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$e paradigm for healthcare is not only transforming from
hospital-oriented treatments to individually centered
prevention but also extending its scope from disease-
oriented to wellness-centered. One of the key re-
quirements for care of entire life is to detect health and
wellness status accurately and sustainably in various life
scenarios [1].

A variety of technologies are currently used to track a
person’s health and wellness status. $ey include elec-
trodes, optical sensors, strain gauges, ultrasound devices,
etc., each of which has some drawbacks in terms of user
experiences such as comfort and convenience or its per-
formance, more specifically, accuracy. $e objective of
emerging unobtrusive sensing technology is to enable
sustainable tracking of physical activities and behaviors, as
well as physiological and biochemical parameters during
daily life, while ensuring accuracy. $is may also include
estimating health-related indexes that are difficult to
measure unobtrusively by using a combination of various
physiological signals measured in a noninvasive and un-
obtrusive manner.

$e person being monitored would not even notice the
existence of the sensing device or procedure [2]. Un-
obtrusive sensing technologies, which can be imple-
mented in the form of wearables and IoTdevices, may be a
good solution for the future lifecare, but there is a diffi-
culty in deriving useful information from low-quality
signals [3, 4].

$e goal of this special issue is to share cutting-edge
research and applications on unobtrusive sensing solutions
such as sensors, devices, and signal processing algorithms.
For this, the editorial team focused on the core technologies

that could contribute to the implementation of possible
future unobtrusive lifecare devices and identified the seven
representative manuscripts submitted to the special issue.

$is special issue includes 1 review paper and 6 research
papers on state-of-the-art health sensing technologies that
are being studied and developed for lifecare. In the review
article entitled “Current Status and Prospects of Health-
Related Sensing Technology in Wearable Devices,” J. Cho
investigated the healthcare-sensing functions of current
commercially available wrist-wearable devices and their
technological limitations and prospects. In the article entitled
“Noise-Robust Heart Rate Estimation Algorithm from
Photoplethysmography Signal with Low Computational
Complexity,” J. Shin and J. Cho applied noise robust oscil-
lator-based adaptive notch filter algorithm to trace the heart
rate frequency in low signal-to-noise ratio PPG signal. In the
article entitled “Quantitative Assessment of Autonomic
Regulation of the Cardiac System,” J. K. Wu et al. described a
systematic method for the quantitative assessment of auto-
nomic cardiac system regulation based on homeostasis and
probabilistic graphic model using physiological parameters.
In the article entitled “An Efficient Deep Learning Approach
to Pneumonia Classification in Healthcare,” O. Stephen et al.
proposed a convolutional neural network model to extract
features from a given chest X-ray image and classify it to
determine the presence of pneumonia. In the article entitled
“Using Kinect v2 to Control a Laser Visual Cue System to
Improve the Mobility during Freezing of Gait in Parkinson’s
Disease,” A. Amini et al. proposed a new indoor method for
casting dynamic and automatic visual cue for improving
mobility of people with Parkinson’s disease based on skeletal
information acquired in real time from a Kinect v2. In the
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article entitled “Estimation of Breathing Rate with Confi-
dence Interval Using Single-Channel CW Radar,” I.
Nejadgholi et al. proposed an algorithm for breathing rate
estimation from single-channel continuous wave radar using
time-frequency analysis to extract Doppler frequency of the
radar signal over time. In the article entitled “Development of
a Wireless Health Monitoring System for Measuring Core
Body Temperature from the Back of the Body,” Q. Wei et al.
explored a wireless semiconductor sensor to measure core
body temperature at the skin surface of the back under the
neck.
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(e healthcare-related functions of wearable devices are very useful for continuous monitoring of biological information.
Wearable devices equipped with communication function can be used for additional healthcare services. Among the wearable
devices, the wristband type is most suitable for acquiring biological signals, and the wear preference of the user is high, so it is
highly likely to be used more in the future. In this paper, the health-related functions of wristband were investigated and the
technical limitations and prospects were also reviewed.Most current wristband-type devices are equipped with the combination of
accelerometer, optical sensor, and electrodes for their health functions, and continuously measured data are expanding the
possibility of discovering new medical meanings. (e blood pressure measurement function without using cuff is the most useful
and expected function among the health-related functions expected to be mounted on the wrist wearable device, in spite of its
technical limits and difficulties.

1. Introduction

It is a common human desire to live long and healthy re-
gardless of age or area. Recently, as the development of
genetic analysis technology has enabled us to recognize and
prevent the risk of genetic diseases in advance, this hope has
become more realistic. With the development of continuous
medical technology and new drug development, diseases
that were previously regarded as incurable diseases can now
be seen as chronic diseases that can be managed through
continuous management. In addition, as the ongoing re-
search and achievement of stem cell technology continues,
there is growing hope that human tissue can be regenerated,
and thus the possibility of extending the life span of human
beings, which is considered to be about the limit of around
100 years, is getting stronger.

So, if we cope with these diseases properly, can anyone
live long and healthy? (e answer should be considered in
two respects. If the best unlimited healthcare services are
offered to an individual, the chances of a long and healthy
life are high, but considering the high costs involved, it is
difficult to imagine that the social medical system will be
established where the best medical services are provided to

every individual. In other words, if it is not possible to
provide unlimited medical services to all members of society,
it is imperative to have a sustainable healthcare system that
will keep the population as healthy as possible at a minimum
cost, in parallel with the development of effective medical
technology for treating the disease. Especially as aging has
accelerated, the increase in the number of chronic illnesses
and consequent increase in the cost of disease management,
the increase in waiting time due to lack of medical personnel,
and the decrease in actual hours of treatment further
strengthen the demand for a new medical system.

In this respect, according to a previous study [1], health
is influenced by genetic causes, social environment, envi-
ronmental factors, behavioral patterns, and medical care.
Among these five factors, the most common cause of pre-
mature death (death except natural causes caused by aging)
is wrong behavioral patterns, accounting for 40% of the total,
and medical care contributes only 10%. (erefore, in terms
of population health, even if a large amount of money is
provided to provide the best medical service, the effect of
improvement is considerably weak, and it is the most ef-
fective prescription for the members of society to maintain a
clean environment with healthy lifestyle.
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Environmental factors can be controlled and quantita-
tively measured and monitored by national and govern-
mental regulations and efforts; however, the individual’s
lifestyle and behavior will need to be reviewed to determine
what to measure and monitor. In order to measure health-
related habits in daily life rather than patients in a hospital, a
wearable device capable of measuring a biosignal attached to
an individual’s body is required. Recently, wrist-type smart
devices have been widely used, and the healthcare-related
technologies that utilize them are increasing. (erefore, not
only wellness services that help individuals to manage their
own health but also services for remotely managing chronic
diseases using measured data are being tried by governments
and insurance companies. An example is the use of a
wristband to monitor exercise and heart rate after coaching
appropriate levels of exercise in patients treated with heart
failure, thereby preventing readmission and reducing
medical costs accordingly.

In this review, healthcare-related technologies applied to
personal wearable devices have been examined which are
widely used in recent years, and the sensing technology and
related technical issues required for health management in
the future are discussed.

2. Methods

In this review, health-related functions included in wearable
devices are surveyed and summarized. Technical problems
related to the cuffless blood pressure measurement function
which is not mounted on wrist wearable devices up to now
are discussed.

First, the functions of patient monitoring system in
hospitals and biosignal measurement items that can be
measured in daily life were compared to predict the tech-
nology status and development direction of wearable de-
vices. It was also examined that which of the various
wearable devices are suitable for biosignal measurement, and
the measurable functions were listed accordingly. (e bio-
medical measurement items using sensors included in a
wristband, which is a typical wearable device, are
summarized.

Secondly, an overview diagram of blood pressure
measurement methods has been made to review the pos-
sibility and current status of cuffless blood pressure mea-
surement techniques, and the technical limitations of the
pulse wave velocity (PWV) method, which has been widely
tried, were investigated.

3. Discussion

3.1. Healthcare Sensing Technology Applied to Wearable
Devices. (e current development of medical devices
shows that it is a big trend to monitor and monitor at any
time in home and everyday life, not in a specific place of
hospital. In accordance with this trend, medical technology
is moving from the field of doctors and specialists to the
general public, from the hospital to the home, and also to
the mobile environment, and wearable devices and related
services will play an increasingly important role. For

example, biomedical measurements such as electrocar-
diograms and oxygen saturation that have been measured
using equipment in hospitals can now be easily measured
by wearable devices that are small and inexpensive. As a
result, new healthcare services using the measurement data
can also be introduced. In Figure 1, a typical screen of
patient monitoring system used in hospital is shown and its
measurement functions are listed up. Recording and
analysis of ECG signals and measurements of heart rate,
SpO2, respiration rate, and body temperature are now all
possible with small-size handheld devices or wearable
devices as shown in the figure. However, the miniaturi-
zation of blood pressure measurement function is still
ongoing, which will be discussed later.

In addition to technological advances, expectations and
requirements of consumers who purchase and use wearable
devices are also meeting new remote healthcare services.
According to a recent report [2], the widespread use of
wearable devices is expected to prolong consumers’ life span,
lower healthcare costs, and reduce obesity issues, and these
trends are becoming clearer over time. (ere are various
types of wearable devices currently available, such as
wristband-type devices [3–6], glasses [7], shoes [8], patches
[9–12], socks [13], clothes [14], earphones [15–17], rings
[18], and clips [3]; however, the most suitable form to
measure various biosignals and to manage health through it
is thought to be the wrist-type device. As shown in Figure 2,
the location where the electrocardiogram, photo-
plethysmography, and electrodermal activity can be easily
measured is the wrist, and the experience of wearing a
wristwatch is expected to eliminate the feeling of wearing a
wearable wristband device. (is can be seen in a previous
survey [19] of the most preferred locations for wearing
wearable devices on the body. (e most preferred location
was the wrist (65%), and most of the positions replacing the
worn accessories such as glasses (55%) and armband (40%)
were highly preferred.

From Fitbit’s product portfolio (Figure 3), which is
one of the representative companies developing and
selling wearable devices, it can be seen that there are
various functions by product type and price. In addition,
the higher the price, the more various the healthcare-
sensing functions included, and the wrist-type device has
the most various functions among the company’s other
products. Representative sensors and related functions
applied to wrist wearable devices of major companies such
as Fitbit, Apple, Garmin, and Samsung can be roughly
classified into three categories as Table 1.

(e wristband-type devices currently available are al-
most all combinations of the above three sensors and
functions. In particular, in the case of the optical sensor for
measuring the heart rate [20–29], the function of measuring
the pulse continuously for 24 hours is spreading using low
power architecture, like the case of the accelerometer which
is used to measure the movement of the user at all times for
24 hours at very low power. (ese always-on functions
extend the possibility of discovering new medical meanings
because the user’s biosignals can be continuously measured
over several days.

2 Journal of Healthcare Engineering



3.2. Wearable Blood Pressure Sensing Technology Outlook.
Blood pressure is one of the fundamental and important vital
signs (pulse, blood pressure, body temperature, respiration)
and is closely related to arterial health, which is considered
to be an important indicator of health. (erefore, blood
pressure is a kind of health indicator that needs to be
managed with great importance. In particular, in the case of
hypertension, the blood pressure trend for 24 hours is more
important than the blood pressure value measured from
time to time. (erefore, it is necessary to continuously
monitor and manage it. Because hypertension is the most
common cause of death among developed and developing
countries [30], the need for blood pressure management
using wearable devices has long been emphasized, and

among the health-related functions, it is expected to be the
most useful and expected function to be mounted on the
wrist wearable device in the future.

(e methods of blood pressure measurement are clas-
sified and summarized in Figure 4. (e technologies which
have not been clinically proved enough are surrounded with
dashed lines. (e auscultatory method using a brachial cuff
and a stethoscope has been considered as a gold standard of
blood pressure measurement [31]; however, the oscillo-
metric blood pressure monitor using cuff is the most widely
used method due to convenience and proven accuracy [32].
Since the oscillometric blood pressure monitor uses an
upper arm or wrist cuff, it is not suitable for measuring blood
pressure from time to time during daily life; nonocclusive

Typical screen of patient monitor and related functions

• ECG/arrhythmia

• Pulse rate/SpO2/respiration

• Body temperature

• Noninvasive/invasive blood pressure

ECG/arrhythmia analysis

Pulse rate/SpO2/respiration measurement

Smart watch/smartphone sensor

Body temperature measurement

Smartphone accessory/patch

Smartphone accessory/ECG patch

Figure 1: Evolution of patient monitoring system for wearable devices and daily life.

Bio-signal Wristwear Clothing Eyewear Earwear Ring Patch

Electrocardiography √ √ √ √

Photoplethysmography √ √ √ √ √ √

Electrodermal activity √ √ √

Body impedance √ √

Electrooculography √

Electromyography √ √

Electroencephalography √ √

Acceleration √ √ √ √ √ √

Illuminance √ √ √ √ √

Figure 2: Comparison of biosignal measurement items according to wearable device type and wearing position.
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techniques which do not occlude the arteries to measure
blood pressure are generally considered as the candidates of
blood pressure measurement technology for wearable de-
vices. To make blood pressure measurement easy and
convenient, Omron Healthcare (Japan) has recently de-
veloped a wrist monitor called “HeartGuide,” an oscillo-
metric blood pressure monitor with a relatively small wrist
cuff [33]. Although it is necessary to press the finger
manually to apply the oscillometric principle, recent studies
have shown potential to use smartphones as blood pressure
monitors [34, 35]. Among the nonocclusive techniques,
tonometry [36–38], pulse wave velocity (PWV) [39–50], and
photoplethysmography (PPG) [51, 52] have been extensively
studied and developed for ambulatory blood pressure
monitoring (ABPM).

Figure 5 shows representative blood pressure mea-
surement devices that do not use a cuff. (e T-Line system
(Tensys Medical Inc., USA), Finometer (Finapres Medical
Systems, Netherlands), and the Vasotrac (Medwave, USA)

are typical devices which have been used for noninvasive
arterial line monitoring in hospitals. In the T-Line system
using radial artery applanation tonometry, the contact
pressure between the radial artery and the bone should be
optimized and continuously adjusted automatically, and its
clinical accuracy has been tested under various conditions
[53–55]. (e Finometer measures the arterial pressure
waveform at the finger using volume-clamp method, also
known as the Finapres (FINger Arterial PRESsure) method.
(e volume of finger artery is measured with optical sensors
and is automatically maintained constant with the finger cuff
connected to pneumatic control system. (e volume-clamp
method showed good agreements with intra-arterial mon-
itoring [56] and auscultatory method [57]; however, when
measuring blood pressure waveforms under abnormal
conditions such as finger oedema or insufficient blood
perfusion, the volume-clamp method is inaccurate or even
impossible [58, 59]. (e Vasotrac device measures the radial
blood pressure using pressure sensing module located over
the radial artery with a length-adjustable wrist strap. (e
wrist strap automatically repeats compression and release to
record the radial blood pressure waveform and estimate the
blood pressure every 12∼15 pulse beats using proprietary
algorithms. Previous studies showed that the accuracy of
Vasotrac is controversial [60, 61].

(ere also have been numerous attempts to develop
ABPM devices; however, personal blood pressure monitors
without cuffs have not yet been proven to be accurate.
Although the BPro device (Healthstats, Singapore) showed
good accuracy in previous studies [36–38], the tonometry
method is highly sensitive to motion and needs precise
positioning of the sensor, which makes it difficult to be
commonly used in daily life [62]. As is shown in the figure,
all the previous studies and products without using cuffs
have attempted to measure blood pressure in the wrist or
finger for a variety of reasons, such as the location of the
artery, easiness for ECG measurement, and so on.

(e most popular method among the various methods
shown in Figure 5 is the method using pulse wave velocity

Ace Alta Alta HR Charge 3 Versa Ionic

Steps and activity √ √ √ √ √ √

Calories burned √ √ √ √ √

Floors climbed √ √ √

Sleep tracking √ √ √ √ √ √
Sleep stages (light/deep/REM) √ √ √ √
Auto exercise recognition √ √ √ √ √
Hourly activity √ √ √ √ √ √

Swim tracking √ √ √

24/7 heart rate monitoring √ √ √ √

Cardio fitness level √ √ √ √

Figure 3: Fitbit’s wearable device types and functions (Feb. 2019).

Table 1: Sensors and their health-related functions in wearable
devices.

Sensor Functions

Accelerometer

Step count/calories/pace and distance/active time
Sleep efficiency/sleep time/sleep stages (light,

deep, REM)
Exercise recognition (walking, running, rowing,

swimming, etc.)

Optical sensor

Heart rate (at rest, during exercise) from
photoplethysmogram (PPG)
24 h continuous heart rate

Respiration
Oxygen saturation (SpO2)

Heart rate variability (HRV)
Light intensity (illuminance)

Electrodes

Electrocardiogram (ECG)
Bioimpedance analysis (body fat, muscle, etc.)

Heart rate (impedance plethysmography)
Perspiration

4 Journal of Healthcare Engineering



(PWV), which is a method of estimating the blood pressure
using the phenomenon that the pressure inside the artery
(that is, blood pressure) changes the elasticity of the artery
and changes the time of the pulse wave from the heart to the
peripheral artery.

(e PWV can be calculated by dividing the artery length
with the pulse transit time (PTT) or pulse arrival time (PAT),
which can be derived combining the feature points (peak,
valley, peak of 1st derivative, etc.) of electrocardiogram
(ECG), photoplethysmogram (PPG) [39–46], phonocar-
diogram (PCG) [47], seismocardiogram (SCG) [48], and
ballistocardiogram (BCG) [49, 50]. Sometimes the PTT and
PATare used as the same; however, the strict meaning of the
pulse arrival time is the sum of pulse transit time and
preejection period (PEP) [63]. Figure 6 shows a typical
example of PWVmethodology, which uses the peaks of ECG

and PPG. (e PAT in Figure 6 includes the preejection time
due to the use of the ECG. Detailed descriptions of PTTand
PAT measurements can be found in previous studies [63].

(e difficulties or problems of conventional blood
pressure estimation techniques using PWV can be sum-
marized as follows:

(1) Because the elasticity of an artery changes not only
by blood pressure but also by other factors such as
the environment, temperature, and emotion, it is
difficult to estimate the accurate blood pressure when
the arterial characteristics change with time. In
addition, when the pulse arrival time including PEP
is used for PWV calculation, the PEP fluctuation is
expected to reduce the accuracy of the blood pressure
estimation [63–66].

Blood pressure measurement

Invasive Noninvasive

Arterial cannulation Occlusive Nonocclusive

Auscultation Oscillometry

Brachial

Wrist

Finger

Arterial line
monitoring ABPM

Arterial tonometry

Volume-clamp method

Modified oscillometry

Tonometry

Pulse wave velocity

Photoplethysmography

Figure 4: Blood pressure measurement technology classification (the technology in boxes with dashed lines has not been clinically
validated).

Blood pressure

Noninvasive

Nonocclusive

ABPM

Arterial tonometry

Volume-clamp method Pulse wave velocity

Photoplethysmography

Tensys medical

Finapres medical
systems

Medwave

Healthstats

MIT

Arterial line
monitoring

Modified oscillometry

Tonometry

Figure 5: Cuffless blood pressure measurement technologies and products.
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(2) Calibration using a conventional sphygmomanom-
eter with cuff is always necessary since the PWV
method does not measure the blood pressure values
directly.

(3) Since systolic and diastolic blood pressures are in-
dependent of each other, additional information
other than the PWV measurement is needed to
obtain the two blood pressure values (two equations
are needed for two unknowns to be solved; however,
only one PWV can be measured). (erefore, accu-
rate estimation of systolic and diastolic blood
pressure requires efforts to find new and effective
features besides PWV, as shown in a recent work
[50].

In conclusion, the cuffless blood pressure estimation
technology using PWV for wearable devices should be
designed and developed to overcome such shortcomings.

4. Conclusions

An increase in the cost of healthcare due to aging neces-
sitates the establishment of a more effective healthcare
system. (e healthcare function of the wearable device can
be very useful for efficient preventive/postmanagement
services in that the user’s body information can be moni-
tored, and communication with healthcare professionals is
always possible. Among various wearable devices, the
wristband is most suitable for acquiring biomedical signals,
so it is highly likely to be useful in a newmedical system.(e
sensors of wristband for health-related functions are mainly
composed of accelerometer, optical sensor, and electrodes.
Using the combinations of these sensors, wristband mea-
sures most functions of the patient monitoring system in
hospital except blood pressure measurement.

