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The concept of the natural mate and the conjugate curves associated to a smooth curve in Euclidian 3-space were introduced
initially by Dashmukh and others. In this paper, we give some extra results that add more properties of the natural mate and
the conjugate curves associated with a smooth space curve in E3. The position vectors of the natural mate and the conjugate of
a given smooth curve are investigated. Also, using the position vector of the natural mate, the necessary and sufficient
condition for a smooth given curve to be a Bertrand curve is introduced. Moreover, a new characterization of a general helix
is introduced.

1. Introduction

The differential geometry of curves and surfaces is an
ancient topic in differential geometry, but it is still an active
area of research. This is because of its applications in several
fields such as computer graphics, computer vision, medical
imaging, physics, and aerospace. A helix plays a crucial role
in many applications in engineering and also, in DNA struc-
tures. In fact, a DNA molecule can be described by double
helix. Also, it has been observed that in a molecular model
of the DNA there are two side-by-side in opposing direction
helices linked by hydrogen bonds (cf. [1]). The rectifying
curves are used to analyze joint kinematics (cf. [2, 3]). The
Salkowski curves are useful in constructing closed curves
with constant curvature and continuous torsion such as
knotted curves (cf. [4]). The Salkowski curves are examples
of slant helice with constant curvatures.

In differential geometry, curves and their Frenet frames
play central roles for creating special surfaces (c.f [5–10]).
The Frenet frame associated with a regular curve in E3,
which is a moving frame along the curve, forms an ortho-
normal basis for the Euclidean space E3 at each point of
the given curve. This allows geometers to analyze a curve

and to study the position vector of the given curve and other
curves. The terminologies of natural mate and conjugate
associated with a smooth curve were introduced and studied
in [11]. Mainly, some relationships between a given curve
and its natural mates were investigated in [11] as well as
the necessary and sufficient conditions for the natural mate
associated with a given Frenet curve to be a spherical curve,
a helix, or a curve with a constant curvature. The most nat-
ural geometric object in differential geometry of curves in
Euclidian 3-space is a position vector. The position vector
is very important, owing to its applications in mathematics,
engineering, physics, and other natural sciences.

In this paper, we investigate the position vectors of the
natural mate and the conjugate of a given space curve using
the Frenet frame of the given curve as a basis for E3. The
position vectors of the natural mate and conjugate curves
will be useful for studying the surfaces generated by these
curves such as ruled and translation surfaces. In Section 2
of this paper, we review some basic concepts of space curves
which will be used in the rest of this study. In Section 3, we
study the position vectors of natural mate and conjugate of a
unit speed curve with nonvanishing curvature and torsion.
Using the position vector of the natural mate, we give the
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necessary and sufficient condition for a given curve with
nonvanishing curvature and torsion to be a Bertrand curve.
Also, a new characterization for a general helix is proven.

2. Preliminaries

In this section, we review some basic concepts of the differ-
ential geometry of curves in Euclidean 3-space, and for more
detail, we refer the reader to [2, 3, 11–16]. First, we start with
the definition of a smooth space curve. A parametrized curve
α in E3 is a map α : I ⟶ E3, where I is a real interval, given
by αðtÞ = ðα1ðtÞ, α2ðtÞ, α3ðtÞÞ such that α1ðtÞ, α2ðtÞ, and
α3ðtÞ are smooth functions on I. α is a regular curve if
α′ðtÞ ≠ 0 for all t ∈ I. The unit tangent vector, the unit
principal normal vector, and the unit binormal vector of
a regular curve α are defined by T = α′/kα′k, N = ðα′∧α″/k
α′∧α″kÞ∧ðα′/kα′kÞ, and B = α′∧α″/kα′∧α″k, respectively.
At any point of α, there are three planes spanned by the
vectors N , B, T , B, and T ,N , these planes are the normal
plane, the rectifying plane, and the osculating plane, respec-
tively. The curvature and the torsion of a regular curve α

are given by κ = kα′∧α″k/kα′k3 and τ = det ðα′, α″, α‴Þ/
kα′∧α″k2, respectively, and α is called a Frenet curve if κ
> 0 and τ ≠ 0. The Serret Frenet apparatus associated to α
is given by fκ, τ, T ,N , Bg.

If α′ðtÞ = 1 for all t ∈ I, then α is called a unit speed curve
and the Frenet- Serret equations are given by

T ′ = κN ,
N ′ = −κT + τB,
B′ = −τN:

8
>><

>>:

ð1Þ

In the rest of this section, we state definitions of some
special curves.

Definition 1. Let α : I ⟶ E3 be a smooth space curve. Then,
α is called a helix if its tangent makes a fixed angle with a
fixed direction.

Definition 2. Let α : I ⟶ E3 be a smooth space curve. Then,
α is called a slant helix if its principal normal makes a fixed
angle with a fixed direction.

Definition 3. Let α : I ⟶ E3 be a smooth space curve. Then,
α is called a rectifying curve if it lies in the rectifying plane at
each point.

It has been obtained by Chen in [3] that the distance
squared function of a rectifying curve is a quadratic polyno-
mial in its arc length.

Definition 4. Let α : I ⟶ E3 be a smooth space curve. Then,
α is called a spherical curve if it lies in a sphere.

For a spherical curve, it is obvious to obtain that its dis-
tance from the center of the sphere, which the curve lies on,

is equal to the radius of the sphere. This will play a role in
the proof of Theorem 10.

Definition 5. Let α : I ⟶ E3 be a smooth space curve. Then,
α is called a Salkowski curve if it has constant curvature and
nonconstant torsion.

Definition 6. Given a unit speed curve α with nonvanishing
curvature and torsion. The natural mate of α is defined by
β = Ð ðNÞds. If α has negative torsion, then its conjugate is
given by �α =

Ð ðBÞds.

3. Natural and Conjugate Mates
Associated with a Smooth Space Curve

In this section, we give the position vectors of natural and
conjugate curves. Using position vectors of the mentioned
curves, we give more brand results which carry interesting
relationship between a given smooth curve and its associated
natural and conjugate curves.

Theorem 7. Let α : I ⟶ E3 be a unit speed Frenet curve
with Serret-Frenet apparatus fκ, τ, T ,N , Bg. The natural
mate β of α is given by

β =
ð

κhð Þds
� �

T + hN −
ð

τhð Þds
� �

B, ð2Þ

where h = dd′, d is the distance function of β, and d′ is the
derivative of d with respect to s.

Proof. Since the unit tangent of β is given by Tβ =N , we
have

β =
ð

Tβ

À Á
ds =

ð

Nð Þds = gT + hN + lB: ð3Þ

Now, differentiating equation (3), we get

N = g′ − κh
� �

T + h′ + κg − τl
� �

N + l′ + τh
� �

B: ð4Þ

Thus, from equation (4), we have the following equations:

g′ − κh = 0,
h′ + κg − τl = 1,
l′ + τh = 0:

8
>><

>>:

ð5Þ

Therefore, we have

g =
ð

κhð Þds,

l = −
ð

τhð Þds:

8
>><

>>:

ð6Þ
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Our task now is to find h. The distance squared function,
d2, of β is given by

d2 = g2 + h2 + l2: ð7Þ

Now, differentiating equation (7), we get

dd′ = gg′ + hh′ + ll′: ð8Þ

Hence, using equations (5) and (6) in equation (8), we
obtain h = dd′ which completes the proof.

Now, as an application of Theorem 7, we give a criterion
for a Bertrand curve with a neat proof. First, we state the fol-
lowing definition and a well-known result regarding the
Bertrand curve.

Definition 8. A curve γ : I ⟶ E3 is called a Bertrand curve if
there is another curve �γ, different from γ, and a bijection η
between γ and �γ such that γ and �γ have the same principal
normal at each pair of corresponding points under η.

The following theorem is a well-know result, and it can
be found in many books of elementary differential geometry
of curves and surfaces.

Theorem 9. A curve γ : I ⟶ E3 with κ ≠ 0 and τ ≠ 0 is
called a Bertrand curve if and only if it satisfies the condition

aκ + bτ = 1, ð9Þ

where a and b are constants.

Now, we give a criterion for a Bertrand curve in term of
natural mate.

Theorem 10. Let α : I ⟶ E3 be a unit speed curve with non-
zero curvature and nonzero torsion and Serret-Frenet appa-
ratus fκ, τ, T ,N , Bg and β be its natural mate. Then, the
following assertions are equivalent:

(1) α is a Bertrand curve

(2) β is a spherical curve

(3) β lies in the rectifying plane of α

Proof. Let α : I ⟶ E3 be a unit speed curve with κ ≠ 0 and
τ ≠ 0. Then, from Theorem 7, the naturel mate of α is given by

β =
ð

κhð Þds
� �

T + hN −
ð

τhð Þds
� �

B, ð10Þ

where h = dd′ and d is the distance function of β. Now, β is a
spherical curve if and only if d is a positive nonzero constant if
and only if

β = c1T − c2B, ð11Þ

where c1 and c2 are constants (i.e., β lies in the rectifying plane
of α), if and only if

N = c1κ + c2τð ÞN , ð12Þ

if and only if c1κ + c2τ = 1 if and only if α is a Bertrand curve.

Remark 11. Theorem 10 gives a method to create a spherical
curve using a Bertrand curve. In [9], a method to create a
Bertrand curve using a spherical curve with Sabban frame
was introduced. Also, in [17], some methods to create spe-
cial curves such as helix, slant helix, Bertrand curves, and
Mannheim curves were introduced.

Corollary 12. If α is a Salkowski curve, then its natural mate
is given by

β = 1
κ
T: ð13Þ

In what follows, we give an example of the natural mate
of a Salkowski curve, and for more detail in Salkowski curve,
we refer the reader to [4].

Example 13. Let α : I ⟶ E3, be a Salkowski curve given by
α = ðα1, α2, α2Þ where,

α1 =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +m2

p
�

−
1 − n
4 + 8m sin 1 + 2tð Þ

−
1 + n
4 − 8m sin 1 − 2tð Þ − 1

2 sin tð Þ
�

,

α2 =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +m2

p
� 1 − n
4 + 8m cos 1 + 2tð Þ

+ 1 + n
4 − 8m cos 1 − 2tð Þ + 1

2 cos tð Þ
�

,

α3 =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +m2

p 1
4m cos 2ntð Þ

� �

,

ð14Þ

where n =m/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +m2

p
and m ≠ 0, ±1/

ffiffiffi
3

p
. This curve was

investigated by Salkowski in 1909.
This curve has κ = 1 and torsion τ = −tan ðmt/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 1

p Þ.
The unit tangent of α is given by T = ðT1, T2, T3Þ where

T1 = − cos tð Þ cos ntð Þ − n sin tð Þ sin ntð Þ,
T2 = n cos tð Þ sin ntð Þ − cos ntð Þ sin tð Þ,
T3 =

n
m

sin ntð Þ:
ð15Þ

Now, using Theorem 10, the natural mate β of α is given
by β = T . Now, we draw pictures for α and its natural mate
when m = 1/23 as shown in Figure 1. In this, Figure 1(a) is
the curve α and (b) is the natural mate of α. It can be
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observed from (b) that the natural mate of α lies on a unit
sphere.

It can be easily observed from Theorem 10 that if α is a
circular helix or a Salkowski curve, then its natural mate
always lies on the rectifying planes of α.

In the coming theorem, we give a new criterion for a
general helix.

Theorem 14. Let α : I ⟶ E3 be a unit speed curve with non-
vanishing curvature and torsion. Then, α is a general helix if
and only if there exists a fixed direction orthogonal to its nat-
ural mate.

Proof. Let α : I ⟶ E3 be a unit speed curve with nonvanish-
ing curvature and torsion, and β be its natural mate. First,
assume that α is a general helix, then there exists a fixed
direction makes a constant angle with its tangent. Let U be
a unit constant vector lies on that direction, then T ·U =
cos θ = constant, and B ·U = sin θ = constant. Now, using
Theorem 7, we have

β ·U = cos θ
ð

κhð Þds − sin θ
ð

τhð Þds: ð16Þ

Since α is a helix, then cos θ
Ð
κhds − sin θ

Ð ðτhÞds = 0.
Therefore, β ·U = 0, which means that U is orthogonal to β.

Conversely, assume that there exists a fixed direction
orthogonal to β. Let U be a unit constant vector lies on that
direction, then β ·U = 0; therefore, N ·U = 0 which implies
that T ·U = constant, which means that α is a general helix.

Remark 15. In [7, 11], it has been proved that a smooth
curve with nonvanishing curvature and torsion is a general
helix if and only if its natural mate is a plane curve. Using
this fact and the result in Theorem 14, it can be concluded
that the axis of a helix is always normal to the plane contain-
ing its natural mate.

Now, we give the position vector for conjugate.

Theorem 16. Let α : I ⟶ E3 be a Frenet curve with Serret-
Frenet apparatus fκ, τ, T ,N , Bg with negative torsion. The
conjugate mate �α of α is given by

�α =
ð

κh1ð Þds
� �

T + h1N + s−
ð

τh1ð Þds
� �

B, ð17Þ

where h1 = ð1/τÞð1 − d1′
2 − d1d1″Þ and d1 is the distance func-

tion of �α.

Proof. Since the unit tangent of �α is given by T �α = B, we have

�α =
ð

T �αð Þds =
ð

Bð Þds = g1T + h1N + l1B: ð18Þ

Now, differentiating equation (18) w.r.t the arc length,
we get

B = g1′ − κh1
� �

T + h1′ + κg1 − τl1
� �

N + l1′ + τh1
� �

B: ð19Þ

0.8 1

0.8

0.6

0.6

0.4

0.4
0.2

–0.2 0
0.5

0
–0.5

–1

4

2

0

–2

–4

(a) The curve α

1

0.5

–0.5

0

–1
–0.5

0
0.5

1 1

0.5

0
–0.5

–1

(b) The blue curve is β lying on the unit sphere centered at the origin

Figure 1: The curve α and its natural mate β when m = 1/23.
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Thus, from equation (19), we have the following equations:

g1′ − κh1 = 0,
h1′ + κg1 − τl1 = 0,
l1′ + τh1 = 1:

8
>><

>>:

ð20Þ

Therefore, we have

g1 =
ð

κh1ð Þds,

l1 = s−
ð

τh1ð Þds:

8
>><

>>:

ð21Þ

Our task now is to find h1. The distance squared function,
d21, of �α is given by

d21 = g21 + h21 + l21: ð22Þ

Now, differentiating equation (22), we get

dd′ = g1g1′ + h1h1′ + l1l1′: ð23Þ

Hence, using equations (20) and (21) in equation (23), we

obtain dd′ = s −
Ð ðτh1Þ which implies that h1 = ð1/τÞð1 −

d1′
2 − d1d1″Þ which completes the proof.

From Theorem 16, we have the following corollary.

Corollary 17. Let α : I ⟶ E3 be a unit speed curve with
Serret-Frenet apparatus fκ, τ, T ,N , Bg with negative torsion.
Then,

(1) If �α is a spherical curve, then h1 = 1/τ
(2) If �α is a rectifying curve, then h1 = 0

Proof. If �α is a spherical curve, then its distance function d is
a constant. Thus, h1 = 1/τ. If �α is a rectifying curve, then it
has been proved in [3] that its distance function d1 satisfies
d21ðsÞ = s2 + c1s + c2 for some constants c1 and c2. Therefore,
h1 = 0.

4. Conclusion

The position vector of a curve in the Euclidian 3-space is the
most natural geometric object. It is important in many appli-
cations in several areas such as mathematics, engineering,
and natural sciences. Throughout this paper, we study the
position vectors of the natural and conjugate mates associ-
ated with a given smooth space curve in Euclidian 3-space.
The position vectors of the natural and the conjugate mates
associated with a given smooth curve are very useful for
studying these curves. Also, the position vector of the natural
mate associated to a given curve is used to prove a new cri-
terion for a helix and Bertrand curves. Moreover, it can be
easy to study the surfaces generated by the natural and con-

jugate mates associated with a smooth curve using their
position vectors.
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The aim of this paper is to study the warped product pointwise semislant submanifolds in the para-cosymplectic manifold with
the semi-Riemannian metric. For which, firstly we provide the more generalized definition of pointwise slant submanifolds and
related characterization results followed by the definition of pointwise slant distributions and pointwise semislant
submanifolds. We also derive some results for different foliations on distribution, and lastly, we defined pointwise semislant
warped product submanifold, given existence and nonexistence results, basic lemmas, theorems, and optimal inequalities for
the ambient manifold.

1. Introduction

To generalize the Riemannian product manifolds, Bishop
and O’Neil [1] introduced the concept of warped product
for the manifolds with negative curvature and showed the
surface of revolution as the simplest example of warped
product manifold. The authors of [2–5] studied the warped
product submanifolds for different manifolds. Warped prod-
uct plays the beneficial role in encoding the universe, and the
inequalities related to the second fundamental form with the
warping function cover the wide as well as important section
of it. These were firstly formulated by Chen in [6, 7].
Warped product for lightlike manifolds for the first time
was studied in [8] and for semi-Riemannian manifold under
the name PR-warped product on para-Kähler manifold in
[9], where he derived the aforesaid inequalities for the case
of semi-Riemannian metric. From there, the study on
warped product escalates among geometers with also in view
that the same has so many applications in the physics mainly
in general relativity and black hole theory [10].

Beside this, the name slant submanifolds were intro-
duced as the generalized version of holomorphic and totally
real cases of submanifolds by Chen in [11]. Further, the
theory extended to various manifolds with Riemannian as
well as semi-Riemannian metric by many geometers. Later,
in 2017, the authors in [12] defined the slant submanifolds
irrespective of the writinger angle for the semi-Riemannian
manifold and formulated three cases which are separately
explained and achieved some effective results with bunch
of examples. They defined it in terms of quotient gðtX, tXÞ/
gðJX, JXÞ which is constant for the case of slant submani-
folds for every vector field X (spacelike or timelike) on the
submanifoldM of manifold ð �M, J , gÞ. As slant and semislant
submanifolds generalized to pointwise slant submanifolds
(former called quasi slant) by Etayo in [13], Chen and Garay
studied the same for the almost Hermitian case [14]. Sahin
[15] defined pointwise semislant notion of submanifolds
with an example. Recently, there are many interesting papers
related with submanifold theory, singularity theory, classical
differential geometry, etc. The readers can find more details
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about those techniques and theories in a series of papers
[16–29]. Moreover, interdisciplinary research is one of the
hottest trends in science; in the future work, we intend to
apply and combine the techniques and results presented in
[16–25] alongside with the methods in this paper to obtain
more new results.

The paper is structured as follows: Section 2 contains the
preliminary knowledge about ambient manifold, submani-
fold, and warped product with some important lemmas.
Section 3 defines the pointwise slant submanifold, character-
ization lemma, and an example. Section 4 and Section 5 deal
with the study of the pointwise slant distributions and point-
wise semislant submanifolds, respectively. Section 6 includes
the definition of warped product, some nonexistence results,
lemmas, and theorems provided with an example. Finally,
inequalities for the same submanifold are given in Section 7.

2. Preliminaries

Definition 1. A ð2m + 1Þ-dimensional smooth manifold M̂
admits ðφ, ξ, η, gÞ structure with φ as a ð1, 1Þ-tensor field,
ξ as a characteristic vector field, η as a globally differen-
tial 1-form, and g as a semi-Riemannian metric named as
an almost paracontact semi-Riemannian manifold ðM̂, φ,
ξ, η, gÞ which satisfies

φ2 = I − η ⊗ ξ, η ξð Þ = 1, ð1Þ

g ·, ·ð Þ = −g φ · , φ ·ð Þ + η ·ð Þη ·ð Þ, ð2Þ
where I represents an identity transformation of tangent
space of M̂ and ⊗ represents a tensor product. A struc-
ture compatible semi-Riemannian metric “g” relates to η
as [30].

g ·, ξð Þ = η ·ð Þ: ð3Þ

Equations (1) and (2) easily ensure the following:

rank φð Þ = 2m,

φξ = 0,

η ∘ ϕ = 0,
ð4Þ

g φ · , ·ð Þ + g ·, φ ·ð Þ = 0: ð5Þ
Let Φ be the fundamental 2-form on M̂; then,

Φ ·, ·ð Þ = dη ·, ·ð Þ = g ·, φ ·ð Þ: ð6Þ

Basis. An almost paracontact semi-Riemannian manifold
always exists with a φ − basisfEi, Eå

i , ξg, a certain type of local
pseudoorthonormal basis which includes Ei, ξ as space-like,
and Eå

i = φEi as timelike vector fields.

Definition 2 (see [31]). An almost paracontact semi-
Riemannian manifold M̂ is termed as para-cosymplectic if

the forms η and Φ are parallel with respect to the Levi-
Civita connection b∇ by

b∇η = 0,

b∇Φ = 0:
ð7Þ

Lemma 3. Let M̂ be a para-cosymplectic manifold with struc-
ture vector field ξ ∈ ΓðTM̂Þ; then,

b∇Xξ = 0, ð8Þ

∀X ∈ ΓðTM̂Þ:

Proof. Directly follow with the help of Equations (4) and (7)
and covariant differentiation.

