal density and the low amplitude fluctuations
allow to state that the sources are independent.

Assumption 3. The boundaries connecting two substructures,
of which one contains a primary source, become primary
sources for the other substructure. This assumption allows to
model the power flow from one system to the other. Finally,
we can state a general rule which can synthesize all of them:
unknowns are only dependent on sources which contribute
to the power flow within the system.

3.3. Final Formulation. Applying the first two assumptions,
the fundamental SBEM equations are obtained. For x̃i ∈
∂Ω̃v, (10) becomes
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(14)

Applying the assumptions to (11) at point x̃i ∈ ∂Ω̃p, it
becomes
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One can observe that the number of unknowns are equal to
3(Np +Nv). They are as follows.

(i) First order moments (FOM): 〈 p̃i〉 and 〈d̃pi〉.
(ii) Second order moments (SOM): 〈| p̃i|2〉 and 〈|d̃pi|

2〉.
(iii) Correlated unsplittable products of kinematic vari-

ables multiplied by primary source: 〈 p̃∗i
∫
D̃ f

f (y)G(y,

x̃i)dV〉 and 〈d̃p∗i
∫
D̃ f

f (y)G(y, x̃i)dV〉.
To solve the system, other 2(Np + Nv) equations have to
be added. (Np + Nv) equations are obtained by considering
the expectation of the classical boundary integral equations
(6). Finally, the last (Np + Nv) equations are obtained
by multiplying each side of the conjugate of (6) by the
contribution of the external loading. As a result, the problem

Ap = b (16)

is solved directly: p is the unknown vector 3(Np + Nv) × 1,
A is a martix 3(Np + Nv) × 3(Np + Nv), and b is a vector
3(Np + Nv) × 1. Due to the equations, matrix A has sparse
form and elements are complex.

After the computation of the unknowns, Second-order
Moments are evaluated at the field solution point.

Looking at (14) and (15), we can easily understand that
the SBEM code is penalized in the low-frequency and small
model applications, but it has some advantages over the
classical methods when dealing with high frequencies. Even
if the number of equation increases, the mesh coarsening
process reduces the computational effort. As a rule of
thumb, using standard BEM at least 6 element/wavelength
are needed in order to obtain a reliable solution. With SBEM
things are slightly different. Increasing the frequency, the
wavelength reach the size of the small perturbations and
uncertainties start to influence the response. This means
that the mesh does not need to be refined to reach higher
frequency values as happens for BEM but only to reach
frequencies at which the uncertainties start playing their
role. Moreover, the SBEM gives a statistical result which
gives much more details and robustness than a classical
deterministic result. As reported in Section 4, using a few
elements allows moving up to ranges where standard BEM
fails to provide accurate solutions. Moreover, if compared
to classic sampling methods for uncertainties modelling it
does not require to calculate and average over a population
of structures, since the averaging effect is included in the
expected terms. Only one run of the program for each
frequency step is necessary to obtain an averaged statistical
response. Finally, it allows easy coupling with FEM or BEM
[30, 31].

It is important to note that boundary conditions play
a crucial role as power inputs. Since all the unknowns are
dependent on power inputs, a nonzero-velocity boundary
condition applied on a large amount of nodes drastically
increases the system dimension. Indeed, each node has to be
considered as primary source for the system. In this paper we
focus our attention only on cases with zero-velocity (or rigid
walls) boundary condition.

3.4. Integrals and Integration. In order to solve the SBEM set
of equations, the numerical evaluation of the expectations
of boundary and domain integrals must be carried out as
indicated in (9). The integration path in two- and three-
dimensional applications is random, therefore it is not possi-
ble to commutate the expectation and the integral operators
(as it is possible for rods and beams, one-dimensional
elements). To simplify this evaluation, it can be shown that
the random variable can be judiciously chosen in order to get
rid of the randomness in the integration path by means of a
change of a variable [29]. Using a parameter ε, the integra-
tion path on the right side of (9) does not depend on the ran-
dom variable anymore. Therefore, it is possible to switch the
integration and the expectation operators. In the following
cases integrals are solved by means of Gauss quadrature rule:
4 points have been chosen for the surface integration and 3
to 7 points on the uncertain parameter range for the double
integration of the probability distribution, depending on the
shape of the function and on the required accuracy. The
chosen probability distribution has triangular distribution,
zero centered, crisp value equal to 1/a, lower limit −a and
upper limit a, and unitary area. Node locations are kept
fixed for numerical reasons: this enables easy coupling with
FEM velocity for structure models and allows the parametric
description of the boundary. This means that the model
preserves its shape and only local variability is introduced.
The variability in the distance between the field and source
points interacts with the wavelength in the high-frequency
range and affects the response of the structure.

The introduction of uncertainties in the material, which
strongly influences the response of the structure, cannot
be taken into account with the current formulation and
assumptions. This is mainly due to the fact that the material
properties affect all the responses at a nodal location and
correlation/decorrelation rules cannot be introduced for
them as explained previously.

4. Application Cases

In this section we present two academic application cases:
a rectangular and a spheric acoustic cavity. Both of them
present zero velocity as a condition over the whole boundary
and unit monopole inside the cavity. Source intensity is
constant with frequency. Models are studied with three
different uncertainty values. The cases have, respectively,
characteristic value of the uncertain parameter u equal to
0.02, 0.05, and 0.10 scaled to the characteristic dimension
of the element (a value of 1 corresponds to the element
dimension). The perturbation is supposed to be constant
over the whole boundary and source positions. The fluid is
air with density equal to 1.3 kg/m3 and speed of sound equal
to 330 m/s. The solution is evaluated over a field mesh placed
in the inner side of the cavity.

The code used is in-house-made and it has been devel-
oped in MATLAB.

4.1. Rectangular Acoustic Cavity. This simple application
can be useful for instance to model acoustic behaviour of
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Table 1: Rectangular acoustic cavity: model characteristics and
analysis details.

Box dimensions 1× 1× 0.5 m

Elements 650 QUAD

Nodes 652

Position of the acoustic source (0.2, 0.2, 0.1) m

Characteristic value of the uncertainties, a 0.02–0.05–0.10

Frequency range of analysis 100–3000 Hz

Frequency step 10 Hz

a room in which a loudspeaker excites the fluid generating
wave motion. Walls are modelled as rigid since zero velocity
boundary condition is applied.

Model characteristics are specified in Table 1 and its
geometry in Figure 2.

It can be immediately noted that 650 elements, with
0.077 m as main dimension, are not enough to reach
3000 Hz. Indeed, this model can reach about 700 Hz. To
correctly simulate up to such a frequency, we need 0.018 m
elements which seriously increase the problem dimension up
to around 12 000 degrees of freedom.

The field mesh is composed by 441 points, is planar, and
is placed at 0.225 m from the ground. It is rectangular and
has the same dimensions of the box. Coordinates of the field
solution point are (−0.0990 m, −0.3465 m, 0 m; the box is
centered in the origin).

Figure 3 shows the effect of the uncertainties in the
evaluation of Green’s functions. Functions with different
values of uncertainties are compared with the deterministic
ones. Increasing the frequency, the effect of uncertainties
starts to smooth the response.

From Figures 4, 5, 6, and 7, it is possible to note the
effects of the uncertainties on pressure values over the field
point mesh. As the value u increases, the response shape
becomes smoother. It is worth noting that in Figure 7
there is an irregularity close to the monopole position. This
is a shortcoming of the formulation highlighted in [27],
indeed approaching to a sources the SBEM may present
some inaccuracies because the assumptions proposed in
Section 3.2 are valid as far as the location of the secondary
and primary sources are distinct.
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Figure 3: Influence of the uncertainties on Green’s functions. Three
different values are compared with the deterministic one.

Figures 8, 9, and 10 report the response curve at the
receiver point. Standard BEM solution, FOM and SOM,
obtained with an SBEM, are plotted with three different
value of uncertainty. Some considerations can be done.
It is clear that using low values of uncertainty BEM and
SBEM provides similar results, indeed the curves are almost
superposed. Increasing the uncertainty value FOM and SOM
have different behaviours. Increasing the frequency, the
former vanishes to zero and the latter becomes smoother
and asymptotically converges to the smoothed mean value of
the deterministic curve which is the response of the nominal
system.

Especially, analyzing Figure 10, it is evident that the SOM
curve gives a precise representation of the modal behaviour
in the low-frequency range. On the other hand, the high-
frequency solution is smooth and only delivers information
about the general trend.

4.2. Spherical Acoustic Cavity. Model characteristics are
specified in Table 2 and its geometry in Figure 11.

Even is this case the mesh is appropriate to accurately
predict the acoustic behaviour up to 800 Hz. Results are sim-
ilar to the ones obtained in the previous case. From Figures
12, 13, and 14, it can be seen that results surface becomes
smoother increasing the uncertain parameter u. As we
already noted, with a high level of uncertainty, if the source
is placed near the field mesh, it can produce inaccuracies in
the results; see Figure 15.

Analyzing the response functions from Figures 16, 17,
and 18, it is possible to conclude that SOM give an averaged
and smooth trend of the prediction. On the other hand FOM
vanishes to zero increasing the frequency.

4.3. Discussion. The first set of results presented the results
over a field point mesh. Then frequency response functions
have been computed at an interior solution point. Observing
them is possible to note as FOMs vanish and SOMs be-
come smooth as the frequency increases. Moreover, in the
high-frequency range the only contributions that allow to
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Figure 4: Rectangular acoustic cavity. Second-order moments
computed in correspondence of the field point mesh at 1200 Hz.
No uncertainties are taken into account.
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Figure 5: Rectangular acoustic cavity. Second Order Moments
computed in correspondence of the field point mesh at 1200 Hz.
Uncertainty parameter u is equal to 0.02.

represent the general trend are the ones that introduce power
into the system. Consequently, boundary conditions which
do not introduce power do not contribute to the solution and
vanish.

It is interesting to compare the presented methodology
with the other well-known approaches for vibro-acoustics.
A reliable technique to predict the averaged response of a
system affected by uncertainties is the Monte Carlo method.
Nevertheless, in order to obtain a reliable prediction a large
amount of computations is needed, and when models are
large, obtaining a result would be very demanding. On the
contrary, SBEM allows to avoid the sampling procedure and
solve the problem in one go.

If compared with the well-known deterministic tech-
niques, SBEM allows to represent a deterministic behaviour
in the low-frequency range. Nevertheless, increasing the
frequency, uncertainties start to influence the solution and
using those techniques becomes meaningless. Instead, SBEM
allows to tackle this problem providing a solution which
becomes smoother as function of the perturbations. Never-
theless, the computational effort is increased with respect to
the methodologies for the low-frequency range.

We can compare the SBEM formulation with the well-
known methodology for high frequencies. First of all,
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Figure 6: Rectangular acoustic cavity. Second Order Moments
computed in correspondence of the field point mesh at 1200 Hz.
Uncertainty parameter u is equal to 0.05.
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Figure 7: Rectangular acoustic cavity. Second Order Moments
computed in correspondence of the field point mesh at 1200 Hz.
Uncertainty parameter u is equal to 0.10.

pulling down SEA weakens its assumptions and consequently
the solution may be no longer reliable. On the contrary
pushing up the SBEM to SEA validity range may be very
computationally demanding. Moreover, SEA allows to obtain
a global response, while SBEM provides local details. Finally,
SBEM allows a direct control on the geometrical uncertainty
of the model shape while SEA does not.

Regarding the applications shown in the previous para-
graph, is worth noting that results obtained with classic BEM
are not accurate, since the mesh it is not appropriate for the
whole frequency range of analysis. Indeed as we previously
observed, using SBEM allows a mesh coarsening process.
The following examples are carried out using meshes not
refined enough to predict the response over such a wide
frequency range. Nevertheless, at high frequencies, a coarse
model present matrices with high ill-conditioning number.
Since resonance is due to matrix ill-conditioning near the
eigenfrequency the behaviour of a model with a very coarse
mesh is only mathematically similar to a model with high
modal density at high frequencies. This can justify an interest
in using coarse meshes at high frequencies in order to vali-
date the SBEM. It is also interesting to highlight the relation
between the mesh refinement and the degree of uncertainty.
With a very coarse mesh the solution is smoothened and
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Figure 8: Rectangular acoustic cavity. SPL at the solution point
(−0.0990, −0.3465, 0): comparison between standard BEM, First
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Figure 9: Rectangular acoustic cavity. SPL at the solution point
(−0.0990, −0.3465, 0): comparison between standard BEM, First
Order Moment (FOM) of SBEM and Second Order Moments
(SOM) of SBEM. Uncertainty parameter u is equal to 0.05.

reliable only if the uncertainty degree is high. On the
other hand, if perturbations are small, the geometry is
almost deterministic and consequently the mesh results
inappropriate to predict vibro-acoustic behaviour at high
frequencies. A good balance between mesh refinement and
degree of uncertainty allows to also reduce the computational
effort. Even if the SBEM algorithm has a higher complexity
respect to classic BEM, it requires much less elements to
predict the smooth trend. Anyhow, matrices are large and
complex and handling the problem may be very demanding.