(erefore, the biggest leap in health-related functions of
wristband-type devices is expected to be blood pressure
measurement technology without cuff, and it is expected to
have a ripple effect as the technical difficulty is very high.
However, even if a new blood pressure sensing technology is
not developed early, the 24-hour continuous biosignal
measurement function of the wearable device, which has
been developed so far, provides biosignals in daily life in
various environments. Unlike patient data measured in
hospitals, it will provide new medical implications and
possibilities for healthcare services, and these efforts are
expected to continue.
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+is paper introduces a noise-robust HR estimation algorithm using wrist-type PPG signals that consist of preprocessing block,
motion artifact reduction block, and frequency tracking block. +e proposed algorithm has not only robustness for motion noise
but also low computational complexity. +e proposed algorithm was tested on a data set of 12 subjects and recorded during
treadmill exercise in order to verify and compare with other existing algorithms.

1. Introduction

Recently, as interest in health increases, there is a growing
demand for users to continuously diagnose diseases or to
manage disease by measuring biosignals. In order to meet
the needs of users, wearable pace measurement devices
based on photoplethysmography (PPG) sensors have been
commercialized in many companies [1].

+e PPG is a sensor that measures changes in blood
vessel contraction and expansion using LEDs and photo-
diodes. It can be used to measure the heart rate and oxygen
saturation in a noninvasive manner and is widely used in
wearable devices. However, in case of PPG sensor signals in
wearable devices, the heart noise estimation error may be
caused by motion artifact (MA) due to body movements.
Various algorithms have been developed to overcome this
problem. Conventional algorithms mainly use PPG sensor
signals of different wavelengths to remove motion noise
from the PPG sensor signals or effectively remove motion
noise using acceleration sensor signals and measure heart-
beat [2–8].

However, the existing algorithms use various signals and
use complex algorithms. +erefore, the existing algorithms
are difficult to use in wearable devices with constraints of
price, power, and system size. To overcome these drawbacks,

this paper proposes a PPG sensor with low complexity and
an algorithm based on a 3-axis acceleration sensor to esti-
mate the heart rate. To evaluate the performance of the
proposed algorithm, we compared the performance of the
proposed algorithm with that of the existing algorithms.

2. Methods

In this paper, the algorithm consists of three stages in order
to estimate the heart rate during exercise in the wearable
device based on the PPG sensor. +e first stage is pre-
processing the input PPG sensor data and 3-axis acceleration
data. +e second stage is to remove the MA noise from the
PPG sensor signal. +e last stage is the frequency tracking to
estimate the heart rate in the motion-free signal. +e
flowchart of the proposed algorithm is shown in Figure 1.

2.1.DataSet. In this paper, we tested the proposed heart rate
estimation algorithm using 12 data sets in the IEEE Signal
Processing Cup 2015 database [2]. We compared the heart
rate with the output of the ECG signals based on the data set.

2.2. Normalized Least Mean Squares Algorithm. +e nor-
malized least mean squares (NLMS) algorithm is widely used
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because it has a simple calculation among various adaptive
filters and ease of implementation [9, 10]. We consider data
d(n) derived from an unknown system:

d(n) � uT(n)w + v(n), (1)

where w is an unknown system that we expect to estimate,
u denote the input vector, v accounts for the measurement
noise, and n is the iteration number. Assume that the
unknown system order is M, w and u are the M-di-
mensional column vectors. +e coefficient w(n) of the
adaptive filter is updated using the difference e(n) between
the adaptive filter output signal y(n) and the desired
signal d(n) for the input signal u(n) so that the square
mean error is minimized. +e NLMS algorithm can be
expressed as

w(n) � w(n− 1) + μ
u(n)

uT(n)u(n)
e(n),

e(n) � d(n)−y(n) � d(n)−uT(n)w(n− 1),

(2)

where μ is the step size, 0< μ≤ 1.

2.3. Low Computational Complexity MA Reduction
Algorithm. +e PPG signal includes noise-free signals and
the MA that is generated due to the movement of the body.
Because MA is highly correlated with the acceleration sensor
signals, a clean PPG Signal can be obtained to remove a
signal having a high correlation with the acceleration sensor
from the PPG signal. +erefore, the corrupted PPG signals
are used as desired signal d(n) and 3-axis accelerometer
signals are used as input signal u(n) to reduce the MA as
shown in Figure 2.

+e conventional NLMS algorithm requires 3M+ 1
multiplication when the order of the adaptive filter is M.
Despite the small computational complexity of the NLMS,
an algorithm with a small computational complexity is re-
quired for wearable systems due to price, power, and system
size limitations. In order to overcome this drawback, we
propose an adaptive noise cancellation algorithm which can
have similar performance with low computational com-
plexity as follows:

wx(n) � wx(n− 1) + μ
sign ux(n)( 

sign uTx (n)( sign ux(n)( 
sign(e(n)),

(3)

wy(n) � wy(n− 1) + μ
sign uy(n) 

sign uTy (n) sign uy(n) 
sign(e(n)),

(4)

wz(n) � wz(n− 1) + μ
sign uz(n)( 

sign uTz (n)( sign uz(n)( 
sign(e(n)),

(5)

e(n) � d(n)−y(n), (6)

y(n) � sign uTx (n) wx(n− 1) + sign uTy (n) wy(n− 1)

+ sign uTz (n) wz(n− 1),

(7)

where sign(·) denotes the sign function and ux, uy, anduz
denote x-axis, y-axis, and z-axis accelerometer signal,
respectively.

Due to use of only the sign of the input signal vector and
the error, the proposed algorithm requires only M multi-
plications because the multiplication required in Equations
(3)–(5) and (7) can be calculated by adding. +erefore, the
algorithm can be implemented with a small amount of
computation compared to the existing NLMS algorithm. In
particular, calculation time can be further shortened for
using a CPU without a floating point unit.

Preprocessing:
down-sampling

band-pass filtering

IIR band-
pass filter

HR estimation:
adaptive frequency 

tracking
Final HR in BPM

PPG signal

Accelerometer signals

Motion artifact 
reduction:

adaptive filter

Previous HR

Figure 1: Block diagram of the proposed algorithm.

ACC X-axis

ACC Y-axis

ACC Z-axis

Preprocessed PPG

Σ
+

– Clean PPGΣ

Wx

Wy

Wz

Figure 2: Adaptive filter for motion artifact reduction.
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2.4. Adaptive Frequency Tracking. We used an oscillator-
based adaptive notch filter (OSC-ANF) algorithm [11] to
estimate the heart rate using the PPG signal that passed
through theMA reduction stage.+eOSC-ANF algorithm is
based on a second-order IIR band-pass filter and traces the
strongest frequency of the signal. +e OSC-ANF algorithm
operates as follows:

x(n) � α(n)(1 + β)x(n− 1)− βx(n− 2)

+ 0.5(1− β)(sign(e(n))− sign(e(n− 2))),

eα(n) � x(n)− 2α(n)x(n− 1) + x(n− 2),

Px(n) � 1− μa( Px(n− 1) + μax
2
(n− 1),

α(n + 1) � α(n) + μa
x(n− 1)

2Px(n)
eα(n),

ω(n + 1) � cos−1(α(n + 1)),

HRest(n + 1) � ω(n + 1) ×
fs

2π
× 60,

(8)

where ω(n + 1) is the estimated frequency, HRest(n + 1)

is the estimated HR in BPM, fs is the sampling rate, μa is
the step size, and β controls the 3 dB bandwidth of the 2nd
order IIR band-pass filter.

2.5. Noise-Robust Adaptive Frequency Tracking. To improve
the tracking performance of the OSC-ANF algorithm under
highly noisy environments, we propose the noise-robust
OSC-ANF (NR-OSC-ANF) algorithm that is derived by
noise-robust adaptive filter concept [12, 13] as follows:

α(n) �
1
L



L−1

l�0
α(n− l),

eα(n) � x(n)− 2α(n)x(n− 1) + x(n− 2),

Px(n) � 1− μa( Px(n− 1) + μax
2
(n− 1),

α(n + 1) � α(n) + μa
x(n− 1)

2Px(n)
eα(n).

(9)

By using the average of the past estimated frequencies,
the NR-OSC-ANF algorithm makes improved frequency
tracking performance in low signal-to-noise ratio (SNR)
environments.

In addition, to improve MA reduction performance, we
further use IIR band-pass filter, the preprocessed PPG signal
by estimated α(n + 1), as follows:

dhr(n) � α(n) 1 + βhr( d(n− 1)− βhrd(n− 2)

+ 0.5 1− βhr( (d(n)− d(n− 2)).
(10)

+e output of IIR band-pass filter dhr(n) is used as the
desired signal for adaptive filter instead of d(n) in the MA
reduction step.

2.6. Performance Measurement. To verify the performance
of the proposed algorithm, 12 data sets of IEEE Signal
Processing Cup 2015 database were used. +e data set
used provides the reference heart rate measured from the
electrocardiogram as well as the PPG sensor signal and
the acceleration sensor signal. To compare the performance
of the algorithm, we used the two methods that average
absolute error and average absolute error percentage as
follows:

Error1 �
1
N



N

n�1
HRest(n)−HRtrue(n)


,

Error2 �
1
N



N

n�1

HRest(n)−HRtrue(n)




HRtrue(n)
.

(11)

3. Results and Discussion

3.1. Parameter Settings. In order to reduce the computa-
tional complexity, we use down-sampled PPG and accel-
erometer signal that are resampled 125Hz to 25Hz. Figure 3
shows the average absolute error of the proposed algorithm
with various filter tap lengths which usedMA reduction step.
As can be seen, the proposed algorithm has best perfor-
mance when the adaptive filter order is 21 (M� 21). Pa-
rameter setting of the proposed algorithm is summarized in
Table 1.

3.2. Performance of theProposedAlgorithm. In this paper, we
verified the performance of the proposed heart rate esti-
mation algorithm using 12 data sets in the IEEE Signal
Processing Cup 2015 database. Error1 and Error2 were
obtained for each set and compared with other algorithms by
comparing the heart rate output through the three-stage
algorithm and the ECG signal-based heart rate provided by
the data set. Figure 4 shows that the proposed algorithm can
sufficiently remove motion artifacts even with low com-
putational complexity. Figure 5 is the HR tracking results
plot on test data set 08 and set 09 with ECG-based HR. +e
estimated HR form PPG signal matches with ECG-based HR
satisfactorily.

Tables 2 and 3 show that the performances of other
existing algorithms and the proposed algorithm do not differ
greatly. Although the proposed algorithm does not have best
performance compared with other algorithms, it is con-
sidered to be worthy of an algorithm for use in a wearable
device because of its low computational complexity. +e
proposed algorithm requires only few multiplication for
preprocessing and NR-OSC-ANF.

Figure 6 shows Bland–Altman plot for the training data
set. In this case, the limits of agreement were [−3.97, 5.04]
BPM. Figure 7 indicates the scatter plot between the ground
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Table 1: Parameter setting.

Algorithm Parameters
MA reduction algorithm M � 21, μ � 0.0001
NR-OSC-ANF L � 5, β � 0.95, μa � 0.025
IIR band-pass filter βhr � 0.8
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Figure 5: HR estimation results for (a) set 08 and (b) set 09.

Table 2: Error1 results of the proposed algorithm and the existing algorithms.

Data set TROIKA [2] JOSS [3] NLMS+OSC-ANFc [7] Combination of adaptive filters [8] Proposed algorithm
1 2.29 1.33 1.75 1.34 1.33
2 2.19 1.75 1.94 0.70 1.92
3 2.00 1.47 1.17 0.66 0.83
4 2.15 1.48 1.67 0.70 1.03
5 2.01 0.69 0.95 0.63 0.54
6 2.76 1.32 1.22 0.86 1.44
7 1.67 0.71 0.91 0.66 0.65
8 1.93 0.56 1.17 0.58 0.56
9 1.86 0.49 0.87 0.52 0.43
10 4.70 3.81 2.95 2.46 2.51
11 1.72 0.78 1.15 1.21 0.83
12 2.84 1.04 1.00 0.74 1.79
Av.± std 2.34± 0.79 1.29± 0.86 1.40± 0.58 0.92± 0.52 1.16± 0.62
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Figure 4: Frequency spectrogram of various signals.
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truth HR and estimated HR. +e fitted line was
y � 0.9953x + 1.178, where x is the ground truth HR and y is
the estimated HR.

4. Conclusions

+is paper presents a noise-robust HR estimation algorithm
using PPG signals that have not only robustness for motion
noise but also low computational complexity. In order to
verify the performance of the proposed heart rate estimation
algorithm, we compared with other existing algorithms
using the IEEE Signal Processing Cup 2015 database.
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Autonomic neural system (ANS) regulates the circulation to provide optimal perfusion of every organ in accordance with its
metabolic needs, and the quantitative assessment of autonomic regulation is crucial for personalized medicine in cardiovascular
diseases. In this paper, we propose the Dystatis to quantitatively evaluate autonomic regulation of the human cardiac system, based
on homeostatis and probabilistic graphic model, where homeostatis explains ANS regulation while the probability graphic model
systematically defines the regulation process for quantitative assessment. -e indices and measurement methods for three well-
designed scenarios are also illustrated to evaluate the proposed Dystatis: (1) heart rate variability (HRV), blood pressure variability
(BPV), and respiration synchronization (Synch) in resting situation; (2) chronotropic competence indices (CCI) in graded exercise
testing; and (3) baroreflex sensitivity (BRS), sympathetic nerve activity (SNA), and parasympathetic nerve activity (PNA) in or-
thostatic testing. -e previous clinical results have shown that the proposed method and indices for autonomic cardiac system
regulation have great potential in prediction, diagnosis, and rehabilitation of cardiovascular diseases, hypertension, and diabetes.

1. Introduction

Autonomic neural system (ANS) regulates the circulation to
provide optimal perfusion of every organ in accordance with
its metabolic needs. Together with the endocrine and im-
munological systems, it adjusts the internal environment of
the organism to respond the changes in the external envi-
ronment [1]. -erefore, understanding the ANS and the way
it regulates body circulation is crucial for personalized
medicine in cardiovascular diseases.-e understanding of the
ANS regulation in the cardiac system can be traced back to the
findings of twoNobel Prize winners: (1) Corneille Heymans in
1938 identified the carotid sinus nerves [2], which are tiny
baroreceptor and chemoreceptor nerves and can sense
changes in hemodynamic pressure and humoral factors and
send output to the sympathetic and parasympathetic nerves,

and (2) Axelrod [3], Von Euler [4], and Del and Katz [5]
identified acetylcholine (ACh) as a transmitter for the
parasympathetic nerves, norepinephrine (NE), and sympa-
thetic nerves. However, the ANS regulation of the cardiac
system can be viewed as a complex dynamic system, and it
can be well described by “Homeostasis” [6], which is now
regarded as one of the core competencies by the American
Association ofMedical Colleges andHowardHughesMedical
Institute and a core concept necessary for future physicians
[7].

In clinical settings, autonomic dysfunction has been
linked to direct detrimental effects towards heart failure and
chronic kidney disease [8]; thus, quantitative methods to
evaluate the ANS regulation has great potential to generate
innovative diagnostic and treatment approaches that limit
hypertension and target end-organ damage. Recent research
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has shown that the autonomic neurohumoral system can
dramatically influence morbidity and mortality from car-
diovascular disease through influences on the innate and
adaptive immune systems [9]. Due to the highmetabolic rate
of brain tissue, the precise regulation of cerebral blood flow
(CBF) is critical for maintenance of constant nutrient and
oxygen supply to the brain [10]. -e metabolic syndrome is
characterized by the clustering of various common meta-
bolic abnormalities in an individual, which is also associated
with increased risk for the development of type 2 diabetes
and cardiovascular diseases. -e augmented sympathetic
activity in individuals with metabolic syndrome worsens
prognosis of this high-risk population [11]. Experimental
and clinical investigations have validated the hypothesis: the
origin, progression, and outcome of human hypertension
are related to dysfunctional autonomic cardiovascular
control, which is particularly true for abnormal activation of
the sympathetic division [12].

Since the quantitative assessment of the autonomic reg-
ulation is tremendously important for clinical and healthcare
applications, there is urgent need to quantitatively evaluate
the ANS regulation status. Unfortunately, there are only two
invasive methods to measure certain aspects of the ANS thus
far: (1) microneurography to assess muscle sympathetic nerve
activity and (2) the norepinephrine isotope dilution to de-
termine noradrenalin in the blood to evaluate spillover of the
sympathetic nervous system [13]. Although HRV is an in-
direct biomarker of the cardiac autonomic nervous system
activity [14], ANS regulation of the cardiac system is complex
in nature and existing HRV assessment is rather ad hoc
without any theoretical model. -erefore, HRV indices ob-
tained in different settings and by different persons are often
inconsistent, resulting in difficulties for clinical interpretation.

In summary, ANS regulation of the cardiac system plays
a central role in both research and clinical practices, and we
will focus on the quantitative assessment of autonomic
regulation of the cardiac system in this paper. -e main
contributions are as follows:

(i) We propose the Dystatis to quantitatively evaluate
autonomic regulation of the human cardiac system,
based on homeostatis and the probabilistic graphic
model, where homeostatis explains ANS regulation
while the probability graphic model systematically
defines the regulation process for quantitative
assessment.

(ii) -e Dystatis is elaborated in three well-designed
scenarios, where indices and measurement methods
for each scenario are also proposed and illustrated by
clinical applications:

(1) HRV, BRV, and Synch in resting situation:
Dystatis provides theoretical model and guide-
lines for the test design and data processing and
interpretations, in order to solve existing in-
consistence problems.

(2) CCI in graded exercise testing: Dystatis meta-
bolic requirement is enlarged by graded exercise
so that CCI can be obtained without considering

effects from other internal and external in-
teractions. -ese are minor compared to graded
exercises.

(3) BRS, SNA, and PNA in orthostatic testing: based
on Dystatis, orthostatic testing creates a large
blood pressure drop and then a large BRS output
to sympathetic and parasympathetic nerves. As
such, the mathematical model for solution of
BRS, SNA, and PNA can be greatly simplified by
neglecting other internal and external in-
teractions in the ANS regulation.

2. Dystasis: SystematicQuantitative Assessment
Methodology for ANS Regulation of the
Cardiac System

Human body is a complex biological system, of which
homeostasis is a crucial property in maintaining the life. It is
the self-regulating process by which biological systems
maintain stability in order to adjust to conditions that are
optimal for survival. -e stability attained is a dynamic
equilibrium, in which continuous change occurs yet rela-
tively uniform conditions prevail.

Dystasis is built up on homeostasis and defined as fol-
lows: ANS regulation of the cardiac system is a part of body’s
complex biological system. -rough ANS self-regulating
process, the cardiac system tends to reach and maintain a
dynamic equilibrium state, in order to supply cells and
organs with their metabolic needs, e.g., oxygen, nutrients,
and removal of waste, survive in various internal and ex-
ternal environments, and support various physical and
mental activities. -e characteristics of Dystasis are (1)
equilibrium: the ANS self-regulating process of the cardiac
system reaches and maintains an “equilibrium” state in a
relative steady internal and external environment, with no or
minor changes in terms of physical andmental activities.-e
property and its numerical measures of the state of this
equilibrium of the individual’s ANS self-regulating process
shall provide quantitative performance evaluation of how
well one’s ANS regulation system works; (2) dynamic: the
ANS self-regulating process of cardiac system should be
“dynamic” enough, being able to work in dynamic envi-
ronment, support various physical and mental activities of
the body, and defend virus invasions. In other words, it
should be able to reach new equilibrium state as soon as
possible when there is a change of internal/external envi-
ronment or physical/mental activities. For instance, ANS
regulation interacts with the immune system to control
inflammation [15] and ANS regulation of the cardiac system
increases oxygen supply and reaches a new equilibrium
when the intensity of physical activity increases to a new
level. -e capability of ANS regulation to accommodate
changes of internal and external environment, as well as
activity needs, is another important measure.