2.1. Submanifold. Let M be an isometrically immersed
submanifold of a para-cosymplectic manifold M̂ with an
induced nondegenerate metric g (denoted metric by same
symbol as on M̂), denoting ∇ as Levi-Civita connection
and h as the second fundamental form on M. Thus, the
Gauss-Weingarten formulas are

b∇XY = ∇XY + h X, Yð Þ, ð9Þ

b∇Xζ = −AζX + ∇⊥
Xζ, ð10Þ

for X, Y ∈ ΓðTMÞ (tangent bundle), and ζ ∈ ΓðTM⊥Þ (nor-
mal bundle); ∇⊥ denotes normal connection, and Aζ denotes
shape operator associated with the normal section on M.
The metric relation of Aζ and h is given as

g AζX, Y
À Á

= g h X, Yð Þ, ζð Þ: ð11Þ

Every X ∈ ΓðTMÞ is split as

φX = tX + nX: ð12Þ

Similarly, every ζ ∈ ΓðTM⊥Þ is split as

φζ = t⊥ζ + n⊥ζ, ð13Þ

where tX and t⊥ζ (nX and n⊥ζ) are the tangential parts (nor-
mal parts) of φX and φζ, respectively. Based on Equation
(12), the submanifold M classifies as anti-invariant if t = 0
or invariant if n = 0 on M. After using Equation (12) in
Equation (5), we get

g X, tYð Þ = −g tX, Yð Þ: ð14Þ

Now, from Lemma 3 and Equation (11), we have our
next result.
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Lemma 4. If M is a submanifold immersed in a para-
cosymplectic manifold M̂ with structure vector field ξ ∈
ΓðTMÞ, then

∇Xξ = ∇ξX = ∇ξξ = 0,

h X, ξð Þ = 0,

Aζξ = 0, AζX⊥ξ,

ð15Þ

for every X ∈ ΓðTMÞ and ζ ∈ ΓðTM⊥Þ.

Next, let us take two semi-Riemannian manifolds ðMB,
g1Þ and ðMF , g2Þ and a positive smooth function f on MB.
Taking MB ×MF as the product manifold along with canon-
ical projections,

σ1 : MB ×MF ⟶MB,

σ2 : MB ×MF ⟶MF ,
ð16Þ

such that σ1ðpB, pFÞ = pB and σ2ðpB, pFÞ = pF for any point
p = ðpB, pFÞ ∈MB ×MF . Then, the product manifold MW =
MB × f MF is called warped product if metric g called the
warped metric on MW can be formulated as

g X, Yð Þ = g1 σ1 ∗ Xð Þ, σ1 ∗ Yð Þð Þ
+ f ∘ σ1ð Þ2g2 σ2 ∗ Xð Þ, σ2 ∗ Yð Þð Þ:

ð17Þ

For every X, Y ∈ ΓðTMWÞ, “∗” represents the derivation
map, and we call f as a warping function. Abstractly, the
metric can be written as

g = g1 + f 2g2, ð18Þ

where the warped product MW =MB × f MF is split into a
product of the base space MB and the fiber space MF , except
that the fiber MF is warped [1, 32].

Proposition 5 (see [32]). The warped product submanifold
MW =MB × f MF satisfies

(i) ∇XY = ΓðTMBÞ
(ii) ∇XU = ∇UX = ðXf /f ÞU
(iii) ∇UV = ∇V′ U = ðgðU , VÞ/f Þ∇f

for X, Y ∈ ΓðTMBÞ and U , V ∈ ΓðTMFÞ, where ∇ is the Levi-
Civita connection on MW , ∇′ is the connection on MF , and
∇f is the gradient of f defined as gð∇f , XÞ = Xf .

Further, let fe1,⋯,eK , eK+1,⋯,e2m+1g be a local orthonor-
mal basis on TM̂ among which fe1,⋯,eK+1g are tangent to
M and feK+2,⋯,e2m+1g are normal to M. If we set

hkxy = g h ex, ey
À Á

, ek
À Á

,

x, y ∈ e1,⋯,eK+1f g,
k ∈ eK+2,⋯,e2m+1f g,

ð19Þ

then we get

h ex, ey
À Á

= 〠
2m+1

k=K+1
εkh

k
xyer , εk = g ek, ekð Þ, ð20Þ

where hkxy are the coefficients of h. Accordingly, squared
norm of the second fundamental form h is defined as

hk k2 = 〠
K+1

x,y=1
εxεyg h ex , ey

À Á
, h ex, ey
À ÁÀ Á

: ð21Þ

3. Pointwise Slant Submanifolds

The semi-Riemannian manifold has difficulty of defining the
Writinger angle as the vector fields may be timelike. Thus,
the next definition is in the view of [12], generalizing the slant
submanifold in our ambient semi-Riemannian manifold.

Definition 6. An isometrically immersed submanifold M of
an almost paracontact manifold M̂ is termed as pointwise
slant if at every point p ∈M, the quotient gðtX, tXÞ/gðφX,
φXÞ = λðθÞ for θ ≥ 0 is independent of the choice of any
nonzero spacelike or timelike vector X ∈Mp, where Mp =
fX ∈ TpM : gðX, ξÞ = 0g. For slant angle θ, we say λðθÞ a
slant coefficient.

Remark 7. The value of λðθÞ can be

(i) λðθÞ = cosh2ðθÞ ∈ ½1,∞Þ for jtXj/jφXj > 1; tX is
timelike or spacelike of each spacelike or timelike
vector field X adding θ > 0

(ii) λðθÞ = cos2ðθÞ ∈ ½0, 1� for jtXj/jφXj < 1; tX is time-
like or spacelike of each spacelike or timelike vector
field X adding 0 ≤ θ ≤ 2π

(iii) λðθÞ = −sinh2ðθÞ ∈ ð−∞,0� for tX is timelike or
spacelike for any timelike or spacelike vector field
X adding θ > 0

Remark 8. The special cases are as follows:

(i) The constant value of λðθÞ throughoutM impliesM
is slant submanifold [11, 12]

(ii) The point p ∈M is called a complex point if t ≡ φ,
which means that the slant coefficient λðθÞ is equal
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to 1. The submanifold with every point as complex
point is complex or holomorphic submanifold

(iii) The point p ∈M is called a totally real point if t ≡ 0,
which means that the slant coefficient λðθÞ is equal
to 0. The submanifold with every point as totally
real point is totally real submanifold

Furthermore, let us take the union of allMp’s and denot-
ing the same by

T∗M =
[
p∈M

X ∈Mp

��g X, ξð Þ = 0
È É

: ð22Þ

Lemma 9. The submanifold M isometrically immersed in
para-cosymplectic manifold M̂ is a pointwise slant subma-
nifold if and only if on every point p ∈M; there exists
λ ∈ ð−∞,∞Þ for some θ ≥ 0 such that t2X = λðθÞX for
each spacelike (or timelike) vector field X ∈Mp.

Proof. For each point p of a pointwise slant submanifold M,
the definition (22) follow as

g tX, tXð Þ = λ θð Þg φX, φXð Þ, ð23Þ

for X ∈ TpM. With the use of Equations (5) and (14) and the
condition that X ∈ TpM in Equation (23), we get the desired
result.

Proceeding further with some results which are not hard
to prove, any pointwise slant submanifold M satisfies

g tX, tYð Þ = λ θð Þg φX, φYð Þ = −λ θð Þg X, Yð Þ,
g nX, nYð Þ = 1 − λ θð Þð Þg φX, φYð Þ = − 1 − λ θð Þð Þg X, Yð Þ,

ð24Þ

for X, Y ∈ T∗M.

Proposition 10. The submanifold M of a para-cosymplectic
manifold M̂ is pointwise slant submanifold if and only if

(i) t⊥nX = ð1 − λðθÞÞX and n tX = −n⊥nX for any space-
like (or timelike) vector field X ∈ ΓðTMÞ

(ii) ðn⊥Þ2ζ = λðθÞζ for nonlightlike normal vector field ζ,
where λðθÞ is the slant coefficient of M

Proof. Assume M as a pointwise slant submanifold.

(i) Then for every X ∈ T∗M, φ2X = X. On other way,

φ2X = t2X + n tX + t⊥ nX + n⊥ nX: ð25Þ

Equating tangential and normal parts and using
Lemma 9, we can attain the result

(ii) Since ζ ∈ ΓðTM⊥Þ, thus there exists X ∈ ΓðT∗MÞ as
M is pointwise slant submanifold such that nX = ζ.

Now, ðn′Þ2ζ = n⊥ n⊥ nX = −n⊥ n tX = n t2X = λðθÞζ.
The converse can be easily derived using same
equations

Theorem 11 (see [33]). A totally geodesic and connected
pointwise slant submanifold M of a para-cosymplectic mani-
fold M̂ is a slant submanifold.

4. Pointwise Slant Distributions

Analogous to [34], we generalize slant distributions by defin-
ing pointwise slant distributions in M̂. Furthermore, we
study some basic characterizations for the distributions on
our ambient manifold.

Definition 12. A pointwise slant distribution D on M is a
differentiable distribution for which the quotient gðtDX,
tDXÞ/gðφX, φXÞ = λDðθÞ is independent of the choice of
any spacelike or timelike vector field X ∈Dp. Here,

(i) Dp is the distribution at point p ∈M

(ii) tDX is the projection of φX on the distribution D

(iii) λDðθÞ is the slant coefficient corresponding to the
distribution D on M for θ ≥ 0, and the value of
λDðθÞ may be cos h2θ, cos2θ, or sin h2θ

Remark 13.

(1) A pointwise slant distribution D is invariant if
tDX ≡ φX with λDðθÞ = 1 or anti-invariant for
tDX ≡ 0 with λDðθÞ = 0. Other than these two cases,
we call the distribution to be proper pointwise slant
distribution [12]

(2) The distribution D on M is as follows [9, 31]:

(i) totally geodesic: if hðX, YÞ = 0
(ii) involutive: if ½X, Y � ∈D
for every X, Y ∈D.

Corollary 14. The distribution D on the submanifold M is
pointwise slant distribution if and only if there exists λDðθÞ
for θ ≥ 0 such that ðtDÞ2X = λDðθÞX for any nonlightlike vec-
tor field X ∈Dp ⊂ TpM.

Proof. The result follows similar to Lemma 9.

5. Pointwise Semislant Submanifold

Definition 15. A submanifold M of a para-cosymplectic M̂ is
named as pointwise semislant submanifold if the set of
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complementary orthogonal distributions fDT,Dλg exists
on M and fulfills the listed conditions:

(i) TM =DT ⊕Dλ

(ii) DT is φ-invariant distribution, i.e., DT ⊆DT

(iii) Dλ is a pointwise slant distribution having λðθÞ as a
slant coefficient for θ ≥ 0

Remark 16. Further, submanifold M is

(i) proper pointwise semislant when DT ≠ 0,Dλ ≠ f0g
with nonconstant λðθÞ

(ii) proper slant submanifold when DT = f0g and
Dλ ≠ f0g with λðθÞ globally constant for θ [35]

(iii) proper semi-invariant when DT ≠ f0g and Dλ ≠
f0g such that tX ≡ 0 for any X ∈ ΓðDλÞ [12]

(iv) invariant submanifold when Dλ = f0g [35]

(v) anti-invariant submanifold when DT = f0g and
tX ≡ 0 for every X ∈ ΓðDλÞ [35]

Remark 17. The decomposition of the tangent space can be
expressed in two ways:

(i) If ξ ∈ ΓðTMÞ, the TM = hξi ⊕DT
′ ⊕Dλ

(ii) If ξ ∈ ΓðTM⊥Þ, the TM =DT
′ ⊕Dλ. Here, DT

′ =
fX ∈DT : gðX, ξÞ = 0g ⊆DT. Thus, we have either
DT =DT

′ or DT = hξi ⊕DT
′ [4]

Denote P T and P λ as the projections, respectively, on the
distributions DT and Dλ. Then, any X ∈ ΓðTMÞ is split as

X =P TX +P λX: ð26Þ

Operating φ, using Equation (12) and the case distribu-
tion DT which is φ-invariant on the previous equation, we
concluded that

tX = tP TX + tP λX ∈ Γ TMð Þ, nX = nP λX ∈ Γ TM⊥À Á
:

ð27Þ

As Dλ is pointwise slant distribution, by the conse-
quences of Corollary 14, we obtain that

t2X = λ θð ÞX, ð28Þ

for X ∈ ΓðDλÞ with λðθÞ as the slant coefficient. Clearly, for
any point p ∈M, if ξ ∈ TpM, then

φX = tP T
′X + tP λX + nP λX, ð29Þ

where P T
′ is the projection on the distribution DT

′. But
this does not affect our result as ξ disappears when φ oper-
ates on Z.

However, the normal bundle denoted as TM⊥ may be
written as

TM⊥ = nDλ ⊕ ν, ð30Þ

where ν represents the subspace of normal bundle that is
invariant under φ.

Lemma 18 (see [31]). The shape operator A of a proper
pointwise semislant submanifold M of para-cosymplectic
manifold M̂ ensures the listed conditions:

g φAφUS, X
À Á

= g ∇SU , Xð Þ, ð31Þ

AφUV = AφVU , ð32Þ

AζX = φAφζX, ð33Þ

g AζX,U
À Á

= −g AφζφX,U
À Á

, ð34Þ
for S ∈ ΓðTMÞ, X ∈ ΓðTDTÞ, U ,V ∈ ΓðTDλÞ, and ζ ∈
ΓðTM⊥Þ.

Both when ξ is normal or tangent to M, the integrability
and geodesic conditions brought out to be same after calcu-
lations for both the distributions, thus denoting them as
common DT.

Lemma 19. If M is a proper pointwise semislant submani-
fold of para-cosymplectic manifold M̂, for ξ ∈ ΓðTMÞ or
ξ ∈ ΓðTM⊥Þ, the invariant distribution DT on M is

(i) integrable if and only if hðtX, YÞ = hðX, tYÞ
(ii) totally geodesic if and only if An tUY , = AnUtY

for X, Y ∈ ΓðDTÞ and U ∈ ΓðDλÞ.

Proof. Equation (2) expands as

g X, Y½ �,Uð Þ = −g φ b∇XY − b∇YX
� �

, φU
� �

, ð35Þ

for every nonzero vector fields X, Y ∈ ΓðDTÞ andU ∈ ΓðDλÞ.
Using Equation (12) for the φU in Equation (35) and
followed by using Equations (5), (7), and (9) and Lemma 9,
we arrive at

1 − λ θð Þð Þg X, Y½ �,Uð Þ = g h X, tYð Þ − h Y , tXð Þ, nUð Þ: ð36Þ

Result (i) is clear using remark (28) as λðθÞ is noncon-
stant in Equation (36). Again, from Gauss formula and
Equation (2),

g ∇XY ,Uð Þ = g b∇XY ,U
� �

= −g φb∇XY , φU
� �

: ð37Þ
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Employing Equations (7), (9), (11), (12), and (28) and
Remark 16 in Equation (37), result (ii) follows.

Lemma 20. If M is a proper pointwise semislant submanifold
of para-cosymplectic manifold M̂, for ξ ∈ ΓðTMÞ or ξ ∈
ΓðTM⊥Þ, the pointwise slant distribution Dλ on M is

(i) involutive if and only if

g AnVU − AnUV , tXð Þ = g An tUV − An tVU , Xð Þ
ð38Þ

(ii) totally geodesic if and only if

g AnVtX,Uð Þ = g An tVX,Uð Þ ð39Þ

for X ∈ ΓðDTÞ and U ,V ∈ ΓðDλÞ.

Proof. Equation (2) implies

g U , V½ �, Xð Þ = −g φ U , V½ �, φXð Þ + η U ,V½ �ð Þη Xð Þ, ð40Þ

for every nonzero vector fields X ∈ ΓðDTÞ and U , V ∈
ΓðDλÞ. Solving separately the term fgðφ½U , V �, φXÞg using
Equations (5), (7), (10), (12), and (28), we receive

g φ U , V½ �, φXð Þ = λ θð Þg U , V½ �, Xð Þ
+ g λ′ θð ÞV θð ÞU − λ′ θð ÞU θð ÞV , X

� �
− g AnVU − AnUV , φXð Þ
+ g An tVU − An tUV , Xð Þ,

ð41Þ

where λ′ðθÞ is the first derivative of λðθÞ. Surely, U , V are
orthogonal to X after using this fact in Equation (41), and
substituting in Equation (40), we get

1 − λ θð Þð Þg U , V½ �, Xð Þ = g −An tVU + An tUV , Xð Þ
+ g AnVU − AnUV , tXð Þ
+ η U , V½ �ð Þη Xð Þ:

ð42Þ

For ξ ∈ ΓðTMÞ, one can replace X by ξ in Equation (42),
and consequently, we get

−λ θð Þg U ,V½ �, ξð Þ = g h U , ξð Þ, n tVð Þ − g h V , ξð Þ, n tUð Þ:
ð43Þ

Using Lemma 4 in Equation (43) and for reason that
λðθÞ a nonconstant, we get

η U , V½ �ð Þ = 0: ð44Þ

Therefore, in Equation (42) using Equation (44) along
with the facts that M is proper, we arrived at the desired
result (i).

Further, using Gauss formula and employing Equations
(2), (7), (9), (11), (12), and (28) give

g ∇UV , Xð Þ = λ θð Þg ∇XY ,Uð Þ + g λ′ θð ÞU θð ÞV , X
� �

+ g An tVX,Uð Þ − g AnVtX,Uð Þη b∇UV
� �

η Xð Þ:
ð45Þ

Since ξ ∈ ΓðTMÞ, we can replace X by ξ in Equation (45),
and consequently, we get

1 − λ θð Þð Þη ∇VUð Þ = −g An tUξ, Vð Þ + η ∇VUð Þ,
−λ θð Þð Þη ∇VUð Þ = −g An tUξ, Vð Þ:

ð46Þ

Using Lemma 4 in above expression, we get

η ∇VUð Þ = η b∇VU
� �

= 0: ð47Þ

Hence, Equation (45) implies that

1 − λ θð Þð Þ ∇UV , Xð Þ = g An tVX,Uð Þ − g AnVtX,Uð Þ: ð48Þ

Thus, from (48) and M as proper, X, Y ,U as nonnull
vector fields, the proof of the (ii) directly follows.

6. Pointwise Semislant Warped
Product Submanifold

Definition 21. A pointwise semislant warped product subma-
nifold M of a para-cosymplectic manifold M̂ is a warped
product of an invariant submanifoldMT and a proper point-
wise slant submanifold Mλ either in the form MT × f Mλ or
Mλ × f MT, where f is a positive smooth function taken on
first submanifold in the product and slant coefficient of Mλ
is λðθÞ. A trivial product is the case of such submanifold for
which warping function f is constant.

Proposition 22 (see [33]). A nontrivial pointwise semislant
warped product submanifold M of the form Mλ × f MT

with ξ ∈ ΓðTM⊥Þ does not exist on a para-cosymplectic
manifold M̂.

Proposition 23 (see [33]). A nontrivial pointwise semislant
warped product submanifold M of the form Mλ × f MT

with ξ ∈ ΓðTMÞ does not exist on a para-cosymplectic man-
ifold M̂.

Proposition 24. A nontrivial pointwise semislant warped
product submanifold M of the form MT × f Mλ with ξ ∈
ΓðTMλÞ does not exist on a para-cosymplectic manifold M̂.

Proof. Directly follow from Lemma 4 and Proposition 5.
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Lemma 25. For a nontrivial pointwise semislant warped
product submanifold M =MT × f Mλ of a para-cosymplectic

manifold M̂,

g h X,Uð Þ, ntUð Þ − g h X, tUð Þ, nUð Þ = 0, ð49Þ

g h X, tUð Þ, nUð Þ = λ θð Þ X ln fð Þg U ,Uð Þ, ð50Þ
∀X ∈ ΓðDTÞ and U ∈ ΓðDλÞ.

Proof.

(1) Since gðhðX,UÞ, ntUÞ = gðb∇XU , ntUÞ for X ∈
ΓðTMTÞ and U ∈ ΓðMλÞ, on right side, using Equa-
tions (5), (7), and (12), Proposition 5, and Lemma
9, we have

g h X,Uð Þ, ntUð Þ = − X ln fð Þg tU , tUð Þ
− g b∇XnU , tU

� �
− λ θð Þ X ln fð Þg U ,Uð Þ:

ð51Þ

Equations (10), (11), and (14) and Lemma 9 further
help to achieve (49)

(2) As gðhðX, tUÞ, nUÞ = gðb∇XtU , nUÞ, next substitut-
ing nU = φU − tU applying Equations (5) and (7),
Proposition 5, and Lemma 9 and the facts that MT

is invariant, we get (50)

Proposition 26. If M =MT × f Mλ is a nontrivial pointwise
semislant warped product submanifold of a para-cosymplectic
manifold M̂, then

1 − λ θð Þð Þg b∇XU , Y
� �

= g h X, tYð Þ, nUð Þ − g h X, Yð Þ, ntUð Þ,
ð52Þ

1 − λ θð Þð Þg b∇UV , X
� �

= g h U , tXð Þ, nVð Þ − g h U , Xð Þ, ntVð Þ,
ð53Þ

∀X, Y ∈ ΓðDTÞ and U , V ∈ ΓðDλÞ.

Proof. As gðb∇XU , YÞ = −gðφb∇XU , φYÞ, ηðb∇XUÞ = −gðb∇Xξ,
UÞ = 0. Using Equations (7), (9), and (12) and Lemma 9 in
above expression gives (52). In similar way, we can prove (53).

Lemma 27. A nontrivial proper pointwise semislant subma-
nifold M =MT × f Mλ of a para-cosymplectic manifold M̂
satisfies

g h X, Yð Þ, nUð Þ = 0, ð54Þ

g h X, Vð Þ, nUð Þ = −φX lnfð Þg V ,Uð Þ − X ln fð Þg tV ,Uð Þ,
ð55Þ

g h X, tVð Þ, nUð Þ = −φX ln fð Þg tV ,Uð Þ
− λ θð ÞX ln fð Þg V ,Uð Þ, ð56Þ

g h X, Vð Þ, ntUð Þ = −φX ln fð Þg V , tUð Þ
+ λ θð ÞX ln fð Þg V ,Uð Þ, ð57Þ

∀X, Y ∈ ΓðDTÞ and U , V ∈ ΓðDλÞ.