5. Conclusion

Predicting structure behaviour of the whole frequency is one
of the most appealing objective in vibro-acoustics. Deter-
ministic methods as FEM and BEM are reliable in the low
range, but, decreasing the wavelength, small perturbations
play a significant role and their use becomes meaningless.
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Figure 10: Rectangular acoustic cavity. SPL at the solution point
(−0.0990, −0.3465, 0): comparison between standard BEM, First
Order Moment (FOM) of SBEM and Second Order Moments
(SOM) of SBEM. Uncertainty parameter u is equal to 0.10.
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Table 2: Spherical acoustic cavity: model characteristics and
analysis details.

Radius of the sphere 0.6 m

Elements 600 QUAD

Nodes 602

Position of the acoustic source (0.3, 0.3, 0.1) m

Characteristic value of the uncertainties, a 0.02–0.05–0.10

Frequency range of analysis 100–3000 Hz

Frequency step 10 Hz

The formulations presented in this paper deal with an
enhanced BEM approach, the so-called stochastic BEM.
Uncertainties are applied to the geometrical properties of
the models under proper assumptions. As a result, increasing
the frequency of analysis, the prediction becomes smoother
and tends to asymptotically converge to the smoothed mean
value of the nominal deterministic curve.
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Figure 12: Acoustic spherical cavity. Second-order moments
computed in correspondence of the field point mesh at 1200 Hz.
No uncertainties are taken into account.
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Figure 13: Acoustic spherical cavity. Second-order moments
computed in correspondence of the field point mesh at 1200 Hz.
Uncertainty parameter u is equal to 0.02.
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Figure 14: Acoustic spherical cavity. Second-order moments
computed in correspondence of the field point mesh at 1200 Hz.
Uncertainty parameter u is equal to 0.05.

SBEM has been applied to two three-dimensional aca-
demic cases: a rectangular and a spherical acoustic cavity
with zero-velocity boundary condition and a unit source
inside. For both of them, the response functions has been
studied. Low-frequency behaviour is accurately described
and, increasing the frequency, the effects of uncertainties
smooth the response and the prediction asymptotically tends
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Figure 15: Acoustic spherical cavity. Second-order moments
computed in correspondence of the field point mesh at 1200 Hz.
Uncertainty parameter u is equal to 0.10.
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(−0.2894, 0.3726, 0): comparison between standard BEM, First
Order Moment (FOM) of SBEM and Second-order moments
(SOM) of SBEM. Uncertainty parameter u is equal to 0.02.
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Figure 17: Acoustic spherical cavity. SPL at the solution point
(−0.2894, 0.3726, 0): comparison between standard BEM, First
Order Moment (FOM) of SBEM and Second-order moments
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Figure 18: Acoustic spherical cavity. SPL at the solution point
(−0.2894, 0.3726, 0): comparison between standard BEM, First
Order Moment (FOM) of SBEM and Second-order moments
(SOM) of SBEM. Uncertainty parameter u is equal to 0.10.

to the deterministic one. From a computational point of view
the effort is decreased in respect to the traditional BEM,
thanks to the mesh coarsening process. On the other hand,
the number of equations required drastically increases.

Nevertheless, some questions are still open. No rule of
thumb exists to correlate the prediction accuracy to the
mesh refinement. Moreover, applying a nonzero-velocity
boundary condition drastically increases system dimensions
because power sources are always connected to the other
variables. Research has to be done also in this direction. A
computationally less demanding method has to be investi-
gated in order to find a solution to the nonzero problem with
reasonable efforts. Finally, up till now, only interior problems
have been solved: one of the next step in research is to apply
the methodology to exterior cases.
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The homotopy analysis method (HAM) is employed to propose a highly accurate technique for solving strongly nonlinear
aeroelastic systems of airfoils in subsonic flow. The frequencies and amplitudes of limit cycle oscillations (LCOs) arising in the
considered systems are expanded as series of an embedding parameter. A series of algebraic equations are then derived, which
determine the coefficients of the series. Importantly, all these equations are linear except the first one. Using some routine
procedures to deduce these equations, an obstacle would arise in expanding some fractional functions as series in the embedding
parameter. To this end, an approach is proposed for the expansion of fractional function. This provides us with a simple yet efficient
iteration scheme to seek very-high-order approximations. Numerical examples show that the HAM solutions are obtained very
precisely. At the same time, the CPU time needed can be significantly reduced by using the presented approach rather than by the
usual procedure in expanding fractional functions.

1. Introduction

Predicting amplitude and frequency of flutter oscillations
of an airfoil via analytical and/or semianalytical techniques
has been an active area of research for many years. The
describing function technique [1], sometimes referred to as
the harmonic balance (HB) or as linearization method, is
a widely used method for obtaining an equivalent linear
system such that traditional linear aeroelastic methods of
analysis can then be employed [2, 3]. According to the num-
ber of considered harmonics, the HB method is called HB1
method when only the first harmonic is included, otherwise
as the high-dimensional HB method. Lee et al. [4] studied the
aeroelastic system by considering two dominant harmonics
and by an improved HB1 method, respectively. Recently,
the high-dimensional HB method was further improved
to investigate the aeroelastic motions of an airfoil [5, 6].
Essentially, the incremental harmonic balance (IHB) method
is a semianalytical method for nonlinear dynamic systems. It
was used by Shahrzad and Mahzoon [7] and Cai et al. [8],

respectively, to predict the amplitudes and frequencies of the
LCOs of an airfoil in steady impressible flow. Recently, Chung
et al. proposed a new incremental method and applied it to
solve aeroelastic problems with freeplay [9] and hysteresis
[10] structural nonlinearities, respectively. In addition, the
center manifold theory, originally developed to qualitatively
analyze nonlinear vibrations, was employed to obtain the
approximations of airfoil LCOs [11, 12].

The approximations obtained by HB1 method are rel-
atively accurate for low wind speeds. However, the errors
become larger and larger as the speed increases. In some
nonlinear flutter cases, the HB1 method may cease to be
valid. In principle, the high-dimensional HB method and
the IHB method can give approximate solutions with any
desired accuracy as long as enough harmonics are taken
into account. Unfortunately, however, it becomes more and
more difficult to implement either one of them when the
number of considered harmonics increases. Likewise, using
the center manifold theory can provide us with satisfactory
approximations for the LCOs only in a small range of
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bifurcation values. When far away from the bifurcation
points, results loose accuracy significantly or even become
completely incorrect [13]. Thus, it is necessary to develop
new easier-to-use methods which can guarantee accuracy
for high flow speeds and in more flutter cases, for example,
weakly and strongly nonlinear systems.

Over the past decades, Liao developed the homotopy
analysis method (HAM), which does not require small
parameters and thus can be applied to solve nonlinear
problems without small or large parameters [14–16]. The
main procedure is to construct a class of deformation
equations in a quite general form by introducing an auxiliary
parameter. Through these equations, nonlinear problems
can be transformed into a series of linear subproblems, which
can be solved much more easily step by step. Recently, the
HAM has been used in various nonlinear problems [17–21].

In this study, the HAM is employed to propose an effi-
cient and highly accurate approach for nonlinear aeroelastic
motions of an airfoil. A major obstacle is met when deducing
the high-order deformation equations, because the Taylor
expansion of fractal functions is rather cumbersome. An
approach is proposed to deal with this problem. This simple
yet efficient method ensures an excellent efficiency of the
HAM; hence, highly accurate solutions can be easily obtained
for both weakly and strongly nonlinear aeroelastic systems.

2. Equations of Motions

The physical model shown in Figure 1 is a two-dimensional
airfoil, oscillating in pitch and plunge, which has been
employed by many authors. The pitch angle about the
elastic axis is denoted by α, positive with the nose up; the
plunge deflection is denoted by h, positive in the downward
direction. The elastic axis is located at a distance ahb from
the midchord, while the mass center is located at a distance
xαb from the elastic axis. Both distances are positive when
measured towards the trailing edge of the airfoil.

For cubic restoring forces with subsonic aerodynamics,
the coupled equations for the airfoil in nondimensional form
can be written as follows:

..

ξ +xα
..
α +2ζξ

ω

U∗
ξ̇ +

[
ω

U∗

]2

ξ = − 1
πμ

CL(t) +
P(t)b
mU2

,

xα
r2
α

..

ξ +
..
α +2ζα

1
U∗

α̇ +
[

1
U∗

]2(
α + ηα3)

= 2
πμr2

α

CM(t) +
Q(t)
mU2r2

α

,

(1)

where the superscript denotes the differentiation with respect
to the nondimensional time t , defined as t = Ut1/b, and
t1 is the real time. ξ =h/b is the nondimensional plunge
displacement; η is the coefficient of cubic pitching stiffness;
U∗ ←− is a nondimensional flow velocity defined as U∗ =
U/(bωα), and ω is given by ω = ωξ/ωα, where ωξ and ωα
are the natural frequencies of the uncoupled plunging and
pitching modes, respectively; ζξ and ζα ψ are the damping
ratios; rα is the radius of gyration about the elastic axis.
P(t) and Q(t) are the externally applied force and moment,
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Figure 1: Sketch of a two-dimensional airfoil.

m is the airfoil mass per unit length and μ ψ is the airfoil-air
mass ratio. CL(t) and CM(t) are the lift and pitching moment
coefficients, respectively. For an incompressible flow, the
expressions for CL(t) and CM(t) are given by

CL(t) = π
( ..
ξ −ah ..

α +α̇
)

+ 2π
[
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2
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)
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]
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+ 2π
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×
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..
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2
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16

..
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(3)

where the Wagner function φ(t) is given by Jone’s approxi-
mation, φ(t) = 1 − ψ1e−ε1t − ψ2e−ε2t with the constants as
ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3.

Due to the existence of the integral terms in (3), (1)
is a system of integrodifferential equations. In practice,
the integral and the nonlinear terms make it difficult to
analytically study the dynamic behavior of the system. In
order to eliminate the integral terms, Lee et al. [4–6]
introduced the following four new variables

w1 =
∫ t

0
e−ε1 (t−σ)α(σ)dσ , w2 =

∫ t

0
e−ε2(t−σ)α(σ)dσ ,

w3 =
∫ t

0
e−ε1(t−σ)ξ(σ)dσ , w4 =

∫ t

0
e−ε2 (t−σ)ξ(σ)dσ.

(4)
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System (1) can then be rewritten in a general form containing
only differential operators as

c0

..

ξ +c1
..
α +c2ξ̇ + c3α̇ + c4ξ + c5α + c6w1

+c7w2 + c8w3 + c9w4 + c10G(ξ) = f (t),

d0

..

ξ +d1
..
α +d2 ξ̇ + d3α̇ + d4ξ + d5α + d6w1

+d7w2 + d8w3 + d9w4 + d10M(α) = g(t).

(5)

The coefficients c0, c1, . . . , c10; d0,d1, . . . ,d10 are given in the
appendix, f (t) and g(t) are functions depending on initial
conditions, Wagner’s function, and the forcing terms. The
nonlinear restoring forces, G(ξ) and M(α), are expressed as
G(ξ) = γξ3 and M(α) = ηα3, respectively, with γ and η as
coefficients.

By introducing a variable vector X = (x1, x2, . . . , x8)T,
where the superscript “T” denotes the transpose of a matrix,
with x1 = α, x2 = α̇, x3 = ξ , x4 = ξ̇, x5 = w1, x6 = w2,
x7 = w3, and x8 = w4, the coupled equations given in (5) can
be written as a set of eight first-order ordinary differential
equations written in vector form

Ẋ = Y(X, t). (6)

This approach allows existing methods suitable for the study
of ordinary differential equations to be used in the analysis.
For more details of (5) and (6), please refer to [4–6].