In order to quantitatively evaluate the state and capa-
bility of ANS regulation of the cardiac system, one feasible
approach is the probabilistic graphic model-based approach
[16], as shown in Figure 1. Principally, the interactions of
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ANS with cardiac, respiration, vascular, metabolic, immune,
viscera, and mental systems are bidirectional [17]. Here, in
Figure 1, the objective is to estimate ANS state through all
possible observations, in case of ANS regulation of the heart
rate withmajor internal and external influences; i.e., RSA is a
terminology for heart rate modulation by respiration; blood
pressure formed in the vascular system and sensed by
baroreflex which then affects the heartbeat; physical activ-
ities stimulate metabolic needs and increase the heart rate;
inflammation in the immune system breaks the stability of
ANS regulation and then heart rate variations; the dorsal
vagal complex is responsible for the interaction between
viscera organs and ANS; and the ventral vagal complex is
responsible for mental activities [17]. -e observation of
ANS regulation here is variations of the heart rate, blood
pressure, and respiration. -e sympathetic innervation of
the heart and blood vessels is excitatory. It stimulates va-
soconstriction and increases the heart rate and cardiac
contraction. On contrary, the parasympathetic vagal in-
nervation is inhibitory, which decreases the heart rate and
cardiac contraction. -e balance of the two appears as
variations of the heart rate and blood pressure and can be
characterized by indices which represent properties and
rules of those variations caused by regulation: -e sympa-
thetic activity increases during the flight-or-fight response,
whereas parasympathetic activity increases to calm the heart
when there appears emotionally driven high blood pressure.

For the estimation purpose and from Figure 1, we can
obtain the following formula, via probabilistic graphic
model:

P � p(heart/A) p(A/mental) p(A/viscera)

· p(A/immune) p(A/metabolic) p(A/vascular)

· p(A/lung),

(1)

where A is the state of ANS to be estimated through ob-
servations connected with ANS in the graph of Figure 1.
However, not all nodes connected with the ANS node are
observable or measurable. For the quantitative assessment
purpose, it is the best to intentionally create assessment
scenario where the influences of the measurable nodes are
maximized whilst minimizing those of the unmeasurable
nodes. -erefore, we designed the following three assess-
ment scenarios:

(1) Variability of the heart rate and blood pressure (HRV
and BPV) while the subject is in resting or other
steady state: the ideal measurement scenario is zero or
known steady physical activity, minimal mental ac-
tivity, and minimal viscera disturbance. -e vari-
ability indices are used to characterize the state of
equilibrium of individual’s ANS self-regulating pro-
cess, which directly reflects states of immune system,
linking with inflammation biomarkers.

(2) CCI in graded exercise testing: the effect of physical
activity on ANS is maximized so that the influences
from the rest sources can be neglected. CCI provide
numerical measures to characterize the capability of
ANS regulation to accommodate changes of exercise
intensity.

(3) BRS, SNA, and PNA are obtained by model-based
analysis of blood pressure (BP) and heart rate (HR)
pairs acquired in orthostatic testing: Via orthostatic
test, large blood pressure drops around 30mmh is
obtained. -e input from baroreflex to SNA and
PNA becomes the major effect, and the rest can be
neglected. As such, the mathematical model for the
solution can be simplified as a subgraph of the
graphic model in Figure 1.

3. Variabilities in Resting or Steady
Testing Scenario

-e indices of HRV and BPV consist of time-domain second-
order statistics, for example, standard deviation of ECG
normal-to-normal intervals (SDNN) and standard deviation
of differences of neighboring normal-to-normal intervals
(SDSD). Frequency-domain indices are calculated at very low
frequency band (VLF, 0.004–0.04Hz), low frequency band
(LF, 0.04–0.15Hz), and high frequency band (0.15–0.4Hz).
-e problem is then to quantitatively evaluate the state of
ANS and infer the physiological and psychological implica-
tions, given measured variabilities of the heart rate, blood
pressure, respiration, and assessment scenario that the
physical activity is zero or constant. Based on Dystasis
framework, according to equation (1) and graphic model in
Figure 1, there are still three nodes: mental activities and the
states of viscera organs are not known or unmeasurable and
inflammations in the immune system are the ones to be
inferred. Now, in this assessment scenario, in order to obtain
the stable and consistent quantitative measures, we have to
minimize the influences of mental activities and viscera or-
gans. To fulfill this requirement, variabilities are best to be
measured when the subject is in deep sleep or in a coherence
state between respiration and heart rate where mental ac-
tivities and viscera influences are purposely minimized.

HRV has been studied for a long time to reflect the states
of ANS regulation [14, 18]. In clinical practice, HRV is
usually evaluated using Holter device and software, without
consideration of physical activities and other influences.-is
has resulted in inconsistences in various studies and limited
the clinical applications of HRV. To quantitatively evaluate
the physical activities and define the testing scenario, in case

Mental

Viscera

Immune
system Metabolism

Vascular

Lung

ANS

Heart

Figure 1: Probabilistic graphic model of autonomic regulation of
the cardiac system with internal and external influences.
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of using Holter device, a three-dimensional accelerometer
sensor is used to detect and classify posture and activity into
laying, sitting or standing, walking, or running. HRV indices
are then calculated when any of those postures and activities
keeps for more than 10minutes [19].

-e interaction between heartbeat and respiration is the
well-known respiratory sinus arrhythmia (RSA). -e wis-
dom of the body to maintain the homeostasis is achieved by
synchronizing heartbeats with breathing and consequently
to maximize the efficiency of the cardiopulmonary system in
metabolic and circulation process. -is equilibrium state is
the result of resonance of the cardiopulmonary system.
-ere are indices proposed to evaluate the degree of the
resonance of the cardiopulmonary system. -e most com-
mon used one is coherence measure (Coh), the cross power
spectral density of the heart rate and respiration signals [20].

-e resonance of the cardiopulmonary system represents
the equilibrium of ANS regulation, where one reaches both
physiological and psychological healthy state. -erefore, Coh
can be used to compose numerical measures to visually rep-
resent one’s health state, especially psychological health state,
and then, variability-biofeedback training is used to help one to
gain resonance state. A clinic trial was conducted in the Uni-
versity of Chinese Academy of Sciences (UCAS) Hospital to test
the effectiveness of HRV biofeedback (HRVB) for pregnant
women in managing anxiety and depression [21]. 20 pregnant
women at last trimester (28–32th week) without pregnancy-
induced hypertension and diabetes were randomly assigned to
the HRVB group and the control group. Participants in the
HRVB group practiced HRVB for 30minutes per day, while
participants in the control group did not. Following checks are
conducted for all participants every two weeks: blood pressure
(BP), fasting blood glucose (FBG), HRV of pregnant women
(PHRV) and their fetuses (FRHV), and subjective assessment
on pressure using Pregnancy Pressure Scale (PPS), depression
using Edinburgh Postnatal Depression Scale (EPDS), and sleep
quality using Pittsburgh SleepQuality Index (PSQI).-e clinical
trial continued for subjects until they are in hospital for delivery.
In the trial, the HRVB group has shown significant improve-
ment over the control group with respect to blood pressure
stability (p> 0.05), depression reduction (p � 0.013), and sleep
quality improvement, while fetuses in the HRVB group has
shown significant improvement with respect to HRV SDNN
(p< 0.01) and LF spectrum power (p< 0.01).

HRV and BPV can be used as a noninvasive assessment
tool for autonomic nervous system function, and reduced
and/or abnormal HRV and BPV are associated with in-
creased risk of mortality in cardiac patients. For both adults
and children, increased blood pressure variability (BPV)
appears to be directly related to sympathetic overactivity
with increased risk of end-organ damage and cardiovascular
events. Decreased HRV has been observed in adults and
children with chronic kidney disease and is an independent
predictor of mortality [22].

Autonomic dysfunctions are the most common non-
motor symptoms of Parkinson’s disease (PD) and often
precede themotor symptoms of the disease. Clinical study has
shown that HRV and BPV can be used as markers to indicate
the treatment progress and stages of the disease [23].

A review of research literature [24] tells that affected
central nervous system structures and implicated autonomic
nervous system regulation coexist in Alzheimer’s disease.
Assessment of autonomic dysfunction can be used as an
early marker of Alzheimer’s disease and used for differential
diagnosis among dementia subtypes.

4. Chronotropic Competence Indices in Graded
Exercise Testing Scenario

Graded exercise tests, such as cardiopulmonary exercise test
(CPX), have been used in clinical practice to test the exercise
capability in terms of maximum oxygen metabolism [25]. In
Dystasis family, CCI are designed to evaluate the capability
of the ANS regulation of the cardiac system in response to
exercise, where the subject does not necessarily reach the
maximum exercise intensity.

Chronotropic incompetence (CI) is a terminology de-
scribing the status of attenuated heart rate response to exer-
cises. CI has been studied for the last 50 years [26]. Typical CI-
related measurements include the maximum heart rate and
heart rate recovery after exercise. -ere have been a lot of
research efforts to explore the usefulness of CI parameters in
clinical applications, i.e., their diagnosis value of coronary
artery [27], prognosis and management of heart failure
[28, 29], diabetes [30, 31], and hypertension [32, 33]. Although
CI is an independent predictor ofmajor adverse cardiovascular
events and overall mortality, the importance of CI is under-
estimated [34]; this may be in part due to multiple definitions,
the confounding effects of aging and medications, and the
need for formal exercise testing for definitive diagnosis.

We have formally defined CCI as part of Dystasis in a
systematic way and in terms of ANS regulation capabilities
and endowed CCI with clear physiological and clinical
implications. CCI are defined as follows:

(1) Resting heart rate (HRrest) and resting blood pressure
(BPrest): -e resting heart rate and resting blood
pressure are defined as the heart rate and blood pressure
when a person is awake, in a neutrally temperate en-
vironment, and has not been subject to any recent
exertion or stimulation, such as stress or surprise.

(2) Chronotropic rate (CRHR and CRBP): chronotropic
rate represents the rate at which the heart rate and
blood pressure increase as exercise intensity increases.
It is measured as the amount of heart rate or blood
pressure increase in response to every unit of meta-
bolic equivalent (MET) exercise intensity increase. In
practice, it can be measured and calculated as

CRHR �
HRstage −HRrest 

METstage − 1 
,

CRBP �
BPstage −BPrest 

METstage − 1 
.

(2)

CRHR is similar with the “Exercise HR” in EACPR/
AHA Joint Scientific Statement [25]. It directly
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relates to sympathetic nerves activation and provides
insight into chronotropic competence and cardiac
response to exercise. It normally increases ∼10 beats
per MET. -e chronotropic rate is an important
parameter to provide personalized quantitative re-
lation between HR and exercise intensity so that the
target heart rate (THR) can be used to prescribe
exercise intensity in exercise training. However, the
chronotropic rate of a person may vary due to
medication or rehab progress; it is recommended to
measure the chronotropic rate promptly or monitor
chronotropic rate changes in order to keep exercise
prescription updated [35].

(3) Chronotropic limit (CL): chronotropic limit repre-
sents the maximal heart rate an individual can
achieve without severe problems through exercise
stress, as well as the blood pressure measured at the
same time. It is measured as heart rate reserve and
calculated as

CL � HRR �
HRmax −HRrest( 

HRPredM −HRrest( 
, (3)

where HRmax is the maximal heart rate one achieves
during the exercise test and HRPredM is the predicted
maximal heart rate, usually calculated as 220− age.
-e maximal heart rate is usually obtained when
reaching peak exercise, which can be identified
during CPX testing. In this case, the normal value of
CL is 0.8–1.3. However, when CPX testing or peak
exercise is not achievable, then CL normal values are
different for types of exercises. For example, in a 6-
minute walking test, CL� 0.4 for a 60-year-old
person should be considered normal. With a rest-
ing heart rate of 75 bpm, CR would be 10 beats per
MET and the maximal heart rate would be 109 bpm
with an exercise intensity of 4.4 MET.

(4) Chronotropic acceleration (CA): ANS requires cer-
tain time to adjust the heart rate and blood pressure
to reach a new stable state or equilibrium when the
exercise intensity increases to a new level in the
graded exercise test. CA is defined as the time taken
to reach new equilibrium after exercise intensity
increases. CA is measured in seconds and represents
the ability of the ANS regulation of the cardiac
system in fulfilling metabolic needs.

(5) Chronotropic recovery at 1minute after exercise
(HRrecovery1 and BPrecovery1): it is defined as the re-
duction in the heart rate and blood pressure 1minute
after stopping exercise. -e measurement of HRre-

covery1 and BPrecovery1 requires the testee to try his
best in the exercise, but not necessarily to reach one’s
maximum capacity. EACPR/AHA Joint Scientific
Statement [25] considers that HRrecovery1 provides
insight into speed of parasympathetic reactivation
and that the normal value of HRrecovery1 should
be> 12 beats. -ere have been a number of clinical
studies on prognosis value of HRrecovery1. For

example, Dhoble et al. [36] examined conventional
cardiovascular risk factors and exercise test pa-
rameters in 6546 individuals (mean age 49 years, 58%
men) between 1993 and 2003. A total of 285 patients
died during the follow-up period. HRrecovery1< 12
beats were found independently associated with
mortality (P< 0.001).

A clinical trial in cardiac rehabilitation was conducted in
Jiangsu Provincial Hospital to evaluate the usability of CCI
[37], which are measured by Cardiac Chronotropic Com-
petence Testing (3CT), a device produced by SmartHealth
Electronics Ltd. 61 participants were recruited, including
patients of unilateral ischemic or hemorrhagic stroke within
the previous 6months with some voluntary movement and
preserved cognitive function. Participates are randomly
assigned to the rehab group (30) and control group (31).
Each patient from both groups was evaluated at the be-
ginning and after 3months using both subjective/qualitative
and objective/quantitative measures, namely, the In-
ternational Classification of Functioning, Disability and
Health (ICF), and chronotropic competence indices (CCI)
and 6minute walking test (6MWT). Patients in the control
group were given personalized rehab advices after the
baseline test. Patients in the rehab group were equipped with
a Microsens rehab assistant for regular rehab exercise at
home. Personalized exercise prescription based on CCI is
downloaded into MicroSens rehab assistant, which consists
of rehab app on a smartphone and a wearable device.

Comparison between control and rehab groups after
3months of rehab training using the t-test shows that,
through out the rehab training, all the four ICF measure-
ments, namely, walking, doing house-hold work, in-
terpersonal interactions, and muscle power, have significant
improvement (p � 0.0070, 0.0209, 0.0089, and 0.0000, re-
spectively). Consistently, after 3months of rehab training,
the rehab group is significantly better over the control group
with respect to all three 3CT objective measures: 6-minute
walking distance, chronotropic rate, and 1-minute heart rate
recovery (p � 0.0445, 0.0121, and 0.0414, respectively).

5. BRS, SNA, and PNA in Orthostatic
Testing Scenario

Estimation of BRS, SNA, and PNA is carried out in orthostatic
testing scenario where the subject is requested to suddenly
stand up from a sitting position. As a result, blood pools in the
vessels of the legs for a longer period and less is returned to the
heart, thereby leading to a reduced cardiac output and fall in
blood pressure. In order to counteract these changes, the
frequency of afferent impulses in the aortic and carotid sinus
nerves is reduced, which leads to parasympathetic withdrawal
and sympathetic activation. Here, the nerve activity will be
referred to as the baroreflex firing rate or simply the firing
rate. Sympathetic activation leads to a growing release of
norepinephrine which contributes to restoration of BP by
increasing HR, cardiac contractility, and vasoconstrictor tone.
In addition, parasympathetic withdrawal leads to decreased
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release of acetylcholine which also causes the increase of HR.
-is whole ANS regulation process can be described by a
mathematical model [29, 38].

In the measurement, the subject wears a device which
measures ECG, radial artery pulse wave and branchial artery
pulse wave, and acceleration data to locate phases of the or-
thostatic posture.-e orthostatic testing protocol is as follows:

(1) -e subject wears the device and sits on a chair, with
the upper body straight up until reaching a stable
state of heart rate

(2) -e subject stands up and keeps standing for
40 seconds

(3) -e above process is repeated for three times

-e device records all the data and sends the data to the
computer wirelessly. -e heart rate is calculated from ECG
signal. -e average blood pressure is estimated via pulse
transmission time from radial artery pulse wave and branchial
artery pulse wave with assumption that the physical properties
of the blood vessel and the blood do not change within the
measurement time. Figure 2 shows a sample of the mea-
surement data.

-e blood pressure change in the orthostatic test is
maximized, and the mathematical model defining the ANS
regulation of heart rate due to blood pressure changes can
then be simplified as a small subgraph of the probability
graphic model in Figure 1. Based on the mathematical
model, using a series of blood pressure and heart rate data
pairs obtained in the orthostatic testing, we can perform the
following.

(i) For each BP andHR pair, the following is performed:

(a) BP is used to calculate the baroreflex firing rate
(b) With baroreflex firing rate, sympathetic and

parasympathetic outflows are predicted

(c) Concentrations of noradrenaline and acetyl-
choline are computed as functions of the sym-
pathetic and parasympathetic outflows

(d) Heart rate is computed as a function of these two
chemical concentrations

(e) Computed HR is compared with the measured
HR

(ii) For all BP and HR pairs, optimization for the
minimizing error is performed between computed
HR and measured HR to get curves of baroreflex
firing rate and sympathetic and parasympathetic
outflows. Figure 3 shows these curves for a healthy
young person and a 50th hypertension person. Other
parameters, such as baroreflex sensitivity, can be
derived from those curves and BP and HR data.

Noninvasive measurement of BRS, SNA, and PNA
provides useful meanings to discover mechanisms that act to
keep cerebral blood flow (CBF) constant, to understand
immune system, for better management of metabolic syn-
drome and hypertension. -e quantitative estimation of
baroreflex sensitivity has been regarded as a synthetic index
of neural regulation at the sinus atrial node, which has been
shown to provide clinical and prognostic information in a
variety of cardiovascular diseases, including myocardial
infarction and heart failure [39]. Chronic hyperglycemia is
the primary risk factor for the development of complications
in diabetes mellitus (DM). Postprandial spikes in blood
glucose, as well as hypoglycemic events, are blamed for
increased cardiovascular events in DM. Glycemic variability
(GV) includes both of these events. However, defining GV
remains a challenge primarily due to the difficulty of
measuring it [40]. A multicenter, prospective, open-label
clinical trial including a total of 102 patients with type 2
diabetes [41] has found that GV was inversely related to BRS
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independent of blood glucose levels in type 2 diabetic pa-
tients and that measurement of BRS may have the potential
to predict CV events in consideration of GV.

6. Conclusion and Remarks

We have described a systematic method for the quantitative
assessment of autonomic cardiac system regulation, named
Dystatis. -e fundamental part of Dystatis is a quantitative
assessment methodology based on homeostatis and the
probabilistic graphic model, where homeostatis explains
ANS regulation while the probability graphic model for-
mally defines the regulation process and provides quanti-
tative assessment basis. As instances of Dystatis, indices and
measurement methods for three well-designed scenarios are
also described together with clinical applications: (1) HRV,
BPV, and Synch in resting situation, (2) CCI in graded
exercise testing, and (3) BRS, SNA, and PNA in orthostatic
testing.

Numerous clinical research results have shown that the
proposed method and indices for autonomic cardiac system
regulation have great application potential in the prediction,
prognosis, and rehabilitation of cardiovascular diseases,
hypertension, diabetes, and other autonomic nerves-related
areas. Further researches are being carried out to work with
various research institutions and hospitals to conduct
multicenter clinical research to investigate potential appli-
cations of the proposed methods in the prediction, prog-
nosis, and rehabilitation of cardiovascular diseases,
hypertension, diabetes, and other autonomic nerves-related
problems.
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Breathing rate monitoring using continuous wave (CW) radar has gained much attention due to its contact-less nature and
privacy-friendly characteristic. In this work, using a single-channel CW radar, a breathing rate estimation method is
proposed that deals with system nonlinearity of a single-channel CW radar and realizes a reliable breathing rate estimate by
including confidence intervals. To this end, time-varying dominant Doppler frequency of radar signal, in the range of
breathing rate, is extracted in time-frequency domain. It is shown through simulation and mathematical modeling that the
average of the dominant Doppler frequencies over time provides an estimation of breathing rate. However, this frequency is
affected by noise components and random body movements over time. To address this issue, the sum of these unwanted
components is extracted in time-frequency domain, and from their surrogate versions, bootstrap resamples of the measured
signal are obtained. Accordingly, a 95% confidence interval is calculated for breathing rate estimation using the bootstrap
approach. 0e proposed method is validated in three different postures including lying down, sitting, and standing, with or
without random body movements. 0e results show that using the proposed algorithm, estimation of breathing rate is
feasible using single-channel CW radar. It is also shown that even in presence of random body movements, average of
absolute error of estimation for all three postures is 1.88 breath per minute, which represents 66% improvement as compared
to the Fourier transform-based approach.