Proof. Result (54) is not hard to prove using Equations (7),
(12), and (14) and Proposition 5. Substituting tU =V in
Equation (49) gives gðhðX, VÞ, nUÞ = gðhðX,UÞ, nVÞ; one
can replace nV = φV − tV , and using Equations (5) and (7)
and Proposition 5 gives (55). Putting V = tV and U = tU ,
respectively, in Equation (55) gives results (56) and (57).

Lemma 28. If M =MT × f Mλ is a nontrivial pointwise semi-
slant warped product submanifold of a para-cosymplectic
manifold M̂, then

(i) for ξ ∈ ΓðTMTÞ,

g h tX, Vð Þ, nUð Þ = − X − η Xð Þξð Þ ln fð Þg V ,Uð Þ
− φX ln fð Þg tV ,Uð Þ

ð58Þ

(ii) for ξ ∈ ΓðTM⊥Þ,

g h tX, Vð Þ, nUð Þ = −X ln fð Þg V ,Uð Þ
− φX ln fð Þg tV ,Uð Þ ð59Þ

∀X ∈ ΓðDTÞ and U , V ∈ ΓðDλÞ.

Proof. Replacing X = φX in Equation (55) and having the
fact that submanifold MT is invariant, both results directly
follow.

Proposition 29. Let M =MT × f Mλ be nontrivial point-
wise semislant warped product submanifold of a para-
cosymplectic manifold M̂, then

g h X, Vð Þ, ntUð Þ − g h X, tUð Þ, nVð Þ = λ′ θð ÞX θð Þg U , Vð Þ,
ð60Þ

∀X ∈ ΓðDTÞ and U , V ∈ ΓðDλÞ, and λ′ðθÞ is the first
derivative of slant coefficient.

Proof. Using metric and para-cosymplectic condition

g b∇XU , V
� �

= −g b∇XφU , φV
� �

, ð61Þ
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this expression under the effect of Equations (5), (9), (12),
and (14) turns as

g b∇XU , V
� �

= −g b∇XtU , tV
� �

− g h X, tUð Þ, nVð Þ
+ g b∇Xt

⊥nU + n⊥nU , V
� �

:
ð62Þ

Further, using Propositions 10 and (5) ended with the
desired result.

Proposition 30. A nontrivial pointwise semislant warped
product submanifold M =MT × f Mλ of a para-cosymplectic

manifold M̂ satisfies the following:

(i) For ξ ∈ ΓðTMÞ,

g h tX, Vð Þ, nUð Þ + g h X, Vð Þ, ntUð Þ
= − 1 − λ θð Þð ÞX − η Xð Þξ½ � ln fð Þg V ,Uð Þ ð63Þ

(ii) For ξ ∈ ΓðTM⊥Þ,

g h tX, Vð Þ, nUð Þ + g h X,Vð Þ, ntUð Þ
= − 1 − λ θð Þð ÞX½ � ln fð Þg V ,Uð Þ ð64Þ

∀X ∈ ΓðTMTÞ and U , V ∈ ΓðTMλÞ.

Proof. Lemma 28 and Equation (57) of Proposition 26
directly give the results.

Definition 31. The submanifold M =MT × f Mλ is named as
mixed totally geodesic if for every X ∈ ΓðDTÞ and U ∈ ΓðDλÞ
,

h X,Uð Þ = 0: ð65Þ

Theorem 32. If M =MT × f Mλ is a mixed totally geodesic
pointwise semislant warped product submanifold of a para-
cosymplectic manifold M̂, following cases arise:

(i) If ξ ∈ ΓðTMÞ, then M is either a trivial product or a
warped product of a holomorphic (complex) subma-
nifold and a totally real submanifold

(ii) If ξ ∈ ΓðTM⊥Þ, then M is either a trivial product or a
warped product of two complex submanifolds

Proof. Using definition (59), M satisfies hðX,UÞ = 0 as well
as hðφX,UÞ = 0 (as MT is φ-invariant) for X ∈ ΓðTMTÞ
and U ∈ ΓðTMλÞ. Using this condition in proposition (58)
when ξ ∈ ΓðTMÞ, we get

1 − λ θð Þð Þ½ �X − η Xð Þξ� ln fð Þg V ,Uð Þ = 0: ð66Þ

Indicate either ln f = 0 implies the trivial case or ½ð1 −
λðθÞ�X = ηðXÞξ, after taking inner product with ξ, and in

the view of Remark 8, the condition for the totally real
holds for the submanifold Mλ. Following similar way for
the second case, we ended up with λðθÞ = 1 which is the
condition for complex submanifold.

Theorem 33. A mixed totally geodesic pointwise semislant
warped product submanifold M =MT × f Mλ of a para-

cosymplectic manifold M̂ satisfies

ε ntU ln fð Þ Xk k2 = g b∇Xt
� �

X, tU
� �

, ð67Þ

∀ spacelike (or timelike) vector fields X ∈ ΓðTMTÞ and
U ∈ ΓðTMλÞ.

Proof. As gðb∇XtX, tUÞ = gðb∇XtÞX, tUÞ + gðtb∇XX, tUÞ,
under the effects of Equation (14), Proposition 5, and Lemma
9, it turns

g b∇XtX, tU
� �

= g b∇Xt
� �

X, tU
�
+ λ θð Þ U ln fð Þg X, Xð Þ:

ð68Þ

Other way, gðb∇XtX, tUÞ + gðb∇XnX, tUÞ = gðb∇XφX,
tUÞ; with this expression under the use of Equations (5),
(7), and (12), Proposition 5, and Lemma 9, gðb∇XnX, tUÞ =
0 and M as mixed totally geodesic, we have

g b∇XtX, tU
� �

= λ θð Þ U ln fð Þg X, Xð Þ + ε ntU ln fð Þ Xk k2:
ð69Þ

This expression with the use of Equation (68) and for the
reason vector field X can be spacelike or timelike yields the
result.

Example 34. Consider a 7-dimensional smooth manifold
M̂ =ℝ6 ×ℝ+ ⊂ℝ7 having standard Cartesian coordinates
as ðy1, y2, y3, y4, y5, y6, tÞ and defining a structure ðφ, ξ,
η, gÞ as

φe1 = e4, φe2 = e5, φe3 = e6, φe4 = e1, φe5 = e2,
φe6 = e3, φe7 = 0,

ξ = e7, η = dt and g e1, e1ð Þ = g e2, e2ð Þ = g e3, e3ð Þ
= g e7, e7ð Þ = 1,

g e4, e4ð Þ = g e5, e5ð Þ = g e6, e6ð Þ = −1,
ð70Þ

for fe1,⋯,e7g as a local orthonormal frame on ΓðTM̂Þ. Obvi-
ously, M̂ over ðφ, ξ, η, gÞ fufills the condition of para-
cosymplectic manifold. Let M be a submanifold of M̂ with
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ξ tangent to it and defined for x, y ∈ℝ, u, v ≥ 0 and some
k(constant) as

M x, y, u, v, zð Þ = x + yð Þ cosh u, x + yð Þ sinh v, u, x + yð Þð
Á sinh u, x + yð Þ cosh v, v, kx − ky + zÞ:

ð71Þ

The vector fields that generates the tangent bundle TM are

X = cosh ue1 + sinh ve2 + sinh ue4 + cosh ve5 + ke7,

Y = cosh ue1 + sinh ve2 + sinh ue4 + cosh ve5 − ke7,

U = x + yð Þ sinh ue1 + e3 + x + yð Þ cosh ue4,

V = x + yð Þ cosh ve2 + x + yð Þ sinh ve5 + e6,

Z = e7:

ð72Þ

After calculations, it is found that the invariant distribu-
tions ðDT ⊕ ⊲ξ⊳Þ is the span of subspace fX, Y , Zg and
pointwise slant distribution Dλ is the span of subspace fU ,
Vg with t2 = ð1/ð1 − x2 − y2Þ2ÞId such that x2 + y2 ≠ 1; then,
the slant coefficient is

(i) λðθÞ =cosh 2θ for x2 + y2 < 1
(ii) λðθÞ =cos 2θ for x2 + y2 > 1

As the distributions ðDT ⊕ ⊲ξ⊳Þ and Dλ are integrable,
let MT and Mλ be their respective integral manifolds such
that M =MT × f Mλ turns a nontrivial 5-dimensional point-

wise semislant warped product submanifold of M̂ with
induced metric g(semi-Riemannian) as

g = k2dX2 + k2dY2 + dZ2 + 1 − x2 − y2
À Á

dU2 − dV2È É
,
ð73Þ

with warping function f =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − x2 − y2Þp

.
Let M be an another submanifold of M̂ with ξ normal to

it and defined for x, y, u, v ∈ℝ as

M x, y, u, vð Þ = xu, x, u + yv, yu, u + v, xv, 0ð Þ: ð74Þ

Then, the vector fields that generates TM are

X = ue1 + e2 + ve6,

Y = ve3 + ue4 + e5,

U = xe1 + e3 + ye4 + e5,

V = ye3 + xe6Þ:

ð75Þ

The invariant distribution DT is the span of subspace
fX, Yg, and pointwise slant distribution Dλ is the span of

subspace fU , Vg with t2 = ðx2/ðx2 − y2Þ2ÞI such that x2 ≠
y2; then, the slant coefficient is

(i) λðθÞ =cosh 2θ for x2 > y2

(ii) λðθÞ =cos 2θ for y2 > x2

As the distributions DT and Dλ are integrable, let MT
and Mλ be their respective integral manifolds such that
M =MT × f Mλ turns a nontrivial 4-dimensional pointwise

semislant warped product submanifold of M̂ with induced
metric g(semi-Riemannian) as

g = 1 + u2 − v2
À Á

dX2 − 1 + u2 − v2
À Á

dY2

+ x2 − y2
À Á

dU2 − dV2È É
,

ð76Þ

with warping function f =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 − y2Þp

.

7. Inequalities

This section includes the geometric sharp inequalities for the
aforesaid submanifold M =MT × f Mλ for the case ξ tangent
and normal to M.

Lemma 35 (see [31]). LetM =MT × f Mλ be a pointwise semi-
slant warped product submanifold of a para-cosymplectic man-
ifold M̂. Then, M ensures

g h X,Uð Þ, ζð Þ = −g h X, φUð Þ, φζð Þ, ð77Þ

g h X,Uð Þ, φζð Þ = −g ∇⊥
XφU , ζ

À Á
, ð78Þ

g h X,Uð Þ, φζð Þ = −g ∇⊥
ZφU , ζ

À Á
, ð79Þ

∀X ∈ ΓðDTÞ, U ∈ ΓðDλÞ, and ζ ∈ ΓðνÞ.

Theorem 36. Let M =MT × f Mλ be a pointwise semislant
warped product submanifold of a para-cosymplectic manifold
M̂ with ξ ∈ ΓðTMÞ. If MT is an invariant submanifold of
ð2n1 + 1Þ-dimension and Mλ is a proper pointwise slant
submanifold 2n2-dimension satisfying ∇⊥φDλ ⊆ φDλ, the
succeeding inequalities holds for h

hk k2 ≥ n2 1 + λ2 θð ÞÀ
∇ln fk k2 + hDT

ν




 


2for S1 ≥ S2,

hk k2 ≤ n2 1 + λ2 θð ÞÀ
∇ln fk k2 + hDT

ν




 


2 for S1 ≤ S2,
ð80Þ

where λðθÞ is the slant coefficient corresponding to Mλ,

∇ðln f Þ is the gradient of ln f , khDT
ν k2 = gðhνðDT,DTÞ,

hνðDT,DTÞÞ with its ν component and invariant distri-
bution DT, S1 = ðhsrtÞ2 + ðhsr′t ′Þ2, and S2 = ðhsr′t Þ2 + ðhsrt′Þ2.
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Proof. For ξ ∈ ΓðTMÞ, choose the local orthonormal frame
on the following:

(a) MT by fei, ei′ = φeig for i = f1,⋯,n1 and ei = ξ for
i = 2n1 + 1 such that gðei, eiÞ = εi = 1 implies gðei′ ,
ei′Þ = εi′ = −1 and gðξ, ξÞ = ε0 = 1

(b) Mλ by f�er ,�er ′ = ð1/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij−λðθÞjp Þt�erg for r = f1,⋯,n2g
and such that gð�er , �erÞ = �εr = 1 implies gð�er ′ , �er ′Þ =
�εr ′ = −1

(c) ðnMλÞ by �es = ð1/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij−ð1 − λðθÞÞjp Þn�er for r = f1,⋯,
n2g, having gð�es, �esÞ = �εs = −1 and on ν by fζl, ζl ′ =
φζg such that gðζl, ζlÞ = εl = 1 implies gðζl ′ , ζl ′Þ =
εl ′ = −1

Compute khk2 which is given as

hk k2 = h DT,DTð Þk k2 + 2 h DT,Dλð Þk k2 + h Dλ,Dλð Þk k2:
ð81Þ

The first term khðDT,DTÞk2 can be expanded as

h DT,DTð Þk k2 = g h DT,DTð Þ, h DT,DTð Þð Þ

= 〠
n1

i,j=0
εiεjg h ei, ej

À Á
, h ei, ej
À ÁÀ ÁÂ

+ εi′εjg h ei′, ej
À Á

, h eii , ej
À ÁÀ Á

+ εiεj′g h ei, ej′
À Á

, h ei, ej′
À ÁÀ Á

+ εi′εj′g h ei′, ej′
À Á

, h ei′, ej′
À ÁÀ ÁÃ

+ 〠
n1

i=0
ε0εig h e0, eið Þ, h e0, eið Þð Þ½

+ εiε0g h ei, e0ð Þ, h ei, eoð Þð Þ�:

ð82Þ

As DT is totally geodesic and Equation (54) of Lemma
27 directs that hðDT,DTÞ ∈ ν using which, we can write

h ei, ej
À Á

= hlijζl + hl′ijζl′, h ei′, ej
À Á

= hli′ jζl + hl′i′ jζl′,

h ei, ej′
À Á

= hlij′ζl + hl′ij′ζl′, h ei′, ej′
À Á

= hli′ j′ζl + hl′i′ j′ζl′,

h e0, eið Þ = hl0iζl + hl′0iζl′, h ei, e0ð Þ = hli0ζl + hl′i0ζl′,

h e0, e0ð Þ = hl00ζl + hl′00ζl′:

ð83Þ

Simplifying these expressions in Equation (82) and using
Equation (19) and Lemma 4 and in view of orthonormal
frame, we get

h DT,DTð Þk k2 = 〠
n1

i,j=1
〠
n3

l=1
hlij

� �2
− hl′ij
� �2

� �
− hlij′

� �2
− hl′i′ j
� �2

� ��

− hlij′
� �2

− hl′ij′
� �2

� �
+ hli′ j′
� �2

− hl′i′ j′
� �2

��
:

ð84Þ

The integrable condition of theDT and Equation (77) of
the Lemma 35 implies that

hli′ j
� �2

= hlij′
� �2

, hl′i′ j
� �2

= hl′ij′
� �2

,

hli′ j′
� �2

= hli′ j′
� �2

, hl′i′ j′
� �2

= hl′ij
� �2

,
ð85Þ

hli′ j
� �2

= hl′i′ j
� �2

, hl′ij
� �2

= hli′ j
� �2

: ð86Þ

After substitution of Equation (84) in (86), we get

h DT,DTð Þk k2 = 4 〠
n1

i,j=1
〠
n2

l=1
hlij

� �2
− hl′ij
� �2

� �
= hDT

ν




 


2:
ð87Þ

For the second part, we have

h DT,Dλð Þk k2 = g h DT,Dλð Þ, h DT,Dλð Þð Þ

= 〠
n1

i=1
〠
n2

r=1
εi�εrg h ei, �erð Þ, h ei, �erð Þð Þ½

+ εi′�εrg h ei′, �erð Þ, h ei′,�erð Þð Þ
+ εi�εr′g h ei, �er′ð Þ, h ei, �er′ð Þð Þ
+ εi′�εr′g h ei′, �er′ð Þ, h ei′,�er′ð Þð Þ
+ ε0�εrg h e0, �erð Þ, h ei, �erð Þð Þ
+ ε0�εr′g h e0, �er′ð Þ, h e0,�er′ð Þð Þ�,

ð88Þ

where

h ei,�erð Þ = hsir�es + hlirζl + hl′irζl′, h ei′,�erð Þ = hsi′r�es + hli′rζl + hl′i′rζl′,
ð89Þ

h ei, �er ′ð Þ = hsir ′�es + hlir ′ζl + hl ′ir ′ζl ′ , h ei′,�er′ð Þ
= hsi′r ′�es + hli′r ′ζl + hl′i′r ′ζl′,

ð90Þ

h e0, �erð Þ = hs0r�es + hl0rζl + hl′0rζl′, h e0,�er′ð Þ
= hs0r′�es + hl0r′ζl + hl′0r′ζl′:

ð91Þ

After simplifying Equation (88) using expressions in
Equation (91), we get

h DT,Dλð Þk k2 = 〠
n1

i=1
〠
n2

r,s=1
hsirð Þ2 + hsi′r ′

À Á2 − hsir′
À Á2 − hsir′

À Á2h

+ hlir
� �2

+ hli′r ′
� �2

− hli′r
� �2

− hlir′
� �2

� �

− hl′ir
� �2

+ hl′i′r ′
� �2

− hl′i′r
� �2

− hl′ir′
� �2

� �
:

ð92Þ
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Using Equations (55), (56), (58), (77), and (78), we have

hsir = −ei′ ln fð Þg �er ,�esð Þ, hsi′r = −ei ln fð Þg �er ,�esð Þ,
hsir′ = −λ θð Þei ln fð Þg �er , �esð Þ,

hl′i′r ′ = −λ θð Þei′ ln fð Þg �er ,�esð Þ, hlir
� �2

= hl ′ir ′
� �2

,

hli′r

� �2
= hl ′i′r ′
� �2

and hl′ir
� �2

= hlir′
� �2

:

ð93Þ

Substituting above values in Equation (92), we have

h DT,Dλð Þk k2 = n2 1 + λ2 θð ÞÀ Á
〠
n1

i=1
ei ln fð Þð Þ2 − ei′ ln fð Þð Þ2Â Ã

+ 2 hli′r
� �2

− hl′i′r
� �2

� �
− hlir

� �2
− hl′ir
� �2

� �� �
:

ð94Þ

Since ∑n1
i=1½ðeiðln f ÞÞ2 − ðei′ðln f ÞÞ2� = gð∇ðln f Þ,∇ðln f ÞÞ

= k∇ðln f Þk2 and using the condition that ∇⊥φðDλÞ ⊆
φðDλÞ in formula (78), we concluded that hðDT,DλÞ ⊆
φðDλÞ, above equation leads to

h DT,Dλð Þk k2 = n2 1 + λ2 θð ÞÀ Á
∇ ln fð Þk k2: ð95Þ

Lastly,

h Dλ,DλÞ
� �


 


2 = g h Dλ,Dλð Þ, h Dλ,Dλð Þð Þ

= 〠
n2

r,t=1
�εr�εtg h �er ,�etð Þ, h �er , �etð Þð Þ½

+ �εr′�εtg h �er′, �etð Þ, h �er′,�etð Þð Þ
+ �εr�εt′g h �er , �et′ð Þ, h �er ,�et′ð Þð Þ
+ �εr′�εt′g h �er′, �et′ð Þ, h �er′, �et′ð Þð Þ,

ð96Þ

where the included expressions are as below:

h �er ,�etð Þ = hsrt�es + hlrtζl + hl′rtζl′,
h �er′, �etð Þ = hsr′t�es + hlr′tζl + hl′r′tζl′

h �er , �et′ð Þ = hsrt′�es + hlrt′ζl + hl′rt′ζl′,
h �er′, �et′ð Þ = hsr′t ′�es + hlr′t ′ζl + hl′r′t ′ζl′:

ð97Þ

Employing these expressions in Equation (96) in view
of the chosen frame and simplifying, we get

h Dλ,DλÞ
� �


 


2 = 〠

n2

r,s,t=1
hsrtð Þ2 + hlrt

� �2
− hl′rt
� �2

� ��

− hsr′t
À Á2 + hlr′t

� �2
− hl′r′t
� �2

� �

− hsrt′
À Á2 + hlrt′

� �2
− hl′rt′
� �2

� �

+ hsr′t ′
À Á2 + hlr′t ′

� �2
− hl′r′t ′
� �2

� ��
:

ð98Þ

Using the condition that ∇⊥φðDλÞ ⊆ φðDλÞ in formula
(79), we concluded that hðDλ,DλÞ ⊆ φðDλÞ, which implies
the Equation (98) with

h Dλ,DλÞ
� �


 


2 = 〠

n2

r,s,t=1
hsrtð Þ2 + hsr′t ′

À Á2n oh
− hsr′t

À Á2 + hsrt′
À Á2n oi

:

ð99Þ

Result directly follows by letting S1 = ðhsrtÞ2 + ðhsr′t ′Þ2 and
S2 = ðhsr′t Þ

2 + ðhsrt′Þ
2.

Remark 37. Equality holds if S1 = S2.