3. Homotopy Analysis Method

It is assumed that there is no external forces, that is, Q(t) =
P(t) = 0 in (1). For large values of t when transients are
damped out and steady solutions are obtained, we can let
f (t) = g(t) = 0. Then, (5) can be rewritten in vector form as

M
..
x +μẋ + Kx + CW(x) + F(x) = 0, (7)

where x = [ξ ,α]T, W(x) = [W1 W2 W3 W4]T,

M =
⎡⎣c0 c1

d0 d1

⎤⎦, μ =
⎡⎣c2 c3

d2 d3

⎤⎦,

K =
⎡⎣c4 + c10 c5

d4 d5 + d10

⎤⎦, C =
⎡⎣c6 c7 c8 c9

d6 d7 d8 d9

⎤⎦,

(8)

and F(x) =
[

0 d10ηα3 ]T.
Firstly, introduce a new time scale

τ = ωt, (9)

where ω denotes the frequency of the LCO. Then, (7) be-
comes

ω2Mx′′ + ωμx′ + Kx + CW(x,ω) + F(x) = 0, (10)

where the superscript denotes the differentiation with respect
to τ. Considering that LCOs are independent of initial
conditions, one can adopt the following initial conditions:

x(0) =
[
h a

]T
, x′(0) =

[
β 0

]T
. (11)

The LCOs of system (10), (11) are periodic motions with
frequency ω; thus, x can be expressed in a Fourier series

x =
∞∑
k=0

(ck coskτ + sk sin kτ), (12)

where ck , sk are the coefficients in 2× 1 vector form.
Let a0,h0,ω0,β0, and x0(τ) denote the initial approxi-

mations of a,h,ω,β, and x(τ), respectively. Due to solution
expression (12) and initial conditions (11), the initial guess
of solution can be chosen as

x0(τ) =
[
h0 cos τ + β0 sin τ a0 cos τ

]T
. (13)

The homotopy analysis method is based on such contin-
uous variations, A(p), H(p), Ω(p), B(p), and u(τ, p), that,
as the embedding parameter p increases from 0 to 1, u(τ, p)
varies from the initial guess x0(τ) to the exact solution, so
do A(p), H(p), Ω(p), B(p) from the initial approximations
a0,h0,ω0,β0 to a,h,ω,β, respectively.

Based on (12), one may choose the linear auxiliary
operator as

L
[

u
(
τ, p

)] = ω2
0

[
∂2u

(
τ, p

)
∂τ2

+ u
(
τ, p

)]
. (14)

Thus

L

⎡⎣⎛⎝cos τ

sin τ

⎞⎠⎤⎦ = 0. (15)

One may define the nonlinear operator according to (10),

N
[
u
(
τ, p

)
, Ω

(
p
)] = Ω2(p)M

∂2u
(
τ, p

)
∂τ2

+ Ω
(
p
)
μ
∂u
(
τ, p

)
∂τ

+ Ku
(
τ, p

)
+ CW

(
u
(
τ, p

)
, Ω

(
p
))

+ F
(

u
(
τ, p

))
.

(16)

Using the two operators, a family of equations can then be
constructed as(

1− p
)
L
[

u
(
τ, p

) − x0(τ)
] = λpN

[
u
(
τ, p

)
, Ω

(
p
)]

(17)

subject to the initial conditions

u
(
0, p

) = [
H
(
p
)
A
(
p
)]T

,

∂u
(
τ, p

)
∂τ

∣∣∣∣∣
τ=0

=
[
B
(
p
)

0
]T

,
(18)

where the auxiliary parameter λ is a nonzero constant. Equa-
tions (17) and (18) are called the zeroth-order deformation
equation.
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When p = 0, (17) and (18) have the solution

u(τ, 0) = x0(τ). (19)

When p = 1, they are exactly the same as (10) and (11)
provided that

u(τ, 1) = x(τ), A(1) = a, H(1) = h,

Ω(1) = ω, B(1) = β.
(20)

Expand A(p), H(p), Ω(p), B(p), and u(τ, p) as the
series

u
(
τ, p

) = ∞∑
k=0

uk(τ)pk , A
(
p
) = ∞∑

k=0

ak p
k ,

H
(
p
) = ∞∑

k=0

hk p
k , Ω

(
p
) = ∞∑

k=0

ωkp
k ,

B
(
p
) = ∞∑

k=0

βk p
k.

(21)

As long as the parameter λ is properly chosen, all of these
series are convergent at p = 1. Then, the nth-order HAM
solutions can be given as

x(τ) =
n∑
k=0

uk(τ), a =
n∑
k=0

ak, h =
n∑
k=0

hk ,

ω =
n∑
k=0

ωk, β =
n∑
k=0

βk.

(22)

Substituting (21) into (17) and (18), differentiating (17)
and (18) k times, dividing the differentiations by k! and
then letting p = 0, one can obtain the kth-order (k ≥ 1)
deformation equation

L
[

uk+1(τ)− χk−1uk(τ)
]
= λRk(τ) (23)

subject to the initial conditions

uk(0) =
[
hk ak

]T
, u′k(0) =

[
βk 0

]T
, (24)

where

Rk(τ) = 1
(k − 1)!

∂k−1N
[
u
(
τ, p

)
, Ω

(
p
)]

∂pk−1

∣∣∣∣∣
p=0

, (25)

χk =
⎧⎨⎩0, k = 1,

1, k ≥ 2.
(26)

Due to the rule of solution expression and the linear
operator L, the right hand side of (23) should not contain
the first harmonics sin τ and cos τ, because they can result in
the so-called secular terms as τ cos τ and τ sin τ, respectively.
To this end, let

Γck
(
ak,hk ,ωk,βk

) = 1
π

∫ 2π

0
Rk(τ) cos τdτ = 0,

Γsk
(
ak,hk ,ωk,βk

) = 1
π

∫ 2π

0
Rk(τ) sin τdτ = 0.

(27)

Solving (27), ak,hk ,ωk, and βk are determined step by step as
k increases.

Note that when k = 0, Rk+1(τ) is essentially the right
hand side of (10) with x = x0, and the integrations in
essence correspond to a harmonic balancing procedure.
Therefore, (27) is actually the algebraic equation deduced by
the HB1 method. It is nonlinear and independent upon λ.
The solutions of a0,h0,ω0, and β0 can be obtained by using
the Newton-Raphson method. Importantly, (27) is always
linear as k ≥ 1, which implies it is rather easy to obtain high-
order approximations [22].

4. Expansion of Fractional Functions

A key procedure of implementing the HAM is to deduce the
high-order deformation equation, that is, to obtain Rk(τ) in
our study. In most literature about the HAM, authors suggest
differentiating the zeroth-order deformation equations (i.e.,
(17) and (18) in this paper) k times, dividing them by k!, and
then setting p = 0. This kind of approach is based on the
classical theories of the Taylor series. In our study, however,
using this method to expand CW(u(τ, p), Ω(p)) will cost
a large amount of computational resources. For example,
substitution of α = cos τ into w1 =

∫ t
0 e
−ε1 (t−σ)α(σ)dσ yields

a simple illustration∫ t

0
e−ε1(t−σ) cos(iωσ)dσ = ε1 cos(iωt) + iω sin(iωt)

ε2
1 + i2ω2

− ε1

ε2
1 + i2ω2

e−ε1t .

(28)

For large values of t, the second term in (28) approaches to
zero and is neglected since only steady solutions (LCOs) are
taken into account. Therefore, the integrations W(cos(iωt))
and W(sin(iωt)) can be expressed as follows, respectively:

W1(cos(iωt)) =W3(cos(iωt))

= ε1 cos(iωt) + iω sin(iωt)
ε2

1 + i2ω2
,

W2(cos(iωt)) =W4(cos(iωt))

= ε2 cos(iωt) + iω sin(iωt)
ε2

2 + i2ω2
,

W1(sin(iωt)) =W3(sin(iωt))

= −iω cos(iωt) + ε1 sin(iωt)
ε2

1 + i2ω2
,

W2(sin(iωt)) =W4(sin(iωt))

= −iω cos(iωt) + ε2 sin(iωt)
ε2

2 + i2ω2
,

(29)

where W j , j = 1, 2, 3, 4 correspond to the jth component of
vector W, and i = 1, 2, . . ., Differentiating k times 1/[ε2

1 +
(
∑n

i=0 ωip
i)2] with respect to p will result in a complicated

term (i.e., [ε2
1 + (

∑n
i=0 ωip

i)2]
k
) in the denominator. Thereby,
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Figure 2: Comparisons of the 50th-order HAM solutions for LCO amplitudes with HB1 results and numerical ones. Dots denote the HAM
solutions obtained with λ = −1, dashed lines represent HB1 results, and real lines denote numerical solutions.

the expression of ∂kW/∂pk becomes more and more com-
plex as k increases, which makes it quite tough to deduce
high-order deformation equations.

We take 1/[ε2
1 +(

∑n
i=0 ωip

i)2] as an illustrative example to
propose a means for expanding fractional functions. First of
all, denote the denominator as

ε2
1 +

⎛⎝ n∑
i=0

ωip
i

⎞⎠2

= ε2
1 + ω2

0 +
n∑
k=1

⎛⎝ k∑
i=0

ωiωk−i

⎞⎠pk :=
n∑
k=0

σk p
k ,

(30)

where σ0 = ε2
1 + ω2

0 and σk =
∑k

i=0 ωiωk−i, 1 ≤ k ≤ n. Taking
the nth-order Taylor series of 1/(

∑n
k=0 σk p

k) as
∑n

k=0 θk p
k ,

then one has

1∑n
k=0 σk p

k
=

n∑
k=0

θk p
k +O

(
pk+1

)
. (31)

Rewrite (31) as⎛⎝ n∑
k=0

σk p
k

⎞⎠⎡⎣ n∑
k=0

θk p
k +O

(
pn+1)⎤⎦

=
n∑
k=0

⎛⎝ k∑
i=0

σiθk−i

⎞⎠pk +O
(
pk+1

)
= 1.

(32)

Equating the coefficients of pk results in

σ0θ0 = 1,
k∑
i=0

σiθk−i = 0, k = 1, 2, . . . ,n. (33)

Interestingly, (33) is always linear. That means it is rather easy
to determine θk if σi are all known, i = 0, 1, 2, . . . , k.

5. Numerical Examples

5.1. Main Results. The system parameters under considera-
tion are μ = 100, rα = 0.5, ah = −0.5, ζα = ζξ = 0, ω = 0.25,
xα = 0.25, γ = 0, and η = 80.

Numerical solutions of (6) can be obtained by the
fourth-order Runge-Kutta method. Without special state-
ment, the numerical solutions in this paper are obtained
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Figure 3: Comparisons of the 50th-order HAM solutions for LCO
frequencies with HB1 results and numerical ones. Dots denote the
HAM solutions obtained with λ = −1, dashed lines represent HB1
results, and real lines denote numerical solutions.

subject to the initial conditions as α(0) = 1◦ and α̇(0) =
ξ(0) = ξ̇(0) = 0.

Using analytical techniques developed for nonlinear
dynamical systems, the linear flutter speed is found at U∗ =
U∗L = 6.0385 [4, 5]. As U∗ increases beyondU∗L , LCO arises,
and thusU∗L is a Hopf bifurcation point. Note that the flutter
boundary U∗L is independent of the nonlinear coefficient η.
Lee et al. [4] found a secondary Hopf bifurcation as U∗

increases further, where a jump of the amplitudes is detected
(see Figures 2 and 3). Liu et al. [6] used the high- dimensional
HB method to study the secondary Hopf bifurcation and
found that to capture the secondary bifurcation, as many as
9 (or 5 dominant) harmonics have to be considered.

In the proposed method, the zeroth-order HAM approx-
imation is essentially given by the HB1 method. The higher-
order approximations only contribute a higher precision.
Thus, it is not capable of detecting the second bifurcation
at the present state. Even so, validity and high efficiency
of the proposed method can be observed when U∗ is in
[U∗L , 2U∗L ] or so. Figures 2 and 3 show the comparisons
of the 50th-order HAM solutions with the HB1 and the
numerical results. The HAM solutions are almost the same as
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Figure 5: The time history responses of system (1) withU∗ = 1.5U∗L . Dots denote the 50th-order HAM solutions with λ = −1 and real lines
the numerical results.

the numerical ones, while the differences of the HB1 results
increase rapidly with increasing U∗.