1. Introduction

Breathing rate is one of the four vital signs. Breathing rates
may increase with fever, stress, or some medical conditions.
Prolonged increased breathing rate is a cause of concern;
hence, it is important to measure breathing rate. Normal
breathing rates for an adult person at rest ranges from 12 to
16 breaths per minute.

In order to measure breathing rate, one may use contact-
based method such as respiratory inductive plethysmography
(RIP) bands. Such bands are used for sleep tests despite the
discomfort to the subjects. 0ere are several instances where
such a band cannot be used. For instance, in the case of burn
victims, it is not possible to use a band. In emergency de-
partments, when patients arrive, it may not be possible to use a
band to estimate breathing rate. Remote measurements are

preferred in such cases. In senior’s home, it is preferable to
monitor breathing without the need to wear devices. In ad-
dition, correctional institutions are looking to adopt a non-
obtrusive method for monitoring the vital signs of inmates,
especially because it is a privacy-friendly technology compared
to cameras. In addition, depending on the frequencies used for
radars, it is possible to obtain both heart rate and breathing
rate using a single sensor which may not be possible with RIP.

Radar has recently attracted much attention as a
promising device for breathing rate monitoring, mainly
because of its contact-less, privacy-friendly, and relatively
safe properties [1–3]. Video cameras, as an alternative
choice, have been used for contact-less monitoring of vital
signs. However, cameras invade privacy and their perfor-
mance is highly affected by the amount of light in the
monitored space [4, 5] and pose of the subjects.
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Continuous wave (CW) radar systems have widely been
used for vital sign monitoring due to their low power
consumption and simple radio architecture [6, 7]. 0is
radar has also been used to see through-wall a human
skeletal figure [8] and localize a small number of colocated
people [9]. In such radar systems, a single-frequency signal
is transmitted and signals reflected off the subjects are
received. 0e received signal is modulated by the move-
ments of the chest based on the Doppler principle. Most of
these works have focused on the two-channel CW radar for
vital sign monitoring with less attention to the effect of
random body movements. In the proposed method, we
employ a single-channel CW radar to estimate the vital
signs, where the subjects are moving their body parts
randomly.

When CW radar is used, the information of micro-
movements of chest and abdomen are concealed in the
phase of the received signal. For small movements, i.e., the
amplitude of displacement is much smaller than the
wavelength of transmitted signal, the signal can be ap-
proximated by its phase, referred to as linear approxi-
mation [10]. On the other hand, in the case of larger
displacements of chest and abdomen which depend on the
anatomy of the subject and the type of breathing and
posture, the linear approximation does not hold anymore
especially when the wavelength of radar is small ( <2 cm).
In this case, multiple harmonics of breathing as well as
intermodulations between heart rate and breathing rate
are produced [11], which affect the accuracy of breathing
rate estimation obtained through Fourier analysis. One
possible solution to address the nonlinearity of a single-
channel Doppler radar is by using a quadrature radar
architecture. Since the vital sign signal is a low-frequency
signal, the two output channels of the quadrature radar
can be used for either complex signal demodulation [12]
or arctangent demodulation [13] to calculate the total
Doppler phase shift. It is known that the Doppler phase
shift is directly proportional to the displacements of chest.
Besides dealing with nonlinearity of the signal, integration
of two channels in the architecture of CW radar can offer
solutions to several challenges of vital sign monitoring
such as null point effect and effect of random body
movements [14–17].

In this work, breathing rate is estimated by using a
single-channel CW radar and applying time-frequency
analysis instead of Fourier transform. 0e proposed
method is evaluated in a real situation, where non-
linearity, null point effect, and random body movements
are considered. Multiple subjects are monitored in dif-
ferent postures, namely, lying, sitting, and standing, at
different distances from the radar with or without random
movements of body. 0ere have been few works on
cancellation of random movements of body. In [18], an
antiphase signal generator was used to reduce the effect of
random body movements. In [13], a phase-diversity
Doppler radar was introduced that utilized three anten-
nas, one for transmitting and the other two for receiving.
0e receiving antennas were isolated by half of a wave-
length. In [19], the center estimation algorithm was

proposed to resolve the issue of random body movements.
Self-injection-locked radar was proposed in [20] to cancel
body movements. In [21], empirical mode decomposition
was applied to cancel only the sensor movement and not
the random body movements. However, all these works
used both in-phase and quadrature channels and their
solutions generally resulted in an increase in system
complexity, cost, and power consumption. It should be
noted that so far, the estimation of vital signs, where the
subject is moving their body parts randomly, has not been
considered with simple-structured single-channel CW
radar.

Velocity of movements of chest and abdomen changes
periodically over time due to breathing. 0is time-varying
velocity translates into time-varying Doppler frequency of
reflections received by the single-channel CW radar.
However, other movements of the subject can contribute to
frequency modulations around the main Doppler shift that
are commonly referred as micro-Doppler modulations [22].
0ese micro-Doppler signatures in time-frequency domain
have already been used to perform classification [23, 24].
0is idea has also been used to estimate vital signs during
walking [25].

To estimate the breathing rate, in this work, a sequence of
dominant frequencies of the signal over time in the range of
breathing is extracted and used to estimate the breathing
rate.0e bootstrap resamplingmethod is used to support the
estimation with a confidence interval, since we are dealing
with a single-channel CW radar signal in which extracted
micro-Doppler shifts may be affected by movements of body
and null point effect.

0e paper is organized as follows. Section 2 presents the
model of reflected radar signal from a human subject using a
single-channel CW radar and presents the challenges of
estimating breathing rate using Fourier transform. Section 3
presents the proposed estimation method and also discusses
the bootstrap resampling method used to estimate confi-
dence interval of breathing rate. Section 4 presents the
experimental setup and the data collection procedure.
Section 5 presents a discussion of the results. Finally, Section
6 concludes the paper.

2. Modeling and Simulation of Single-Channel
Radar Signal

During our experiment, in order to have the entire room
covered, the radar is mounted on the wall. Figure 1 shows a
scenario in which a stationary person is in front of the
radar. 0e transmitting and receiving antennas are colo-
cated. 0e transmitter transmits a radar signal that is a
continuous wave which is intercepted by the subject.
Movements of chest, abdomen, and heart cause Doppler
shift in the frequency of the returned radar signal. At the
receiver, the transmitted signal is delayed and correlated
with the received signal. A low-pass filter is then applied to
demodulate and filter out the carrier frequency of trans-
mitted continuous wave. 0e baseband radar signal, s(t),
can be written as [10]
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s(t) � V0 + K cos
4π
λ

d(t) + dN(t)(   + w(t),

d(t) � d0 cos θc(  + dC(t) + d0 cos θa(  + dA(t) + dH(t),

dC(t) + dA(t) � rc cos θc(  + ra cos θa( (  × sin ωbt + ϕ0b( ,

dH(t) � rh cos θc(  × sin ωht + ϕ0h( ,

(1)

where V0 is the DC voltage, K is the gain of the radar, and
d(t) is the distance of the subject from the radar at time t.
Wavelength of the CW radar is λ � C/fc, where fc is the
frequency of transmitted signal and C is the speed of light. In
(1), dC(t), dA(t), and dH(t) represent the periodic dis-
placements of chest, abdomen, and heart, respectively. dN(t)

denotes the random body movements that appear as phase
noise in the received radar signal. rc, ra, and rh are the
amplitude of the displacement of chest, abdomen, and heart,
ωb and ωh are the angular frequencies of breathing and heart
beat, respectively. Also, ϕ0b and ϕ0h are the initial phase of
periodic movements of breathing and heart at t � 0. For the
sake of simplicity, it is assumed that abdomen and chest are
moving with the same rate and initial phase as mentioned in
[26]. In addition, the white noise, w(t), is added to the
received signal and (1) is written in terms of Bessel functions
as described in the following equation:

s(t) � V0 + K × Re⎡⎣e
(4π/λ) d0+dN(t)( ) 

∞

n�−∞
Jn

4π
λ

( rc cos θc( 

+ ra cos θa( e
in ωbt+ϕb( )

· 
∞

m�−∞
Jm

4π
λ

rh cos θc( (  e
in ωht+ϕh( )⎤⎦ + w(t),

(2)

where Jn(r) is a Bessel function of the first kind and
eir×sin(ϕ) � 

∞
n�−∞Jn(r)einϕ with Jn(r) � (−1)nJ−n(r). From

(2), it can be seen that the received radar signal is composed
of multiple harmonics of breathing and heart rate as well as
intermodulations of these harmonics with amplitude of
Jn(4π/λ(rc cos(θc) + ra cos(θa))) × Jm(4π/λrh cos(θc)) and
angular frequencies of (nωb + mωh). Depending on the sum
of maximum displacements of chest and abdomen rc + ra,
and the displacement of heart rh, after some n and m, the
terms in (2) will become negligible.

In order to estimate the breathing rate from the re-
ceived radar signal, the frequency where the magnitude of
spectrum is maximum is found within the range of normal
breathing. According to (2), the amplitude of this harmonic
is J1(4π/λ(rc cos(θc) + ra cos(θa))) × J0(4π/λrh cos(θc)),
when n � 1 and m � 0 for fundamental frequency. It is
noted that the amount of displacement may change the
amplitude of the Bessel coefficients and number of non-
negligible coefficients.

According to [27], movements of chest and abdomen (ra
and rc in (1)) can change in the range of a few millimeters in
quiet breathing to a few centimeters in deep breathing,
depending on the age, sex, and posture of the subject under
study. Figure 2 shows how significant harmonics are affected
by the amount of displacement of abdomen. 0e same effect
can also be seen through different amount of movements of
the chest. To depict Figure 2, (1) is used to simulate breathing
movements, dC(t) + dA(t), and radar signal, s(t), where
each row shows a different scenario. In all the cases, the
operating frequency of the radar is fC � 24GHz,
rh � 0.1mm, heart rate is 72 beats per minute and breathing
rate is 18 bpm, the horizontal distance of the subject from the
radar is d0 � 2.5m, the distance between chest and abdomen
is dca � 0.5m, and the height of radar receiver (in Figure 1) is
H � 2m. In addition, the maximum displacement of chest is
rc � 1mm and maximum displacement of abdomen is
1mm, 5mm, 20mm, and 50mm from top to the bottom,
respectively. White noise is added to the received radar
signal with signal-to-noise ratio (SNR) of 20 dB. As observed
from the right column of this figure, the strength of
breathing harmonic at breathing rate is ((ωb × 60)/2π) bpm
and also the other significant harmonics are affected as the
displacement of abdomen changes. Further investigation
shows that the estimation (rate of the strongest peak at the
range of breathing) can significantly be impacted by the
noise.

Figure 3 shows the results of a simulation when Fourier
transform is used for estimation, the breathing rate esti-
mation is sensitive to the distance of the subject from radar
d0 and the displacement of the chest. In this simulation,
for two arbitrary distances, 100 noisy versions of the radar
signal are generated using (1) and values given in Table 1.
0e frequency of strongest peak in the range of breathing
(6 to 24 bpm) is taken as the estimate of breathing. For
each distance (d0), the average of estimations μrateest and
95% standard interval of these estimations [μrateest −
Zασrateest, μrateest + Zασrateest] are shown in Figure 3 for a range
of displacements of abdomen, where Zα is the Z-score of

H

d0

θc

θa

rcsin (ωb)
rhsin (ωh)

rasin (ωb)

dca

Figure 1: A subject is placed in front of the radar. Chest, abdomen,
and heart move periodically.
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α � 0.05. It can be seen from the figure that the width of
standard interval of estimation highly depends on the dis-
placement of body due to breathing and the distance of the
subject from the radar. 0is shows that these two examples
are selected to show that the estimation of breathing fre-
quency using Fourier transform with a single-channel CW
radar may be problematic. It is also noted that in Figure 3,
only additive noise is considered, yet random movements of
body may affect this estimation, even more dramatically.

0e most common approach used in estimating
breathing rate is the Fourier transform, which is mostly
suitable to analyze stationary signals having the same fre-
quency content over time. Most of the literature focuses only
on choosing the peak of the spectrum within the breathing
frequency range using the standard discrete Fourier trans-
form. However, when random movements are present,
peaks due to breathing frequency may not be prominent,
and hence estimation may either be biased or totally wrong.
In this work, modifications to the Fourier transform such as
windowed Fourier transform, chirp Fourier transform, and
micro-Doppler series acquired from the radar return are
employed to estimate the changing frequency of signal over
time.

3. Methods and Materials

3.1. Estimation of Breathing Rate Using Time-Frequency
Analysis. 0e signal model described in (1) represents a
nonstationary signal that can be analyzed in time-frequency
domain by applying Fourier transform in sufficiently narrow
time windows, where the signal may be assumed stationary

[28]. For a given s(t), the windowed Fourier transform
(WFT), S(f, t) is constructed as follows:

S(f, t) �
1
2π


∞

0
s(u)g(f− u)e

iut
du, (3)

where s(u) is Fourier transform of s(t) and g(u) is Fourier
transform of the Gaussian window defined as

g(t) �
1

�����
2πf0

 e
− t/f0( )

2( /2
, (4)

where f0 is a resolution parameter that identifies the trade-
off between time and frequency resolutions. In order to
estimate the changing frequency of signal over time, for each
time sample tn, the frequency in which amplitude of S(f, tn)

is maximum is found, i.e., dominant frequency at time tn. In
this work, the sequence of these frequencies ](t) is extracted
from the radar signal over time. It is noted that when ](t) is
extracted from the range of normal breathing, it represents
micro-Doppler frequency of the signal over time and is
related to time-varying velocity of chest and abdomen.

At this stage, the phase of s(t) in the range of breathing
frequency is calculated by setting n � 1 and m � 0 in (2) and
is written as

Φs,Breathing(t) �
4π
λ

d0 + dN,Breathing(t)  + ωbt + ϕ0b, (5)

where dN,Breathing represents all random body movements
having the same velocity unlike the breathing-related
Doppler and thus is detected in the range of the breath-
ing frequency. By definition, ](t) � (Φ′(t))/2π [28], where
Φ′(t) is the phase derivative of s(t) with respect to time t.
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Figure 2: Effect of displacement of abdomen on the strength of the breathing harmonic and the other nonnegligible harmonics in simulated
radar signal. Values used for simulation are shown in Table 1, ra � 1mm, 5mm, 20mm, 50mm from top to the bottom, respectively. (a)
Breathing signal. (b) Radar signal. (c) Chirp transform of radar.
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0edominant frequency of s(t) in the range of breathing can
then be written as

]s,Breathing(t) �
4π
λ

dN,Breathing′ (t) + fb, (6)

where dN,Breathing′ (t) denotes the speed at which the random
body movements occur. Since 4π/λ is about 1000 for the
radar in our experiments, very slow movements of body
parts may give rise to high Doppler frequencies and thus
may not be detected as a strong harmonic in the range of

breathing. In view of this, ](t) is assumed to be a linear
combination of breathing rate and low-frequency harmonics
of noise and random movements, and fb can be estimated
via calculating themean of ](t) over a specified time window
of radar signal.

Figure 4 shows the micro-Doppler sequence extracted
for the simulated radar signals shown in Figure 2. In simu-
lations, dN is not included assuming that random body
movement is too slow to be detected at low frequencies
of breathing range. Yet, additive noise w(t) is considered.
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Figure 3: Estimated breathing rates vs displacement of the abdomen ra. Sensitivity of the estimated breathing rates to displacement of
abdomen and distance of the subject from radar is shown, when Fourier transform of the signal is used to estimate breathing rate from noisy
simulated signals (parameters are given in Table 1). (a) d0 � 2.5 (m). (b) d0 �1m.

Table 1: Values used for simulation in Figures 2 and 3. It is noted that bpm stands for breath per minute.

Variable H (m) d0 (m) Breathing rate (bpm) Heart rate (beat/minute) rc (mm) rh (mm) ra (mm) dac (m) λ (mm)

Value in Figure 2 2 2.5 18 72 1 0.1 (1, 5, 20, 50) 0.5 12.5
Value in Figure 3 2 2.5 18 72 1 0.1 (1–50) 0.5 12.5
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From this figure, the average and standard deviation of
the extracted sequences are found to be 17.15 ± 0.16 bpm,
17.60 ± 0.26 bpm, 17.23 ± 2.39 bpm, and 17.41 ± 0.7 bpm,
from top to bottom, respectively. However, the dominant
frequencies in the range of breathing in frequency domain
(calculated from right column of Figure 2) are 17.81 bpm,
18.28 bpm, 6.56 bpm, and 17.81 bpm, respectively. 0e actual
breathing rate for all these simulated signals is 18 bpm. 0ese
estimations indicate that the average of micro-Doppler se-
quence is a more accurate way of breathing rate estimation
using a single-channel CW radar. In addition, it is observed
from this figure that for the third simulated signal, where
ra + rC � 21mm, the estimation in frequency domain is in-
accurate since the harmonic of breathing is very weak. In this
case, the standard deviation of the extracted micro-Doppler
sequence is larger than the other cases. 0us, the standard
deviation of the extracted micro-Doppler is used to calculate
the confidence interval of estimation as a measure of confi-
dence of the estimation in Section 3.3.

3.2.ConstructingBootstrapResamples. It is noted that we are
only interested in the dominant frequency at the range of
breathing. However, estimation of this frequency is affected
by random body movements and intermodulations amongst
breathing frequency, heart rate and other frequencies related
to body movements. 0e contributions due to body
movements can be estimated via constructing the breathing
signal based on the estimated breathing rate, subtracting it
from the original radar signal and calculating the residual.

In order to examine how noise and intermodulations
affect the estimation of micro-Doppler frequency, the
bootstrap resampling method is employed. 0e bootstrap
resampling was first introduced in [29] and has been
modified and used in several applications since then. For
instance, in [30], bootstrap has been used for confidence
interval estimation using percentile-t method. It should be
noted that the bootstrap method estimates the residuals and
resamples it many times to build multiple noisy versions of

the measured signal and calculates the confidence interval
for each estimated parameter by assessing how noise dis-
tribution can affect the estimated parameter [31–33].

In our experiments, random body movements and in-
termodulations are hidden in the phase of the residuals.
0us, in order to make the bootstrap method resamples, the
residuals are first calculated and the phase of the residuals is
randomized to build multiple versions of possible random
intermodulations and body movements. 0ese noisy ver-
sions of residuals are referred as “surrogates” and have been
introduced in order to build noisy versions of a signal with
the same energy and frequency spectrum [34].

In order to calculate the residuals, for each time sample t,
the frequency associated with maximum amplitude of
S(f, t) is found, i.e., micro-Doppler frequency ](t) at time t.
0e average of ](t) is taken as the estimate of breathing as
described in Section 3.1. In order to reconstruct the
breathing component in the time domain, the phase and
amplitude of S(](t), t) are obtained. 0e reconstructed
signal is subtracted from the original one, where the re-
mainder (residual) is related to radar reflections from other
parts of body or signals related to intermodulations of
breathing and heart harmonics. Accordingly, a bootstrap
resample of the radar signal is built through reconstructing
the residuals with randomized phase and adding them to the
breathing component extracted from the signal.

In order to estimate the bootstrap statistics from the
constructed bootstrap samples, micro-Doppler frequency of
each bootstrap resample is estimated and Student’s tscore is
calculated (described in Section 3.3), with respect to the
estimation calculated from the original signal [33]. In order
to calculate micro-Doppler frequencies, WFT uses multiple
windows of signal similar to the block bootstrap method
[35–37]. WFTuses overlapping blocks of the signal with the
same length and is desired for block bootstrap for time series
as it results in lower variance in estimators [38]. In view of
this, in this work, a double-loop bootstrap method is used in
order to generate bootstrap resamples and provide bootstrap
statistics with higher accuracies [39].
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Figure 4: Micro-Doppler sequence extracted for simulated radar signal shown in Figure 2.
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3.3. Estimation of Confidence Interval. In the following,
different steps for estimating the confidence interval of
breathing rate are presented.