Theorem 38. Let M =MT × f Mλ be a pointwise semislant
warped product submanifold of a para-cosymplectic manifold
M̂ with ξ normal toM such that ξ ∈ ΓðνÞ. IfMT is an invari-
ant submanifold of 2n1-dimension and Mλ is a proper
pointwise slant submanifold of 2n2-dimension satisfying
∇⊥φDλ ⊆ φDλ, the succeeding inequalities holds for h

hk k2 ≥ n2 1 + λ2 θð ÞÀ
∇ln fk k2 + hDT

ν




 


2 for S1 ≥ S2,

hk k2 ≤ n2 1 + λ2 θð ÞÀ
∇ln fk k2 + hDT

ν




 


2 for S1 ≤ S2,

ð100Þ

where λðθÞ is the slant coefficient corresponding to Mλ,

∇ðln f Þ is the gradient of ln f , khDT
ν k2 = gðhνðDT,DTÞ,

hνðDT,DTÞÞ with its ν component and invariant distri-
bution DT, S1 = ðhsrtÞ2 + ðhsr′t ′Þ2, and S2 = ðhsr′t Þ2 + ðhsrt′Þ2.

Proof. For ξ ∈ ΓðTM⊥Þ, choose the local orthonormal frame
on the following:

(a) MT by fei, ei′ = φeig for i = f1,⋯,n1g such that gðei,
eiÞ = εi = 1 implies gðei′ , ei′Þ = εi′ = −1

(b) Mλ by f�er , �er ′ = ð1/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij−λðθÞjp Þt�erg for r = f1,⋯,n2g
and such that gð�er , �erÞ = �εr = 1 implies gð�er ′ ,�er ′Þ =
�εr ′ = −1

(c) ðnMλÞ by �es = ð1/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij−ð1 − λðθÞÞjp Þn�er for r = f1,⋯,
n2g, having gð�es, �esÞ = �εs = −1 and on ν by fζl, ζl ′ =
φζg for l = f1,⋯,n3g and ζl = ξ for l = 2n3 + 1 such
that gðζl, ζlÞ = εl = 1 implies gðζl ′ , ζl ′Þ = εl ′ = −1
and gðξ, ξÞ = ε0 = 1

Further, result can be acquired carrying the same steps
as above proof and using Equations (33) and (34) of
Lemma 18.
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In this paper, we theoretically realize bidirectional controlled quantum teleportation by using ten-qubit entangled state method.
This paper uses a case to introduce the specific process of realizing quantum teleportation: Alice sends an unknown four-qubit
GHZ state to Bob, and Bob sends an arbitrary three-qubit GHZ state to Alice. In addition, Charlie controls the transfer to
ensure the integrity of the protocol. A ten-qubit quantum channel is constructed and used in this paper. Then, the unitary
matrix transformation is used to complete the communication protocol. The research results show that the communication
protocol constructed in this paper is more efficient than most communication protocols.

1. Introduction

Quantum information has become increasingly popular in
recent years. Quantum communication is a new communi-
cation method which uses quantum superposition state
and quantum entanglement effect to transmit information.
Quantum communication is based on three principles, along
with uncertainty, measurement collapse, and no-cloning
theorem in quantum mechanics. Quantum communication
is an absolutely secure means of communication that cannot
be eavesdropped or cracked. Quantum communication is
mainly divided into quantum teleportation and quantum
key distribution. This paper studies the communication
mode of quantum teleportation.

In this paper, BQCT by using ten-qubit entangled state is
devised. Alice has unknown qubit state A, B, C,D, a, b, c, d;
Bob has unknown qubit state E, F,G, e, f , g, h, i; and Charlie
has unknown qubit state e. Alice sends arbitrary four-qubit
GHZ state to Bob, Bob transmits unknown three-qubit
GHZ state to Alice, and ten-qubit entangled state is used
as quantum channel. Alice performs a five-qubit GHZ-
state measurement on qubits A, B, C,D, a; and Bob operates

a four-qubit GHZ-state measurement on qubits E, F,G, f .
Both Alice and Bob tells Charlie to the basis of measure-
ment, and Charlie controls the process of the protocol. If
Charlie believes the protocol is safety, Charlie measures the
remaining quantum state using single-qubit basis and tells
Alice and Bob about information of the used basis. Alice
and Bob can obtain the initial state by appropriate unitary
operations. In contrast, this protocol efficiency is relatively
high.

2. Literature Review

In 1935, Einstein et al. proposed a paradox to prove the
incompleteness of quantum mechanics, which is referred to
as “EPR paradox” [1]. In 1964, Bell presented Bell inequality
to support localized realism and can prove the completeness
of quantum mechanics in mathematics [2].

In the field of quantum information, quantum teleporta-
tion is very important. In 1993, quantum teleportation was
first proposed [3]. In 2013, Zha et al. present the first bidi-
rectional quantum controlled teleportation (BQCT) protocol
[4]. In 2016, the scheme which has three controllers was
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proposed for BCQT via seven-qubit entangled state to con-
vey one-qubit each other [5]. In 2017, Zadeh et al. presented
bidirectional quantum teleportation (BQT) without control-
ler to teleport an arbitrary two-qubit state to each other
simultaneously via an eight-qubit entangled state [6]. In
2018, Sarvaghad-Moghaddam et al. used five-qubit
entangled states as a quantum channel to teleport one-
qubit each other under permission of controller [7]. In
2019, Zhou et al. used six-qubit cluster state to send single-
qubit and three-qubit GHZ state to each other [8]. In 2020,
Zhou et al. proposed BQCT of two-qubit states through
seven-qubit entangled state [9]. Protocol which transmits
two-qubit each other and two-qubit and three-qubit each
other about six-qubit quantum channel was reported as well
[10]. In 2021, Jiang et al. presented BQCT of three-qubit
GHZ state through an entangled eleven-qubit quantum
channel [11] and Huo et al. presented asymmetric BCQT
of two- and three-qubit states via an entangled eleven-
qubit quantum channel [12]. In 2022, Kazemikhah et al.
present asymmetric bidirectional controlled quantum tele-
portation protocol of two-qubit and three-qubit unknown
states using eight-qubit cluster state [13].

3. Construction of Quantum Channel

Quantum communication is a new communication method
which uses quantum superposition state and quantum
entanglement effect to transmit information. Quantum com-
munication is an absolutely secure means of communication
that cannot be eavesdropped or cracked. Therefore, in this
paper, the quantum channel adopted is

Ψj iabccdef jhij =
1
2 0000000000j iabcdef jhij + 0000011111j iabcdef jhij
�

� + 1111100000j iabcdef jhij + 1111111111j iabcdef jhij
�
:

ð1Þ

This quantum channel can not only be theoretically pro-
posed but also constructed. The step method is as follows.

Step 1. The ten-qubit initial state is prepared like

Step 2. Two Hadamard gates are implemented to qubits a
and f . Then, the state jψiabcdef ghij changes into

Step 3. When qubit a can be control qubits and qubits b, c,
d, e are target qubits, CNOT gates operate on jΨ1iabccdef jhij.
In the same way, CNOT gates operate on jΨ1iabccdef jhij when
qubits f can be control qubits and qubits g, h, i, j are target
qubits. We can obtain the quantum channel jΨ1iabccdef jhij.

4. Bidirectional Quantum
Controlled Teleportation

4.1. Quantum Teleportation. Suppose Alice has an arbitrary
four-qubit GHZ state

Ψj iABCD = α 0000j iABCD + β 1111j iABCD: ð4Þ

And Bob has an arbitrary three-qubit GHZ state

Ψj iEFG = υ 000j iEFG + μ 111j iEFG, ð5Þ

where jαj2 + jβj2 = 1, jνj2 + jμj2 = 1. Alice and Bob do
not know what α, β, ν, and μ are. Alice wants to transmit
A, B, C,D to Bob who wants to transmit E, F,G to Alice
through ten-qubit quantum channel. Supervisor Charlie
who has qubit e controls whether or not the protocol con-
tinues. We have ten-qubit state quantum channel

Ψj iabccdef jhij =
1
2 0000000000j iabcdef jhij + 0000011111j iabcdef jhij
h

+ 1111100000j iabcdef jhij + 1111111111j iabcdef jhij
i
:

ð6Þ

Ψ0j iabccdef jhij = 0j ia ⊗ 0j ib ⊗ 0j ic ⊗ 0j id ⊗ 0j ie ⊗ 0j if ⊗ 0j ig ⊗ 0j ih ⊗ 0j ii ⊗ 0j ij: ð2Þ

Ψ1j iabccdef jhij =
0j ia + 1j ia
� �

ffiffiffi
2

p ⊗ 0j ib ⊗ 0j ic ⊗ 0j id ⊗ 0j ie ⊗
0j if + 1j if

� �
ffiffiffi
2

p ⊗ 0j ig ⊗ 0j ih ⊗ 0j ii ⊗ 0j ij: ð3Þ
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Here, qubits a, b, c, d belong to Alice, qubits f , g, h, i
belong to Bob, and qubit j belongs to Charlie, respectively.
The initial state of the total system is

Ψj iABCDEFGabcdef ghij = Ψj iABCD ⊗ Ψj iEFG ⊗ Ψj iabcdef ghij: ð7Þ

Four-qubit GHZ states which form a set of basis can be
described as

ξ±1
�� �

= 1ffiffiffi
2

p 0000j i ± 1111j ið Þ, ξ±2
�� �

= 1ffiffiffi
2

p 0001j i ± 1110j ið Þ,

ξ±3
�� �

= 1ffiffiffi
2

p 0011j i ± 1100j ið Þ, ξ±4
�� �

= 1ffiffiffi
2

p 0111j i ± 1000j ið Þ,

ξ±5
�� �

= 1ffiffiffi
2

p 0101j i ± 1010j ið Þ, ξ±6
�� �

= 1ffiffiffi
2

p 0110j i ± 1001j ið Þ,

ξ±7
�� �

= 1ffiffiffi
2

p 0100j i ± 0100j ið Þ, ξ±8
�� �

= 1ffiffiffi
2

p 0010j i ± 1111j ið Þ:

ð8Þ

Five-qubit GHZ states which form a set of basis can be
described as

γ±1
��� = 1ffiffiffi

2
p 00000ij ± 11111ijð Þ, γ±2

��� = 1ffiffiffi
2

p 00001ij ± 11110ijð Þ,

γ±3
��� = 1ffiffiffi

2
p 00010ij ± 11101ijð Þ, γ±4

��� = 1ffiffiffi
2

p 00100ij ± 11011ijð Þ,

γ±5
��� = 1ffiffiffi

2
p 01000ij ± 10111ijð Þ, γ±6

��� = 1ffiffiffi
2

p 00011ij ± 11100ijð Þ,

γ±7
��� = 1ffiffiffi

2
p 00110ij ± 11001ijð Þ, γ±8

��� = 1ffiffiffi
2

p 01100ij ± 10011ijð Þ,

γ±9
��� = 1ffiffiffi

2
p 00111ij ± 11000ijð Þ, γ±10

��� = 1ffiffiffi
2

p 01110ij ± 10001ijð Þ,

γ±11
��� = 1ffiffiffi

2
p 01101ij ± 10010ijð Þ, γ±12

��� = 1ffiffiffi
2

p 01011ij ± 10100ijð Þ,

γ±13
��� = 1ffiffiffi

2
p 01110ij ± 10001ijð Þ, γ±14

��� = 1ffiffiffi
2

p 01111ij ± 10000ijð Þ,

γ±15
��� = 1ffiffiffi

2
p 01010ij ± 10101ijð Þ, γ±16

��� = 1ffiffiffi
2

p 00101ij ± 11010ijð Þ:

ð9Þ

Alice can carry out a five-qubit GHZ-state measurement
on qubits A, B, C,D, a, and Bob can carry out a four-qubit
GHZ-state measurement on qubits E, F,G, f . Then, quan-
tum state jΨiABCDEFGabcdef ghij can be expressed as

4.2. Quantum Teleportation Results. As mentioned above,
both Alice and Bob tell each other the measurement basis
by the classical channel and different basis vectors which
Alice and Bob choose and the corresponding collapse state
is as Table 1. Then, Charlie is told the measurement results
by the classical communication channel. And Charlie can
perform single-qubit Von Neumann measurement on j+i
or j−i and

+j i = 1ffiffiffi
2

p 0j i + 1j ið Þ  −j i = 1ffiffiffi
2

p 0j i − 1j ið Þ: ð11Þ

Then, if Charlie wants to continue the protocol, he needs to
deliver his result to both Alice and Bob. Finally, Alice and Bob
use correct unitary operations on their state to obtain the state
teleported by the other party. The different collapse states and
unitary operations in j+i or j−i are as Tables 2 and 3. In

Ψij ABCDEFGabcdef ghij = αν γ+1 ij + γ−1 ijð ÞABCDa ξ+1
��� + ξ−1 ij� �

EFGf
00000000ibcdeghij
��� + γ+2 ij + γ−2 ijð ÞABCDa ξ+1

��� + ξ−1 ij� �
EFGf

11100000ibcdeghij
���h

+ γ+1 ijð + γ−1 ij ÞABCDa ξ+2
��� + ξ−2 ij� �

EFGf
00001111ibcdeghij
��� + γ+2 ij + γ−2 ijð ÞABCDa ξ+2

��� + ξ−2 ij� �
EFGf

11111111ibcdeghij
��� �

+ βν γ+2 ij − γ−2 ijð ÞABCDa ξ+1
��� + ξ−1 ij� �

EFGf
00000000ibcdeghij
��� + γ+1 ij − γ−1 ijð ÞABCDa ξ+1

��� + ξ−1 ij� �
EFGf

11100000ibcdeghij
���h

+ γ+2 ij − γ−2 ijð ÞABCDa ξ+2
��� + ξ−2 ij� �

EFGf
00001111ibcdeghij
��� + γ+1 ij − γ−1 ijð ÞABCDa ξ+2

��� + ξ−2 ij� �
EFGf

11111111ibcdeghij
��� i

+ αμ γ+1 ij + γ−1 ijð ÞABCDa ξ+2
��� − ξ−2 ij� �

EFGf
00000000ibcdeghij
��� + γ+2 ij − γ−2 ijð ÞABCDa ξ+2

��� + ξ−2 ij� �
EFGf

11100000ibcdeghij
���h

+ γ+1 ij + γ−1 ijð ÞABCDa ξ+1
��� + ξ−1 ij� �

EFGf
00001111ibcdeghij
��� + γ+2 ij + γ−2 ijð ÞABCDa ξ+2

��� − ξ−2 ij� �
EFGf

11111111ibcdeghij
��� i

+ βμ γ+2 ij − γ−2 ijð ÞABCDa ξ+2
��� − ξ−2 ij� �

EFGf
00000000ibcdeghij
��� + γ+1 ij − γ−1 ijð ÞABCDa ξ+2

��� − ξ−2 ij� �
EFGf

11100000ibcdeghij
���h

+ γ+2 ij − γ−2 ijð ÞABCDa ξ+1
��� − ξ−1 ij� �

EFGf
00001111ibcdeghij
��� + γ+1 ij − γ−1 ijð ÞABCDa ξ+1

��� − ξ−1 ij� �
EFGf

11111111ibcdeghij
��� i

� βμ γ+2 ij − γ−2 ijð ÞABCDa ξ+2
��� − ξ−2 ij� �

EFGf
00000000ibcdeghij
���h i

+:

ð10Þ
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Tables 2 and 3, i is an imaginary unit, X, Y, and Z are Pauli
matrices, and I is the identity matrix. These matrices have the
form

X =
0 1
1 0

 !
Y =

0 −i

i 0

 !
Z =

1 0
0 −1

 !
I =

1 0
0 1

 !
: ð12Þ

Table 1: The collapsed states of qubits b, c, d, e, g, h, i, j under Alice’s and Bob’s GHZ-state measurement.

Alice’s results Bob’s results Collapsed state of qubits b, c, d, e, g, h, i, j
γ+1j i ξ+1

�� �
αν 00000000j i + βν 11110000j i + αμ 00001111j i + βμ 11111111j i

γ+1j i ξ−1j i αν 00000000j i + βν 11110000j i − αμ 00001111j i − βμ 11111111j i
γ+1j i ξ+2

�� �
αν 00001111j i + βν 11111111j i + αμ 00000000j i + βμ 11110000j i

γ+1j i ξ−2j i αν 00001111j i + βν 11111111j i − αμ 00000000j i − βμ 00000000j i
γ−1j i ξ+1

�� �
αν 00000000j i − βν 11110000j i + αμ 00001111j i − βμ 11111111j i

γ−1j i ξ−1j i αν 00000000j i − βν 11110000j i − αμ 00001111j i + βμ 00000000j i
γ−1j i ξ−1j i αν 00001111j i − βν 11111111j i + αμ 00000000j i − βμ 11110000j i
γ−1j i ξ−1j i αν 00001111j i − βν 11111111j i − αμ 00000000j i + βμ 11110000j i
γ+2j i ξ+1

�� �
αν 11110000j i + βν 00000000j i + αμ 11111111j i + βμ 00001111j i

γ+2j i ξ−1j i αν 11110000j i + βν 00000000j i − αμ 11111111j i − βμ 00001111j i
γ+2j i ξ+2

�� �
αν 11111111j i + βν 00001111j i + αμ 11110000j i + βμ 00000000j i

γ+2j i ξ−2j i αν 11111111j i + βν 00001111j i − αμ 11110000j i − βμ 00000000j i
γ−2j i ξ+1

�� �
αν 11110000j i − βν 00000000j i + αμ 11111111j i − βμ 00001111j i

γ−2j i ξ−1j i αν 11110000j i − βν 11110000j i − αμ 00001111j i + βμ 00000000j i
γ−2j i ξ−2j i αν 11111111j i − βν 00001111j i − αμ 11110000j i − βμ 00000000j i
γ−2j i ξ−2j i αν 11111111j i − βν 00001111j i − αμ 11110000j i + βμ 00000000j i

Table 2: The specific unitary transformation and collapsed states correspond to Alice’s, Bob’s, and Charlie’s measurement results.

Alice’s results Bob’s results Charlie’s results Collapsed state of qubits b, c, d, g, h, i, j Alice’s unitary operator Bob’s unitary operator

γ+1j i ξ+1
�� �

+j i α 000j i + β 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ I ⊗ I ⊗ I I ⊗ I ⊗ I ⊗ I

γ+1j i ξ+1
�� �

−j i α 000j i − β 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ Z ⊗ I ⊗ I I ⊗ I ⊗ I ⊗ I

γ+1j i ξ−1j i +j i α 000j i + β 111j ið Þ ⊗ ν 0000j i − μ 1111j ið Þ I ⊗ I ⊗ I Z ⊗ I ⊗ I ⊗ I

γ+1j i ξ−1j i −j i α 000j i − β 111j ið Þ ⊗ ν 0000j i − μ 1111j ið Þ Z ⊗ I ⊗ I Z ⊗ I ⊗ I ⊗ I

γ+1j i ξ+2
�� �

+j i α 000j i + β 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ I ⊗ I ⊗ I I ⊗ I ⊗ I ⊗ I

γ+1j i ξ+2
�� �

−j i α 000j i − β 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ Z ⊗ I ⊗ I X ⊗ X ⊗ X ⊗ X

γ+1j i ξ−2j i +j i α 000j i + β 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ I ⊗ I ⊗ I X ⊗ X ⊗ X ⊗ X

γ+1j i ξ−2j i −j i α 000j i − β 111j ið Þ ⊗ −μ 0000j i + ν 1111j ið Þ Z ⊗ I ⊗ I iY ⊗ I ⊗ I ⊗ I

γ−1j i ξ+1
�� �

+j i α 000j i − β 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ Z ⊗ I ⊗ I I ⊗ I ⊗ I ⊗ I

γ−1j i ξ+1
�� �

−j i α 000j i + β 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ I ⊗ I ⊗ I I ⊗ I ⊗ I ⊗ I

γ−1j i ξ−1j i +j i α 000j i − β 111j ið Þ ⊗ ν 0000j i − μ 1111j ið Þ Z ⊗ I ⊗ I Z ⊗ I ⊗ I ⊗ I

γ−1j i ξ−1j i −j i α 000j i + β 111j ið Þ ⊗ ν 0000j i − μ 1111j ið Þ I ⊗ I ⊗ I Z ⊗ I ⊗ I ⊗ I

γ−1j i ξ+2
�� �

+j i α 000j i − β 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ I ⊗ I ⊗ I X ⊗ X ⊗ X ⊗ X

γ−1j i ξ+2
�� �

−j i α 000j i + β 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ I ⊗ I ⊗ I X ⊗ X ⊗ X ⊗ X

γ−1j i ξ−2j i +j i α 000j i − β 111j ið Þ ⊗ −μ 0000j i + ν 1111j ið Þ Z ⊗ I ⊗ I iY ⊗ X ⊗ X ⊗ X

γ−1j i ξ−2j i −j i α 000j i + β 111j ið Þ ⊗ −μ 0000j i + ν 1111j ið Þ I ⊗ I ⊗ I iY ⊗ I ⊗ I ⊗ I
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5. Comparison of Efficiency

The protocol efficiency of bidirectional quantum controlled
teleportation can be defined as

η = c
q + p

: ð13Þ

Here, c represent the total number of qubits to be trans-
mitted by both parties and q is the total number of quantum
channel in the protocol. In this paper, the total number of
qubits to be transmitted is seven and the total number of
quantum channel is ten. The efficiency of this bidirectional

quantum controlled teleportation η is equal to 46.7%. The
other protocols are as Table 4, and the efficiency of this
scheme is relatively high.

6. Conclusion

In conclusion, this paper proves that the implementation of
BQCT protocol using quantum channel constructed by
entanglement of ten-qubit is more efficient than traditional
methods. In addition, quantum communication is an abso-
lutely safe means of communication because it cannot be
eavesdropped or cracked. Therefore, the quantum channel
constructed in this paper can be used for communication
with better security and confidentiality than the existing
communication means. However, at present, the research
results of this paper only verify its feasibility in theory, and
future empirical research is needed to verify its feasibility
in practice.
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Table 3: Following the above table.