The HAM approximation is based on the first HB
method, because the first HAM approximation is the HB1
solution. Since the HB1 method is incapable of tracking
the LCOs when U∗ is larger than the secondary bifurcation
value, about 2U∗L , so is the presented approach, as shown in
Figures 2 and 3.

Figures 4 and 5 show the phase planes of LCOs and the
time history responses of the nonlinear aeroelastic system,
respectively. Again, the accuracy of the HAM solution can be
demonstrated. Even though the phase plane is very complex,
for example, the pitch LCO, the HAM is still capable of
tracking it. Note that the numerical solution plotted in
Figure 5 is obtained using the fourth-order Runge-Kutta
method with initial values given by the HAM solution.

More precisely, the 120th-order HAM solutions shown
in Table 1 are compared with the numerical ones. Excellent
agreement can also be observed. The higher the order the
HAM approximations are obtained to, the more accurate

the solution is. For example, the relative difference between
the 120th-order HAM solution and the numerical one is less
than 0.001%. As shown in Figure 6, the residues of (6) with
HAM solutions converge rapidly to 0. The absolute errors
of residues with respect to the 40th-order, 80th-order, and
120th-order HAM solutions are at the order of 10−8, 10−12,
and 10−16, respectively. Furthermore, as n >120, an,hn,ωn,
and βn are all small quantities compared with 10−16. Roughly
speaking, the 120th-order HAM solution can be considered
to be correct to 15 decimal places. Note that it is tough to
obtain such a highly accurate solution using some numerical
techniques, including the RK method.

Very interestingly, it is found that ωi is independent
of η, while ai, βi, and hi are in inverse proportion to √η.
Thus, the convergence of series (21) is independent of
η, and the proposed method can work for both weakly
and strongly nonlinear problems. Furthermore, it is proved
that the frequency of the LCOs of aeroelastic system (5)
is independent of η, while the amplitudes are in inverse
proportion to √η.
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Table 1: Comparisons of the amplitudes and frequencies obtained by the HAM (λ = −1) with numerical solutions.

U∗ U∗ = 1.5U∗L U∗ = 2U∗L
HAM Frequency Pitch Plunge Frequency Pitch Plunge

N = 40 0.077563656128 0.13738145786 0.356858 0.0658609 0.2184836 0.6945022

N = 80 0.077563606476 0.13738151172 0.35685814 0.0657867 0.2185646 0.6964279

N = 120 0.07756360647090 0.13738151173 0.35685815 0.0657833 0.2185685 0.6965209

Numerical 0.0775635 0.1373816 0.3568590 0.0657829 0.2185689 0.6965298
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Figure 6: Residues of (6) (U∗ = 1.5U∗L ) with HAM solutions
attained with λ = −1, (a): N = 40; (b): N = 80; (c): N = 120,
where the real and dash lines denote the residues of the first and the
second equations, respectively.

5.2. Choosing the Auxiliary Parameter. The HAM series are
dependent upon the auxiliary parameter λ. For the choice
of the value of λ, one should think about two aspects, that
is, whether the series converge and the convergent rate.
Liao [16] suggested a technique via plotting the curves of
the attained HAM solutions versus different values of λ,
namely, the λ-curves. From Table 1, one can assume the
angular frequency of system (1) with U∗ = 1.5U∗L as � =
0.07756360647090. Denote the discrepancy between the nth-
order HAM frequency solution and � as e(n) = (

∑n
k=0 ωk)−

�. Figure 7 shows the λ-curves with respect toω. Considering
that the longitudinal coordinate refers to the logarithm of
|e(n)|, one knows the HAM solutions attained with λ =
−0.5, λ = −1, λ = −1.2, and λ = −1.3 all approach to �,
while the one with λ = −1.5 does not. As λ decreases from
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Figure 7: The λ-curves with respect to ω, where U∗ = 1.5U∗L .

−0.5 to −1 and further to −1.2, the convergent rate of the
HAM solution increases. However, as λ = −1.2 decreases
even a little, the convergent rate decreases (λ = −1.3). It
can even lead to the misconvergence of the HAM series (λ =
−1.5). Therefore, on one hand one would expect to choose
λ small enough to accelerate the convergence of the HAM
series. On the other hand, it is prone to choose an improper
one. In this study, λ = −1 is a good choice.

5.3. Homotopy-Padé Technique. In order to achieve faster
convergence of HAM series, currently, researchers intro-
duced some optimal approaches and developed the optimal
approaches [23, 24]. Also, the homotopy-Padé technique was
proposed to accelerate the convergence of HAM series, [25].
In order to obtain the [m, n] Pade approximation of the
HAM series, one should first compute all (m+n)th-order
HAM approximations. Therefore, the [m, n] Pade approx-
imations for the frequency and the pitch amplitudes are
compared with their corresponding (m+n)th-order HAM
solutions, respectively, as shown in Tables 2 and 3. Table 2
shows that the Pade approximations are more accurate
than the corresponding HAM solutions, especially when m
and n are relatively large. That implies the homotopy-Padé
technique can really accelerate the convergence of the HAM
series. As Table 3 shows, when U∗ = 2U∗L and λ = −2,
the HAM series are disconvergent at p = 1. While the
HAM-Pade approximations can still approach to the highly
accurate solution. In such a case, the convergent region of the
HAM series is enlarged by the homotopy-Padé technique.
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Table 2: Comparisons of the amplitudes and frequencies given by the HAM Pade approximations (λ = −1) with the numerical solutions,
where U∗ = 1.5U∗L .

[m, n] HAM Pade Frequency Relative error (%) Pitch Relative error (%)

[5, 5] 0.07765100977663 0.11 0.13745051052294 0.05

HAM 10 0.07770384628505 0.18 0.13726535168074 −0.08

[7, 8] 0.07756746357388 5e−3 0.13737312674052 −6e−3

15 0.07759388593952 4e−2 0.13735291378024 −2e−2

[10, 10] 0.07756394500764 4e−4 0.13738142730826 −6e−5

HAM 20 0.07757112740482 1e−2 0.13737399877222 −5e−3

HAM N = 120 0.07756360647090 0.13738151173287

Table 3: Comparisons of the amplitudes and frequencies given by the HAM Pade approximations (λ = −2) with the numerical solutions,
where U∗ = 2U∗L .

[m, n] HAM Pade Frequency Pitch

[5, 5] 0.067011196 0.221689949

HAM 10 0.0730367 0.156371061

[8, 8] 0.06595560 0.21807163

16 0.5207506 3.48085267

[10, 10] 0.0658774 0.21854332

HAM 20 7.63500 −28.477895

HAM N = 120, 0.0657829 0.2185689
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Figure 8: The ratio between the CPU times Tn and Sn, where λ =
−1 and U∗ = 1.5U∗L .

5.4. About the CPU Time. Next, we will discuss why it is
necessary and worthwhile to employ the approach for series
expansion of fractional function, as shown in Section 4. The
usually adopted procedure for deducing the higher-order
deformation equations is differentiating the zeroth-order
deformation equations k times, dividing them by k!, and
then setting p = 0. Denote the CPU time needed in seeking
the nth-order HAM approximations by Tn when using the
routine procedure, and by Sn when employing the means
presented in Section 4. Figure 8 shows the ratio between Tn
and Sn versus varying n. When n >10, Tn is more than Sn

by one order of magnitude. Moreover, it increases more and
more rapidly as n increases. The presented technique can
indeed save a large amount of computational effort. Table 4
shows the comparison of the respective CPU time needed
in obtaining the nth-order HAM solution, even seeking the
120th-order solution.

6. Conclusions

Based on the HAM, we have proposed an approach
for obtaining highly accurate approximations for LCOs
of strongly nonlinear aeroelastic systems. An easy-to-use
approach is proposed to tackle the difficulty in expanding
fractional functions into the Taylor series. With the help of
this approach, the HAM approximations can be obtained to
a very high order and hence can provide solutions to any
desired accuracy. The attained HAM solutions are almost the
same as the numerical results. Since it is tough to achieve
solutions to such high precision, even via the numerical
solutions, thus our approaches can be used to validate other
solution methods. Also, numerical examples demonstrate
that the presented approaches are valid for both weakly and
strongly nonlinear aeroelastic systems. These imply that the
presented approaches could be applicable in more nonlinear
problems, especially those with fractional functions.

As mentioned above, the first HAM approximation is in
essence the HB1 solution. Note also that the HB1 method is
incapable of obtaining the LCO solutions, whenU∗ increases
beyond the secondary point, that is, U∗ = 2.1U∗L . Therefore,
the presented HAM fails in seeking the solution after the
secondary point. In order to do so, one could give the initial
solution guess (i.e., (11)) with the third harmonics, so that
the initial solution can be determined.
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Table 4: The CPU time needed in seeking the nth-order HAM approximations, the parameter values are U∗ = 1.5U∗L and λ = −1.

The nth HAM solution The CPU time needed (second)

n The routine procedure The presented approach

10 14 2.8

15 58 4.6

20 196 6.8

50 / 46

80 / 239

120 / 1393

In addition, both Figure 8 and Table 4 show that the
presented technique can indeed save a large amount of
computational effort. The HAM approximations can be
obtained to as high as 120th-order within less than half an
hour at a microcomputer. As long as the auxiliary parameter
is properly chosen, the 100th-order HAM solutions are
precise to more than 14 decimals, as implied by Figures 6
and 7, respectively. It is fair to say the presented approach
is capable of providing solution to very high precision.

As for the proposed approach for expanding fractional
functions, the problem about the robustness of the calcu-
lation should be paid special attention in practicing. For
example, the coefficient matrix of θi’s could be illconditioned
or singular, which could result in additional numerical error.

Appendix

We have the following Expressions of
the Coefficients in (5):

c0 = 1 +
1
μ

, c1 = xα − ah
μ

,

c2 = 2
μ

(
1− ψ1 − ψ2

)
+ 2ζξ

ω

U∗
,

c3 = 1
μ

(
1 + (1− 2ah)

(
1− ψ1 − ψ2

))
,

c4 = 2
μ

(
ε1ψ1 + ε2ψ2

)
,

c5 = 2
μ

(
1− ψ1 − ψ2 +

(
1
2
− ah

)(
ε1ψ1 + ε2ψ2

))
,

c6 = 2
μ
ε1ψ1

(
1− ε1

(
1
2
− ah

))
,

c7 = 2
μ
ε2ψ2

(
1− ε2

(
1
2
− ah

))
,

c8 = −2
μ
ε2

1ψ1, c9 = −2
μ
ε2

2ψ2, c10 =
(
ω

U∗

)2

,

d0 = xα
r2
α

− ah
μr2

α

, d1 = 1 +
1 + 8a2

h

8μr2
α

,

d2 = −1 + 2ah
μr2

α

(
ε1ψ1 + ε2ψ2

)
,

d3 = 1− 2ah
2μr2

α

−
(

1− 4a2
h

)(
1− ψ1 − ψ2

)
2μr2

α

+
2ζα
U∗

,

d4 = −1 + 2ah
μr2

α

(
ε1ψ1 + ε2ψ2

)
,

d5 = −1 + 2ah
μr2

α

(
1− ψ1 − ψ2

)
− (1 + 2ah)(1− 2ah)

(
ψ1ε1 − ψ2ε2

)
2μr2

α

,

d6 = − (1 + 2ah)ψ1ε1

μr2
α

(
1− ε1

(
1
2
− ah

))
,

d7 = − (1 + 2ah)ψ2ε2

μr2
α

(
1− ε2

(
1
2
− ah

))
,

d8 = (1 + 2ah)ψ1ε
2
1

μr2
α

, d9 = (1 + 2ah)ψ2ε
2
2

μr2
α

,

d10 =
(

1
U∗

)2

.
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The aim of this work is to present the great performance of the numerical algorithm of Particle Swarm Optimization applied to
find the best teeth modifications for multimesh helical gears, which are crucial for the static transmission error (STE). Indeed,
STE fluctuation is the main source of vibrations and noise radiated by the geared transmission system. The microgeometrical
parameters studied for each toothed wheel are the crowning, tip reliefs and start diameters for these reliefs. Minimization of added
up STE amplitudes on the idler gear of a three-gear cascade is then performed using the Particle Swarm Optimization. Finally,
robustness of the solutions towards manufacturing errors and applied torque is analyzed by the Particle Swarm algorithm to access
to the deterioration capacity of the tested solution.