(1) A 15-second long radar signal s(t) is taken and
preprocessed using a Butter-worth filter with cut-off
frequencies of 0.05Hz and 5Hz.

(2) Using the WFT method, time-frequency represen-
tation of sF(t) of the preprocessed s(t) is con-
structed. Micro-Doppler frequency over time ](t) is
extracted in the range of breathing [0.1−0.5]Hz.
Breathing rate fb, i.e., the average of ](t), is esti-
mated and standard deviation of ](t), σ, is
calculated.

(3) Using phase and amplitude of SF(](t), t), the
breathing model, sF(t, fb) in the time domain is
constructed and sum of the components related to
random movements and intermodulations, ε(t), is
calculated.

sF(t) � sF t, fb  + ε(t). (7)

(4) A surrogate sample of ε∗(t) is obtained by ran-
domizing the phase of ε(t) in the frequency domain
and the residuals in time domain are reconstructed. A
bootstrap sample of the radar signal is constructed as

s
∗
F(t) � sF t, fb  + ε∗(t). (8)

(5) 0e micro-Doppler frequency, ]∗(t) of s∗F(t) in the
range of breathing is extracted. 0e bootstrap sta-
tistics for this particular bootstrap sample can then
be calculated as

T
∗

�
f
∗
b − fb

σ∗
, (9)

where fb
∗ and σ∗ are the mean and standard de-

viation of ]∗(t).
(6) Steps 4 and 5 are repeated B times.
(7) 0e bootstrap estimates are sorted as

T∗1 <T∗2 < · · · <T∗B, and 100(1− α)% confidence
interval is computed as

T
∗Uσ + fb, T

∗Lσ + fb , (10)

where U � B− [Bα/2] + 1 and L � Bα/2.

4. Experiment Setup and Data Collection

0e data in this experiment were collected in a simulated
prison cell at Carleton University, Ottawa, Canada, after
obtaining the appropriate ethics approval. 0e room mea-
sured 3.35 × 3.15 × 2.95m, and radar was mounted 2.70m
above floor level in one corner, a tripod mounted camera
was kept in an adjacent corner, a bed was present along one
of the walls opposite to the radar, and a prison-type stainless
steel toilet and sink (one joint structure) was kept close to the
wall that was opposite to the radar (Figure 5).0e radar used

in this experiment was a 24.125GHz CW single-channel
Doppler radar prototype model built by K&G Spectrum in
Gatineau, Canada, equipped with four adjacent transmit/
receive antenna pairs each with 20 × 70 degree beamwidth. It
should be noted that all four transmitter antennas simul-
taneously transmitted the signal and only one receiver an-
tenna received it at any point in time. A Bosch NE1368
vandal-proof wide angle camera was also used in the ex-
periments for recording baseline activity and posture in-
formation. 0e bed was constructed of concrete support
blocks and oriented strand board, and a cotton filled mat-
tress was placed on top of the board. 0e door of the room
was closed, and only the test subject was present in the room.
A Braebon model number 0528 piezoelectric respiratory
effort sensor was fitted to the subject’s chest at sternum level
for monitoring breathing activity and three Ambu Blue-T
ECG sensors were adhered to the subject’s left and right
wrists and left ankle for monitoring the ECG signal. All data
were streamed to two computers situated outside of the
room for recording. Radar data and ECG/breathing belt data
were streamed via USB and Bluetooth, respectively, to
Computer 1, and camera data were streamed via Ethernet to
Computer 2. 0ree subjects, one male (22 years old, 164 cm
height, 60 kg weight) and two females (24, 155 cm, 50 kg and
36, 160 cm, 70 kg), participated in data collection. 0e fol-
lowing test protocol was followed by all subjects with breaks
in between each test:

(1) Breathing normally and remaining still for
3minutes:

(i) Standing in front of bed and facing radar
(ii) Sitting on the edge of the bed and facing radar

with hands resting on knees
(iii) Lying on bed in left lateral recumbent position

and facing radar

(2) Breathing normally and moving head shoulders and
torso randomly for 3minutes:

(i) Standing in front of bed and facing radar
(ii) Sitting on the edge of the bed and facing radar

with hands resting on knees
(iii) Lying on bed in left lateral recumbent position

facing radar

A total 18minutes recording for each subject was
collected.

Figure 5: Experiment setup.
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5. Results

As mentioned in [27], posture of the subject may have a
substantial effect on the amount of movement of chest and
abdomen. In this Section, three postures are investigated,
namely, lying down, sitting, and standing, and the results are
presented. In addition, the proposed method discussed in
Section 3.3 is compared to the other breathing rate esti-
mation methods using CW radar in the literature. In the
ubiquitous method of estimating breathing rate, the fre-
quency with the maximum energy (dominant frequency) in
the frequency spectrum of the signal in the range of
breathing is considered. In order to estimate breathing
frequency, the signal is first preprocessed according to Step 1
of the proposed procedure described in Section 3.3. A
Hamming window is then applied to the signal, and the
chirp transform of the signal is obtained in the range of
(0–4)Hz. It has been shown that the chirp transform results
in more accurate estimations than regular DFT, since it
benefits from improved frequency resolution in the range of
frequency of interest [40, 41].

5.1. Lying Down. In the case of a lying down subject, it is
observed formost cases that the breathing frequency estimated
from the received radar signal is close to that obtained from
the RIP signal and the number of significant harmonics related
to randombodymovements or intermodulations isminimum.

Figure 6 shows 15 seconds of the recorded signal when
Subject 1 is lying down on the bed, relaxing and breathing
normally. It is observed from the RIP signal the subject’s
breathing pattern is regular and almost periodic. In this
example, the radar signal is similar to RIP signal, similar to
the simulated signal in the first row of Figure 2.

Figure 7 showsWFTas well as frequency spectrum of the
radar signal. It can be seen from this figure that both Fourier
transform and WFT exhibit a single significant harmonic at
the rate of breathing. Micro-Doppler frequency of radar
signal is the dominant frequency in the range of breathing, as
shown in Figure 6. 0e average of micro-Doppler fre-
quencies is calculated as 15.97 bpm and considered to be the
estimation of breathing rate. It is noted that the breathing
rate calculated from the frequency spectrum (Figure 7(b)) is
16.6 bpm. 0e micro-Doppler frequencies are extracted
from the time-frequency domain using WFT, as shown in
Figure 7(a), and then, the signal is converted back to the time
domain in order to obtain the breathing model shown in
Figure 6. Finally, the residual signal is calculated by sub-
tracting the radar signal from its reconstructed version.

As discussed in Section 3, 200 bootstrap resamples of
the signal are constructed. Micro-Doppler frequency of
each bootstrap sample as well as the bootstrap statistic T∗

is calculated. Figure 8 shows the density function of the
bootstrap statistics obtained from 200 resamples. In this
figure, Test � 0 is the T-score related to the original sig-
nal, whereas T∗L � −0.44 and T∗U � 0.27 specify the lower
and upper limits of 95% confidence interval of this esti-
mation, respectively. 0e confidence interval is estimated
to be (15.5, 16.1) bpm. 0e reference breathing rate

calculated from RIP signal is 15.6 bpm, and this, such a
narrow confidence interval, confirms that the estimation
is accurate.

5.2. Posture: Sitting. Similarly for the case of a subject sitting
on a bed, breathing is regular, and the radar signal contains
harmonics other than the breathing frequency. 0e time-
frequency representation and frequency content of the radar
signal are obtained. 0e dominant peak in the frequency
domain is found to be 18.5 bpm. 0e sequence of micro-
Doppler frequencies is then extracted from WFT, and their
average is found to be 16.77 bpm. 0e residuals are then
calculated, and its phase is randomized to generate a noise
time series with the same energy. Finally, bootstrap
resamples are constructed. 0e upper and lower bootstrap
statistics are calculated as T∗L � −0.35 and T∗U � 0.90, re-
spectively, resulting in a 95% confidence interval of
(16.3, 18.0) bpm, while the reference estimation calculated
from RIP signal is 15.68 bpm.

5.3. Standing. When the subject is standing, the abdomen
moves without any restriction which may have an influence
on the magnitude of periodic breathing movement seen by
the radar. In addition, while standing, the body slightly
moves back and forth in order to keep the balance. In this
case, the radar recording is very different from RIP signal.
WFT and chirp transform of the radar signal are obtained,
showing that the frequency content of the signal changes
dramatically over time, and thus, a strong dominant peak
may not be found in the range of breathing rate in the
frequency domain. 0e breathing rate is estimated by
extracting the micro-Doppler frequencies to be 14.73 bpm,
while the estimation from frequency domain is 24 bpm. It is
noted that the energy of residuals is much higher than that of
the breathing signal, since it contains intermodulations of
large movements of abdomen and the other body move-
ments. 0e bootstrap statistics are calculated and the upper
and lower limits of T-score are found to be T∗U � 0.86 and
T∗L � −0.18, respectively, resulting in a 95% confidence
interval of (14.32, 18.63) bpm. 0e reference estimation
calculated from RIP signal is 16.03 bpm.

5.4. Random Body Movements. Random body movements
with linear velocity of V translate into Doppler frequency of
2V/λ in the received radar signal. For instance, if a part of
body moves with the velocity of 0.1m/s, it leads to a Doppler
frequency of 16Hz. In view of this, these movements may be
ignored when looking atWFTof the radar signal in the range
of breathing and may not affect the extracted micro-Doppler
series. Figure 9 shows the effect of random body movements
in the radar signal. It is seen from this figure that the received
radar signal is very different from the breathing signal, and
random body movements are present as high frequency
artifacts. Figure 10 shows WFT and chirp transform of the
radar signal. 0e peak of the signal in the frequency domain
occurs at 21.8 bpm, while the average of micro-Doppler
series extracted from WFT is 17.8 bpm. From these
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figures, it can be observed that random body movements
give rise to very strong residuals. Phase of this residual signal
is randomized to generate other possible random move-
ments that could be added to the breathing signal. 0e
bootstrap statistics are calculated and shown in Figure 11.

0e upper and lower T-score are calculated as T∗U � 1.2 and
T∗L � −1.3, respectively, resulting in 95% confidence in-
terval of (14.40, 20.97) bpm. 0e reference breathing rate
calculated from RIP is 16.03 bpm.

Breathing rate estimation results obtained using the
proposed method as well as the reference value calculated
from RIP and that obtained using the FFT-based method
(estimated, actual, FFT) bpm, for three subject in three
different postures, namely, lying down, sitting, and standing,
are listed in Table 2.

It is known that breathing rate increases by age [42, 43].
From Table 2, the actual breathing rates for different pos-
tures show that the older subject have consistently higher
breathing rate. It is also known that the breathing rate of
overweight people is generally higher than the other people.
Yet, the weight of all three subjects is considered normal and
cannot be a discriminative feature in analyzing their
breathing rate. In addition, women tend to breath faster than
men [44, 45]. 0is is in accordance with the actual breathing
rate of subjects. As seen from this table, the first two female
subjects have higher breathing rates than the third (male)
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Figure 6: From top to bottom: RIP signal, received radar signal, micro-Doppler frequencies extracted from WFT, breathing model, and
residuals, when Subject 1 is lying down.
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Figure 7: WFT and chirp transform of the radar signal, shown in Figure 6, when the subject is lying down on a bed.
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one. Height of the subjects has no considerable influence on
their breathing rates.

5.5.OverallResults. Figure 12 shows the estimated breathing
rate and confidence interval as well as the reference

breathing rate calculated from RIP signal for a 6-minute
experiment. In this experiment, the subject is lying down on
a bed and stays stationary for the first 3minutes. In the last
3minutes, the subject moves her arms, head, and shoulders
randomly. It is observed from this figure that estimated
breathing rate matches the estimation obtained from
breathing belt. Table 3 summarizes all the estimation results.
In this table, results are in the form of (mean± standard
deviation) of absolute errors between the estimated pa-
rameters and the reference estimation calculated from RIP
signal. All the values are given in terms of breath per minute
along with the number of outliers. It is noted that an element
of a vector is called an outlier, if removing it decreases the
mean of the vector by 5%.

In Table 3, breathing estimation obtained from chirp
transform of the signal is compared with the average of
micro-Doppler frequencies for different postures with or
without random body movements. In all the cases, WFT is
applied with f0 � 2. It is seen from this table that the
accuracy of estimation is improved when using the
proposed method instead of chirp transform of the signal.
In other words, unwanted harmonics of the signal which
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Figure 9: From top to bottom: RIP signal, received radar signal, micro-Doppler frequencies extracted from WFT, breathing model, and
residuals, when Subject 1 is sitting on the bed and moves head, torso, and arms randomly.
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Figure 10: WFT and chirp transform of the radar signal, shown in Figure 9.
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are related to intermodulations between breathing and
heart rate and also random body movements can affect
estimation of breathing in frequency domain. However,
when the signal is analyzed in time-frequency domain,
harmonic of breathing can be separated from the other
harmonics.

0e most accurate estimation is obtained when the
subject is stationary and lying down on a bed. In this case,
even chirp transform results in an acceptable precision of
measurement. Also, the estimated 95% confidence in-
terval is very narrow (almost 1 bpm), indicating that we
are quite confident about the estimated breathing rate
and in 95% of cases, we would find the estimation in this
range in presence of other sources of noise and body
movements.

In the case of sitting, the estimation may be improved by
using average of micro-Doppler frequencies instead of chirp
transform. However, the 95% confidence interval is larger
than that of the case, where the subject is lying down

(3.05 bpm). In this case, slight movements of body due to
balance may introduce uncertainty to the estimation. When
the subject is standing, movements of body for balancing are
larger and abdomen moves freely. In this case, chirp
transform results in huge errors and, in some cases, the
estimated breathing is twice that of the reference. Although
the estimation improves to absolute error of 2.24 bpm using
the proposed method, the width of confidence interval is
5.5 bpm, because of the significant energy of noise and
unwanted harmonics with respect to the breathing
harmonic.

When the subject starts moving head, shoulders, and
torso, the accuracy of estimation using chirp transform
drops severely. 0is estimation may be improved by using
the proposed method. Yet, the confidence interval could be
large indicating that these estimations are carried out in a
noisy environment or in presence of random movements.

It is seen from the results that the proposed method is
able to compensate for lack of quadrature channel and

Table 2: Breathing rate estimation using the proposed method as well as the reference value and that of the FFT-based method (estimated,
actual, and FFT) bpm, for three subjects in three different postures, namely, lying down, sitting, and standing.

Lying down Sitting Standing
Subject 1 (36, 160 cm, 70 kg) (15.85, 15.60, 16.68) (16.77, 15.68, 18.52) (14.73, 16.03, 23.78)
Subject 2 (24, 155 cm, 50 kg) (13.88, 14.42, 13.78) (14.63, 15.01, 15.19) (15.10, 15.23, 19.14)
Subject 3 (22, 164 cm, 60 kg) (14.67, 13.67, 14.36) (13.94, 14.15, 14.38) (15.20, 14.26, 18.38)
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Figure 12: Estimation of breathing within a 95% confidence interval for a 6-minute experiment, where the subject is lying down and
stationary for the first 3minutes and moves shoulders, arms, and head randomly in the last 3minutes.

Table 3: Summary of results for different postures with or without random body movements.

State of the subject Number of
samples

Absolute error with respect to reference in bpm (number of outliers)
Width of CI in bpm
(number of outliers)Chirp transform Average of

micro-Doppler
Lower limit

of CI
Higher limit

of CI
Lying down and stationary 50 1.32± 0.79 (1) 0.82± 0.54 (0) 0.88± 0.61 (2) 1± 0.67 (1) 0.96± 0.67 (3)
Sitting and stationary 51 2.8± 2.55 (0) 1.25± 0.87 (0) 1.52± 1.37 (2) 1.76± 1.52 (0) 3.05± 2.81 (0)
Standing and stationary 51 4.36± 2.78 (0) 2.24± 1.39 (0) 2.90± 2.07 (0) 3.73± 3.28 (1) 5.50± 4.92 (1)
Lying down with movements 51 3.87± 2.07 (0) 2.05± 1.22 (0) 2.61± 1.96 (0) 2.65± 1.96 (0) 3.86± 3.03 (0)
Sitting with movements 51 4.57± 2.60 (0) 1.76± 1.30 (0) 4.23± 2.93 (1) 2.89± 2.65 (2) 6.35± 4.99 (2)
Standing with movements 51 3.99± 2.41 (0) 1.84± 1.32 (0) 3.29± 2.54 (1) 1.97± 1.60 (3) 5.26± 4.22 (0)
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estimate breathing using single-channel CW radar with an
average absolute error of estimation equal to 1.88 breaths per
minute. Although this error seems high for monitoring
patients, the error rate is satisfactory when the use of
wearable devices or cameras is not allowed, such as con-
tinuous monitoring of breathing rate of inmates and elderly
people, during sleep or rescue operations. It should be noted
that breathing rate estimation is realized based on the de-
tected motion, observed at a distance, and therefore is much
more susceptible to noise, interference, and artifacts and is
not expected to be as accurate at estimating breathing rate as
the RIP band.

One of the limitations of the proposedmethod is that it is
sensitive to the parameter f0 in (4), which controls the
trade-off between time and frequency resolution of WFT.
0is parameter has been set to f0 � 2, which was found by
trial and error and might need to be adjusted for other radar
systems. In future works, ways of optimizing f0 needs to be
investigated. 0e proposed method will also be examined in
other environments where interference from other moving
objects is present in the room.

It is noted that the system complexity, cost, and power
consumption of a two-channel radar are well known to be
higher than those of a single-channel radar, because a single-
channel radar requires only one receiver branch [46, 47] and
does not require balancing I/Q data [48].

6. Conclusion

In this work, a method for estimating breathing rate using a
single-channel CW radar has been proposed. It has been
shown through several simulations that Fourier transform-
based estimation methods are not reliable to estimate
breathing rate, when only one channel is used in the
hardware of the radar. Quadrature receivers for vital sign
monitoring have been well studied. However, single-channel
receivers have not been well researched. Our study has
demonstrated how single-channel radar can be used for
monitoring in realistic situations and has provided estimates
reasonably well. In case of a two-channel radar, the phase
extracted from quadrature demodulation is a linear com-
bination of breathing-related harmonic and those originated
from noise and random body movements and can be
processed by Fourier transform. However, in a single-
channel CW radar, cosine of phase is received which is
the output of a nonlinear system. In view of this, using time-
frequency analysis has been proposed in order to extract the
derivative of phase (or Doppler frequency) of the received
signal over time. Using the proposed method, the received
signal has been decomposed to the main harmonics origi-
nated from breathing and residuals, which are the sum of
unwanted harmonics. Although the frequency of the main
harmonic has been shown to be an estimate of breathing, our
results have shown that this estimation can significantly be
affected by unwanted harmonics. 0erefore, bootstrap
resampling has been used to support the estimations with a
95% confidence interval. Surrogates of unwanted harmonics
have been generated by randomizing the phase of residuals,
knowing that information of random body movements and

unwanted intermodulations is hidden in the phase of the
residuals. 0e results have also shown that the proposed
method is able to compensate for lack of quadrature channel
and can be used to estimate breathing using single-channel
CW radar with an average absolute error of estimation equal
to 1.88 breaths per minute.

Data Availability

0e data used in the experiments will be made available
online.

Conflicts of Interest

0e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

We would like to thank NSERC for funding this research
through IDEA to Innovation and Discovery program. We
would also like to thank Mr. Andre Gagnon from K&G
Spectrum Inc. for providing the radar prototype and Mr.
Sylvio Bisson from Correctional Service Canada for his
support of this research.

References

[1] L. Anitori, A. de Jong, and F. Nennie, “FMCW radar for life-
sign detection,” in Proceedings of the IEEE Radar Conference,
pp. 1–6, Pasadena, CA, USA, May 2009.

[2] O. Postolache, P. S. Girão, R. N. Madeira, and G. Postolache,
“Microwave FMCW Doppler radar implementation for in-
house pervasive health care system,” in Proceedings of the
IEEE International Workshop onMedical Measurements and
Applications (MeMeA), pp. 47–52, Ottawa, ON, Canada, April
2010.