Alice’s
results

Bob’s
results

Charlie’s
results

Collapsed state of qubits b, c, d, g, h, i, j Alice’s unitary
operator

Bob’s unitary
operator

γ+2j i ξ+1
�� �

+j i β 000j i + α 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ X ⊗ X ⊗ X I ⊗ I ⊗ I ⊗ I

γ+2j i ξ+1
�� �

−j i β 000j i − α 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ −iY ⊗ X ⊗ X I ⊗ I ⊗ I ⊗ I

γ+2j i ξ−1j i +j i β 000j i + α 111j ið Þ ⊗ ν 0000j i − μ 1111j ið Þ X ⊗ X ⊗ X Z ⊗ I ⊗ I ⊗ I

γ+2j i ξ−1j i −j i β 000j i − α 111j ið Þ ⊗ −ν 0000j i + μ 1111j ið Þ iY ⊗ X ⊗ X −iY ⊗ I ⊗ I ⊗ I

γ+2j i ξ+2
�� �

+j i α 000j i + β 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ X ⊗ X ⊗ X X ⊗ X ⊗ X ⊗ X

γ+2j i ξ+2
�� �

−j i −β 000j i + α 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ −iY ⊗ X ⊗ X X ⊗ X ⊗ X ⊗ X

γ+2j i ξ−2j i +j i β 000j i + α 111j ið Þ ⊗ −μ 0000j i + ν 1111j ið Þ X ⊗ X ⊗ X −iY ⊗ X ⊗ X ⊗ X

γ+2j i ξ−2j i −j i −β 000j i + α 111j ið Þ ⊗ −μ 0000j i + ν 1111j ið Þ −iY ⊗ X ⊗ X iY ⊗ X ⊗ X ⊗ X

γ−2j i ξ+1
�� �

+j i −β 000j i + α 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ −iY ⊗ X ⊗ X I ⊗ I ⊗ I ⊗ I

γ−2j i ξ+1
�� �

−j i −β 000j i − α 111j ið Þ ⊗ ν 0000j i + μ 1111j ið Þ −X ⊗ X ⊗ X I ⊗ I ⊗ I ⊗ I

γ−2j i ξ−1j i +j i −β 000j i + α 111j ið Þ ⊗ ν 0000j i − μ 1111j ið Þ iY ⊗ X ⊗ X Z ⊗ I ⊗ I ⊗ I

γ−2j i ξ−1j i −j i β 000j i − α 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ iY ⊗ X ⊗ X X ⊗ X ⊗ X ⊗ X

γ−2j i ξ+2
�� �

+j i α 000j i − β 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ −X ⊗ X ⊗ X X ⊗ X ⊗ X ⊗ X

γ−2j i ξ+2
�� �

−j i −β 000j i − α 111j ið Þ ⊗ μ 0000j i + ν 1111j ið Þ −X ⊗ X ⊗ X X ⊗ X ⊗ X ⊗ X

γ−2j i ξ−2j i +j i β 000j i − α 111j ið Þ ⊗ −μ 0000j i + ν 1111j ið Þ iY ⊗ X ⊗ X iY ⊗ X ⊗ X ⊗ X

γ−2j i ξ−2j i −j i β 000j i + α 111j ið Þ ⊗ μ 0000j i − ν 1111j ið Þ X ⊗ X ⊗ X −iY ⊗ X ⊗ X ⊗ X

Table 4: Comparing the efficiency of different protocols.

Year and
reference

The number
of Alice’s
transmitted

qubits

The number
of Bob’s

transmitted
qubits

The
number of
quantum
channel

The
efficiency

of
protocol

2019
[14]

3 3 6 54.6%

2020
[10]

2 2 6 40%

2020
[10]

2 3 6 45.5%

2021
[11]

3 3 11 30%

2022
[13]

2 3 8 38.5%

This
paper

4 3 10 46.7%
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In the present note, we study ϵ-LP-Sasakian 3-manifolds M3ðϵÞ whose metrics are conformal η-Ricci-Yamabe solitons (in short,
CERYS), and it is proven that if anM3ðϵÞ with a constant scalar curvature admits a CERYS, then £Uζ is orthogonal to ζ if and only
if Λ − ϵσ = −2ϵl + ðmr/2Þ + ð1/2Þðp + ð2/3ÞÞ. Further, we study gradient CERYS in M3ðϵÞ and proved that an M3ðϵÞ admitting
gradient CERYS is a generalized conformal η-Einstein manifold; moreover, the gradient of the potential function is pointwise
collinear with the Reeb vector field ζ. Finally, the existence of CERYS in an M3ðϵÞ has been drawn by a concrete example.

1. Introduction

The index of a metric generates variety of vector fields such
as space-like, time-like, and light-like vector fields. There-
fore, the study of manifolds with indefinite metrics becomes
of great importance in physics and relativity. About three
decades ago, the concept of ϵ-Sasakian manifolds was into-
duced by Bejancu and Duggal [1]. Later, Xufeng and Xiaoli
[2] have shown that these manifolds are real hypersurfaces
of indefinite Kaehlerian manifolds. Recently, the manifolds
with indefinite structures have also been studied by several
authors such as [3–7].

The concept of conformal Ricci flow was introduced by
Fischer [8] as a generalization of the classical Ricci flow
equation, which is defined on an n-dimensional Riemannian
manifold M by the equations

∂g
∂t

= −2 S + g
n

� �
− pg, r gð Þ = −1, ð1Þ

where p defines a time dependent nondynamical scalar field
(also called the conformal pressure), g is the Riemannian
metric, and r and S represent the scalar curvature and the

Ricci tensor of M, respectively. The term −pg plays a role
of constraint force to maintain r in the above equation.

In 2015, Basu and Bhattacharya [9] proposed the con-
cept of conformal Ricci soliton on M and is defined by

£Ug + 2S = 1
n

pn + 2ð Þ − 2Λ
� �

g, ð2Þ

where £U represents the Lie derivative operator along the
smooth vector field U on M and Λ ∈ℝ (ℝ is the set of real
numbers).

In [10], Guler and Crasmareanu established a scalar
combination of Ricci and Yamabe flows; this new class of
geometric flows called Ricci-Yamabe flow of type ðl,mÞ
and is defined by

∂
∂t

g tð Þ = 2lS g tð Þð Þ −mr tð Þg tð Þ, g 0ð Þ = g0, ð3Þ

for some scalars l and m.
A solution to the Ricci-Yamabe flow is called Ricci-

Yamabe soliton if it depends only on one parameter group
of diffeomorphism and scaling. A Riemannian manifold is
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said to have a Ricci-Yamabe solitons (RYS) if [11]

£Ug + 2Λ −mrð Þg + 2lS = 0, ð4Þ

where l,m,Λ ∈ℝ.
In [12], Zhang et al. studied conformal Ricci-Yamabe

soliton (CRYS), which is defined on an n-dimensional Rie-
mannian manifold by

£Ug + 2lS + 2Λ −mr −
1
n

pn + 2ð Þ
� �

g = 0: ð5Þ

Motivated by the above studies, we introduce the notion
of conformal η-Ricci-Yamabe soliton (CERYS). A Riemann-
ian manifold M of dimension n is said to have CERYS if

£Ug + 2lS + 2Λ −mr −
1
n

pn + 2ð Þ
� �

g + 2σ η ⊗ η = 0, ð6Þ

where l,m,Λ, σ ∈ℝ and η is a 1-form on M.
If U is the gradient of a smooth function f on M, then

equation (6) is called the gradient conformal η-Ricci-
Yamabe soliton (gradient CERYS) and takes the form

∇2 f + lS + Λ −
mr
2 −

1
2 p + 2

n

� �� �
g + σ η ⊗ η = 0, ð7Þ

where ∇2 f is said to be the Hessian of f . A CRYS (or gradi-
ent CRYS) is said to be shrinking, steady or expanding if Λ
< 0, = 0 or >0, respectively. A CERYS (or gradient CERYS)
reduces to

(i) conformal η − Ricci soliton if l = 1,m = 0,
(ii) conformal η − Yamabe soliton if l = 0,m = 1,
(iii) conformal η − Einstein soliton if l = 1,m = −1:

If SðV1, V2Þ = fΛ − ðmr/2Þ − ð1/2Þðp + ð2/nÞÞggðV1, V2
Þ + σ ηðV1ÞηðV2Þ for all vector fields V1, V2 on M, then we
call the manifold as a conformal η-Einstein manifold. Fur-
ther, if σ = 0, that is, SðV1, V2Þ = fΛ − ðmr/2Þ − ð1/2Þðp + ð
2/nÞÞggðV1, V2Þ, then M is called a conformal Einstein
manifold. If an ϵ-LP-Sasakian 3-manifold M3ðϵÞ satisfies
(6) (resp., (7)), then we say that M3ðϵÞ admits a CERYS
(resp., gradient CERYS).

The study of indefinite structures of the manifolds
admitting various types of solitons is of high interest of
researchers from different fields due to its wide applications
in general relativity, cosmology, quantum field theory, string
theory, thermodynamics, etc. This is why, the researchers
from various fields are attracted by this study. For more
details about the related studies, we recommend the papers
([13–25]) and the references therein.

In this paper, we handle the study of M3ðϵÞ admitting
CERYS. The article is unfolded as follows: Preliminaries on
M3ðϵÞ are the focus of Section 2. Sections 3 and 4 are dedi-
cated to conferring the CERYS and gradient CERYS in M3

ðϵÞ, respectively. At last, we model an example of M3ðϵÞ
which helps to examine the existence of CERYS on M3ðϵÞ.

2. Preliminaries

A differentiable manifold of dimension n is called an ϵ-Lor-
entzian para-Sasakian (in short, M3ðϵÞ), in case it admits a
ð1, 1Þ tensor field φ, a contravariant vector field ζ, a 1-form
η, and a Lorentzian metric g fulfilling [6]

φ2V1 =V1 + η V1ð Þζ, η ζð Þ = −1, ð8Þ

g ζ, ζð Þ = −ϵ, η V1ð Þ = ϵg V1, ζð Þ, φζ = 0, η φV1ð Þ = 0,
ð9Þ

g φV1, φV2ð Þ = g V1,V2ð Þ − ϵη V1ð Þη V2ð Þ, ð10Þ

∇V1
φ

� 	
V2 = g V1, V2ð Þζ + ϵη V2ð ÞV1 + 2ϵη V1ð Þη V2ð Þζ,

ð11Þ

∇V1
ζ = ϵφV1, ð12Þ

for all vector fields V1,V2 on M3ðϵÞ, where ϵ is -1 or 1
according as ζ is space-like or time-like vector field, and ∇
represents the Levi-Civita connection with respect to g.

Moreover, in an M3ðϵÞ, we have [6, 22]

∇V1
η

� 	
V2 =Φ V1, V2ð Þ = g φV1, V2ð Þ, ð13Þ

R V1, V2ð Þζ = η V2ð ÞV1 − η V1ð ÞV2, ð14Þ

R ζ, V1ð ÞV2 = ϵg V1, V2ð Þζ − η V2ð ÞV1, ð15Þ

R ζ, V1ð Þζ = −R V1, ζð Þζ =V1 + η V1ð Þζ, ð16Þ

S V1, ζð Þ = 2η V1ð Þ⟺Qζ = 2ϵζ, ð17Þ

where Φ is a symmetric ð0, 2Þ tensor field, R is the curvature
tensor, and Q is the Ricci operator related by gðQV1, V2Þ
= SðV1, V2Þ.

We note that if ϵ = 1 and ζ is time-like vector field, then
an M3ðϵÞ is usual LP-Sasakian manifold of dimension 3.

Definition 1. An M3ðϵÞ is called a generalized η-Einstein
manifold if its Ricci tensor Sð≠ 0Þ satisfies

S V1, V2ð Þ = ag V1, V2ð Þ + bη V1ð Þη V2ð Þ + cg φV1, V2ð Þ,
ð18Þ

where a, b, and c are scalar functions of ϵ. If c = 0 (resp., b
= c = 0), then M3ðϵÞ is called η-Einstein (resp., Einstein)
manifold.
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Proposition 2. In anM3ðϵÞ, the Ricci tensor S is expressed as

S V1, V2ð Þ = r
2
− ϵ

� �
g V1, V2ð Þ + ϵr

2
− 3

� �
η V1ð Þη V2ð Þ,

ð19Þ

for any V1, V2 on M3ðϵÞ.

Proof. Since in an M3ðϵÞ, the conformal curvature tensor
vanishes, therefore, we have

R V1, V2ð ÞV3 = S V2, V3ð ÞV1 − S V1, V3ð ÞV2
+ g V2, V3ð ÞQV1 − g V1, V3ð ÞQV2

−
r
2 g V2, V3ð ÞV1 − g V1, V3ð ÞV2ð Þ,

ð20Þ

which by putting V3 = ζ then using (9), (14), and (17)
leads to

η V2ð ÞQV1 − η V1ð ÞQV2 = ϵ −
r
2

� �
η V1ð ÞV2 − η V2ð ÞV1ð Þ:

ð21Þ

Again, putting V2 = ζ in (21) then using (8) and (17), we
find

QV1 =
r
2 − ϵ

� �
V1 +

r
2 − 3ϵ

� �
η V1ð Þζ: ð22Þ

The inner product of (22) with V2 gives (19).

3. M3ðϵÞ Admitting CERYS

First, we prove the following theorem.

Theorem 3. If an M3ðϵÞ with the constant scalar curvature
admits a CERYS, then

Λ − ϵσ = −2ϵl + mr
2

+ 1
2

p + 2
3

� �
: ð23Þ

Moreover, £Uζ is orthogonal to ζ if and only if (23) holds.

Proof. Let an M3ðϵÞ admit a CERYS, then by using (19) in
(6), we have

£Ugð Þ V1, V2ð Þ = − l −mð Þr + 2Λ − 2ϵl − p + 2
3

� �� �
g V1, V2ð Þ

− l ϵr − 6ð Þ + 2σf gη V1ð Þη V2ð Þ:
ð24Þ

The covariant differentiation of (24) with respect to V3
leads to

∇V3
£Ug

� 	
V1, V2ð Þ = −l V3rð Þ g φV1, φV2ð Þ +m V3rð Þg V1, V2ð Þ

− l ϵr − 6ð Þ + 2σf g g φV3, V1ð Þη V2ð Þ + g φV3, V2ð Þη V1ð Þð Þ:
ð25Þ

As g is parallel with respect to ∇, then the relation [26].

£U∇V1
g − ∇V1

£Ug − ∇ U ,V1½ �g
� �

V2, V3ð Þ
= −g £U∇ð Þ V1,V3ð Þ, V2ð Þ − g £U∇ð Þ V1, V2ð Þ, V3ð Þ,

ð26Þ

turns to

∇V1
£Ug

� 	
V2, V3ð Þ = g £U∇ð Þ V1, V3ð Þ, V2ð Þ

+ g £U∇ð Þ V1,V2ð Þ, V3ð Þ:
ð27Þ

Due to symmetric property of £U∇, equation (27) takes
the form

2g £U∇ð Þ V1, V2ð Þ, V3ð Þ = ∇V1
£Ug

� 	
V2, V3ð Þ

+ ∇V2
£Ug

� 	
V1, V3ð Þ

− ∇V3
£Ug

� 	
V1, V2ð Þ:

ð28Þ

Using (25) in (28), we have

2g £U∇ð Þ V1, V2ð Þ, V3ð Þ =
−l V1rð Þg φV2, φV3ð Þ + V2rð Þg φV1, φV3ð Þ − V3rð Þg φV1, φV2ð Þf g
+m V1rð Þg V2, V3ð Þ + V2rð Þg V1, V3ð Þ − V3rð Þg V1, V2ð Þf g
− 2 l ϵr − 6ð Þ + 2σf gg φV1, V2ð Þη V3ð Þ:

ð29Þ

By eliminating V3 from the foregoing equation, it fol-
lows that

2 £U∇ð Þ V1, V2ð Þ =
−l V1rð Þ V2 + η V2ð Þζð Þ + V2rð Þ V1 + η V1ð Þζð Þ − Drð Þg φV1, φV2ð Þf g
− 2ϵ l ϵr − 6ð Þ + 2σf gg φV1, V2ð Þζ +m V1rð ÞV2 + V2rð ÞV1 − Drð Þg V1,V2ð Þf g,

ð30Þ

where V1l = gðDl, V1Þ, D stands for the gradient operator
with respect to g. Taking V2 = ζ and using r constant (hence
ðDr = 0Þ and ðζr = 0Þ), (30) turns to

£U∇ð Þ V1, ζð Þ = 0: ð31Þ

The covariant derivative of (31) with respect to V2 leads
to

∇V2
£U∇

� 	
V1, ζð Þ = −ϵ £U∇ð Þ V1, φV2ð Þ, ð32Þ

which by using in ð∇URÞðV1, V2ÞV3 = ð∇V1
£U∇ÞðV2,

V3Þ − ð∇V2
£U∇ÞðV1, V3Þ, we deduce

∇URð Þ V1, ζð Þζ = 0: ð33Þ

The Lie derivative of RðV1, ζÞζ = −V1 − ηðV1Þζ along U
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yields

∇URð Þ V1, ζð Þζ + 2η £Uζð ÞV1 − ϵg V1, £Uζð Þζ = − £Uηð Þ V1ð Þζ,
ð34Þ

which by using (33) reduces to

£Uηð Þ V1ð Þζ = −2η £Uζð ÞV1 + ϵg V1, £Uζð Þζ: ð35Þ

Now, taking the Lie derivative of ηðV1Þ = ϵgðV1, ζÞ, it
follows that

£Uηð ÞV1 = ϵ £Ugð Þ V1, ζð Þ + ϵg V1, £Uζð Þ: ð36Þ

Taking V2 = ζ in (24), we find

£Ugð Þ V1, ζð Þ = −2ϵΛ + ϵmr − 4l + 2σ + ϵ p + 2
3

� �� �
η V1ð Þ:

ð37Þ

Again, taking the Lie-derivative of gðζ, ζÞ = −ϵ, we have

£Ugð Þ ζ, ζð Þ = −2ϵη £Uζð Þ: ð38Þ

Now, by combining the equations (35)–(38), we have

2ϵΛ − ϵmr + 4l − 2σ − ϵ p + 2
3

� �� �
φ2V1 = 0: ð39Þ

From the foregoing equation, it follows that

Λ − ϵσ = −2ϵl + mr
2 + 1

2 p + 2
3

� �
= 0, ð40Þ

where φ2V1 ≠ 0.
Next, from the equations (37)–(40), we observe that ηð

£UζÞ = 0, i.e., £Uζ is orthogonal to ζ. Conversely, from (37)
and (38), one can see that if £Uζ is orthogonal to ζ, then
(40) immediately follows. This completes the proof.

In particular, if l = 1,m = σ = 0, then (40) reduces to Λ
= −2ϵ + ð1/2Þðp + ð2/3ÞÞ. Thus, we have the following.

Corollary 4. If an M3ðϵÞ with the constant scalar curvature
admits a conformal Ricci soliton, then the soliton on M3ðϵÞ
is concluded as follows:

(i) if ϵ = 1, (i.e., ζ is time-like), then the soliton onM3ðϵÞ
is expanding, steady, or shrinking according to p >
ð10/3Þ, = ð10/3Þ, or <ð10/3Þ

(ii) if ϵ = −1, (i.e., ζ is space-like), then the soliton on
M3ðϵÞ is expanding, steady or shrinking according
to p > ð−14/3Þ, = ð−14/3Þ, or <ð−14/3Þ

Next, if m = 1, l = σ = 0, then (40) reduces to Λ = ðr/2Þ
+ ð1/2Þðp + ð2/3ÞÞ. Thus, we have the following.

Corollary 5. If an M3ðϵÞ with the constant scalar curvature
admits a conformal Yamabe soliton, then the soliton on M3

ðϵÞ is expanding, steady or shrinking according to p > −ðr +
ð2/3ÞÞ, = − ðr + ð2/3ÞÞ or <−ðr + ð2/3ÞÞ.

Again, if l = 1,m = −1, σ = 0, then (40) reduces to Λ = −
2ϵ − ðr/2Þ + ð1/2Þðp + ð2/3ÞÞ. Thus, we have the following.

Corollary 6. If an M3ðϵÞ with the constant scalar curvature
admits a conformal Einstein soliton, then the soliton on M3

ðϵÞ is concluded as follows:

(i) if ϵ = 1, (i.e., ζ is time-like), then the soliton onM3ðϵÞ
is expanding, steady, or shrinking according to p > ð
10/3Þ + r, = ð10/3Þ + r or <ð10/3Þ + r

(ii) if ϵ = −1, (i.e., ζ is space-like), then the soliton on
M3ðϵÞ is expanding, steady or shrinking according
to p > ð−14/3Þ + r, = ð−14/3Þ + r or <ð−14/3Þ + r.

Furthermore, let anM3ðϵÞ admit a CERYS at U = ζ, then
from (6), we have

£ζg
� 	

V1, V2ð Þ + 2lS V1, V2ð Þ + 2Λ −mr − p + 2
3

� �� �
g V1, V2ð Þ

+ 2σ η V1ð Þη V2ð Þ = 0,
ð41Þ

which by using the value ð£ζgÞðV1, V2Þ = gð∇V1
ζ, V2Þ +

gðV1, ∇V2
ζÞ = 2ϵgðφV1, V2Þ, we arrive

S V1, V2ð Þ = −
1
l

Λ −
mr
2

−
1
2

p + 2
3

� �� �
g V1, V2ð Þ

−
σ

l
η V1ð Þη V2ð Þ − ϵ

l
g φV1, V2ð Þ, where l ≠ 0:

ð42Þ

By putting V2 = ζ in (42) and using (17), we find

Λ − ϵσ = −2ϵl + mr
2

+ 1
2

p + 2
3

� �
: ð43Þ

Thus, we have the following.