1. Introduction

The STE under load [1] is defined as the difference between
the actual position of the driven gear and its theoretical posi-
tion for a very slow rotation velocity and for a given applied
torque. Its characteristics depend on the instantaneous sit-
uations of the meshing tooth pairs. Under load at very low
speed (static transmission error), these situations result from
tooth deflections, tooth surface modifications, and manu-
facturing errors. Under operating conditions, STE generates
dynamic mesh force transmitted to shafts, bearings, and to
the crankcase. The vibratory state of the crankcase is the
main source of the radiated noise [2]. To reduce the radiated
noise, the peak-to-peak amplitude of the STE fluctuation
needs to be minimized by the mean of tooth modifications. It
consists in micro-geometrical modifications listed below and
displayed on Figure 1:

(i) tip relief magnitude xrel,i, that is, the amount of ma-
terial removed on the tooth tip,

(ii) start relief diameter Φrel,i, that is, the diameter at
which the material starts to be removed until the
tooth tip. Linear or parabolic corrections can be
done,

(iii) added up crowning centered on the active tooth
width Cβ,i/ j .

Many authors [3–11] worked on the optimization of
tooth modifications in simple mesh systems. Only few of
them [12–14] considered multimesh systems as cascade of
gears where idler gear modifications affect two meshes.

In this paper, the application is done on a cascade of three
helical gears, displayed on Figure 2, for a total of 8 parameters
(tip relief and start diameter for the relief for each gear, and
added up crowning for a pair of meshing gears). Multipa-
rameter optimization can easily become a difficult task if
the algorithm used is not well adapted. We will show that
the Particle Swarm Optimization (PSO) fits efficiently with
that kind of problematic. Indeed, it permits to select a set
of solutions more or less satisfying in the studied torque



2 Advances in Acoustics and Vibration

b

C ,i
rel,i

Xrel,i

Figure 1: Crowning Cβ,i/ j , tip relief xrel,i, and start relief diameter Φrel,i.

range. Moreover, the robustness of the optimized solutions
is studied regarding large manufacturing errors, lead, and
involute alignment deviations. An additional difficulty arises
because the modifications performed have to be efficient on
a large torque range. The dispersion associated is the source
of the strong variability of the dynamic behavior and of the
noise radiated from geared systems (sometimes up to 10 dB
[15, 16]).

2. Calculation of Static Transmission Error

The calculation of STE is relatively classical [17]. For each
position θ of the driving gear, a kinematical analysis of the
mesh allows determination of the theoretical contact line
on the mating surfaces of gearing teeth within the plane of
action.

Equation system which describes the elastostatic defor-
mations of the teeth can be written as follows [17]:

Hu,F(ω = 0) · F = δ(θ)− e− hertz(F),∑
Fi = F.

(1)

The following data are needed to perform this interpola-
tion:

(i) initial gaps e between the teeth: they are function of
the geometry defects and the tooth modifications,

(ii) compliance matrix Hu,F, of the teeth coming from in-
terpolation functions calculated by a Finite Element
model of elastostatic deformations,

(iii) Hertz deformations hertz, calculated according to
Hertz theory.

The calculation of the actual approach of distant teeth δ
on the contact line for each position θ permits to access the
time variation of STE and its peak-to-peak amplitude Epp,
as a function of the applied torque (or the transmitted load
F) and the teeth modifications. We chose linear correction

Figure 2: Cascade of the 3 helical gears studied: 50 teeth/72 teeth/54
teeth.

for tip reliefs and parabolic correction for the crownings. All
the modifications allow to reduce the STE fluctuation. The
most influent parameter is the tip relief magnitude. Indeed,
removing an amount of material on the tooth tip permits to
make up for the advance or late position of the tooth induced
by elastic deformations.

For the robustness study, the manufacturing errors are
also considered and displayed on Figure 3. The manufactur-
ing is not directly parameters of the optimization but as they
have an effect on the STE fluctuation they must be considered
in the robustness study.

(i) Lead deviation: fHβ,i/ j = fHβ,i + fHβ, j ,

(ii) Involute alignment deviation: fgα,i and fgα, j .

A fitness function f to minimize is defined as the in-
tegral of STE peak-to-peak amplitude over torque range
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Figure 3: Involute alignment deviation fgα and lead deviation fHβ .

[Cmin − Cmax] approximated by Gaussian quadrature with 3
points.

fi, j =
∫ Cmax

Cmin

Epp(C)dC −→
i=3∑
i=1

aiEpp(Ci). (2)

The fitness function of the whole cascade is then

f = fi, j + fk, j . (3)

We have thereby 8 parameters for the optimization leading
to a combinatorial explosion. Meta-heuristic methods allow
an efficient optimization, and we chose the Particle Swarm
Optimization [18]. Obviously in that kind of problematic,
the aim cannot be to access to the optimum optimorum
but only different local minima whose performances can be
quickly estimated over the torque range by a home-built gain
function

G0 = 10 log10

(
fSi

fref

)
, (4)

where fref corresponds to the value of the fitness function for
a standard nonoptimized gear.

3. Particle Swarm Algorithm

The principle of this method is based on the stigmergic
behavior of a population, being in constant communication
and exchanging information about their location in a given
space [18]. Typically bees, ants, or termites are animals
functioning that way. In our general case, we just consider
particles which are located in an initial and random position
in a hyperspace built according to the different optimization
parameters. They will then change their position and their

V (t− 1)

p(t− 1)

pi

pg

V (t)

Figure 4: Particle Swarm algorithm representation.

speed to search for the “best location,” according to a
defined criterion of optimization. It is commonly called the
fitness function which has to be maximized or minimized
depending on the problem.

For each iteration and each particle, a new speed and so
a new position is reevaluated considering:

(i) the current particle velocity V(t − 1),

(ii) its best position pi,

(iii) the best position of neighbors pg .

The algorithm can thus be wrapped up to the system of
(5) and Figure 4:

V(t) = ϕ0V(t − 1) + ϕ1A1
[

pi − p(t − 1)
]

+ ϕ2A2

[
pg − p(t − 1)

]
,

p(t) = p(t − 1) + V(t − 1).

(5)

A1 and A2 represent a random vector of number between
0 and 1 and the parameters of these equations are taken
following Trelea and Clerc [19–21]: ϕ0 = 0.729 and ϕ1 =
ϕ2 = 1.494.

4. Robustness Study

First the tolerance range D0 of a solution x0 has been defined,
using a vector Δx = {Δx1,Δx2, . . . ,ΔxN}, which takes in
account the parameters variability. The gears studied have a
precision class 7 (ISO 1328). Moreover, the manufacturing
errors distribution is considered to be uniform over the
range, which is the worst possible case in. Lead and involute
alignment deviations and torque variation are associated in a
14-dimensionnal vector as following:

Δx =
{
ΔXdép,i,ΔΦdép,i, fgα,i ,ΔCβ,i/ j , fHβ, i/ j ,ΔXdép, j ,ΔΦdép, j ,

fgα, j , . . . ,ΔCβ,l/ j , fHβ,l/ j ,ΔXdép,l,ΔΦdép,l, fgα,l ,ΔC
}

,

(6)

where i, j, and l correspond to, respectively, the gears with
50, 72, and 54 teeth.
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Table 1: Parameters ranges.

Number of teeth Z = 54 Z = 72 Z = 50

Tip relief magnitude and tolerance [μm] [15–150] ± 15 [0–150] ± 15 [15–150] ± 15

Start relief diameter and tolerance [mm] [230–241] ± 0.46 [200–215] ± 0.46 [153–168] ± 0.40

Added up crowning and tolerance [μm]
[8–40] ± 8 —

— [8–40] ± 8

Lead deviation and tolerance [μm]
0± 32 —

— 0± 32

Involution alignment dev. and tolerance [μm] 0± 12 0± 12 0± 12
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Figure 5: Optimized and reference solutions versus applied torque
- - - - torque range boundaries.

Then, the tolerance range D0 can be written as

D0 =
{

x : x ∈ RN | x0 −Δx < x < x0 + Δx
}
. (7)

Contrary to the case studied by Sundaresan et al. [22], the
robustness study concerns micro-geometrical modifications
instead of macrogeometrical parameters (i.e., teeth number).
The tolerance ranges are moreover noticeably larger than
the ones considered by Bonori et al. [10], especially for
the tip relief modifications. The fitness function cannot be
assumed monotonic and the study of the extreme boundaries
of the problem is not sufficient. The PSO is then used to
locate the maximum of the fitness function in the hyper-
space D0 , in order to analyze robustness of the solutions. The
new values for the parameters which maximize the fitness
function define the “degenerated solution,” noted xd:

xd ∈ D0, f (xd) = max
(
f (x) | x ∈ D0

)
. (8)

With this additional criterion, optimal solution corresponds
to the less deteriorated rather than the minimal Epp.

5. Results

The cascade of three helical gears has to be optimized for
torques from 100 Nm up to 500 Nm. A reference solution,
with standard and not optimized tooth modifications, is used
to emphasize the benefits of the Particle Swarm optimization.
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Figure 6: Optimized parameters of the solutions.

The PSO calculations have been performed using a pop-
ulation of 25 particles and stopped when a precision of
10−2 μrad for peak-to-peak amplitude Epp is reached. The al-
gorithm stops the calculation when no improvement is found
50 times successively. All the following results have converged
after 250 to 400 iterations. That corresponds to 7500 to
10000 evaluations of the fitness function (instead of 1014

for a Monte-Carlo experiment). Table 1 lists the parameters
ranges.

In order to illustrate the optimization process, Figure 5
displays 5 selected solutions—S1 to S5—corresponding to 5
local minima among the computed ones which all obviously
are better than the reference solution in terms of minimal
Epp. Figure 6 displays the optimized parameters of the solu-
tions rescaled in function of their extremum values.

According to the gain function (4), we can easily pick up
the best solutions of the selected ones. Following the results
listed in Table 2, solution S5, which provides −4.2 dB of im-
provement compared to the reference solution, should be se-
lected.
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Table 2: Gain of the computed optimal solutions compared to the
reference solution.

Configuration Gain G0 [dB]

S1 −1.6

S2 −1.9

S3 −3.3

S4 −3.7

S5 −4.2
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Figure 7: Degenerated solutions versus applied torque - - - - Torque
range boundaries.

Figure 7 displays the deteriorated solutions.
The first analysis of the deteriorating capacity of the

solutions can be done using gain function (9) and listing
results in Table 3:

G1 = 10 log10

(
fnon−deteriorated

fdeteriorated

)
. (9)

The deteriorated reference solution has a gain of +6.7 dB
compared with the initial reference solution. The solution
S5 is worse considering the gain function (9), but its fitness
function value is still less than the deteriorated reference so-
lution one. On the other hand, the previous selected solution
S4 appears as the best one with only +2.3 dB of deterioration
in the gain function (9) sense.

The second analysis of the deteriorating capacity of the
solutions can be done using gain function (10) and listing
results in Table 4:

G2 = 10 log10

(
fSi , deteriorated

fref, deteriorated

)
. (10)

The solution S1 emphasizes the importance of consider-
ing the deteriorating capacity. Indeed, although the optimal
solution brings an improvement compared to the initial
reference solution, it is likely to be less efficient taking in
account the possible manufacturing errors. The previous
choice has to be reconsidered. On the other hand, the solu-
tion S4 provides a good improvement of −3.7 dB compared
to the reference solution and is quite robust as a gain of
−6.2 dB is observed if S4 deteriorated solution is compared
with the deteriorated reference solution.

Table 3: Gain of the degenerated solutions compared to optimal
solutions.

Configuration Gain G1 [dB]

Reference +6.7

S1 +11.3

S2 +6.0

S3 +6.1

S4 +2.3

S5 +11.3

Table 4: Gain of the degenerated solutions compared to the refer-
ence degenerated solution.