[3] I. Nejadgholi, H. Sadreazami, S. Rajan, and M. Bolic,
“Classification of Doppler radar reflections as preprocessing
for breathing rate monitoring,” IET Signal Processing, vol. 13,
no. 1, pp. 21–28, 2019.

[4] J. Paton and R. Jenkins, “Suicide and suicide attempts in
prisons,” in Prevention and Treatment of Suicidal Behavior:
From Science to Practice, pp. 307–334, Oxford University
Press, Oxford, UK, 2005.

[5] P. B. Patil, S. Chapalkar, N. D. Dhamne, and N. M. Patel,
“Monitoring system for prisoner with GPS using wireless
sensor network (WSN),” International Journal of Computer
Applications, vol. 91, no. 13, pp. 28–31, 2014.

[6] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review
on recent advances in Doppler radar sensors for noncontact
healthcare monitoring,” IEEE Transactions on Microwave
Aeory and Techniques, vol. 61, no. 5, pp. 2046–2060, 2013.

[7] F. Adib, H.Mao, Z. Kabelac, and D. Katabi, “Smart homes that
monitor breathing and heart rate,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing
Systems (CHI’15), pp. 837–846, Seoul, Republic of Korea,
April 2015.

[8] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand,
“Capturing the human figure through a wall,” ACM Trans-
actions on Graphics, vol. 34, no. 6, pp. 1–13, 2015.

[9] F. Adib, Z. Kabelac, and K. Dina, “Multi-person localization
via RF body reflections,” in Proceedings of the 12th USENIX

12 Journal of Healthcare Engineering



Conference on Networked Systems Design and Implementation
(NSDI 15), pp. 279–292, Oakland, CA, USA, May 2015.

[10] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin,
and G. T. A. Kovacs, “Range correlation and I/Q perfor-
mance benefits in single-chip silicon Doppler radars for
noncontact cardiopulmonary monitoring,” IEEE Trans-
actions on Microwave Aeory and Techniques, vol. 52, no. 3,
pp. 838–848, 2004.

[11] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of
a low-power $Ka$-band heartbeat detector measuring from
four sides of a human body,” IEEE Transactions on Microwave
Aeory and Techniques, vol. 54, no. 12, pp. 4464–4471, 2006.

[12] C. Li and J. Lin, “Random body movement cancellation in
Doppler radar vital sign detection,” IEEE Transactions on
Microwave Aeory and Techniques, vol. 56, no. 12, pp. 3143–
3152, 2008.

[13] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctan-
gent demodulation with dc offset compensation in quadrature
Doppler radar receiver systems,” IEEE Transactions on Mi-
crowave Aeory and Techniques, vol. 55, no. 5, pp. 1073–1079,
2007.

[14] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-
based non-contact Doppler radar vital sign detection system
using heterodyne digital quadrature demodulation architec-
ture,” IEEE Transactions on Instrumentation and Measurement,
vol. 59, no. 6, pp. 1580–1588, 2010.

[15] A. M. Vergara and V. M. Lubecke, “Data acquisition system
for Doppler radar vital-sign monitor,” in Proceedings of the
29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 2269–2272, Lyon, France,
August 2007.

[16] T. Hall, D. Lie, T. Nguyen et al., “Non-contact sensor for long-
term continuous vital signs monitoring: a review on in-
telligent phased-array Doppler sensor design,” Sensors,
vol. 17, no. 11, p. 2632, 2017.

[17] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, “Radar
remote monitoring of vital signs,” IEEE Microwave Magazine,
vol. 10, no. 1, pp. 47–56, 2009.

[18] T.-Y. Chin, K.-Y. Lin, S.-F. Chang, and C.-C. Chang, “A fast
clutter cancellation method in quadrature Doppler radar for
non-contact vital signal detection,” in Proceedings of the IEEE
MTT-S International Microwave Symposium Digest (MTT),
pp. 764–767, Anaheim, CA, USA, May 2010.

[19] J. E. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke, “Con-
siderations in measuring vital signs cross section with
Doppler radar,” in Proceedings of the IEEE Radio andWireless
Symposium, pp. 426–429, Phoenix, AZ, USA, January 2011.

[20] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and
C.-C. Chen, “Single-antenna Doppler radars using self and
mutual injection locking for vital sign detection with random
body movement cancellation,” IEEE Transactions on Micro-
wave Aeory and Techniques, vol. 59, no. 12, pp. 3577–3587,
2011.

[21] I. Mostafanezhad, E. Yavari, O. Boric-Lubecke, V. M. Lubecke,
and D. P. Mandic, “Cancellation of unwanted Doppler radar
sensor motion using empirical mode decomposition,” IEEE
Sensors Journal, vol. 13, no. 5, pp. 1897–1904, 2013.

[22] V. C. Chen, F. Fayin Li, S.-S. Shen-Shyang Ho, and
H. Wechsler, “Micro-Doppler effect in radar: phenomenon,
model, and simulation study,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 42, no. 1, pp. 2–21,
2006.

[23] G. E. Smith, K. Woodbridge, and C. J. Baker, “Radar micro-
Doppler signature classification using dynamic time

warping,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 46, no. 3, pp. 1078–1096, 2010.

[24] P. Molchanov, J. Astola, K. Egiazarian, and A. Totsky,
“Classification of ground moving radar targets by using joint
time-frequency analysis,” in Proceedings of the IEEE Radar
Conference (RADAR), pp. 0366–0371, Atlanta, GA, USA, May
2012.

[25] I. Nejadgholi, S. Rajan, and M. Bolic, “Time-frequency based
contactless estimation of vital signs of human while walking
using pmcw radar,” in Proceedings of the IEEE 18th In-
ternational Conference on e-Health Networking, Applications
and Services (Healthcom), pp. 1–6, Munich, Germany,
September 2016.

[26] C. Gu and C. Li, “Assessment of human respiration patterns
via noncontact sensing using Doppler multi-radar system,”
Sensors, vol. 15, no. 3, pp. 6383–6398, 2015.

[27] H. Kaneko and J. Horie, “Breathing movements of the chest
and abdominal wall in healthy subjects,” Respiratory Care,
vol. 57, no. 9, pp. 1442–1451, 2012.

[28] D. Iatsenko, P. V. McClintock, and A. Stefanovska, “Non-
linear mode decomposition: a noise-robust, adaptive de-
composition method,” Physical Review E, vol. 92, no. 3,
pp. 03–29, 2015.

[29] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
CRC Press, Boca Raton, FL, USA, 1994.

[30] A. M. Zoubir and B. Boashash, “0e bootstrap and its ap-
plication in signal processing,” IEEE Signal Processing Mag-
azine, vol. 15, no. 1, pp. 56–76, 1998.

[31] S. Kazemi, A. Ghorbani, H. Amindavar, and D. R. Morgan,
“Vital-sign extraction using bootstrap-based generalized
warblet transform in heart and respiration monitoring radar
system,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 65, no. 2, pp. 255–263, 2016.

[32] C. Z. Mooney, R. D. Duval, and R. Duval, Bootstrapping: A
Nonparametric Approach to Statistical Inference, Sage,
0ousand Oaks, CA, USA, 1993.

[33] A. M. Zoubir and D. R. Iskander, Bootstrap Techniques for
Signal Processing, Cambridge University Press, Cambridge,
UK, 2004.

[34] T. Schreiber and A. Schmitz, “Surrogate time series,”
Physica D: Nonlinear Phenomena, vol. 142, no. 3-4,
pp. 346–382, 2000.

[35] D. N. Politis, “0e impact of bootstrap methods on time series
analysis,” Statistical Science, vol. 18, no. 2, pp. 219–230, 2003.

[36] D. N. Politis and H.White, “Automatic block-length selection
for the dependent bootstrap,” Econometric Reviews, vol. 23,
no. 1, pp. 53–70, 2004.

[37] E. Paparoditis and D. N. Politis, “Tapered block bootstrap,”
Biometrika, vol. 88, no. 4, pp. 1105–1119, 2001.

[38] S. N. Lahiri, “0eoretical comparisons of block bootstrap
methods,” Annals of Statistics, vol. 27, no. 1, pp. 386–404,
1999.

[39] J. Chang and P. Hall, “Double-bootstrap methods that use a
single double-bootstrap simulation,” Biometrika, vol. 102,
no. 1, pp. 203–214, 2015.

[40] M. Aiello, A. Cataliotti, and S. Nuccio, “A comparison of
spectrum estimation techniques for periodic not stationary
signals,” in Proceedings of the 18th IEEE Instrumentation and
Measurement Technology Conference (IMTC), pp. 1130–1134,
Budapest, Hungary, May 2001.

[41] L. Rabiner, R. Schafer, and C. Rader, “0e chirp z-transform
algorithm,” IEEE Transactions on Audio and Electroacoustics,
vol. 17, no. 2, pp. 86–92, 1969.

Journal of Healthcare Engineering 13



[42] J. P. McFadden, R. C. Price, H. D. Eastwood, and R. S. Briggs,
“Raised respiratory rate in elderly patients: a valuable physical
sign,” BMJ, vol. 284, no. 6316, pp. 626-627, 1982.

[43] G. Yuan, N. A. Drost, and R. A. McIvor, “Respiratory rate and
breathing pattern,” McMaster University Medical Journal,
vol. 10, no. 1, pp. 23–25, 2013.

[44] H. I. Chen and C. S. Kuo, “Relationship between respiratory
muscle function and age, sex, and other factors,” Journal of
Applied Physiology, vol. 66, no. 2, pp. 943–948, 1989.

[45] A. W. Sheel, J. C. Richards, G. E. Foster, and J. A. Guenette,
“Sex differences in respiratory exercise physiology,” Sports
Medicine, vol. 34, no. 9, pp. 567–579, 2004.

[46] B.-K. Park, S. Yamada, O. Boric-Lubecke, and V. Lubecke,
“Single-channel receiver limitations in Doppler radar mea-
surements of periodic motion,” in Proceedings of the IEEE
Radio and Wireless Symposium, pp. 99–102, San Diego, CA,
USA, January 2006.

[47] F. Lurz, S. Mann, S. Linz et al., “A low power 24 GHz radar
system for occupancy monitoring,” in Proceedings of the IEEE
Radio and Wireless Symposium (RWS), pp. 111–113, San
Diego, CA, USA, January 2015.

[48] A. W. Doerry, “Balancing I/Q data in radar range-Doppler
images,” in Proceedings of the Radar Sensor Technology XIX;
and Active and Passive Signatures VI, vol. 9461, article 94611Y,
International Society for Optics and Photonics, Baltimore,
MD, USA, April 2015.

14 Journal of Healthcare Engineering



Research Article
An Efficient Deep Learning Approach to Pneumonia
Classification in Healthcare

Okeke Stephen ,1 Mangal Sain ,2 Uchenna Joseph Maduh ,3 and Do-Un Jeong 2

1Department of Computer Engineering, Dongseo University, Busan, Republic of Korea
2Division of Computer Engineering, Dongseo University, Busan, Republic of Korea
3Department of Civil Engineering, Yeungnam University, Gyeongsan, Republic of Korea

Correspondence should be addressed to Mangal Sain; mangalsain1@gmail.com and Do-Un Jeong; dujeong@dongseo.ac.kr

Received 19 December 2018; Accepted 24 February 2019; Published 27 March 2019

Guest Editor: Ahyoung Choi

Copyright © 2019Okeke Stephen et al..is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.is study proposes a convolutional neural network model trained from scratch to classify and detect the presence of
pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning
approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a
convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to
determine if a person is infected with pneumonia. .is model could help mitigate the reliability and interpretability
challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient
image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we
deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and
achieved remarkable validation accuracy.

1. Introduction

.e risk of pneumonia is immense for many, especially in
developing nations where billions face energy poverty and
rely on polluting forms of energy. .e WHO estimates that
over 4 million premature deaths occur annually from
household air pollution-related diseases including pneu-
monia [1]. Over 150 million people get infected with
pneumonia on an annual basis especially children under
5 years old [2]. In such regions, the problem can be further
aggravated due to the dearth of medical resources and
personnel. For example, in Africa’s 57 nations, a gap of 2.3
million doctors and nurses exists [3, 4]. For these pop-
ulations, accurate and fast diagnosis means everything. It can
guarantee timely access to treatment and save much needed
time and money for those already experiencing poverty.

Deep neural network models have conventionally been
designed, and experiments were performed upon them by
human experts in a continuing trial-and-error method. .is
process demands enormous time, know-how, and resources.
To overcome this problem, a novel but simple model is

introduced to automatically perform optimal classification
tasks with deep neural network architecture. .e neural
network architecture was specifically designed for pneu-
monia image classification tasks. .e proposed technique is
based on the convolutional neural network algorithm, uti-
lizing a set of neurons to convolve on a given image and
extract relevant features from them. Demonstration of the
efficacy of the proposed method with the minimization of
the computational cost as the focal point was conducted and
compared with the exiting state-of-the-art pneumonia
classification networks.

In recent times, CNN-motivated deep learning algo-
rithms have become the standard choice for medical image
classifications although the state-of-the-art CNN-based
classification techniques pose similar fixated network ar-
chitectures of the trial-and-error system which have been
their designing principle. U-Net [5], SegNet [6], and Car-
diacNet [7] are some of the prominent architectures for
medical image examination. To design these models, spe-
cialists often have a large number of choices to make design
decisions, and intuition significantly guides manual search
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process. Models like evolutionary-based algorithms [8] and
reinforcement learning (RL) [9] have been introduced to
locate optimum network hyperparameters during training.
However, these techniques are computationally expensive,
gulping a ton of processing power. As an alternative, our
study proposes a conceptually simple yet efficient network
model to handle the pneumonia classification problem as
shown in Figures 1 and 2.

CNNs have an edge over DNNs by possessing a visual
processing scheme that is equivalent to that of humans and
extremely optimized structure for handling images and 2D
and 3D shapes, as well as ability to extract abstract 2D
features through learning. .e max-pooling layer of the
convolutional neural network is effective in variant shape
absorptions and comprises sparse connections in conjunc-
tion with tied weights. When compared with fully connected
(FC) networks of equivalent size, CNNs have a considerably
smaller amount of parameters. Most importantly, gradient-
based learning algorithms are employed in training CNNs
and they are less prone to diminishing gradient problem.
Since the gradient-based algorithm is responsible for
training the whole network in order to directly diminish an
error criterion, highly optimized weights can be produced
by CNNs.

2. Related Works

Latest improvements in deep learning models and the
availability of huge datasets have assisted algorithms to
outperform medical personnel in numerous medical im-
aging tasks such as skin cancer classification [11], hem-
orrhage identification [12], arrhythmia detection [13], and
diabetic retinopathy detection [14]. Automated diagnoses
enabled by chest radiographs have received growing in-
terests. .ese algorithms are increasingly being used for
conducting lung nodule detection [15] and pulmonary
tuberculosis classification [16]. .e performance of several
convolutional models on diverse abnormalities relying on
the publicly available OpenI dataset [17] found that the
same deep convolutional network architecture does not
perform well across all abnormalities [18], ensemble
models significantly improved classification accuracy when
compared with single model, and finally, deep learning
method improved accuracy when compared to rule-based
methods.

Statistical dependency between labels [19] was studied to
arrive at more precise predictions, thereby outperforming
other techniques on given 13 images selected from 14 classes
[20]. Algorithms for mining and predicting labels emanating
from radiology images as well as reports have been studied
[21–23], but the image labels were generally constrained to
disease tags, thus lacking contextual information. Detection
of diseases from X-ray images was examined in [24–26],
classifications on image views from chest X-ray were carried
out in [27], and body parts segmentation from chest X-ray
images and computed tomography was performed in
[23, 28]. Conversely, learning image features from text and
creating image descriptions relative to what a human would
describe are yet to be exploited.

3. Materials and Methods

We present the detailed experiments and evaluation steps
undertaken to test the effectiveness of the proposed model.
Our experiments were based on a chest X-ray image dataset
proposed in [29]. We deployed Keras open-source deep
learning framework with tensorflow backend [10] to build
and train the convolutional neural network model. All ex-
periments were run on a standard PC with an Nvidia
GeForce GTX TITAN Xp GPU card of 12GB, cuDNN v7.0
library, and CUDA Toolkit 9.0.

3.1. Dataset. .e original dataset [25] consists of three
main folders (i.e., training, testing, and validation folders)
and two subfolders containing pneumonia (P) and normal
(N) chest X-ray images, respectively. A total of 5,856 X-ray
images of anterior-posterior chests were carefully chosen
from retrospective pediatric patients between 1 and 5 years
old. .e entire chest X-ray imaging was conducted as part
of patients’ routine medical care. To balance the pro-
portion of data assigned to the training and validation set,
the original data category was modified. We rearranged the
entire data into training and validation set only. A total of
3,722 images were allocated to the training set and 2,134
images were assigned to the validation set to improve
validation accuracy.

3.2. Preprocessing and Augmentation. We employed several
data augmentation methods to artificially increase the size
and quality of the dataset. .is process helps in solving
overfitting problems and enhances the model’s generaliza-
tion ability during training. .e settings deployed in image
augmentation are shown below in Table 1.

.e rescale operation represents image reduction or
magnification during the augmentation process. .e rota-
tion range denotes the range in which the images were
randomly rotated during training, i.e., 40 degrees. Width
shift is the horizontal translation of the images by 0.2
percent, and height shift is the vertical translation of the
images by 0.2 percent. In addition, a shear range of 0.2
percent clips the image angles in a counterclockwise di-
rection. .e zoom range randomly zooms the images to the
ratio of 0.2 percent, and finally, the images were flipped
horizontally.

3.3. Model. Figure 3 shows the overall architecture of the
proposed CNNmodel which consists of two major parts: the
feature extractors and a classifier (sigmoid activation
function). Each layer in the feature extraction layer takes its
immediate preceding layer's output as input, and its output
is passed as an input to the succeeding layers. .e proposed
architecture in Figure 3 consists of the convolution, max-
pooling, and classification layers combined together. .e
feature extractors comprise conv3× 3, 32; conv3× 3, 64;
conv3× 3, 128; conv3× 3, 128, max-pooling layer of size
2× 2, and a RELU activator between them..e output of the
convolution and max-pooling operations are assembled into
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2D planes called feature maps, and we obtained
198×198× 32, 97× 97× 62, 46× 64×128, and 21× 21× 128
sizes of feature maps, respectively, for the convolution
operations and 99× 99× 32, 48× 48× 64, 23× 23×128, and
10×10×128 sizes of feature maps from the pooling oper-
ations, respectively, with an input of image of size
200× 200× 3 as shown in Table 2. It is worthy to note that
each plane of a layer in the network was obtained by
combining one or more planes of previous layers.

.e classifier is placed at the far end of the proposed
convolutional neural network (CNN) model. It is simply an
artificial neural network (ANN) often referred to as a dense
layer..is classifier requires individual features (vectors) to
perform computations like any other classifier. .erefore,
the output of the feature extractor (CNN part) is converted
into a 1D feature vector for the classifiers. .is process is
known as flattening where the output of the convolution
operation is flattened to generate one lengthy feature vector
for the dense layer to utilize in its final classification
process. .e classification layer contains a flattened layer, a

dropout of size 0.5, two dense layers of size 512 and 1,
respectively, a RELU between the two dense layers and a
sigmoid activation function that performs the classification
tasks.

4. Results

To evaluate and validate the effectiveness of the proposed
approach, we conducted the experiments 10 times each for
three hours, respectively. Parameter and hyperparameters
were heavily turned to increase the performance of the
model. Different results were obtained, but this study reports
only the most valid.

As explained above, methods such as data augmen-
tation, learning rate variation, and annealing were
deployed to assist in fitting the small dataset into deep
convolutional neural network architecture. .is was in
order to obtain substantial results as shown in Figure 4.
.e final results obtained are training loss � 0.1288,
training accuracy � 0.9531, validation loss: 0.1835, and
validation accuracy of 0.9373.

CNN frameworks always require images of fixed sizes
during training. .us, to demonstrate the validation
performance of our model on variant input data, we
reshaped the X-ray images into 100×100× 3, 150×150× 3,
200× 200× 3, 250× 250× 3, and 300× 300× 3 sizes, re-
spectively, trained them three hours each, and obtained their
overall average performance as shown in Figure 4 and
Table 3.