Corollary 7. If an M3ðϵÞ admits a CERYS at U = ζ, then
M3ðϵÞ is a generalized conformal η-Einstein manifold and
the scalars Λ and σ are related by (43). Moreover, the nature
of the soliton on M3ðϵÞ is concluded as Corollaries 4 and 6.

Definition 8. A vector field U on an M3ðϵÞ is called torse
forming vector field in case [27].

∇V1
U = f V1 + γ V1ð ÞU , ð44Þ

where f and γ are smooth function and 1-form, respectively.
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Let us consider an M3ðϵÞ admitting a CERYS, further
considering the Reeb vector field ζ as a torse-forming vector
field. Thus, from (44), we have

∇V1
ζ = f V1 + γ V1ð Þζ, ð45Þ

for all V1 on M3ðϵÞ. Taking the inner product of (45)
with ζ, we find

g ∇V1
ζ, ζ

� 	
= ϵ f η V1ð Þ − ϵγ V1ð Þ: ð46Þ

Also, from (12), we find

g ∇V1
ζ, ζ

� 	
= 0: ð47Þ

Thus, the last two equations give γ = f η (where ϵ ≠ 0),
and hence (45) turns to

∇V1
ζ = f V1 + η V1ð Þζð Þ: ð48Þ

Now, in view of (48), we have

£ζg
� 	

V1, V2ð Þ = 2f g V1, V2ð Þ + η V1ð Þη V2ð Þf g: ð49Þ

By virtue of (49), (42) turns to

S V1, V2ð Þ = −
1
l

Λ + f −
mr
2 −

1
2 p + 2

3

� �� �
g V1, V2ð Þ

−
1
l
ϵ f + σð Þ η V1ð Þη V2ð Þ, l ≠ 0:

ð50Þ

Thus, we state the following.

Theorem 9. If an M3ðϵÞ admits a CERYS at U = ζ with
torse-forming vector field ζ. Then, M3ðϵÞ is a conformal η-
Einstein manifold.

In particular, if σ = −ϵ f , then (50) takes the form SðV1
, V2Þ = −ð1/lÞfΛ + f − ðmr/2Þ − ð1/2Þðp + ð2/3ÞÞggðV1, V2Þ,
l ≠ 0: Thus, we have the following.

Corollary 10. An M3ðϵÞ admitting a CERYS with torse-
forming vector field ζ is a conformal Einstein manifold if σ
= f for space-like vector field (or σ = −f for time-like vector
field).

4. Gradient CERYS on M3ðϵÞ
Let the metric g onM3ðϵÞ be a gradient CERYS. Then, equa-
tion (7) can be expressed as

∇V2
Df + lQV2 + Λ −

mr
2 −

1
2 p + 2

3

� �� �
V2 + ϵση V2ð Þζ = 0,

ð51Þ

for all V2 on M3ðϵÞ, where D stands for the gradient
operator of g:

The covariant derivative (51) with respect to V1 leads to

∇V1
∇V2

Df = −l ∇V1
Q

� 	
V2 +Q ∇V1

V2
� 	
 �

− Λ −
mr
2 −

1
2 p + 2

3

� �� �
∇V1

V2 +m
V1 rð Þ
2 V2

− ϵσ g φV1, V2ð Þζ + η ∇V1
V2

� 	
ζ + ϵη V2ð ÞφV1


 �
:

ð52Þ

Interchanging the role of V1 and V2 in (52), we have

∇V2
∇V1

Df = −l ∇V2
Q

� 	
V1 +Q ∇V2

V1
� 	
 �

− Λ −
mr
2 −

1
2 p + 2

3

� �� �
∇V2

V1 +m
V2 rð Þ
2 V1

− ϵσ g φV2, V1ð Þζ + η ∇V2
V1

� 	
ζ + ϵη V1ð ÞφV2


 �
:

ð53Þ

By using (51)–(53), the well-known relation RðV1, V2Þ
Df = ∇V1

∇V2
Df − ∇V2

∇V1
Df − ∇½V1,V2�Df takes the form

R V1, V2ð ÞDf = l ∇V2
Q

� 	
V1 − ∇V1

Q
� 	

V2

 �
+ m

2 V1 rð ÞV2 −V2 rð ÞV1f g
+ σ η V1ð ÞφV2 − η V2ð ÞφV1f g:

ð54Þ

The covariant differentiation of (22) with respect to V2
gives

∇V2
Q

� 	
V1 =

V2 rð Þ
2 V1 + η V1ð Þζð Þ

+ r
2 − 3ϵ

� �
g φV1, V2ð Þζ + ϵη V1ð ÞφV2ð Þ,

ð55Þ

which by replacing V1 = ζ then using (8) and (9) reduces to

∇V2
Q

� 	
ζ = −

ϵr
2 − 3

� �
φV2: ð56Þ

Again, replacing V2 by ζ in (55) and using (9), we find

∇ζQ
� 	

V1 =
ζrð Þ
2 V1 + η V1ð Þζð Þ: ð57Þ

Subtracting (57) from (56), we find

∇V2
Q

� 	
ζ − ∇ζQ

� 	
V1 = −

ϵr
2 − 3

� �
φV2 −

ζrð Þ
2 V1 + η V1ð Þζð Þ:

ð58Þ

Now, putting V1 = ζ in (54) then using (8) and (9), we
have

R ζ,V2ð ÞDf = l ∇V2
Q

� 	
ζ − ∇ζQ

� 	
V2


 �
+ m

2 ζ rð ÞV2 −V2 rð Þζf g − σφV2:

ð59Þ
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Taking the inner product of foregoing equation with ζ
and using (58), we infer

g R ζ, V2ð ÞDf , ζð Þ = ϵm
2 ζ rð Þη V2ð Þ +V2 rð Þf g: ð60Þ

From relation (15), we have

g R ζ, V2ð ÞDf , ζð Þ = − V2 fð Þ − ζ fð Þη V2ð Þ: ð61Þ

By combining equations (60) and (61), it follows that ð
V2 f Þ + fζf + ðϵmζðrÞ/2ÞgηðV2Þ + ðϵm/2ÞV2ðrÞ = 0 for any
V2 on M3ðϵÞ. Therefore, for r constant, we have

U =Df = −ϵ ζfð Þζ: ð62Þ

This informs that the vector field U is pointwise collinear
with ζ:

Now, taking the covariant derivative of (62) with respect
to V1, we have

∇V1
Df = −ϵ V1 ζfð Þζf g − ζfð ÞφV1: ð63Þ

The inner product of (63) with ζ gives

g ∇V1
Df , ζ

� 	
= V1 ζfð Þ: ð64Þ

From (63) and (64), we arrive

∇V1
Df = −ϵg ∇V1

Df , ζ
� 	

ζ − ζfð ÞφV1: ð65Þ

The inner product of (51) with ζ leads to gð∇V1
Df , ζÞ

= f−2l − ϵΛ + σ + ðϵmr/2Þ + ðϵ/2Þðp + ð2/3ÞÞgηðV1Þ, which
in view of (40) reduces to

g ∇V1
Df , ζ

� 	
= 0: ð66Þ

Thus, (51) together with (65) and (66) takes the form

QV1 = −
1
l

Λ −
mr
2 −

1
2 p + 2

3

� �� �
V1 −

ϵσ

l
η V1ð Þζ + 1

l
ζfð ÞφV1, l ≠ 0:

ð67Þ

This informs that M3ðϵÞ is a generalized conformal η-
Einstein manifold.

Next, from (51) and (63), we have

lQV1 + Λ −
mr
2 −

1
2 p + 2

3

� �� �
V1 + ϵση V1ð Þζ = ϵ V1 ζfð Þζf g + ϵ ζfð ÞφV1:

ð68Þ

By putting V1 = ζ in (68) then using (8), (9), and (17), we
find

2ϵl +Λ − ϵσ −
mr
2 −

1
2 p + 2

3

� �� �
ζ = ϵ ζ ζfð Þζf g: ð69Þ

The inner product of (69) with ζ and the use of (9) and
(40) leads to ζðζf Þ = 0:

If possible, we suppose that ζ = ∂/∂t then the above
equation takes the form

∂2 f
∂t2

= 0: ð70Þ

It is noticed that the potential function f = d1 + td2
where d1 and d2 are independent of t, satisfies equation
(70). By considering the above facts, we can state the
following.

Theorem 11. Let an M3ðϵÞ admit a gradient CERYS. Then,

(i) M3ðϵÞ is a generalized conformal η-Einstein manifold

(ii) the gradient of the potential function f is pointwise
collinear with the Reeb vector field ζ and f satisfies
equation (70) and it is governed by f = d1 + td2:

Example 1. We consider the manifold M3 = fðu1, u2, u3Þ ∈
R3g, where ðu1, u2, u3Þ are the usual coordinates in R3. Let
κ1, κ2, and κ3 be the vector fields on M3 given by

κ1 = cosh u3
∂
∂u1

+ sinh u3
∂
∂u2

, κ2

= sinh u3
∂
∂u1

+ cosh u3
∂
∂u2

, κ3 = ϵ
∂
∂u3

= ζ,
ð71Þ

and these are linearly independent at each point of M3.
Let g be the Lorentzian metric defined by

g κi, κj
� 	

=
1, for 1 ≤ i ≤ 2,
−ϵ, for i = j = 3,
0, otherwise:

8>><
>>:

ð72Þ

We define η, a 1-form as ηðV1Þ = ϵgðV1, κ3Þ for all V1
on M3. Let φ be the ð1, 1Þ tensor field defined by

φκ1 = −κ2, φκ2 = −κ1, φκ3 = 0: ð73Þ

Using the linearity of φ and g, we yield

η κ3ð Þ = −1, φ2V1 =V1 + η V1ð Þζ, g φV1, φV2ð Þ
= g V1, V2ð Þ − ϵη V1ð Þη V2ð Þ, ð74Þ

for all V1, V2 on M3

Now, by direct computations, we obtain

κ1, κ2½ � = 0,  κ2, κ3½ � = −ϵκ1,  κ1, κ3½ � = −ϵκ2: ð75Þ
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By using well-known Koszul’s formula, we find

∇κ1
κ1 = 0, ∇κ2

κ1 = −κ3, ∇κ3
κ1 = 0, ∇κ1

κ2 = −κ3, ∇κ2
κ2 = 0,

∇κ3
κ2 = 0, ∇κ1

κ3 = −ϵκ2, ∇κ2
κ3 = −ϵκ1, ∇κ3

κ3 = 0:
ð76Þ

Let V1 =V1
1κ1 +V1

2κ2 +V1
3κ3 and V2 =V2

1κ1 + V2
2

κ2 +V2
3κ3 be the vector fields on M3. Then, for κ3 = ζ one

can easily verify that

∇V1
ζ = ϵφV1 and  ∇V1

φ
� 	

V2

= g V1, V2ð Þζ + ϵη V2ð ÞV1 + 2ϵη V1ð Þη V2ð Þζ:
ð77Þ

Thus, the manifold M3 is an ϵ-LP-Sasakian 3-manifold.
By using the above results, we can easily obtain the fol-

lowing components of the curvature tensor R:

R κ1, κ2ð Þκ1 = ϵκ2, R κ1, κ2ð Þκ2 = −ϵκ1, R κ1, κ2ð Þκ3 = 0,
R κ2, κ3ð Þκ1 = 0, R κ2, κ3ð Þκ2 = −ϵκ3, R κ2, κ3ð Þκ3 = −κ2,
R κ1, κ3ð Þκ1 = −ϵκ3, R κ1, κ3ð Þκ2 = 0, R κ1, κ3ð Þκ3 = −κ1:

ð78Þ

We calculate the Ricci tensors as follows:

S κ1, κ1ð Þ = S κ2, κ2ð Þ = 0, S κ3, κ3ð Þ = −2⟹ r = 2: ð79Þ

By putting V1 =V2 = κ3 in (42) and using Sðκ3, κ3Þ = −2,
it follows that

Λ − ϵσ = −2ϵl + mr
2 + 1

2 p + 2
3

� �
: ð80Þ

Again putting V1 = V2 = κ1 in (42) and using Sðκ1, κ1Þ
= 0, we obtain Λ = ðmr/2Þ + ð1/2Þðp + ð2/3ÞÞ: Thus, from
(80), we find σ = 2l. Hence, we can say that for Λ = ðmr/2Þ
+ ð1/2Þðp + ð2/3ÞÞ and σ = 2l, the data ðg, ζ, l,m,Λ, σÞ
defines a CERYS on the manifold ðM3, φ, ζ, η, g, ϵÞ:
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We present a new three-dimensional global potential energy surface (PES) for the ground state of Na2F system. A total of about
1460 points were generated for the PES. All of the points have been carried out by using the coupled-cluster single-, double-, and
perturbative triple-excitations [CCSD(T)]. Two Jacobi coordinates, R and θ, and the frozen molecular equilibrium geometries
were used. We mixed the basis sets of aug-cc-pCVQZ for the sodium atom and the basis sets of aug-cc-pCVDZ for the
fluorine atom with an additional (3s3p2d) set of midbond functions; the energies obtained were extrapolated to the complete
basis set limit. The whole calculation adopted supramolecular approximation approach. We divided the potential energy
surface into three regions, the peak region, the well region, and the long range region, and calculate the single point energy,
respectively. Our ab initio calculations will be useful for future studies of the collision-induced absorption for the Na2-F dimer,
and it can be used for modeling the dynamical behavior in Na2F system too.

1. Introduction

Because the alkali atoms are small electron affinity, the excess
electron in the alkali anion is loosely bound in space. Recently,
Alkali metal diatomicmolecules are found to be form stoichio-
metric system with various new elements. On the contrary,
sodium fluoride phosphate is the core of the electrolyte mate-
rial NaF, and other electronic injection material introductions
of organic optoelectronic devices have become a good lumi-
nescent material [1–4]. Na2F system belongs to super valence
compounds containing odd electronic; it has good nonlinear
optical properties, so the scientists study on super molecular
structure of alkali metal fluoride which has always maintained
a strong interest in Na2F system [5–7].

The first thing we should do is to build precise PES when
we studied reaction kinetics characteristics. In the past ten
years, some studies on polarization molecular science of
the system offer Na2F system structure and the dynamic
response process [8–14]. Through investigation, we learned
that most of the potential energy surface of Na2F system
before is studied using semiempirical fitting.

In our calculations, there were 1460 adiabatic energy
points chosen from previous 3D diabatic PES. In this paper,

our calculations covered a wide range of interaction energy
of the potential energy surface including the peak area, the
well area, and the long-range area. We considered this sys-
tem is vibrational weakly bound van der Waals complexes
and the good performance on similar optimization, then
we used the CCSD (T) calculation method for single point
of interaction energy. By fitting, we gave the algebraic ana-
lytic function of the Na2F system. Finally, we analyzed the
three-dimensional characteristics of the potential energy
surface.

2. Methodology

The electronic related functions must be considered when
we do calculation, because the single-point energy calcula-
tion and geometric optimization (including optimization to
transition states) are the most common types of tasks. The
sensitivity of geometric optimization to the basis group is
much lower than the calculation of single point energy,
and the time of geometric optimization is ten times, dozens
of times, or even hundreds of times of the single point calcu-
lation, so the geometric optimization absolutely does not
need large basis group; using medium basis group is enough.
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In consideration of computational efficiency, we have cho-
sen the basis sets of aug-cc-pCVQZ for the sodium atom
and the basis sets of aug-cc-pCVDZ for the fluorine atom.
In order to improve the convergence of basis set, we added
an additional (3s3p2d) set of midbond functions (mf) at
the midpoint of R. We used quantum analysis framework
in the process of computing the Jacobi coordinates system
(r, R, θ). As shown in Figure 1, r is the distance of Na-Na,
R is the length of the vector connecting the Na-Na center
of mass and the F atom, and θ is the angle between R and
the x-axis. For a given value of R, the angle θ changes from
0° to 360° in steps of 10°. We calculated 1460 geometries
for the whole interaction energy, and the ground state of
the spacing is re = 3:228a0 [15].

The whole ab initio calculations have been calculated
with Gaussian 09W perform packet [16]. We considered
all electronic correlation calculation processes. When we cal-
culated the interaction between alkali metal pairs to the
atom fluoride for the supramolecular systems described
here, they are only weakly adsorbed on a substrate, so the
method of supramolecular was used.

In order to avoid the fluorine atom to be too close to the
geometric center of Na-Na set, in the process of calculation,
we added diffuse augmentation functions to ensure that the
basis permits polarization by Na-Na. In the peak area (the
short range) 0a0 < R < 4a0 and θ = −60° ~ 60° and120° ~ 240°,
we used the interval equal step way ΔR = 0:1a0. In the well
area0a0 < R < 4a0andθ = −70° ~ 110° and 250° ~ 290°, we used
the interval equal step way ΔR = 0:2a0. In the long-range area
4a0 < R < 12a0 and θ = −0° ~ 360°, we used the interval equal
step way ΔR = 1a0. The aim is to hope that it describes the
characteristics of the peak value and potential well more
clearly.

We calculated the freeze the nuclear energy (E) as follows:

E r, R, θð Þ = Ep r, R, θð Þ + Ew r, R, θð Þ + El r, R, θð Þ ð1Þ

where Eð::Þ represents the total electronic energy of respective
species including zero point correction. The function contains
the location of the potential peak range Ep, the well area Ew,
and the long range El. The peak range and the well range
include a damped dispersion expansion.

The exponential functional form is as follows:

E r, R, θð Þ = 〠
8

n=4
〠

l=0,2⋯
f4 A θð ÞRð Þ × B θð Þ

Rn P0
l cos θð Þ, ð2Þ

where the term f nðxÞ is defined by

f n xð Þ = 1 − e−x 〠
n

k=0

xk

k!
: ð3Þ

Aðr, θÞ and Bðr, θÞ denote expansions in Legendre poly-
nomials Plðcos θÞ:

A r, θð Þ = 〠
L1

l=0
al rð ÞPl cos θð Þ,

B r, θð Þ = 〠
L1

l=0
bl rð ÞPl cos θð Þ:

ð4Þ

We present all the fitting parameters for the analytic PES
in Table 1; the 1460 ab initio points on the PES are fitted to a
10-parameter algebraic form. The maximum error is
0.0565%, and the average absolute error is less than
0.00483%.

3. Results and Discussion

We show the behavior of the potential energy surface from
ten different anglers as we can see in Figure 2. From the pic-
ture, we can analyze that the peak appears in the region of
0a0 < R < 3a0, with the increase of R ten different points of
view of potential energy are gradually increasing. An obvi-
ous the potential barrier appears at θ = 0°. After reaching dif-
ferent peaks, the potential energy reduces with the increase
of R. In the scope of R > 5a0, the potential energy changes
flatten. Potential energy curve appearing in the overall trend
is consistent; there are differences between the local

Na

R

mf

F

r x

y

O Na

𝜃

Figure 1: The coordinate system for calculation.

Table 1: Parameters for the analytic PES of the Na2F system.

l al bl

0 5:272 × 10−7 4:011 × 10−6

2 1:411 × 10−5 8:643 × 10−7

4 9:565 × 10−5 6:153 × 10−7

6 3:099 × 10−8 2:225 × 10−7

8 5:057 × 10−6 2:457 × 10−5
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phenomena. The calculation results show that the highest
peak to linearity of Na-Na-F angle of 0° the height of the bar-
rier is 721 eV at R = 2:6a0.

Figure 3 shows the details of Figure 2 when we discuss R
in the potential well area. In Figure 3, we can clearly see that
an obvious potential well appears at θ = 90°. When the angle
changes from 70 to 90 degrees by the interval equal step way
Δθ = 10°, the position of the potential well also decreases
with the increase of R coordinates, 90 degrees at the mini-
mum, that is, the potential energy surface potential well
position. The shallow potential well appears as the Na-F-
Na configuration angle of 90°; the depth of potential well is
-5.3061 eV at R = 3a0.

In Figure 4, we can see clearly that as theRincreases in
the large area of the long range, the interaction converges
to the same asymptotic value. The shape of a “T” backwards
(Na-F-Na) is the lowest energy configuration of -5.3061 eV
at R = 3a0 which is close to that obtained from the experi-
ment [17].

In Figure 5, we show the 3D-PES for angles θ = −0° ~
360°. The figure shows that the potential energy changes
the present strong anisotropy. The highest peak to linearity
of Na-Na-F angle of 0° is very clear. Also we can see that a
shallow well appears at θ = 90°.

There are two obvious peaks on the ground state poten-
tial energy surface in Figure 5. The peak corresponds to the
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Figure 2: The analysis of the peak from 0 to 90 degrees for the potential curve.
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left Na2+F, and the right peak corresponds to the Na-F-Na
reactants. We can easily see that the whole potential energy
changes in large angle are anisotropic. By analytic potential
energy function, we can know that whether there are two
symmetric saddle points on the static potential energy sur-

face, reaction for the threshold. Such features, reflects the
alkali metal diatomic molecules interact with the fluorine
atoms, in short range has the strong exclusive but in the
long-range attract each other.

In Table 2, we compared the calculation results with the
experimental data and analyzed the previous calculation
results of others. Because the basis group used in our calcu-
lation is appropriate, there is not much difference with the
experimental results, so our model is reasonable and the cal-
culation is reliable.