Configuration Gain G2 [dB]

S1 +2.8

S2 −2.6

S3 −4.2

S4 −6.2

S5 −0.4

6. Conclusion

Optimization with an efficient heuristic method (Particle
Swarm) has been done to determinate optimized parameters
of a multimesh problem. The algorithm permits the gath-
ering of many solutions which all lead to really satisfying
results over the torque range studied thank to an integration
of STE peak-to-peak amplitude by Gaussian quadrature.
Finally, a robustness criterion has been defined based on the
deteriorating capacity of the solutions which permits to do a
more accurate choice about the optimal tooth modifications.
Indeed, there are many ways of estimating the robustness of
the solutions. In some industrial point of view, a solution
which is less efficient than another but much more robust
should be preferably chosen.
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Efficient identification and control algorithms are needed, when active vibration suppression techniques are developed for
industrial machines. In the paper a new actuator for reducing rotor vibrations in electrical machines is investigated. Model-based
control is needed in designing the algorithm for voltage input, and therefore proper models for the actuator must be available. In
addition to the traditional prediction error method a new knowledge-based Artificial Fish-Swarm optimization algorithm (AFA)
with crossover, CAFAC, is proposed to identify the parameters in the new model. Then, in order to obtain a fast convergence
of the algorithm in the case of a 30 kW two-pole squirrel cage induction motor, we combine the CAFAC and Particle Swarm
Optimization (PSO) to identify parameters of the machine to construct a linear time-invariant(LTI) state-space model. Besides
that, the prediction error method (PEM) is also employed to identify the induction motor to produce a black box model with
correspondence to input-output measurements.

1. Introduction

One of the fundamental processes of control is the parameter
identification. In control engineering a lot of effort has been
done to develop methods to identify the system model and its
parameters. A wide range of techniques such as the least
squares method, the maximum likelihood method, and the
cross correlation method, exist for system identification [1].
However, a drawback of traditional identification methods
is their dependence on unrealistic assumptions such as
unimodal performance landscapes and differentiability of
the cost function. Consequently, some problems are over-
simplified to fulfil such assumptions. Stochastic search algo-
rithms such as evolutionary-based algorithms seem to be a
promising alternative to these conventional methods. Swarm
Intelligence is one of the most important branches for Ev-
olutionary Algorithms, which has been widely used in iden-
tification problems [2–4].

The Artificial Fish-Swarm Algorithm (AFA) and the Par-
ticle Swarm Optimization (PSO) are two kinds of typical
Swarm Intelligence methods [5]. The AFA is an animal be-
haviour-based optimization method and, like the PSO, which
was firstly developed by Li and Eberhart and Kennedy,
respectively [6–9]. PSO has been widely used in identifi-
cation in many research fields [10–15]. However, there are
few researches to apply the AFA in such kind of problems.
The AFA can search for the global optimum effectively and
has a certain adaptive ability for searching space. But the
AFA individual behaviour is to hunt for local optimum.
Therefore, avoiding individual premature becomes difficult.
In this case, artificial fish will be stuck into local optima
when dealing with multimodal optimization problems. To
improve the performance of AFA is an im-portant challenge
for applying the AFA in real problems [16].

In order to guide the evolutionary-based stochastic algo-
rithms, a novel optimization method, the Cultural Algorithm
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Figure 1: Culture algorithm framework.

(CA) proposed by Reynolds in 1994 was developed to de-
manding problems, due to its flexibility and efficiency [17].
The CA is a class of computational models derived from
the principles of the culture evolution in nature, composed
by the population space, the belief space and a communi-
cation protocol. In the CA, the evolution takes place in the
population space. The knowledge generated from the expe-
riences of the individuals is stored in the belief space. The
communication protocol can be depicted as an acceptance
function and an influence function, which is utilized to make
interaction between the other two components [18, 19].
Various evolutionary algorithms have been utilized in the
population space of the CA leading to good results [20–27].
The framework of the culture algorithm can be depicted in
Figure 1.

The motivation behind this work is twofold. Firstly, in
the literature there seems to be no results on hybrid AFA and
CA. The knowledge stored in the belief space do act as a
significant role in the process of evolution, and we try to
find a proper framework for updating the belief space in
combining the CA and AFA. Secondly, the new hybrid
algorithm is applied to identify the parameters of a new kind
of actuator, which is used to suppress rotor vibrations of an
electronic machine.

As part of our investigation, two typical kinds of knowl-
edge in CA, the situation knowledge and the normative
knowledge, are stored in the belief space to update the pop-
ulation space and to establish the relationship between the
two spaces in the CA. The performance of the CAFAC
is explored using offline parameter identification of the
actuator-rotor system in an electrical machine. The identi-
fication is performed based on a lower-order physical linear
time invariant (LTI) parametric state-space model of the
actuator-rotor system. The resulting model can be utilized to
design model-based active control algorithms for vibrations
reduction.

The rest of this paper is organized as follows. Section 2
briefly introduces the background knowledge of the system
under control and the AFA. Section 3 proposes and discusses
the underlying principle of the CAFAC. In Section 4 the
identification of an actuator-rotor system is considered using

CAFAC and PEM and simulation results showing the control
performance is established. A few conclusions and remarks
are given in Section 5.

2. Problem Statement and Preliminaries

2.1. The Parametric Model of the Actuator-Rotor System. We
examine a two-pole cage induction motor equipped with
a built-in force actuator, which actively generates force on
the rotor (Figure 2(a)). The actuator is a four-pole extra
winding inside the stator slots (Figure 2(b)). This design
allows producing additional forces without harming the
normal operation of the motor. The actuator is controlled by
two voltage signals that by design induce forces on the rotor
in horizontal and vertical directions (x and y).

The most important measurements for the identification
are obtained using eddy current sensor. The sensors, con-
forming to the control signals, measure the rotor position
also in horizontal and vertical directions. With them it is
possible to record the rotor movement in any conditions
accurately. Another set of sensors has been added on the
right side of the motor in order to improve accuracy. Another
important measurement devise is the encoder that provides
the rotational angle and frequency of the rotor.

In the identification measurement the motor was oper-
ating at 32.085 Hz and the excitation input (control voltages
in horizontal and vertical directions) was a uniform random
number signal with frequency content up to 500 Hz. The out-
put data was then processed so that the effects of vibrations
were removed and only the response to the excitation signals
remained [28]. The processed measurement is displayed in
Figure 3.

The data from this setup is used to obtain a mathematical
actuator model that can be used for control design purposes,
when the objective is compensating rotor vibrations. The
motivation of obtaining a new parametric physical model is
increased understanding of the model compared to a black
box model, which has been used before successfully [29].
Parametric models have been identified before with data
from a finite element model, but they do not describe the test
motor and some of the identified parameters had complex
values, although for a realistic machine the parameters such
as resistances must be realvalued.

The linear time-invariant parametric (LTI) model of the
system will be discussed. The model for the induction motor
according to [30] is based on the mechanical model in modal
coordinates [31]

η̈ + 2ΩΞη̇ + Ω2 = ΦT
rc fc + ΦT

rc fex, (1)

urc = Φrcη, (2)

where η is the modal coordinate vector, urc is the dis-
placement in x-direction and y-direction, Φrc is the modal
matrix, Ω is a diagonal matrix, and Ξ is the modal damping
matrix, fex denotes the sinusoidal disturbance causing rotor
vibration disturbance, and fc the electro mechanical force
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(a)

Main winding
Control winding
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Figure 2: (a) The test motor [28]. Eddy current sensors are positioned on top of the rotor and behind it on the left. Encoder is located on
the left side of the machine in the end of the rotor. (b) Control windings are built in the stator slots inside the motor [28].
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Figure 3: The response to control voltages in x- and y-directions.

acting on the rotor. The model structure is the same as in
[32]

d

dt

⎛⎜⎜⎝
η̇

η

i

⎞⎟⎟⎠ =
⎡⎢⎢⎢⎣
−2ΩΞ ΦT

rcPemΦrc −Ω2 ΦT
rcCem

I 0 0

SemΦrc QemΦrc Aem

⎤⎥⎥⎥⎦
⎛⎜⎜⎝
η̇

η

i

⎞⎟⎟⎠

+

⎡⎢⎢⎢⎣
0 ΦT

rc

0 0

Bem 0

⎤⎥⎥⎥⎦
⎛⎝ v

fex

⎞⎠,

urc =
[

0 Φrc 0
]⎛⎜⎜⎝
η̇

η

i

⎞⎟⎟⎠.

(3)

The input v = (Re(ûc,0), Im(ûc,0)), is the control voltage,
the first block row is the mechanical model, and i =
(Re(îc,0), Re(Mr,c,2 îr,2,0)

T
, Im(îc,0), Im(Mr,c,2îr,2,0))

T
, where

îc,0 and îr,2,0 are current space vectors and Mr,c,2 included
in i is mutual inductance of control winding and the rotor
cage. In variables the subscript c denotes a relation to the
control winding, the subscript r denotes a relation to the
rotor cage inside the motor, and the number in subscript
denotes harmonic component [33]. All the parameters for
the model are based on measured data and their explanations
are listed in Table 1 [30].

Following [30, 32] a combined electromechanical model
can be derived starting from the voltage-flux equation for
the control winding and the equation for rotor cage four-pole
harmonic in stator coordinates

ûc = Rcîc +
dψ̂

c,2

dt
,

0 = Rr,2 îr,2 +
dψ̂

r,2

dt
− j2ωmψ̂r,2.

(4)

The four-pole harmonic flux leakages are

ψ̂
c,2
= Lcîc +Mr,c,2 îr,2 + Xc,ε,2B̂1zr ,

ψ̂
r,2
= Lr,2 îr,2 +Mc,r,2 îc +Xr,ε,2B̂1zr .

(5)

By substitution

ûc,0 =
(
Rc + jω1Lc

)
îc,0 + Lc

dîc,0
dt

+ jω1Mr,c,2 îr,2,0

+
d

dt

(
Mr,c,2 îr,2,0

)
+Xc,ε,2B1

(
żr + jω1zr

)
,
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Table 1: Parameters in the electromechanical model.

Parameter Unit Explanation

Rc mΩ The resistance of the control winding.

Lc mH The inductance of the control winding.

kcB
∗
1 N/(A·m)

The eccentricity coupling factor of the control winding multiplied with the complex conjugate of the first
air-gap field harmonic [34].

Mr,c,2M̃c,r,2 mH
Mutual inductance of rotor cage and control winding multiplied by itself and divided by rotor cage
inductance of four-pole harmonic (Mc,r,2 ·Mc,r,2/Lr,2).

γr,2 1/s Rr,2Mc,r,2/Lr,2, where Rr,2 is the rotor cage resistant of 4-pole harmonic.

Xc,ε,2B1 Wb/m The eccentricity coupling factor of control winding multiplied with first air-gap field harmonic.

α T2 A coefficient related to the unbalanced magnetic pull towards the shortest air-gap (gap between stator and
rotor) [33].

kr,2B
∗
1 /Mr,c,2 N/(m·Wb)

The coupling factor of rotor cage multiplied with the complex conjugate of the first air-gap field harmonic
and divided by rotor cage inductance of four-pole harmonic.

X̃r,ε,2B1/Mr,c,2 Wb/m
The eccentricity coupling factor of rotor cage four-pole harmonic multiplied with the first air-gap field
harmonic and divided by rotor cage inductance of four-pole harmonic.

0 = (
γr,2 + jω2

)
Mr,c,2îr,2,0 +

d

dt

(
Mr,c,2îr,2,0

)

+ jω2Mr,c,2M̃c,r,2îc,0 +Mr,c,2M̃c,r,2
dîc,0
dt

+Mr,c,2X̃r,ε,2B1

[
żr + jω2zr

]
,

(6)

where z is a complex coordinate representation of the rotor
eccentricity. In addition, the control force fc in terms of the
parameters in Table 1 is given by

fc = πdrlr
4μ0δ0

[
αzr + βej2ω1tz∗r

]
︸ ︷︷ ︸

⇒Pem(t)

+
πdr lr
4δ0

B∗1

[(
kr,2
Mr,c,2

)
Mr,c,2 îr,2,0 + kcîc,0

]
.︸ ︷︷ ︸

⇒Cem

(7)

These equations include all the parameters to identify. Since
the complex coordinate system of z is decomposed in real
and imaginary parts in the final model, matrices Pem(t) and
Cem, are given by

Pem(t) = πdr lr
4μ0δ0

⎛⎝⎡⎣Re{α} − Im{α}
Im{α} Re{α}

⎤⎦

+

⎡⎣Re
{
βej2ω1 t

}
Im

{
βej2ω1 t

}
Im

{
βej2ω1 t

} −Re
{
βej2ω1 t

}
⎤⎦⎞⎠,

(8)

CemC = πdr lr
4δ0

[
kcB

∗
1

(
kr,2
Mr,c,2

)
B∗1

]
, (9)

Cem =
⎡⎣Re{CemC} − Im{CemC}

Im{CemC} Re{CemC}

⎤⎦. (10)

It should be noted that in the time-invariant case Pem(t) is
constant Pem.