.e larger the size of the transformed images, the lesser
the validation accuracy obtained. In contrast, smaller-sized

(a) (b) (c) (d)

Figure 1: Sample images without pneumonia.

(a) (b) (c) (d)

Figure 2: Sample images with pneumonia [10].

Table 1: Settings for the image augmentation.

Method Setting
Rescale 1/255
Rotation range 40
Width shift 0.2
Height shift 0.2
Shear range 0.2
Zoom range 0.2
Horizontal flip True
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training images induced a slight improvement in validation
accuracy as shown in Figure 5. However, the little slips in
the validation accuracy do not register substantial impact on
the overall classification performance of the proposed
model. Larger images also required more training time
and computation cost, and the performances of 150×150× 3
and 200× 200× 3 image sizes were similar, as shown in
Table 3 and Figure 5, respectively. Finally, we propose the
200× 200× 3 model since it produced better validation ac-
curacy of approximately 94 percent with a minimal training
loss of 0.1835.

5. Discussion

We developed a model to detect and classify pneumonia
from chest X-ray images taken from frontal views at high
validation accuracy. .e algorithm begins by transforming
chest X-ray images into sizes smaller than the original. .e
next step involves the identification and classification of
images by the convolutional neural network framework,
which extracts features from the images and classifies them.
Due to the effectiveness of the trained CNN model for
identifying pneumonia from chest X-ray images, the
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Table 2: .e output of the proposed network architecture.

Layer (type) Output shape Turtles
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validation accuracy of our model was significantly higher
when compared with other approaches. To affirm the per-
formance of the model, we repeated the training process of
the model several times, each time obtaining the same re-
sults. To validate the performance of the trained model on

different chest X-ray image sizes, we varied the sizes of the
training and validation dataset and still obtained relatively
similar results. .is will go a long way in improving the
health of at-risk children in energy-poor environments. .e
study was limited by depth of data. With increased access to

Table 3: Performance of the classification model on different data sizes.

Data size Training accuracy Validation accuracy
100 0.9375 0.9226
150 0.9422 0.9343
200 0.9531 0.9373
250 0.9513 0.9297
300 0.9566 0.9267
Average 0.94814 0.93012
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data and training of the model with radiological data from
patients and nonpatients in different parts of the world,
significant improvements can be made.

6. Conclusions

We have demonstrated how to classify positive and negative
pneumonia data from a collection of X-ray images. We build
our model from scratch, which separates it from other
methods that rely heavily on transfer learning approach. In
the future, this work will be extended to detect and classify
X-ray images consisting of lung cancer and pneumonia.
Distinguishing X-ray images that contain lung cancer and
pneumonia has been a big issue in recent times, and our next
approach will tackle this problem.
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Different auditory and visual cues have been proven to be very effective in improving the mobility of people with Parkinson’s
(PwP). Nonetheless, many of the available methods require user intervention and so on to activate the cues. Moreover, once
activated, these systems would provide cues continuously regardless of the patient’s needs. +is research proposes a new indoor
method for casting dynamic/automatic visual cues for PwP based on their head direction and location in a room. +e proposed
system controls the behavior of a set of pan/tilt servo motors and laser pointers, based on the real-time skeletal information
acquired from a Kinect v2 sensor. +is produces an automatically adjusting set of laser lines that can always be in front of the
patient as a guideline for where the next footstep would be placed. A user interface was also created that enables users to control
and adjust the settings based on the preferences. +e aim of this research was to provide PwP with an unobtrusive/automatic
indoor system for improving their mobility during a Freezing of gait (FOG) incident. +e results showed the possibility of
employing such system, which does not rely on the subject’s input nor does it introduce any additional complexities to operate.

1. Introduction

Freezing of gait (FOG) is one of the most disabling
symptoms in Parkinson’s disease (PD) that affects its suf-
ferers by impacting their gait performance and locomotion.
FOG is an episodic phenomenon that introduces irregu-
larities in the initiation or continuation of a patient’s lo-
comotion and usually occurs in later stages of PD where
patients’ muscles cannot function normally and appear to be
still when they are trying to walk [1–4]. +is makes FOG one
of the most intolerable symptoms that not only affects PD
sufferers physically but also psychologically, as it makes
them almost completely dependent on others for their basic
and daily tasks. Consequently, the patient’s quality of life
decreases, and the healthcare and treatment expenditures
increase, as does the cost of the injuries caused [1]. It has
been estimated that about 50% of PwP experience FOG
incidents [5]. Moreover, it has been proven that visual and
auditory cues can have a positive impact on the subject’s gait

performance during a FOG incident [6–8]. Visual cues such
as laser lines can act as a sensory guidance trick that provides
an external trigger, which, in turn, can initiate movement
[7].

+ere has been much research conducted towards
implementing apparatus and systems that can provide visual
and auditory cues for PwP. In work done by Zhao et al. [9], a
wearable system based on modified shoes was developed in
order to cast a laser-based visual cue in front of PwP. +e
system consisted of a 3D printed add-on that included a red
laser line projector and pressure sensors that detect the
stance phase of a gait cycle and turn the laser pointer on.+e
unit provided the option to adjust the distance between the
laser light strip and the subject’s foot for the optimal ef-
fectiveness, depending on the user’s preferences. +e re-
search provided a simple, yet effective approach towards
providing visual cues for PwP with locomotion issues.
Nonetheless, like any other approaches, this too has some
limitations, such as the constant need to carry the shoe add-
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on, the batteries needed for the device, charging the bat-
teries, and remembering to switch them on.

In another attempt [10], researchers evaluated the effect
of visual cues using two different methods, including a
subject-mounted light device (SMLD) and taped step length
markers. It was concluded that using laser projections based
on SMLD have promising effects on the PwP’s locomotion
and gait performance. +e method required patients to wear
a SMLD that some patients might find inconvenient to have
or even impractical in some situations. Moreover, SMLD
systems have stability issues and steadiness difficulties due to
the subjects’ torso movements during a gait cycle. As ex-
pected, the visual cues must be constantly enabled during a
gait cycle, regardless whether they are needed or not.

In [11], although the SMLD method was employed,
researchers added the 10 seconds on-demand option to the
“constantly on” visual cue casting. +is system was more
sophisticated, consisting of a backpack having a remotely
controllable laptop that made the subjects’ mobility even
more troublesome.

In other attempts [12, 13], a different approach was
implemented by using virtual cues projected on a pair of
goggles that is only visible to the patient. In [14], the effect of
real and virtual visual cueing was compared, and it was
concluded that real transverse lines casted on the floor are
more impactful than the virtual counterparts. Nonetheless,
using virtual cueing spectacles (VCS) eliminates the
shortcomings in other techniques such as limitations in
mobility, steadiness, and symmetry. VCS have also the
advantage of being used in an external environment when
the patient is out and about.

Moreover, several research studies have been conducted
using virtual reality (VR) to assess the possibility of VR
integration for Parkinson’s related studies [15–20]. None-
theless, as the VR technology blocks patients’ view and
makes them unable to see their surroundings, the usage of
this is limited to either rehabilitation by implementing
exercise-based games, FOG provoking scenarios, or the
assessment of patients’ locomotion rather than real-time
mobility improvement using cues.

Although they are effective to some extent, these at-
tempts tend to restrict the user either by forcing them to
carry backpacks or wear vests containing electronics, or
making them rely on conventional approaches such as
attaching laser pointers to a cane [21], or laser add-on for
shoes.

+e hypothesis of this study, on the other hand, is to
propose a different technique: casting parallel laser lines as a
dynamic and automatic visual cuing system for PwP based
on Kinect v2 and a set of servo motors suitable for indoor
environments. As Kinect has been proven to be a reliable
data feed source for controlling servo motors [22, 23], the
Kinect camera was chosen for real-time depth data feed for
this study. +is paper also examines the possibility of using
the Kinect v2 sensor for such purposes in terms of accuracy
and response time.

+is research uses subject’s 3D Cartesian location and
head direction as an input for servo motors to cast visual
cues accordingly. +is eliminates the need of the user

intervention or trigger, and at the same time, the need to
carry or wear any special equipment. Despite this approach
being limited to environments equipped with the proposed
apparatus, it does not require any attachments or reliance on
PwP themselves, something that can be beneficial in many
scenarios. +e system comprises a Microsoft Kinect v2, a set
of pant/tilt servo motors alongside a microcontroller based
on Arduino Uno and two laser line laser pointers. A two-line
projection was chosen so that the second traversed laser line
could be used to indicate a set area for which the next step
has to land. +e system was tested in different conditions,
including a partially occluded scene by furniture to simulate
a living room.

2. Methods

During the initial testing phase, 11 healthy subjects were
invited, consisting of both males and females ranging from
ages 24–31, with the age mean of 27 and SD of 2.34, a mean
height of 174.45 cm (68.68 inch) and SD of 8.31 cm
(3.27 inch) ranging from 163 to 187 cm (64.17 to 73.62 inch).
+ey were asked to walk in predefined paths: 12 paths per
subject, walking towards the camera and triggering a sim-
ulated FOG incident by imitating the symptom while having
the Kinect camera positioned at a fixed location. +e sub-
jects’ skeletal data were captured and analyzed by the Kinect
camera in real-time. +e software was written in C# using
the Kinect for Windows SDK version 2.0.1410.19000. +e
room that was used for conducting the experiments con-
sisted of different pieces of living room furniture to mimic a
practical-use case of the device. +is not only yields more
realistic results but also tests the system in real-life scenarios
where the subject is partially visible to the camera and not all
the skeletal joints are being tracked. To test and compare the
Kinect v2’s accuracy in determining both vertical and
horizontal angles according to the subject’s foot distance to
the Kinect camera and body orientation, eight Vicon T10
cameras (considered as the gold standard) were also used to
capture the subject’s movements and compare those with the
movements determined by the Kinect. +e Vicon cameras
and the Kinect v2 captured each session simultaneously
while the frame rate of the recorded data from the Vicon
cameras was down-sampled to match the Kinect v2 at ap-
proximately 30 frames per second.

At a later stage and following an ethical approval, there
was a recruitment of 15 PwP (with the collaboration of
Parkinson’s UK) to test the system and provide feedback.
+is research was published separately in [22]. +e more in-
depth analysis and information with regard to this focus
group can also be checked via [24].

2.1. Kinect RGB-D Sensor. Microsoft Kinect v2 is a time-of-
flight (TOF) camera that functions by emitting infrared (IR)
lights on objects, and upon reflection of the lights back to the
IR receiver, it constructs a 3Dmap of the environment where
the Z-axis is calculated via the delay of receiving IR light [25].
Kinect v2 introduced many features and improvements
compared to its predecessor such as 1080p and 424p
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resolution at approximately 30 frames per seconds for its
RGB and depth/IR streams, respectively, as well as a wider
field of view [26]. +e ability to track 25 joints of six subjects
simultaneously enables researchers to employ Kinect v2 as
an unobtrusive human motion tracking device in different
disciplines, including rehabilitation and biomedical
engineering.

2.2. Angle Determination. +e Kinect v2 was used to de-
termine the subjects’ location in a 3D environment and
localize the subject’s feet joints to calculate the correct
horizontal and vertical angles for servo motors. To de-
termine the subject’s location, Kinect skeletal data were used
for joints’ 3D coordinate acquisition. A surface floor can be
determined by using the vector equation of planes. +is is
necessary to automate the process of calculating the Kinect’s
height to the floor that is one of the parameters in de-
termining vertical servo angle:

Ax + By + Cz + D � 0, (1)

where A, B, and C are the components of a normal vector
that is perpendicular to any vector in a given plane and D is
the height of the Kinect from the levelled floor. x, y, and z

are the coordinates of the given plane that locates the floor of
the viewable area and are provided by the Kinect SDK. Ax,
By, Cz, and D are also provided by the Kinect SDK once a
flat floor is detected by the camera.

For vertical angle determination, a subject’s 3D feet
coordinates were determined, and depending on which foot
was closer to the Kinect in the Z-axis, the system selects that
foot for further calculations. Once the distance of the se-
lected foot to the camera was calculated, the vertical angle for
the servo motor is determined using the Pythagorean the-
orem, as depicted in Figure 1. +e subject’s skeletal joints’
distance to the Kinect on the Z-axis is defined in a right-
handed coordinate system, where the Kinect v2 is assumed
to be at origin with a positive Z-axis value increasing in the
direction of Kinect’s point of view.

In Figure 1, a is the Kinect’s camera height to the floor
that is the same as variable D from equation (1) and c is the
hypotenuse of the right triangle, which is the subject’s se-
lected foot distance to the Kinect camera in the Z-axis. θ is
the calculated vertical angle for the servo motor. Note that
we have considered the position offsets in the X and Y axes
between the Kinect v2 camera and the laser pointers/servo
motors in order to have the most accurate visual cue
projection.

Our experiments showed that the Kinect v2 determines a
joint’s Z-axis distance to the camera by considering its Y-axis
value; i.e., the higher the value of a joint’s Y-axis is to the
camera’s optical center, the further the distance it has to the
camera in the Z-axis. +is indicates that unlike the Kinect’s
depth space, the Kinect skeletal coordinate system does not
calculate Z-axis distance (Figure 1, variable c) in a per-
pendicular plane to the floor, and as a result, the height of the
points, that in this case are joints, are also taken into
consideration.

In case of a joint being obstructed by an object, for
example, a piece of furniture, the obstructed joints’ 3D
Cartesian coordinate location tracking was compensated
and predicted using “inferred” state enumerate, a built-in
feature in the Kinect SDK. By implementing the “inferred”
joint state, a joint data was calculated, and its location was
estimated based on other tracked joints and its previously
known location.

Figure 2 shows the Kinect v2 accuracy in determining a
subject’s joint (left foot) distance to the camera in Z-axis
compared to a gold standard motion capture device (Vicon
T10). It was concluded that Kinect v2 skeletal data acqui-
sition accuracy was very close (98.09%) to the industry
standard counterpart. +e random noise artifacts in the
signal were not statistically significant and did not affect the
vertical angle determination.

+e subject’s body direction that determines the required
angle for the horizontal servo motor can be yielded through
the calculation of rotational changes of two subject’s joints
including left and right shoulders.+e subject’s left and right
shoulder joints’ coordinates were determined using skeletal
data and then fed to an algorithm to determine the body
orientation as follows:

servo angle � 90 ± sin−1 |shoulderA− shoulderB| 


. (2)

In Figure 3, d is the Z-axis distance difference to the
camera between the subject’s left and right shoulders.

Once d based in the equation (2) was calculated, the
angle for the horizontal servo motor can be determined by
calculating the inverse sine of θ. Depending on whether the
subject is rotating to the left or right, the result would be
subtracted or added from/to 90, respectively, as the hori-
zontal servo motor should rotate in reverse in order to cast
laser lines in front of the subject accordingly.

2.3. FOG Detection. In previous studies, the authors have
implemented the process of FOG detection in [27] using the
gait cycle and walking pattern detection techniques [26, 28].
Once the developed system detects a FOG incident, it will
turn the laser pointers on and start determining the ap-
propriate angles for both vertical and horizontal servo
motors. After passing a user-defined waiting threshold or
disappearance of the FOG incident characteristics, the
system returns to its monitoring phase by turning off the
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Figure 1: Vertical angle determination.
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laser project and servo motors movements. Figure 4 shows
the GUI for the developed system application.

+e left image shows a Parkinson’s disease patient im-
itator during his FOG incident.+e right window shows that
the subject is being monitored, and his gait information is
being displayed to healthcare providers and doctors. As it
can be seen in the “FOG Status” section displayed in the
bottom rectangle, the system has detected a FOG incident
and activated the laser projection system to be used as a
visual cue stimulus. +e circled area shows the projection of
laser lines in front of the subjects (according to the distance
from their feet to the camera) and their body direction. +e
developed system also allows further customization, in-
cluding visual cue distance adjustments in front of the
patient.

2.4. Serial Connection. A serial connection was needed to
communicate with the servo motors controlled by the
Arduino Uno microcontroller. +e transmitted signal by the
developed application needed to be distinguished at the
receiving point (the Arduino microcontroller), so each servo
motor can act according to its intended angle and signal
provided. We have developed a multipacket serial data
transmission technique similar to [29]. +e data was labeled
at the transmitter side, so the microcontroller can distin-
guish and categorize the received packet and send appro-
priate signals to each servo motor. +e system loops through
this cycle of horizontal angle determination every 150ms.
+is time delay was chosen as the horizontal servo motor
does not need to be updated in real-time due to the fact that a
subject is less likely to change his/her direction in very short
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intervals. +is ensures less jittery and smoother movements
of horizontal laser projection. +e vertical servo motor
movement was less prone to the jitters as the subject’s feet
are always visible to the camera as long as they are not
obstructed by an object.

2.5. Design of the Prototype System. A two-servo system was
developed using an Arduino Uno microcontroller and two
class-3B 10mW 532 nm wavelength green line laser pro-
jectors as shown in Figure 5(a); green laser lines have been
proven to be most visible amongst other laser colors used as
visual cues [30]. A LCD display has also been added to the
design that shows all the information with regard to vertical
and horizontal angles to the user. Figure 5(a) shows the laser
line projection system attached to the tilt/pan servo motors.
Figure 5(b) shows the top view of the prototype system
including the wiring and voltage regulators. Figure 5(c)
shows the developed prototype system used in the experi-
ment at different angles including the Kinect v2 sensor, pan/
tilt servo motors, laser pointers, and the microcontroller.

3. Results

Figure 6 demonstrates the calculated vertical angle based on
the subjects’ feet/joint distance to the Kinect camera in Z-
axis. +e right foot has been omitted in the graph for
simplicity.

As Figure 6 demonstrates, the system provided highly
accurate responses based on the subject’s foot distance to the
camera in Z-axis and the vertical servo motor angle.

Subjects were also asked to rotate their body in front of
the Kinect camera to test the horizontal angle determination
algorithm, and as a result, the horizontal servo motor
functionality. Figure 7 shows the result of the calculated
horizontal angle using equation (2) for the left and right
directions.

Figure 7 shows how the system reacts to the subject’s
body orientation. Each subject was asked to face the camera
in a stand-still position while rotating their torso to the left
and to the right in turns. As mentioned before, the hori-
zontal angle determination proved to be more susceptible to

noise compared to the vertical angle calculation. +is is due
to the fact that as the angle increases to more than 65 de-
grees, the shoulder farthest away would be obstructed by the
nearer shoulder, and as a result, the Kinect should com-
pensate by approximating the position of that joint.
Nonetheless, this did not have any impact on the perfor-
mance of the system.

Overall, the entire setup including the Kinect v2 sensor,
tilt/pan servo motors, laser projectors, microcontroller, and
LCD except the controlling PC will cost about £137.00,
making it much more affordable than other less capable
alternatives available on the market.

4. Discussion

A series of pan/tilt servo motors have been used alongside
laser line projectors to create a visual cuing system, which
can be used to improve the mobility of PwP. +e use of the
system eliminates the need to carry devices, helping patients
to improve their mobility by providing visual cues. +e
implemented system has the ability to detect FOG using only
the Kinect camera, i.e., fully unobtrusive, and provide dy-
namic and automatic visual cues projection based on the
subject’s location without the patient’s intervention as op-
posed to other methods mentioned. It was observed that this
system can provide an accurate estimation of the subject’s
location and direction in a room and cast visual cues in front
of the subject accordingly. +e Kinect’s effective coverage
distance was observed to be between 1.5 and 4meters (59
and 157.48 inch) form the camera, which is within the range
of the area of most living rooms, making it an ideal device for
indoor rehabilitation and monitoring purposes. To evaluate
the Kinect v2’s accuracy in calculating the vertical and
horizontal angles, a series of eight Vicon T10 cameras were
also used as a golden standard. Overall, the system proved to
be a viable solution for automatic and unobtrusive visual
cues’ apparatus. Nonetheless, there are some limitations to
this approach including the indoor aspect of it and the fact
that it requires the whole setup including the Kinect, servos,
and laser projectors to be included in the most communed
areas of a house such as the living room and the kitchen.