4. Conclusion

We adopted ab initio calculation method to calculate the
ground state potential energy of Na2F system and re fixed
at 3.228a0. We draw out the potential energy surface in the
whole process of the three-dimensional space, by the conti-
nental scientific drilling CCSD (T) method and aug-cc-
pCVQZ/aug-cc-pCVDZ+332 basis set for the sodium atom
and the fluorine atom, respectively. Compared with previous
experience and semiempirical potential curves earlier, our
theoretical results agree well with the experimental data.
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Table 2: Comparison of the barriers with experimental values.

Parameters
Experimental data

(Ref. [17])
Ref.
[12]

Relative
error

Ours
Relative
error

RNa‐Nai a0ð Þ 3.30 3.224 2.3% 3.228 2.18%

D eVð Þ 5.3 5.72 7.9% 5.306 0.1%

4 Advances in Mathematical Physics



Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors acknowledge the key projects of science research in
the University of Anhui Province (Grants: KJ2020A0695,
KJ2021A1059, and KJ2020A0699); the Teaching Demonstra-
tion Class Project in Anhui Province (Grant:
2020SJJXSFK2400); the Innovation Project of Excellent Talents
Training in Anhui Province (Grant: 2020zyrc153); Tongling
University grassroots party construction model branch project;
the Key Teaching Research Projects in Anhui Province
(2021jyxm154); the College Students’ Innovative Training Pro-
gram (Grants: tlxy2022103830001 and tlxy2022103830004).

References

[1] F. A. Fernandez-Lima, O. P. VilelaNeto, A. S. Pimentel et al.,
“A theoretical and experimental study of positive and neutral
LiF clusters produced by fast ion impact on a polycrystalline
LiF target,” The Journal of Physical Chemistry, vol. 113, no. 9,
pp. 1813–1821, 2009.

[2] J. E. Del Bene, I. Alkorta, and J. Elguero, “Characterizing com-
plexes with F−Li+−F lithium bonds: structures, binding ener-
gies, and spin−spin coupling constants,” The Journal of
Physical Chemistry A, vol. 113, no. 29, pp. 8359–8365, 2009.

[3] B.-Q. Wang, Z.-R. Li, D. Wu, and F.-F. Wang, “Structures and
static electric properties of novel alkalide anions F-Li+Li- and
F-Li3

+Li3,” The Journal of Physical Chemistry A, vol. 111,
no. 28, pp. 6378–6382, 2007.

[4] A. A. Redkin and O. Y. Tkacheva, “Electrical conductivity of
molten fluoride−oxide melts,” Journal of Chemical & Engi-
neering Data, vol. 55, no. 5, pp. 1930–1939, 2010.

[5] J. Cheng, R. Li, Q. Li et al., “Prominent effect of alkali metals in
halogen -bonded complex of MCCBr−NCM′(M and M′= H,
Li, Na, F, NH2, and CH3),” The Journal of Physical Chemistry
A, vol. 114, no. 37, pp. 10320–10325, 2010.

[6] H.Wan, Z. Liu, G. Liu et al., “A strategy to improve the electro-
chemical performance of Ni-rich positive electrodes: Na/F-co-
doped LiNi0.6Mn0.2Co0.2O2,” Chinese Physics B, vol. 30, no. 7,
pp. 073101–073151, 2021.

[7] Z. Z. Hao, S. L. Wu, Y. C. Wang, G. P. Luo, H.-l. Wu, and X.-
g. Duan, “Acting mechanism of F, K, and Na in the solid phase
sintering reaction of the Baiyunebo iron ore,” International
Journal of Minerals, Metallurgy, and Materials, vol. 17, no. 2,
pp. 137–142, 2010.

[8] A. W. S. Antunes, W. F. Da Cunha, G. M. E. Silva, J. B. L. Mar-
tins, and R. Gargano, “Dynamical properties and thermal rate
coefficients for theNa + HFreaction using genetic algorithm,”
International Journal of Quantum Chemistry, vol. 110, no. 5,
pp. 1070–1079, 2010.

[9] L. Xiao-jun, H. Xian-li, and S. Rui-juan, “Theoretical study of
structures, stabilities, and infrared spectra of the alkali-metal
(Li2F)nM (M=Li, Na, K; n=1, 2) clusters,” Spectroscopy and
Spectral Analysis, vol. 7, pp. 2064–2069, 2018.

[10] W. Chen, Z. R. Li, D. Wu et al., “Nonlinear optical properties
of alkalides Li+(calix[4]pyrrole)M− (M = Li, Na, and K): alkali
anion atomic number dependence,” Journal of the American
Chemical Society, vol. 128, no. 4, pp. 1072-1073, 2006.

[11] S. V. Abramov, N. S. Chilingarov, A. Y. Borshchevsky, and
L. N. Sidorov, “Mass spectrometric determination of partial
pressures of ions in the saturated vapor over the NaF-Na3AlF6
system,” International Journal of Mass Spectrometry, vol. 231,
no. 1, pp. 31–35, 2004.

[12] A. K. Srivastava and N. Misra, “Structures, stability, and elec-
tronic properties of novel superalkali-halogen clusters,” Jour-
nal of Molecular Modeling, vol. 21, no. 6, p. 147, 2015.

[13] E. Cochran, G. Muller, and G. Meloni, “Stability and bonding
of new superalkali phosphide species,” Dalton Transactions,
vol. 44, no. 33, pp. 14753–14762, 2015.

[14] Z. J. Li, Z. R. Li, F. F. Wang et al., “Cis–trans isomerization and
spin multiplicity dependences on the static first hyperpolariz-
ability for the two-alkali-metal-doped saddle[4]pyrrole com-
pounds,” Theoretical Chemistry Accounts, vol. 122, no. 5-6,
pp. 305–311, 2009.

[15] A. K. Srivastava and N. Misra, “M2X (M= Li, Na; X= F, cl): the
smallest superalkali clusters with significant NLO responses
and electride characteristics,” Molecular Simulation, vol. 42,
no. 12, pp. 981–985, 2016.

[16] “Gaussian 09W is a package of ab initio programs written by
M J Frisch, G W Trucks with contributions from others; for
more information,” http://gaussian.com/glossary/g09/.

[17] M.-C. Heitz, G. Durand, F. Spiegelman, and C. Meier, “Time-
resolved photoelectron spectra as probe of excited state
dynamics: a full quantum study of the Na2F cluster,” Journal
of Chemical Physics, vol. 118, no. 3, pp. 1282–1291, 2003.

5Advances in Mathematical Physics

http://gaussian.com/glossary/g09/


Research Article
Levi-Civita Ricci-Flat Doubly Warped Product
Hermitian Manifolds

Qihui Ni, Yong He , Jinhua Yang, and Hui Zhang

School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, China

Correspondence should be addressed to Yong He; heyong@xjnu.edu.cn

Received 19 May 2022; Accepted 12 June 2022; Published 5 July 2022

Academic Editor: Mehmet Atçeken

Copyright © 2022 Qihui Ni et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let ðM1, gÞ and ðM2, hÞ be two Hermitian manifolds. The doubly warped product (abbreviated as DWP) Hermitian manifold of
ðM1, gÞ and ðM2, hÞ is the product manifold M1 ×M2 endowed with the warped product Hermitian metric G = f 22g + f 21h, where
f1 and f2 are positive smooth functions on M1 and M2, respectively. In this paper, the formulae of Levi-Civita connection, Levi-
Civita curvature, the first Levi-Civita Ricci curvature, and Levi-Civita scalar curvature of the DWP-Hermitian manifold are
derived in terms of the corresponding objects of its components. We also prove that if the warped function f1 and f2 are
holomorphic, then the DWP-Hermitian manifold is Levi-Civita Ricci-flat if and only if ðM1, gÞ and ðM2, hÞ are Levi-Civita
Ricci-flat manifolds. Thus, we give an effective way to construct Levi-Civita Ricci-flat DWP-Hermitian manifold.

1. Introduction

It is well-known that the classification of various Ricci-flat
manifolds are important topics in differential geometry. In
1967, Tani [1] first proposed the concept of Ricci-flat space
in Riemannian geometry. Alvarez-Gaume and Freedman [2]
showed that Ricci-flat space is a kind of space with great signif-
icance in theoretical physics, which attracted many scholars’
research [3, 4]. In 1988, Bando and Kobayashi [5] character-
ized the Ricci-flat metric on Einstein-K€ahler manifold. In
2014, Liu and Yang [6] gave a sufficient and necessary condi-
tion for Hopf manifolds to be Levi-Civita Ricci-flat.

Levi-Civita connection is one of the most natural
and effective tools for studying Riemannian manifolds
[7]. In the complex case, Hsiung et al. [8] studied the
general sectional curvature, the holomorphic sectional
curvature, and holomorphic bisectional curvature of
almost Hermitian manifolds by Levi-Civita connection
and showed the relevance of above sectional curvatures.
In 2012, Liu and Yang [8] gave Ricci-type curvatures
and scalar curvatures of Hermitian manifolds by Levi-
Civita connection (resp. Chern connection and Bismut
connection) and obtained the relevance of these
curvatures.

Warped product and twisted product are important
methods used to construct manifold with special curvature
properties in Riemann geometry and Finsler geometry. In
Riemann geometry, Bishop and O’Neill [9] constructed Rie-
mannian manifolds with negative curvature by warped
product. Then, Brozos-Va’zquez et al. [10] used the warped
product metrics to construct new examples of complete
locally conformally flat manifolds with nonpositive curva-
ture. After that, Leandro et al. [11] proved that an Einstein
warped product manifold is a compact Riemannian mani-
fold and its fibre is a Ricci-flat semi-Riemannian manifold.

On the other hand, warped product was extended to real
Finsler geometry by the work of Asanov [12, 13]. In 2016,
He and Zhong [14] generalized the warped product to com-
plex Finsler geometry and proved that if complex Finsler
manifold ðM1, F1Þ and ðM2, F2Þ are projectively flat, then
the DWP-complex Finsler manifold is projectively flat if
and only if the warped functions are positive constants.
Moreover, He and Zhang [15] extended the doubly warped
product to Hermitian case and got the Chern curvature,
Chern Ricci curvature, and Chern Ricci scalar curvature of
DWP-Hermitian manifold. They also gave the necessary
and sufficient condition for a compact nontrivial DWP-
Hermitian manifold to be of constant holomorphic sectional
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curvature. Recently, Xiao et al. [16] systematically studied
holomorphic curvatures of doubly twisted product complex
Finsler manifolds, and they [17] gave the necessary and suf-
ficient condition for doubly twisted product complex Finsler
manifold to be locally dually flat.

Thus, it is natural and interesting to ask the following
question. Let ðM1, gÞ and ðM2, hÞ be two Levi-Civita Ricci-
flat Hermitian manifolds, whether the DWP-Hermitian
manifold is also a Levi-Civita Ricci-flat Hermitian manifold.
Our purpose of doing this is to study the possibility of con-
structing Levi-Civita Ricci-flat manifold.

The structure of this paper is as follows. In Section 2, we
briefly recall some basic concepts and notations which we
need in this paper. In Section 3, we derive formulae of
Levi-Civita connection, Levi-Civita curvature, the first
Levi-Civita Ricci curvature, and Levi-Civita scalar curvature
of DWP-Hermitian manifolds. In Section 4, we show that if
the warped function f1 and f2 are holomorphic, then the
DWP-Hermitian manifold is Levi-Civita Ricci-flat if and
only if ðM1, gÞ and ðM2, hÞ are Levi-Civita Ricci-flat
manifolds.

2. Preliminary

Let ðM, J ,GÞ be a Hermitian manifold with dimℂM = n;
here, J is the complex structure, and G is a Hermitian metric.
For a point p ∈M, the complexified tangent bundle Tℂ

p M
= TpM ⊗ C is decomposed as

Tℂ
p M = T1,0

p M ⊕ T0,1
p M, ð1Þ

where T1,0
p M and T0,1

p M are the eigenspaces of J correspond-

ing to the eigenvalues
ffiffiffiffiffiffi
−1

p
and −

ffiffiffiffiffiffi
−1

p
, respectively.

In this paper, we set ∂α = ∂/∂zα and ∂�α = ∂/∂ �zα. Let z =
ðz1,⋯,znÞ be the local holomorphic coordinates on M; then,
the vector fields ð∂1,⋯,∂nÞ form a basis for T1,0

p M. Levi-

Civita connection ∇LC on the holomorphic tangent bundle
T1,0
p M is defined by [18]

∇LC = π∘∇ : Γ M, T1,0M
� �

⟶
∇

Γ M, TpM ⊗ TpM
� �

⟶
π

Γ M, TpM ⊗ T1,0M
� �

:

ð2Þ

In local coordinate system, its connection is as follows
[18]:

∇LC
∂/∂zα

∂
∂zβ

£° = Γ
γ
αβ

∂
∂zγ

,

∇LC
∂/∂�zε

∂
∂zβ

£° = Γ
γ
�εβ

∂
∂zγ

,
ð3Þ

where the Levi-Civita connection coefficients Γ
γ
αβ and Γ

γ
�αβ

are given by [18]

Γ
γ
αβ =

1
2G

γ�ε ∂αGβ�ε + ∂βGα�ε

� �
, ð4Þ

Γ
γ
�αβ =

1
2G

γ�ε ∂�αGβ�ε − ∂�εGβ�α

� �
: ð5Þ

Let K ∈ ΓðM,Λ2TpM ⊗ T∗1,0M ⊗ T1,0MÞ be the Levi-
Civita curvature tensor such as

K X, Yð Þs = ∇LC
X ∇LC

Y s − ∇LC
Y ∇LC

X s − ∇LC
X,Y½ �s, ð6Þ

where X, Y ∈ TpM, s ∈ T1,0M. In the local coordinate system,
the coefficients of K are given by

Kε
α�βγ = − ∂�βΓ

ε
αγ − ∂αΓ

ε
�βγ + Γλ

αγΓ
ε
�βλ − Γλ

�βγΓ
ε
λα

h i
: ð7Þ

Definition 1 (see [6]). The first Levi-Civita Ricci curvature
Kð1Þ on the Hermitian manifold ðM, J ,GÞ is defined by

K 1ð Þ =
ffiffiffiffiffiffi
−1

p
K 1ð Þ

α�β
dzα∧d�zβ, ð8Þ

where

K 1ð Þ
α�β

=Gγ�δKα�βγ�δ, ð9Þ

Kα�βγ�δ =Gε�δK
ε
α�βγ: ð10Þ

Levi-Civita Ricci scalar curvature SLC on T1,0M is given
by

SLC = Gα�βK 1ð Þ
α�β
: ð11Þ

Definition 2 (see [6]). Hermitian metric G on M is called
Levi-Civita Ricci-flat if

K 1ð Þ Gð Þ = 0: ð12Þ

Let ðM1, gÞ and ðM2, hÞ be two Hermitian manifolds
with dimℂM1 =m and dimℂM2 = n; then, M =M1 ×M2 is
a Hermitian manifold with dimℂM =m + n.

Denote π1 : M⟶M1 and π2 : M⟶M2 the natural
projections. Note that π1ðzÞ = z1 and π2ðzÞ = z2 for every z
= ðz1, z2Þ ∈M with z1 = ðz1,⋯, zmÞ ∈M1 and z2 = ðzm+1,⋯
, zm+nÞ ∈M2.

Denote dπ1 : T
1,0ðMÞ⟶ T1,0M1, dπ2 : T

1,0ðMÞ⟶
T1,0M2 the holomorphic tangent maps induced by π1 and
π2, respectively. Note that dπ1ðz, vÞ = ðz1, v1Þ and dπ2ðz, vÞ
= ðz2, v2Þ for every v = ðv1, v2Þ ∈ T1,0

z ðMÞ with v1 = ðv1,⋯,
vmÞ ∈ T1,0

z1
M1 and v2 = ðvm+1,⋯,vm+nÞ ∈ T1,0

z2
M2.

Definition 3 (see [15]). Let ðM1, gÞ and ðM2, hÞ be two Her-
mitian manifolds. f1 : M1 ⟶ ð0,+∞Þ and f2 : M2 ⟶ ð0,+
∞Þ be two positive smooth functions. The doubly warped
product (abbreviated as DWP) Hermitian manifold ð f2M1
× f1

M2,GÞ is the product Hermitian manifold M =M1 ×
M2 endowed with the Hermitian metric G : M⟶ℝ+
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defined by

G z, vð Þ = f2 ∘ π2ð Þ2 zð Þg π1 zð Þ, dπ1 vð Þð Þ + f1 ∘ π1ð Þ2 zð Þh π2 zð Þ, dπ2 vð Þð Þ,
ð13Þ

for z = ðz1, z2Þ ∈M and v = ðv1, v2Þ ∈ T1,0
z M. f1 and f2 are

warped functions; the DWP-Hermitian manifold of ðM1, g
Þ and ðM2, hÞ is denoted by ð f2M1 × f1

M2,GÞ.

If either f1 = 1 or f2 = 1, then ð f2M1 × f1
M2,GÞ becomes a

warped product of Hermitian manifolds ðM1, gÞ and ðM2,
hÞ. If f1 ≡ 1 and f2 ≡ 1, then ð f2M1 × f1

M2,GÞ becomes a
product of Hermitian manifolds ðM1, gÞ and ðM2, hÞ. If nei-
ther f1 nor f2 is constant, then we call ð f2M1 × f1

M2,GÞ a
nontrivial DWP-Hermitian manifolds of ðM1, gÞ and ðM2,
hÞ.

Notation 4. Lowercase Greek indices such as α, β, and γ will
run from 1 to m + n, lowercase Latin indices such as i, j, and
k will run from 1 to m, and lowercase Latin indices with a
prime, such as i′, j′, and k′, will run from m + 1 to m + n.
Quantities associated to ðM1, gÞ and ðM2, hÞ are denoted

with upper indices 1 and 2, respectively, such as Γi
jk
1
and

Γi′
j′k′

2
are Levi-Civita connection coefficients of ðM1, gÞ

and ðM2, hÞ, respectively.
Denote

gi�j =
∂2g

∂vi∂�vj
,

hi′�j′ =
∂2h

∂vi′∂ �
vj′

:

ð14Þ

The fundamental tensor matrix of G is given by

Gα�β

� �
= ∂2G

∂vα∂ �vβ

 !
=

f 22gi�j 0

0 f 21hi′�j′

0
@

1
A, ð15Þ

and its inverse matrix ðG�βαÞ is given by

G
�βα

� �
=

f −22 g�ji 0

0 f −21 h
�j′i′

0
@

1
A: ð16Þ

Proposition 5. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. Then, the Levi-Civita con-

nection coefficients Γγ
αβ associated to G are given by

Γk
ij = Γk

ij

1

,

Γk
i′ j = f −12

∂f2
∂zi′

δkj ,

Γk
ij′ = f −12

∂f2
∂zj′

δki ,

Γk′
i′ j′ = Γk′

i′ j′

2

,

Γk′
ij′ = f −11

∂f1
∂zi

δk′j′ ,

Γk′
i′ j = f −11

∂f1
∂zj

δk′i′ ,

Γk
i′ j′ = Γk′

ij = 0:

ð17Þ

Proof. Substituting (15) and (16) into (4), we obtain

Γk
ij =

1
2G

k�ε ∂iGj�ε + ∂jGi�ε

� �
+ 1
2G

kε′ ∂iGjε′ + ∂jGiε′

� �

= 1
2G

k�l ∂Gj�l

∂zi
+ ∂Gi�l

∂zj

� �
+ 1
2G

kl ′
∂G

jl ′
∂zi

+
∂G

il ′
∂zj

 !

= 1
2 f

−2
2 gk

�l 2f2
∂f2
∂zi

gj�l + f 22
∂gj�l

∂zi
+ 2f2

∂f2
∂zj

gi�l + f 22
∂gi�l

∂zj

� �

= 1
2g

k�l
∂gj�l

∂zi
+ ∂gi�l

∂zj

� �
= Γk

ij

1
:

ð18Þ

Similarly, we can obtain other equations of Proposition
5.

Plugging (15) and (16) into (5), we have the following
proposition.

Proposition 6. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. Then, the Levi-Civita con-
nection coefficients Γγ

�αβ associated to G are given by

Γk
�ij = Γk

�ij

1

,

Γk

i′j′
= −f −22 f1g

k�l ∂f1
∂�zl

h
j′i′,

Γk

i′j
= f −12

∂f2
∂�zi′

δkj ,

Γk′
i′j′

= Γk′
i′j′

2

,

Γk′
�ij = −f −21 f2h

k′l′ ∂f2
∂�zl′

gj�i,

Γk′
�ij′ = f −11

∂f1
∂�zi

δk′j′ ,

Γk
�ij′ = Γk′

i′j
= 0:

ð19Þ

3Advances in Mathematical Physics



3. Levi-Civita Ricci Scalar Curvature of Doubly
Warped Product Hermitian Manifolds

In this section, we derive formulae of Levi-Civita curvature,
Levi-Civita Ricci curvature, and Levi-Civita Ricci scalar cur-
vature of DWP-Hermitian manifold.