Equation (6) can be written in matrix form

⎡⎣ Lc 1

Mr,c,2M̃c,r,2 1

⎤⎦× d

dt

⎡⎣ îc,0

Mr,c,2 îr,2,0

⎤⎦

+

⎡⎣ Rc + jω1Lc jω1

jω2Mr,c,2M̃c,r,2 γr,2 + jω2

⎤⎦⎡⎣ îc,0

Mr,c,2 îr,2,0

⎤⎦

+

⎡⎣ Xc,ε,2B1

Mr,c,2X̃r,ε,2B1

⎤⎦żr +

⎡⎣ jω1Xc,ε,2B1

jω1Mr,c,2X̃r,ε,2B1

⎤⎦zr =
⎡⎣1

0

⎤⎦ûc,0.
(11)

Rearranging this will give the rest of the matrices, which
are needed for the combined model

d

dt

⎡⎣ îc,0

Mr,c,2 îr,2,0

⎤⎦

= −
⎡⎣ Lc 1

Mr,c,2M̃c,r,2 1

⎤⎦−1⎡⎣ Xc,ε,2B1

Mr,c,2X̃r,ε,2B̂1

⎤⎦
︸ ︷︷ ︸

SemC

żr

−
⎡⎣ Lc 1

Mr,c,2M̃c,r,2 1

⎤⎦−1⎡⎣ jω1Xc,ε,2B1

jω1Mr,c,2X̃r,ε,2B1

⎤⎦
︸ ︷︷ ︸

QemC

zr

−
⎡⎣ Lc 1

Mr,c,2M̃c,r,2 1

⎤⎦−1⎡⎣ Rc + jω1Lc jω1

jω2Mr,c,2M̃c,r,2 γr,2 + jω2

⎤⎦
︸ ︷︷ ︸

AemC
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×
⎡⎣ î c,0

Mr,c,2îr,2,0

⎤⎦ +

⎡⎣ Lc 1

Mr,c,2M̃c,r,2 1

⎤⎦−1⎡⎣1

0

⎤⎦
︸ ︷︷ ︸

BemC

ûc,0.

(12)

Matrices Aem, Bem, Sem, and Qem are finally obtained like Cem
in (10)

Aem =
⎡⎣Re{AemC} − Im{AemC}

Im{AemC} Re{AemC}

⎤⎦,

Bem =
⎡⎣Re{BemC} − Im{BemC}

Im{BemC} Re{BemC}

⎤⎦,

Sem =
⎡⎣Re{SemC} − Im{SemC}

Im{SemC} Re{SemC}

⎤⎦,

Qem =
⎡⎣Re{QemC} − Im{QemC}

Im{SemC} Re{QemC}

⎤⎦.

(13)

These matrices and the mechanical model (1) can be com-
bined in one state-space model (3).

The parameters of the electromechanical model are listed
in Table 1. Certain practical constraints were set for the pa-
rameters for fulfilling physical quantities. Here the resistance
is constant and known (14.5), so it does not need to be
optimized. When the effect of the unbalanced magnetic
pull is ignored we can get the LTI model. The input u(t)
consists of the voltage input v to the control winding and the
disturand the outputs are the displacements urc of the rotor
center. The system matrices A, B, and C are the functions of
the unknown parameters in the model which are reformed
in a vector as

P =
{
Lc, kcB∗1 ,Mr,c,2M̃c,r,2,γr,2,Xc,ε,2B1,α,

kr,2B
∗
1

Mr,c,2
,
X̃c,ε,2B1

Mr,c,2

}
.

(14)

The corresponding significances of the unknown parameters,
and the detailed derivation of the model can be found in [32].

2.2. The Artificial Fish-Swarm Algorithm. Suppose that the
problem under consideration has D-dimensions. Initialize
the swarm with N artificial fish. The state of one artificial
fish can be formulated as Xi = (xi1, xi2, . . . , xiD), i =
1, . . . ,N , where Xi represents the target variable for the
problem under consideration. y = f (Xi) stands for the food
concentration of the artificial fish currently, where it is the
objective function. The basic behaviours of artificial fish can
be expressed as follows (di j = ‖Xj − Xi‖ stands for the
Euclidean distance between Xi and Xj , “vd” is visual distance
of the artificial fish individual, “s” is the size of the movement
of artificial fish, δ is the crowd factor of the artificial fish)
[6].

(1) Preying. The current state of the artificial fish is Xi, the
artificial fish selects a state Xj randomly within the visual
distance, such as Xj = Xi + rand(0, 1)× vd. If f (Xj) < f (Xi)
the artificial fish moves from Xi towards Xj , meaning that
Xt
i → Xt+1

i . The formulation can be depicted as follows:

Xt+1
i = Xt

i + rand(0, 1)× s× Xt
j − Xt

i∥∥∥Xt
j − Xt

i

∥∥∥ . (15)

If f (Xj) > f (Xi), the artificial fish selects another state
randomly again. If the artificial fish cannot meet the
requirement in a given time, then it moves one step randomly
as

Xt+1
i = Xt

i + rand(0, 1)× s. (16)

(2) Swarming. The current state of the artificial fish is Xi, nf
is the number of its fellows within the visual distance, equal
to the number of elements in the set of B = {Xj | di j ≤
Visual}. If nf /= 0 that is the set B is not empty, let Xcenter =∑nf

j=1 Xj/nf and then ycenter = f (Xcenter) stands for the fitness
of the centre position. If nf × ycenter < δ × yi, meaning that
this area is not crowded, then if ycenter < yi, the artificial fish
moves one step towards the centre position:

Xt+1
i = Xt

i + rand(0, 1)× s× Xt
c − Xt

i∥∥Xt
c − Xt

i

∥∥ . (17)

Otherwise it executes the behaviour of preying.

(3) Chasing. The current state of the artificial fish is Xi,
Xmin stands for the best artificial fish individual within Xi’s
visual distance. nf is the number of Xmin’s fellows within the
visual distance. ymin = f (Xmin), if ymin < yi and nf × ymin <
δ × yi, the artificial fish moves one step to Xmin:

Xt+1
i = Xt

i + rand(0, 1)× s× Xt
min − Xt

i∥∥Xt
min − Xt

i

∥∥ . (18)

Otherwise it executes the behaviour of preying.

3. Hybrid Optimization Methods of Articificial
Fish Algorithm and Culture Algorithm

Here, the fish swarm is regarded as the population space,
where the domain knowledge is extracted from. Then the
domain knowledge is formed and stored in belief space so
as to model and impact the evolution of the population at
iteration. In four versions of CAFAC, we use the situation
knowledge and the normative knowledge to guide the
direction and the step size of the evolution. Both of them can
be depicted as follows.

3.1. Structures of Belief Space in CAFAC. The situational
knowledge provides a set of best individuals available for the
interpretation of specific individual experience [19]. Here,
the situational exemplar set consists of only the best fish
found so far, S = 〈St | St = {st1, st2, . . . , stn}〉, St stands for
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the best fish in the swarm at iteration t. In other words, it can
be initialized with the best fish in the initial fish swarm and
updated by the following function:

st+1
j =

⎧⎪⎨⎪⎩
Xt+1
gbest, j if f

(
Xt+1
gbest

)
< f (st),

stj otherwise,
(19)

where Xt+1
gbest denotes the best artificial fish individual in the

fish swarm at generation t + 1.
The normative knowledge can give the feasible solution

space of the optimization problems under consideration
[19]. It is a set of information for each variable and is given
as

N = 〈I ,U ,L,D〉, (20)

where U , L and D are n-dimensional vectors, and I =
{x | l ≤ x ≤ u}, n is the number of the variables, l j and uj are
the lower and upper bounds for the jth variable, respectively,
Lj and Uj are the values of the fitness function associated
with the bound l j and uj . Generally, l j and uj are initialized
with the lower and upper bounds of individuals. Lj and Uj

are usually initialized with positive infinity. The formula-
tion for normative knowledge updating can be depicted in
Table 2.

3.2. Acceptance Function in CAFAC. The acceptance function
determines which individuals and their performances can
have impact on the knowledge in the belief space. The
number of the individuals accepted for the update of the
belief space is obtained according to the following function
[1]:

fa(N , t) = N · β +

⌊
N · β

t

⌋
, (21)

where N is the size of the swarm, t is the iteration number,
and β is a constant (usually chosen as 0.2).

3.3. Influence Functions in CAFAC. The belief space can
influence the evolution in the population space in three
ways:

(i) determining the step size of the evolution,

(ii) determining the direction of the evolution,

(iii) determining the visual distance of AFA.

More precisely, if the normative knowledge is used to
determine the step size of the evolution and visual distance
in AFA, our knowledge-based AFA is named as CAFAC (Ns).
In four versions of CAFAC, all of the behaviours, preying,
swarming, and chasing, are modelled by the knowledge. The
influence function for the CAFAC is defined as in Tables 3, 4
and 5.

If the situational knowledge is used to guide the direction
of the evolution, our knowledge-based AFA is named as
CAFAC (Sd).

If the normative knowledge guides the step size and the
visual distance meanwhile the situational knowledge is used

to determine the direction of the evolution, respectively, our
knowledge-based AFA is named as CAFAC (Ns+Sd).

If the normative knowledge is used to determine the step
size and direction of the evolution and the visual distance,
our knowledge-based AFA is named as CAFAC (Ns+Nd).

In Tables 3, 4, and 5, size(Ik) = uk − lk is the size
of the belief interval which is decided by the normative
knowledge for the kth variable. The rand(0, 1) is a random
number uniformly distributed in the interval (0,1). The other
parameters are depicted in Section 2.2.

3.4. Crossover Operator. A criterion is set up to judge whether
the algorithm falls into local optimum:∣∣∣∣∣∣ f

(
Xt
i

)− f
(
Xt−1
i

)
f
(
Xt−1
i

)
∣∣∣∣∣∣ < 0.1. (22)

When the criterion is satisfied, the crossover operator will be
applied to the ith artificial fish Xi (i = 1, . . . ,N):

x′i = xr1 + α× (xr2 − xr1), (23)

where xr2, xr1 are two individuals selected randomly, r1, r2

are integers, which are generated randomly in the interval
of [1,N] and r1 /= r2 /= i. α is random number uniformly
distributed in interval of [−d, 1 + d] and d is constant (0.25).
Evaluate the child x′i and replace the individual xi with the
child if x′i performs better [35].

4. Application for Parameter Identification of
Induction Motor

4.1. Identification Using CAFAC and PEM. In the identifica-
tion process we disturb the system by voltage v and force
fex excitations. In order to decrease the dimension of the
problem we remove the disturbance from the data. So the
input fex is set to zero. Then the problem to be considered
is to match the model output with processed data using the
recorded band limited white noise signal as input v. The basic
idea of parameter estimation is to find a vector P to minimize
the following cost function:

J(P) =
∑N

n=1

∣∣∣�urc(n)− urc(n)
∣∣∣

N
, (24)

where urc(n) are the measurement of output for the real sys-

tem under certain inputs;
�
urc(n) is the estimated output

by exciting the model (1)-(2) using the same inputs. The
experiments are carried out using a simulated reference
signal generated by the real system’s parameters, which have
been verified by simulations for a small 30 kW two-pole cage
induction motor.