Figure 4: Graphical user interface for the developed software.
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Additionally, during the experimentation, the Kinect’s si-
multaneous subject detection was limited to only one per-
son. Nevertheless, Kinect v2 is capable to detect six
simultaneous subjects in a scene. However, the laser pro-
jection system, in order to work properly, should only aim at
one person at a time. +e developed system has the ability to
either lock on the first person that comes into the coverage
area or distinguish the real patient based on the locomotion
patterns and ignore other people. Despite that, the afford-
ability and ease of installation of the system would still make
it a desirable solution should more than one setup need to be

placed in a house. Moreover, the use of a single Kinect would
limit the system’s visibility and visual cue projection as well.

5. Conclusion

+e results of this research showed a possibility of
implementing an automatic and unobtrusive FOG moni-
toring and mobility improvement system, while being
reliable and accurate at the same time. +e system’s main
advantages such as real-time patient’s monitoring, im-
proved locomotion and patient’s mobility, and unobtrusive
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Figure 5: +e developed prototype of the automatic visual cue system. (a) +e two step motors controlling the horizontal and vertical
alignment of the system. (b) A top view of the Kinect v2 combined with the microcontroller and voltage regulators. (c) A view of the
prototype system in action.
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and dynamic visual cue projection make it, in overall, a
desirable solution that can be further enhanced for future
implementations.

As a next step, one could improve the system’s cov-
erage with a series of this implemented system to be
installed in PwP’s houses to cover most of the communal
areas, or areas where a patient experiences the FOG the
most (i.e., narrow corridors). One could also investigate
the possibility of using such systems attached to a circular
rail on a ceiling that can rotate and move according to the
patient’s location; this removes the need for extra setup in
each room as the system can cover some additional areas.
Moreover, by coupling the system with other available
solutions such as laser-mounted canes or shoes, patients
can use the implemented system when they are at home,
while using other methods for outdoor purposes. +is
requires integration at different levels such as a smart-
phone application and visual cues in order for these
systems to work as intended. Finally, the system’s form
factor can be made smaller to some extent by removing the
Kinect’s original casing and embedding all the equipment
in a customized 3D printed enclosure, which makes it
more suitable for a commercial production.
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study are restricted by the Brunel University London Ethics
Committee in order to protect patient privacy. Data are
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In this paper, a user-friendly and low-cost wireless health monitoring system that measures skin temperature from the back of the
body for monitoring the core body temperature is proposed. To measure skin temperature accurately, a semiconductor-based
microtemperature sensor with a maximum accuracy of ±0.3°C was chosen and controlled by a high-performance/low-power
consumption Acorn-Reduced Instruction Set Computing Machine (ARM) architecture microcontroller to build the temperature
measuring device. Relying on a 2.4GHzmultichannel Gaussian frequency shift keying (GFSK) RF communication technology, up
to 100 proposed temperature measuring devices can transmit the data to one receiver at the same time. .e shell of the proposed
wireless temperature-measuring device was manufactured via a 3D printer, and the device was assembled to conduct the
performance tests and in vivo experiments. .e performance test was conducted with a K-type temperature sensor in a tem-
perature chamber to observe temperature measurement performance. .e results showed an error value between two devices was
less than 0.1°C from 25 to 40°C. For the in vivo experiments, the device was attached on the back of 10 younger male subjects to
measure skin temperature to investigate the relationship with ear temperature. According to the experimental results, an al-
gorithm based on the curve-fitting method was implemented in the proposed device to estimate the core body temperature by the
measured skin temperature value. .e algorithm was established as a linear model and set as a quadratic formula with an
interpolant and with each coefficient for the equation set with 95% confidence bounds. For evaluating the goodness of fit, the sum
of squares due to error (SSE), R-square, adjusted R-square, and root mean square error (RMSE) values were 33.0874, 0.0212,
0.0117, and 0.3998, respectively. As the experimental results have shown, the mean value for an error between ear temperature and
estimated core body temperature is about ±0.19°C, and the mean bias is 0.05± 0.14°C when the subjects are in steady status.

1. Introduction

Health monitoring has always been an important topic in
biomedical-engineering research. Body temperature is one
of the important numerical values to indicate human health
status..e normal body temperature range is typically stated
as 36.5 to 37.5°C [1]. .e individual body temperature de-
pends on age, exertion, infection, sex, and the place of the
body at which the measurement is made [2]. Rectal mea-
surement, oral measurement, and axillary measurement are
the well-known methods for human body temperature
measurements [3]. However, eachmethod has disadvantages
when performing the measurements. .e thermometers can

break if bitten when doing oral measurement, the rectum
could be injured when doing rectal measurements, and the
thermometer may need to be left in a place for a long time in
order to obtain an accurate measurement. .erefore, the ear
thermometer, which measures the temperature of the ear-
drum, and forehead thermometer, placed on the forehead of
the subject to measure the body temperature, were de-
veloped. Both methods use infrared sensors to measure
temperature, which is different from the mercurial ther-
mometers and standard platinum resistance thermometers
used in oral, rectal, and axillary measurements. .e infrared
thermometer is good for surface temperature measurement
and is compact, lightweight, and easy to use. However, the
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environment needs to be clean, be without dust, and has
high humidity. Also, the sensor is expensive, which will raise
costs [4, 5].

Recently, because electronic engineering technology is
developing rapidly, studies using various electrical devices
focused on measuring skin properties objectively, such as
measuring and analysis of skin electrical impedance and
observing the effects of current, ionic strength, and tem-
perature on the electrical properties of skin [6–11]. However,
none of these researches have focused on skin temperature
measurement; also, no studies have been conducted to find a
relationship with core body temperature. Meanwhile, many
medical researchers try to find the relationship between skin
temperature and core body temperature for developing a
new approach to measure core body temperature by non-
invasive methods [12–14]. Researches such as Niedermann
et al. have developed an algorithm to predict the core body
temperature using the skin temperature measured from the
chest. However, the study only used highly professional
equipment that is not suitable for longer-term continuous
monitoring of subjects in natural habitats or daily envi-
ronment, so the limited resource is not suitable to develop a
complete algorithm to predict the core body temperature.

Lately, Woo et al. proposed a patch-type device that
attaches to the skin over the clavicle for measuring skin
temperature and humidity and thus to predict the body
temperature [15]. .e researchers studied the relationship
between perspiration rate and skin temperature and used the
data to estimate the body temperature. However, the po-
sition for affixing the device was not suitable for long-term
use, and the study reported the temperature error between
the commercial device, and the proposed patch was larger
than 15%.

In this study, a semiconductor sensor-based wireless
health monitoring system for measuring core body tem-
perature is proposed. Unlike past measuring approaches, the
proposed wireless temperature-measuring device is attached
on the skin surface of the back under the neck, as this part of
the body has thin layers of fat and muscle and so the skin
temperature here is more approximate to the core body
temperature. Also, the location is suitable for comfortably
attaching the device to the body for longer durations. A
highly accurate temperature sensor and a high-performance/
low-power consumption ARM architecture microcontroller
were used to develop the wireless temperature-measuring
device for the skin temperature measurements. .e mea-
sured data were transmitted to the receiver using a multi-
channel Industrial, Scientific, and Medical (ISM) band
2.4GHz GFSK RF communication method. An algorithm
was developed based on the curve-fitting method to estimate
the core body temperature according to the skin temperature
value. .e proposed system was manufactured, and per-
formance tests and in vivo experiments were conducted to
confirm system performance.

2. Methods

Figure 1 shows the basic idea for the proposed wireless
health monitoring system composed of two parts: a wireless

temperature-measuring device that is attached to the back of
the body for measuring skin temperature and a receiver
device for acquiring the data from the transmitter and
sending the data to a computer for display and recording. In
developing the wireless temperature-measuring device, a
semiconductor-based microtemperature sensor, Si7021
(Silicon Labs, USA), was chosen as the sensing device for
skin temperature measurement. .is sensor has a small
measurement error of approximately ±0.4°C at 1Hz sam-
pling rate in temperature measurement; this contributes to
measuring skin temperature accurately with low power
consumption. .e EFM32WG 32-bit microprocessor (Sili-
con Labs, USA) was designed as the main controller for the
device. .is microcontroller unit (MCU) family, based on
the ARM Cortex-M4 core, provides a full digital signal
processing (DSP) instruction set and includes a hardware
floating point unit (FPU) for faster computational perfor-
mance. Also, it features up to 256 kB of flash memory, 32 kB
of RAM, and CPU speeds up to 48MHz, which are suitable
to estimate the core body temperature in real time by
embedding the algorithm. In addition, to minimize energy
consumption, intelligent peripherals enable this MCU to
control the device with high efficiency and longer battery life.
In this research, the nRF24L01 (Nordic Semiconductor,
Norway) transceiver was chosen to achieve wireless com-
munication between transmitter and receiver. .e trans-
ceiver is an ultralow-power 2Mbps transceiver IC for the
2.4GHz ISM band. .e multireceiver technology that en-
ables the receiver can communicate with a maximum of 128
transmitters simultaneously.

In designing the receiver, C8051F996 (Silicon Labs,
USA), an ultralow-power MCU, was chosen to control the
receiver. A highly integrated USB-to-UART bridge con-
troller CP2102 (Silicon Labs, USA) was used inside the
receiver for connecting the receiver to a computer easily.
CP2102 has a simple solution for updating UARTdesigns to
USB using a minimal of components, and the printed circuit
board (PCB) is an important reason to use this chip for
connecting the receiver to a computer by a USB connection.
.e data are displayed and recorded on the computer by a
developed LabVIEW program.

3. Experiments

3.1. System Manufacture. Figure 2 shows the manufactured
PCBs of the proposed wireless temperature-measuring de-
vice: one is the main board (front and back views) for
mounting the MCU and the wireless communication
components and the other is the sensor board with tem-
perature sensor components. .e wireless temperature-
measuring device had to be designed as small as possible
to make it easy to attach to the back of the body. .erefore,
all the PCBs were manufactured with four-layer structures,
and all the components were chosen with surface-mounted
device- (SMD-) type size 2012 mounted on both sides of the
PCB to minimize the PCB size. A mini-USB port was fixed
on the top of the PCB for connecting to the USB adapter for
battery recharging. In addition, a chip shape 2.4GHz an-
tenna was fixed on the top of the main PCB and kept away
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from the MCU to prevent the electrical effect from the
electronic components, which would reduce the perfor-
mance of the wireless communication. .e temperature
sensor was designed on the other PCBs for attaching securely
to the back of the body. Guide holes were designed on the
same side of the two PCBs for connecting the sensor board to
the main board easily. .e dimensions of each PCB are
38mm× 30mm× 10mm.

Figure 3 shows the shell design in the 3D mode for the
proposed wireless temperature-measuring device, and the
device assembly with the manufactured shell. .e shell di-
mensions are 40mm× 30mm× 17mm and separated into
two storage spaces: the upper space for attaching the main
PCB and the bottom space designed as storage for a re-
chargeable battery and sensor PCB. .e upper shell was
designed with a power switch hole and USB porthole. Also, a
porthole was designed on the bottom cover, which enabled
the sensor to contact the skin of the back directly and
completely. In addition, a 450mAh size with

40mm× 40mm× 2mm size rechargeable battery was cho-
sen for the power supply. .e shell was manufactured by 3D
printer with polylactic acid (PLA) material that is known to
be harmless to humans.

3.2. Experiments for the System Performance Test

3.2.1. Temperature Measurement Performance Test for the
Wireless Temperature-Measuring Device. .emanufactured
wireless temperature-measuring device was situated in a
temperature and humidity chamber (T2, YMRTC) for
testing the performance of the measuring temperature as
shown in Figure 4(a). .e temperature in the chamber was
set at an initial state of 25°C and increased by 5°C every
30minutes, up to 40°C, a range similar to human skin
temperature. Because of the temperature sensor for the
chamber was at the top of the chamber, the temperature
value on the chamber display was not suitable for comparing
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Figure 2: Manufactured PCBs for the wireless temperature-measuring device: (a) front view of the main board; (b) back view of the main
board; (c) sensor board.
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measured values from the proposed device. .erefore, a
K-type thermocouple sensor was attached near the sensor
hole of the manufactured wireless temperature-measuring
device and connected with a midi logger GL820
(GRAPHTEC, USA) for observing temperature variation in
the chamber. .e data measured by the wireless
temperature-measuring device were transmitted to a laptop
connected to the receiver. .e received temperature value
was simultaneously processed and displayed with the de-
veloped LabVIEW program. In addition, a wireless com-
munication performance test of the proposed device was

conducted for observing the data rate, communication rate,
and power consumption. A mixed-domain oscilloscope,
MDO4104C (Tektronix, USA), was connected to theMaster-
In-Slave-Out (MISO) port of the MCU to monitor the
wireless communication data rate. An experimental table
had a receiver that connected to a laptop and could bemoved
far away from the wireless temperature-measuring device to
find the maximum distance for wireless communication.
Also, the power consumption was evaluated by a digital
multimeter, Fluke 289 (Fluke, USA), connected to the power
line of the wireless temperature-measuring device.

Main board room

Battery room

Sensor board cover

Main PCB

Battery

Sensor PCB

(a)

On/off switch

(b)

Sensor hole

Band
guide
hole

(c)

Figure 3: Photos of the shell for the proposed wireless temperature-measuring device: (a) 3Dmodel of the shell structure; (b) top view of the
assembled wireless temperature-measuring device; (c) bottom view of the assembled device.
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Figure 4: Photos of the manufactured system in the performance test: (a) temperature measurement performance test in the temperature
and humidity chamber; (b) manufactured system in the in vivo experiment for measuring body temperature from the back of the body.
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3.2.2. In Vivo Experiment. Ten subjects (gender: male, age:
25± 1 years old) were invited to participate in the in vivo
experiment. Before the experiment began, the subjects were
required to stay in the rest state with a comfortable posture
to maintain a normal body temperature [13]. As Figure 4(b)
shows, the manufactured wireless temperature-measuring
device was attached on themiddle of the back under the neck
of the subject by Micropore Surgical Tape (3M, USA).
Meanwhile, an infrared thermometer, Fluke VT04 (Fluke,
USA) with a measurement range from −10°C to 250°C and
accuracy of ±2°C at 25°C was used to measure the tem-
perature of the surrounding skin for comparison with the
value measured by the proposed device. Ear temperature is
the most popular noninvasive approach to measure the core
body temperature. .erefore, ear temperature was measured
by an ear thermometer (Braun, Germany) for observing the
relationship between ear temperature and skin temperature.
.e experiment was conducted for 10minutes, and mea-
surement data were recorded every 30 seconds. .e tem-
perature and humidity for the experimental environment
were maintained at 25°C and 50%, respectively. A consumer
indoor thermometer MOG-HTC1 (B. S. Basic, Korea), with
temperature measurement range from −50°C∼70°C, accu-
racy of 0.1°C, and the error value of ±1°C was used to
monitor the environmental variation.

4. Results and Discussion

Experimental results for comparison of the manufactured
wireless temperature-measuring device with the highly
professional temperature-measuring device in the
temperature-measurement performance test are shown in
Figure 5. .e temperature value measured by the proposed
device was lower than the k-type sensor by 0.8°C at 25°C..e
gap of the two measured values closed gradually with the
increasing temperature in the chamber. At 35°C, the error
value was only approximately 0.1°C. .e measured tem-
perature of the manufactured device was a little bit higher
than the controlled temperature of the chamber, so it is
assumed that the position of the designed sensor was close to
the regulator elements of the power supply, and all the el-
ements were packaged in the designed shell, which means
the heat cannot be dissipated quickly.

Skin temperature measurement comparison results of
the proposed wireless temperature-measuring device and IR
thermometer for ten subjects in 10minutes are shown in
Figure 6(a). All of the subject results show that the tem-
perature measured by the proposed device was lower than
the IR thermometer by about 1°C for each subject. It was
assumed that the IR thermometer has ±2°C error value and
the position of the device is in front of the IR thermometer;
therefore, the IR thermometer measured both the skin
temperature and the proposed device’s temperature. Also, as
Figure 6(b) shows, the skin temperature was compared with
the ear temperature measured by the proposed device and
ear thermometer individually in the same condition for ten
subjects. .e ear temperatures for all of the subjects were
close to 36.5°C, which means every subject had normo-
thermia in these experiments. All of the experimental results

show that the ear temperature was higher than the skin
temperature by approximately 4°C. Other researchers such
as .omas et al., also reported these phenomena: such as a
9% variation between axillary skin temperature and rectal
temperature and 16% variance between thoracic skin and
rectal temperatures [14]. In this research, a 4°C error value
between the back skin temperature and ear temperature
means an approximately 11% variation, which is lower than
the 16% variance found in comparing thoracic skin tem-
peratures to rectal temperatures.

According to the in vivo experimental results, an algo-
rithm based on the curve-fitting method for estimating the
core body temperature by skin temperature was designed in
this research. .e algorithm was found with a linear model
and set as a quadratic formula with an interpolant, as
equation (1) shows. Each coefficient for the equation was set
with 95% confidence bounds. For evaluating the goodness of
fit, the sum of squares due to error (SSE), R-square, adjusted
R-square, and root mean square error (RMSE) values were
observed, and the values were 33.0874, 0.0212, 0.0117, and
0.3998, respectively. An example of using the developed
algorithm to estimate the core body temperature by the
measured skin temperature of one subject is shown in
Figure 7. As mentioned before, ear temperature is larger
than the skin temperature of about 4°C in the actual mea-
surement. .rough the developed algorithm, the measured
skin temperature was converted to the estimated core body
temperature that closely approximates the ear temperature.
In addition, the algorithm can compensate the initial value
occurring when the temperature sensor is in an initial status,
so the measured value is lower than the actual value. All of
the experimental results processed by the developed algo-
rithm to compare the core body temperature are shown in
Figure 8. As the results show, the mean value for the error
between ear temperature and estimated core body tem-
perature is about ±0.19°C and mean bias is 0.05± 0.14°C; this
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Figure 5: Comparison of the proposed manufactured wireless
temperature-measuring device and a highly professional device in
the temperature measurement performance test with a chamber
temperature controlled from 25 to 45°C.
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can be explained by the accuracy of the developed algorithm,
which is in the same range as the small core body tem-
perature changes in the 10 subjects (maximum decrease of
core body temperature of 0.4°C in subjects 6 and 8).
However, in this paper, only the ear temperature was
regarded as the reference value for the core body temper-
ature, and the in vivo test was evaluated in a limited envi-
ronment [16]. On the contrary, the wireless temperature-
measuring device has shown a good performance when
transmitting measuring data to the receiver in the operation
performance test. .e data transmission rate of the de-
veloped wireless communication method is about 600 kbps.
And the power consumption of the wireless sensing device

in operating was about 5.99mA, and the proposed device
can work without interruption about 40 hours:

CoreBodyTemp � 0.04615 × sin SkinTemp −pi − 0.0006727

× SkinTemp − 10 
2

+ 36.97.

(1)

5. Conclusion

In this research, a wireless health monitoring system for
measuring skin temperature from the back of the body to
estimate the core body temperature was developed. .e
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Figure 7: Using the developed algorithm to estimate core body temperature by skin temperature: (a) skin temperature vs. body temperature;
(b) estimated body temperature vs. core body temperature.
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Figure 6: In vivo experimental results for observing the relationship between skin temperature and ear temperature: (a) skin temperatures
were measured by the proposed device and IR thermometer for each subject; (b) comparison of the measured skin temperature and ear
temperature.
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system was manufactured with a highly accurate tempera-
ture sensor, low-power consumption MCU, and multi-
channel ISM band RF method. According to the
performance test results, the device performed well in
measuring temperatures in a temperature chamber. Also,
power consumption of the device during operation was
approximately 5.99mA, and the proposed device can work
without interruption for approximately 40 hours. .erefore,
the proposed device can be securely attached to the back of
the body in order to measure skin temperature accurately for
a long time. Experiment with 10 subjects in the rest status
showed the measured skin temperature is lower than the ear
temperature. .rough the developed algorithm, this gap was
compensated for, and the core body temperature that was
estimated by the skin temperature approximated the ear
temperature closely. However, in this paper, only the ear
temperature was regarded as the reference value for the core
temperature, and the in vivo test was evaluated in limited
environment. In future work, the esophageal temperature
will be considered as a gold standard for the core temper-
ature, and some protocols such as exercise and bathing will
be included for thermometer performance testing.
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