Here we use an indicator of fit value to evaluate the
accuracy of an identified model for a specific parameters
vector P and given inputs v(t) and fex(t). The fit value is
computed as [30]

md = 100×

⎛⎜⎜⎜⎝1− J(P)(∑N
n=1

∣∣∣�urc(n)− urc
∣∣∣2
)1/2

⎞⎟⎟⎟⎠, (25)
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Table 2: Formulation for normative knowledge updating.

lt+1
j =

⎧⎪⎨⎪⎩ xi, j if xi, j ≤ ltj or f (Xi) < L
t
j

ltj , otherwise

Lt+1
j =

⎧⎪⎨⎪⎩ f (Xi) if xi, j ≤ ltj or f (Xi) < Ltj

Ltj , otherwise

ut+1
j =

⎧⎪⎨⎪⎩ xk, j if xk, j ≥ utj or f (Xk) < Ut
j

utj , otherwise
Ut+1
j =

⎧⎪⎨⎪⎩ f (Xk) if xk, j ≥ utj or f (Xk) < Ut
j

Ut
j , otherwise

where the ith individual affects the lower bound for variable j, and the kth individual affects the upper bound for variable j.
Note that t denotes the current generation of the belief space.

Table 3: Influence function for swarming.

Swarming

Ns xt+1
ik = xtik +

size(Ik)× rand(0, 1)× (xtck − xtik)
‖Xt

c − Xt
i ‖

Sd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ rand(0, 1)× s× (xtck − xtik)
‖Xt

c − Xt
i ‖

∣∣∣∣∣ if xtik < s
t
k

xtik −
∣∣∣∣∣ rand(0, 1)× s× (xtck − xtik)

‖Xt
c − Xt

i ‖

∣∣∣∣∣ if xtik > s
t
k

xtik +
rand(0, 1)× s× (xtck − xtik)

‖Xt
c − Xt

i ‖
, otherwise

NsSd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtck − xtik)
‖Xt

c − Xt
i ‖

∣∣∣∣∣ if xtik < s
t
k

xtik −
∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtck − xtik)

‖Xt
c − Xt

i ‖

∣∣∣∣∣ if xtik > s
t
k

xtik +
size(Ik)× rand(0, 1)× (xtck − xtik)

‖Xt
c − Xt

i ‖
, otherwise

NsNd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtck − xtik)
‖Xt

c − Xt
i ‖

∣∣∣∣∣ if xtik < l
t
k

xtik −
∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtck − xtik)

‖Xt
c − Xt

i ‖

∣∣∣∣∣ if xtik > u
t
k

xtik +
size(Ik)× rand(0, 1)× (xtck − xtik)

‖Xt
c − Xt

i ‖
, otherwise

where urc is the average value of the measurement data
{urc(n)}. This indicator was chosen because it has been used
in the research of optimal control of an induction motor
using the prediction error method (PEM) for identification.

In our previous work, we found that the NsSd version
has better performance than the three others we mentioned
in Section 3 [26]. Even if the CAFAC has better optimization
function than PSO, the speed of the PSO is an obvious
advantage. Therefore we combine the CAFAC and the basic
PSO so as to speed up the optimization process. The
optimization process is implemented using the software
MATAB. The basic procedure of CAFAC algorithm can be
described as follows.

(1) Set all the values for the parameters and initialize the
N artificial fish in the search scope with random posi-
tions.

(2) Evaluate all the artificial fishes using the fitness func-
tion y and initialize the belief space.

(3) For each ith artificial fish, simulate the preying pat-
tern, swarming, and chasing patterns separately, and
select the best child fish. If the child is better, replace
the ith artificial fish with the child.

(4) Update the belief space.

(5) If the crossover criterion is satisfied, apply the cross-
over operator to the ith artificial fish got from Step
(3).

(6) Switch to PSO until the termination criterion is satis-
fied.

(7) Switch to (3) until the termination criterion is satis-
fied.

(8) End the program if the final termination criterion is
satisfied.

The termination criterion here is the same as (22) and the
final termination criterion is the maximum of the whole it-
eration.
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Table 4: Influence function for preying.

Preying

Select next state (Ns, NsSd, NsNd) Xt+1
i = Xt

i + rand(0, 1)× size(Ii)

i ≤ try num

Ns xt+1
ik = xtik +

size(Ik)× rand(0, 1)× (xt+1
ik − xtik)

‖Xt+1
i − Xt

i ‖

Sd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ rand(0, 1)× s× (xt+1
ik − xtik)

‖Xt+1
i − Xt

i ‖

∣∣∣∣∣ if xtik < s
t
k

xt
ik −

∣∣∣∣∣ rand(0, 1)× s× (xt+1
ik − xtik)

‖Xt+1
i − Xt

i‖

∣∣∣∣∣ if xtik > s
t
k

xtik +
rand(0, 1)× s× (xt+1

ik − xtik)

‖Xt+1
i − Xt

i‖
, otherwise

NsSd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ size(Ik)× rand(0, 1)× (xt+1
ik − xtik)

‖Xt+1
i − Xt

i ‖

∣∣∣∣∣ if xtik < s
t
k

xtik −
∣∣∣∣∣ size(Ik)× rand(0, 1)× (xt+1

ik − xtik)

‖Xt+1
i − Xt

i‖

∣∣∣∣∣ if xtik > s
t
k

xtik +
size(Ik)× rand(0, 1)× (xt+1

ik − xtik)
‖Xt+1

i − Xt
i ‖

, otherwise

NsNd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ size(Ik)× rand(0, 1)× (xt+1
ik − xtik)

‖Xt+1
i − Xt

i‖

∣∣∣∣∣ if xtik < l
t
k

xtik −
∣∣∣∣∣ size(Ik)× rand(0, 1)× (xt+1

ik − xtik)

‖Xt+1
i − Xt

i‖

∣∣∣∣∣ if xtik > u
t
k

xtik +
size(Ik)× rand(0, 1)× (xt+1

ik − xtik)
‖Xt+1

i − Xt
i ‖

, otherwise

i > try num

Ns xt+1
ik = xtik + size(Ik)× rand(0, 1)

Sd xt+1
ik =

⎧⎪⎪⎨⎪⎪⎩
xtik + |rand(0, 1)× s| if xtik < s

t
k

xtik − |rand(0, 1)× s| if xtik > s
t
k

xtik + rand(0, 1)× s, otherwise

NsSd xt+1
ik =

⎧⎪⎪⎨⎪⎪⎩
xtik + |size(Ik)× rand(0, 1)| if xtik < s

t
k

xtik − |size(Ik)× rand(0, 1)| if xtik > s
t
k

xtik + size(Ik)× rand(0, 1), otherwise

NsNd xt+1
ik =

⎧⎪⎪⎨⎪⎪⎩
xtik + |size(Ik)× rand(0, 1)| if xtik < l

t
k

xtik − |size(Ik)× rand(0, 1)| if xtik > u
t
k

xtik + size(Ik)× rand(0, 1), otherwise

In PEM identification the general idea is to produce a
model that minimizes a norm, such as

VN

(
θ,ZN

)
= 1
N

N∑
t=0

�(εF(t, θ)), (26)

where εF(t, θ) is the prediction error filtered through a linear
filter and �(·) is a scalar function [36]. ZN is the data consist-
ing of N samples and θ is the model parameterization (i.e.,
polynomials). The problem is usually solved iteratively using
gradient-based methods.

With the identification data, the PEM identification will
result in fit values of 79.1 and 80.6 in horizontal and vertical

directions. The CAFAC identification produced a model that
had fit values of 73.9 and 77.7. Figure 4 displays the filtered
measurement, and the model outputs from PEM and the
parametric model. It can be stated that the models estimate
the data reasonably well. The main differences occur near
zero where the response is modest.

4.2. Simulation Results. The obtained model was tested in
simulations by implementing a state observer and a linear
quadratic controller (LQ) for the model. The same was
done in [29] with a model, which was identified using
PEM. A real measurement of rotor vibrations (similar to
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Table 5: Influence function for chasing.

Chasing

Ns xt+1
ik = xtik +

size(Ik)× rand(0, 1)× (xtmin k − xtik)
‖Xt

min − Xt
i ‖

Sd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ rand(0, 1) × s× (xtmin k − xtik)
‖Xt

min − Xt
i ‖

∣∣∣∣∣ if xtik < s
t
k

xtik −
∣∣∣∣∣ rand(0, 1)× s× (xtmin k − xtik)

‖Xt
min − Xt

i ‖

∣∣∣∣∣ if xtik > s
t
k

xtik +
rand(0, 1)× s× (xtmin k − xtik)

‖Xt
min − Xt

i ‖
, otherwise

NsSd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtmin k − xtik)
‖Xt

min − Xt
i ‖

∣∣∣∣∣ if xtik < s
t
k

xtik −
∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtmin k − xtik)

‖Xt
min − Xt

i ‖

∣∣∣∣∣ if xtik > s
t
k

xtik +
size(Ik)× rand(0, 1)× (xtmin k − xtik)

‖Xt
min − Xt

i ‖
, otherwise

NsNd xt+1
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xtik +

∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtmin k − xtik)
‖Xt

min − Xt
i ‖

∣∣∣∣∣ if xtik < l
t
k

xtik −
∣∣∣∣∣ size(Ik)× rand(0, 1)× (xtmin k − xtik)

‖Xt
min − Xt

i ‖

∣∣∣∣∣ if xtik > u
t
k

xtik +
size(Ik)× rand(0, 1)× (xtmin k − xtik)

‖Xt
min − Xt

i ‖
, otherwise
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Figure 4: Measured data and modelled outputs using PEM and CAFAC identification methods.

the identification data, but including the disturbance and not
input signal) in the 2-pole induction motor was used as the
input in the simulations. The expected result was that the
observer would follow this signal and the LQ controller, fed
through the model of the actuator and would compensate
the vibrations. Figure 5 shows the estimation error of the
observer. It can be concluded that the observer works
decently since the amplitude of the estimation error is about
5 μm and the measured amplitude varies between 130 and
240 μm. The control result is displayed in Figure 6, where
the controller is switched on after three seconds. During the
17-second period when control is on, the reductions of the
vibrations are up to 67.0% and 70.3% and the control also
reduces the fluctuation of the amplitude, which depends on
the slip angle.

It is also necessary to consider the control signal because
the test equipment can produce voltages in the range of
±100 V, and naturally the voltage levels should not be very
high in a properly working controller. Figure 7 shows that
there is at first a peak in the control signal, which reaches
the saturation level, but it settles close to ±20 V range after
0.02 seconds.

The same simulations were also done with the black box
model, which was identified using PEM, and the controller
was tuned in the same manner. In this case the controller
reduced vibrations in the simulations by 70.0% and 64.2%.
The result is displayed in Figure 8. The control signals with
the PEM model stay between ±50 V after that (see Figure 9).
Strictly based on this data, the parametric model is slightly
better than the PEM identification. However, the parametric
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Figure 5: The estimation error of the observer in x- and y-direc-
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Figure 6: Rotor displacement with the CAFAC model when control
is switched on after 3 seconds.

model has not yet been successfully used in the real envi-
ronment, whereas the PEM identification has been proven
to work and to provide a reduction of the vibrations up to
90% depending on how the controller is tuned.

5. Conclusions

In this paper, we used a knowledge-based Artificial Fish-
Swarm optimization algorithm to identify the parameters
of an actuator model in an electrical machine. The culture
framework was invested to direct the crossover operation in
the AFA. In the culture framework, the situation knowledge
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Figure 7: Control voltage of the LQ controller with CAFAC model
when control is switched off after 3 seconds.
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Figure 8: Rotor displacement with the PEM model when control is
switched on after 3 seconds.

and the normative knowledge were employed to guide the
evolution of the Artificial Fish-Swarm optimization. The
crossover operation can help the artificial fish jump out of
the local optimum without losing the characteristics of the
previous generation. The proposed knowledge-based Artifi-
cial Fish-Swarm optimization can improve the performance
of the original Artificial Fish-Swarm optimization and can
be applied, for example, to find parameter values for a
model of an actuator used for vibration control of rotor in
an induction motor. Realistic values for the components of
a structural first-principles electromechanical model were
obtained, which improved the earlier identification results
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Figure 9: Control voltage of the LQ controller with PEM model
when control is switched on after 3 seconds.

considerably. The results compared well with those obtained
by PEM identification, but because the latter does not pro-
vide physical parameter values, the method presented in the
paper can be considered an improvement. Also, the nature-
inspired evolutionary algorithms considered are particularly
interesting, because they are computationally effective and
reasonably easy to understand. Also, they do not need
computation of gradients. For the future works, a time-
varying model must be considered. In order to do that,
more knowledge in the culture framework should be invested
and more swarm intelligence must be tested to succeed in
parameter identification.
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