Proposition 7. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. Then, the coefficients of
Levi-Civita curvature tensor Kε

α�βγ
are given by

Kt
k�js = Kt

k�js

1

+ f −21 hi′l′
∂f2
∂�zl′

∂f2
∂zi′

gs�jδ
t
k, ð20Þ

Kt′
k′ j′s′

= Kt′
k′ j′s′

2

+ f −22 gi
�l ∂f1
∂�zl

∂f1
∂zi

h
s′j′δ

t′
k′, ð21Þ

Kt

k′ j′s
= f −22 gt

�l ∂f1
∂�zl

∂f1
∂zs

h
k′j′, ð22Þ

Kt′
k�js′ = f −21 ht′l′

∂f2
∂�zl′

∂f2
∂zs′

gk�j, ð23Þ

Kt
k�js′ = f −11 f −12

∂f1
∂�zj

∂f2
∂zi′

δi′s′δ
t
k −

1
2
f −12

∂f2
∂zs′

gt
�l ∂gi�l

∂�zj
−
∂gi�j
∂�zl

� �
δik,

ð24Þ

Kt′
k′ j′s

= f −11 f −12
∂f 1
∂zi

∂f 2
∂�zj′

δisδ
t′
k′ −

1
2
f −11

∂f 1
∂zs

hi′l′
∂h

i′l′
∂�zj′

−
∂h

i′l′
∂�zl′

� �
δi′k′,

ð25Þ

Kt

k′ j′s′
= f −32 f 1g

t�l ∂f 1
∂�zl

∂f 2
∂zk′

h
s′j′ + f −22 f 1g

t�l ∂f 1
∂�zl

1
2

∂h
k′l′

∂zs′
+
∂h

s′l′
∂zk′

� �
δl′
j′
+
∂h

s′j′
∂zk′

" #
:

ð26Þ

Kt′
k�js = f −31 f2h

t′l′ ∂f2
∂�zl′

∂f1
∂zk

gs�j + f −21 f2h
t′l′ ∂f2

∂�zl′
1
2

∂gk�l
∂zs

+ ∂gs�l
∂zk

� �
δ
�l
�j +

∂gs�j

∂zk

	 

,

ð27Þ

Kt

kj′s′
= ∂2 ln f 2

∂zs′∂�zj′
δtk +

1
2
f −12 hi′l′

∂f 2
∂zi′

∂h
s′l′

∂�zj′
−
∂h

s′j′

∂�zl′

 !
δtk

+ f −22 f 1hs′j′
∂gt�l

∂zk
∂f 1
∂�zl

− gt
�l ∂2 f 1
∂zk∂�zl

−
1
2
gi
�lgt

�l ∂f 1
∂�zl

∂gk�l
∂zi

+ ∂gi�l
∂zk

� �" #
,

ð28Þ

Kt′
k′�js =

∂2 ln f 1
∂zs∂�zj

δt′k′ +
1
2
f −11 gi

�l ∂f 1
∂zi

∂gs�l

∂�zj
−
∂gs�j
∂�zl

� �
δt

′
k′

+ f −21 f 2gs�j
∂ht′l′

∂zk′
∂f 2
∂�zl′

− ht′l′
∂2 f 2

∂zk′∂�zl ′
−
1
2
hi′l′ht′l′

∂f 2
∂�zl ′

∂h
k′l′

∂zi′
+
∂h

i′l′
∂zk′

� �" #
:

ð29Þ

Kt
k′�js = Kt

k′�js′ = Kt

kj′s
= Kt′

kj′s
= Kt′

k′�js′ = Kt′
kj′s′

= 0: ð30Þ

Proof. Using (7), we have

Kt
k�js = − ∂�jΓ

t
ks − ∂kΓ

t
�js + Γλ

ksΓ
t
�jλ − Γλ

�jsΓ
t
λk + Γλ′

ksΓ
t
�jλ′ − Γλ′

�jsΓ
t
λ′k

h i
:

ð31Þ

Taking the formulae of Proposition 5 and Proposition 6
into (31), we obtain

Kt
k�js = −

∂Γt
ks

∂�zj

1

−
∂Γt

�js

∂zk

1

+ Γi
ks

1
Γt
�ji

1
− Γi

�js

1
Γt
ik

1
+ Γi′

ksΓ
t
�ji′ − Γi′

�jsΓ
t
i′k

2
64

3
75

= Kt
k�js

1
+ f −21 hi′l′

∂f2
∂�zl′

∂f2
∂zi′

gs�jδ
t
k:

ð32Þ

Similarly, we can obtain other equations of Proposition
7.

Proposition 8. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. Then,

Kk�js�p = f 22 Kk�js�p

1
+ f −21 f 22h

i′l′ ∂f2
∂�zl′

∂f2
∂zi′

gs�jgk�p,

K
k′j′s′p′ = f 21 Kk′j′s′p′

2
+ f −22 f 21g

i�l ∂f1
∂�zl

∂f1
∂zi

h
s′j′hk′p′,

K
k�js′p′ =

∂f2
∂�zl′

∂f2
∂zs′

gk�jδ
l′
p′
,

K
k′j′s�p =

∂f1
∂�zl

∂f1
∂zs

h
k′j′δ

�l
�p,

Kk�js′�p = f −11 f2gk�p
∂f1
∂�zj

∂f2
∂zi′

δi′s′ −
1
2
f2

∂f2
∂zs′

∂gi�l
∂�zj

−
∂gi�j
∂�zl

� �
δikδ

�l
�p,

K
k′j′sp′ = f 1 f

−1
2 h

k′p′
∂f 1
∂zi

∂f 2
∂�zj′

δis −
1
2
f 1
∂f 1
∂zs

∂h
i′l′

∂�zj′
−
∂h

i′j′

∂�zl′

 !
δi′k′δ

l′
p′
,

K
k�jsp′ = f −31 f2

∂f2
∂�zl′

∂f1
∂zk

gs�jδ
l′
p′
+ f2

∂f2
∂�zl′

1
2

∂gk�l

∂zs
+ ∂gs�l

∂zk

� �
δ
�l
�j +

∂gs�j
∂zk

	 

δl′
p′
,

K
k′j′s′�p = f −32 f 1

∂f 1
∂�zl

∂f 2
∂zk′

h
s′j′δ

�l
�p + f 1

∂f 1
∂�zl

1
2

∂h
k′l′

∂zs′
+
∂h

s′l′
∂zk′

� �
δl

′
j′
+
∂h

s′j′

∂zk′

" #
δ
�l
�p,

K
k′�jsp′ = f 21hk′p′

∂2 ln f 1
∂zs∂�zj

+ 1
2
f 1hk′p′g

i�l ∂f 1
∂zi

∂gs�l

∂�zj
−
∂gs�j
∂�zl

� �

+ f 2gs�j
∂ht′l′

∂zk′
∂f 2
∂�zl ′

h
t ′p′ + δl

′
p′

∂2 f 2
∂zk′∂�zl ′

"

+ 1
2
hi′l′δl ′

p′
∂f 2
∂�zl ′

∂h
k′l′

∂zi′
+
∂h

i′l′
∂zk′

� �

,

K
kj′s′�p = f 22gk�p

∂2 ln f 2
∂zs′∂�zj′

+ 1
2
f 2gk�ph

i′l′ ∂f 2
∂zi′

∂h
s′l′

∂�zj′
−
∂h

s′j′

∂�zl′

 !

+ f 1hs′j′
∂gt�l

∂zk
∂f 1
∂�zl

gt�p + δ
�l
�p
∂2 f 1
∂zk∂�zl

+ 1
2
gi
�lδ

�l
�p
∂f 1
∂�zl

∂gk�l
∂zi

+ ∂gi�l
∂zk

� �" #
:

Kk′�js′�p = Kk′�js�p = K
k′�js′p′ = K

kj′s�p = K
kj′sp′ = K

kj′s′p′ = 0: ð33Þ
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Proof. According to (10), we get

Kk�js�p =Gε�pK
ε
k�js =Gt�pK

t
k�js +Gt′�pK

t′
k�js: ð34Þ

Substituting (20), (27), and (15) into (34), we have

Kk�js�p =Gt�p Kt
k�js

1
+ f −21 hi′l′

∂f 2
∂�zl′

∂f 2
∂zi′

gs�jδ
t
k

 !
= f 22 Kk�js�p

1
+ f −21 f 22h

i′l′ ∂f 2
∂�zl′

∂f 2
∂zi′

gs�jgk�p:

ð35Þ

Similarly, we can obtain other equations of Proposition
8.

Proposition 9. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. Then, the coefficients of

the first Levi-Civita Ricci curvature Kð1Þ
α�β

are given by

K 1ð Þ
k�j = K 1ð Þ

k�j

1

+ 2f −21
∂f2
∂�zl′

∂f2
∂zi′

gk�jh
i′l′,

K 1ð Þ
k′ j′

= K 1ð Þ
k′ j′

2

+ 2f −22
∂f1
∂�zl

∂f1
∂zs

h
k′j′g

s�l,

K 1ð Þ
k′�j = 0,

K 1ð Þ
kj′

= 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð36Þ

where Kð1Þ
k�j

1
and Kð1Þ

k′ j′
2
are coefficients of the first Levi-Civita

Ricci curvature of g and h, respectively.

Proof. From (9) and (16), we get

K 1ð Þ
k�j =Gγ�δKk�jγ�δ =Gs�pKk�js�p +Gs′p′K

k�js′p′: ð37Þ

According to (16) and the first equation of proposition 8,
we have

Gs�pKk�js�p = f −22 gs�p f 22 Kk�js�p

1
+ f −21 f 22h

i′l′ ∂f 2
∂�zl ′

∂f 2
∂zi′

gs�jgk�p

� �
= K 1ð Þ

k�j

1
+ f −21

∂f 2
∂�zl′

∂f 2
∂zi′

gk�jh
i′l′:

ð38Þ

Similarly, by using (16) and the third equation of propo-
sition 8, we can get

Gs′p′K
k�js′p′ = f −21

∂f 2
∂�zl′

∂f 2
∂zs′

gk�jh
s′l′: ð39Þ

Replacing the summation index i′ on the right side of
(38) with s′ and then taking it and (39) into (37), we can
obtain

K 1ð Þ
k�j = K 1ð Þ

k�j

1
+ 2f −21

∂f2
∂�zl′

∂f2
∂zs′

gk�jh
s′l′: ð40Þ

Similarly, we can obtain

K 1ð Þ
k′ j′

= K 1ð Þ
k′ j′

2
+ 2f −22

∂f1
∂�zl

∂f1
∂zs

h
k′j′g

s�l,

K 1ð Þ
k′�j = 0,

K 1ð Þ
kj′

= 0:

ð41Þ

This completes the proof.

Theorem 10. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. Then, the Levi-Civita Ricci

scalar curvature of G along a nonzero vector v = ðvi, vi′Þ ∈
T1,0
z M is given by

SLC vð Þ = f −22 Sg v1ð Þ + f −21 Sh v2ð Þ + 2f −21 f −22 gs�l ∂f1
∂�zl

∂f1
∂zs

+ 2f −21 f −22 hs′l′
∂f2
∂�zl′

∂f2
∂zs′

,
ð42Þ

where Sgðv1Þ and Shðv2Þ are Levi-Civita Ricci scalar curva-
tures of g and h, respectively.

Proof. According to (11), the Levi-Civita Ricci scalar curva-
ture of G is given by

SLC =Gα�βK 1ð Þ
α�β

=Gk�jK 1ð Þ
k�j +Gk′j′K 1ð Þ

k′ j′
+ Gk′�jK 1ð Þ

k′�j +Gkj′K 1ð Þ
kj′
:

ð43Þ

Combining (16) and (40), we have

Gk�jK 1ð Þ
k�j = f −22 gk�j K 1ð Þ

k�j

1
+ 2f −21

∂f2
∂�zl ′

∂f2
∂zs′

gk�jh
s′l′

 !

= f −22 Sg v1ð Þ + 2f −21 f −22 hs′l′
∂f2
∂�zl′

∂f2
∂zs′

:

ð44Þ

Similarly, we can get

Gk′j′K 1ð Þ
k′ j′

= f −21 Sh v2ð Þ + 2f −21 f −22 gs
�l ∂f1
∂�zl

∂f1
∂zs

, ð45Þ

Gk′�jK 1ð Þ
k′�j = 0, ð46Þ

Gkj′K 1ð Þ
kj′

= 0: ð47Þ

Taking (44)–(47) into (43), we obtain (42).

Theorem 11. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. If f1 and f2 are holo-
morphic functions on M1 and M2, respectively, then SLCðvÞ
= f −22 Sgðv1Þ + f −21 Shðv2Þ.
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Proof. If f1 and f2 are holomorphic functions onM1 andM2,
respectively, i.e.,

∂f1
∂�zl

= 0,

∂f2
∂�zl′

= 0:
ð48Þ

Thus,

2f −21 f −22 gs�l ∂f1
∂�zl

∂f1
∂zs

= 0, ð49Þ

2f −21 f −22 hs′l′
∂f2
∂�zl′

∂f2
∂zs′

= 0: ð50Þ

Substituting (49) into (42), we have SLCðvÞ = f −22 Sgðv1Þ
+ f −21 Shðv2Þ.

4. Levi-Civita Ricci-Flat Doubly Warped
Product Hermitian Manifolds

Let ðM1, gÞ and ðM2, hÞ be two Levi-Civita Ricci-flat Hermi-
tian manifolds; one may want to know whether the DWP-
Hermitian manifold ð f2M1 × f1

M2,GÞ is also a Levi-Civita
Ricci-flat Hermitian manifold. We shall give an answer to
this question in this section.

Theorem 12. Let ð f2M1 × f1
M2,GÞ be a DWP-Hermitian

manifold of ðM1, gÞ and ðM2, hÞ. If f1 and f2 are holo-
morphic functions on M1 and M2, respectively, then ð f2M1

× f1
M2,GÞ is Levi-Civita Ricci-flat if and only if ðM1, gÞ

and ðM2, hÞ are Levi-Civita Ricci-flat.

Proof. If f1 and f2 are holomorphic functions onM1 andM2,
respectively, i.e.,

∂f1
∂�zl

= 0,

∂f2
∂�zl′

= 0:
ð51Þ

Taking above equations into the first formula and sec-
ond formula of (36), we get

2f −21
∂f2
∂�zl′

∂f2
∂zi′

gk�jh
i′l′ = 0, ð52Þ

2f −22
∂f1
∂�zl

∂f1
∂zs

h
k′j′g

s�l = 0: ð53Þ

Firstly, we assume ð f2M1 × f1
M2,GÞ be Levi-Civita Ricci-

flat; using Definition 2 and (36), we have

K 1ð Þ
k�j = K 1ð Þ

k�j

1
+ 2f −21

∂f2
∂�zl′

∂f2
∂zi′

gk�jh
i′l′ = 0,

K 1ð Þ
k′ j′

= K 1ð Þ
k′ j′

2
+ 2f −22

∂f1
∂�zl

∂f1
∂zs

h
k′j′g

s�l = 0,

K 1ð Þ
k′�j = 0,

K 1ð Þ
kj′

= 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð54Þ

Substituting (52) and (53) into the first formula and sec-
ond formula of (54), respectively, we get

K 1ð Þ
k�j = K 1ð Þ

k�j

1
= 0,

K 1ð Þ
k′ j′

= K 1ð Þ
k′ j′

2
= 0,

K 1ð Þ
k′�j = 0,

K 1ð Þ
kj′

= 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð55Þ

Obviously,

K 1ð Þ
k�j

1
= 0,

K 1ð Þ
k′ j′

2
= 0:

ð56Þ

According to Definition 2, these mean that ðM1, gÞ and
ðM2, hÞ are Levi-Civita Ricci-flat.

Conversely, we assume ðM1, gÞ and ðM2, hÞ are Levi-
Civita Ricci-flat; according to Definition 2, we know that

K 1ð Þ
k�j

1
= 0, ð57Þ

K 1ð Þ
k′ j′

2
= 0: ð58Þ

Since f1 and f2 are holomorphic, thus (52) and (53) are
established. Then, taking (52), (53), (57), and (58) into
(36), we obtain

K 1ð Þ
k�j = 0,

K 1ð Þ
k′ j′

= 0,

K 1ð Þ
k′�j = 0,

K 1ð Þ
kj′

= 0:

8>>>>>>>>><
>>>>>>>>>:

ð59Þ
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By Definition 2, (59) indicates that ð f2M1 × f1
M2,GÞ is

Levi-Civita Ricci-flat.

Notation 13. Theorem 12 implies that when warped func-
tions to be holomorphic, then the DWP-Hermitian manifold
is a Levi-Civita Ricci-flat Hermitian manifold if and only if
its component manifolds are Levi-Civita Ricci-flat. Thus,
this theorem provides us an effective way to construct
Levi-Civita Ricci-flat DWP-Hermitian manifold.

5. Conclusions

In this paper, we derived formulae of Levi-Civita connection,
Levi-Civita curvature, the first Levi-Civita Ricci curvature,
and Levi-Civita scalar curvature of the DWP-Hermitian
manifold and proved that if the warped function f1 and f2
are holomorphic, then the DWP-Hermitian manifold is
Levi-Civita Ricci-flat if and only if ðM1, gÞ and ðM2, hÞ are
Levi-Civita Ricci-flat manifolds. Thus, we gave an effective
way to construct Levi-Civita Ricci-flat DWP-Hermitian
manifold.
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Cavitating flow fields downstream of triangular multiorifice plates with different geometrical parameters were measured by PIV
technique, and effects of orifice size, orifice number, and orifice layout on turbulence intensity and Reynolds stress were
analyzed. The experimental results showed that the turbulence intensity and Reynolds stress downstream of the different
multiorifice plates exhibited sawtooth-like profiles. Decrease in orifice size, increase in orifice number, and taking staggered
layout could contribute to intensification of turbulence mixing and shear effects of multiple cavitating jets downstream of the
multiorifice plates and thus reaching the expected cavitation effects.

1. Introduction

Once flow velocity reaches a certain point where the pres-
sure of flow lowers below the saturated vapor pressure at
the corresponding temperature, a cavitation phenomenon
will occur in liquids. The collapse of cavitation bubbles in
the zone where pressure rises can generate super high pres-
sure and temperature and forms microjets and shock waves
in a micro second interval and thus will cause severe damage
to ship propellers, hydraulic release structures, hydraulic
components, and hydraulic machinery. Conversely, Pandit
and Joshi [1] applied hydrodynamic cavitation into the
hydrolysis of fatty oil. Since then, hydrodynamic cavitation
has been studied for the potential application in water treat-
ment. Many studies have found that the hydraulic condition
of cavitation reactor was the major factor and played an
important role in effective wastewater treatment [2–5]. Dong
et al. [6] and Yao et al. [7] studied the cavitational character-
istics due to circular and triangular multiorifice plates, and
their results revealed that the multiorifice plates with larger
and more orifices incurred stronger cavitation and hence
improving the degradation rate. And Dong et al. [8] studied

the degradation of hydrophilic and hydrophobic mixture
due to the combination of the Venturi tube with the multi-
orifice plates. Wang et al. [9], Geng et al. [10], and Dong
and Qin [11], respectively, used hydrodynamic cavitation
due to the Venturi tube to kill Escherichia coli in raw water.
They focused on the effects of variable diffusion angle, vary-
ing throat lengths, throat velocity, treatment time, cavitation
number, and initial concentration of Escherichia coli on the
killing rate. Also, killing rate of pathogenic microorganisms
in raw water by hydrodynamic cavitation due to triangular
and square multiorifice plates was, respectively, studied by
the references [12–15]. As mentioned above, the characteris-
tics of cavitating flow directly affect the degradation rates of
refractory pollutants and the killing rates of pathogenic
microorganisms. Dong et al. [16, 17] and Zhang et al. [18],
respectively, reported time-averaged velocity and pressure
distributions of the Venturi tube and triangular multiorifice
plates and their combinations. In fact, characteristics of
cavitating filed flow behind cavitation reactors such as
multiorifice plates contribute further to understanding the
mechanisms of degrading refractory pollutant and of killing
pathogenic microorganism by hydrodynamic cavitation and
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to optimizing the design of cavitation reactor. However, less
study of turbulence characteristics downstream of the multi-
orifice plates was reported. In this paper, cavitating flow
fields downstream of 5 triangular multiorifice plates with
different orifice sizes, numbers and layouts were measured
by PIV technique, and the effects of the geometric parame-
ters on turbulence intensity and Reynolds stress were
analyzed.

2. Experimental Facility and Methodology

The experimental apparatus is shown in Figure 1. Five
types of triangular multiorifice plates were designed in
the experiment as shown in Figure 2. The size of each
plate was 50mm × 50mm. The total orifice area of each
plate remained the same. The orifice numbers of these
multiorifice plates were n = 9, 16, 25, and 64, and the ori-
fice sizes were a = 2:6, 4.0, 5.1, and 6.7mm, respectively.
The checkerboard-type and staggered layouts of orifices
were arranged on the plates. The geometric parameters
of the multiorifice plates are shown in Table 1. The size
of cross-section of the working section was 50mm × 50mm,
and the length of the working section was 200mm. The
top and two sides of the working section were installed
by polymethyl methacrylate for observation window. The
multiorifice plates and working section were made of
stainless steel plate, which were fabricated by computer-
controlled machine tool.

The basic principle of PIV technique is that the trace
particles can be of good reflectivity and tracking features,
whose relative density is equivalent to the fluid evenly spread
in the measured flow field. Then, the moving images of these
particles will be captured by a camera at certain interval
before matching the particles in adjacent images. In this
way, the parameters of movements can be worked out
through calculating the velocity vector at each point in the
flow filed. In this paper, lots of cavitation bubbles existed
in the high-velocity flow, and since the tiny bubble and the
moving fluid have better following characteristics, the speed
of moving bubble was almost equal to that of fluid particle.
So the motion of bubble can be used to reflect the motion
of fluid particle. The Dantec 3D-PIV was used to measure
the instantaneous velocity field downstream of the triangular
multiorifice plates. The sampling frequency was 15Hz, and
the time interval of instantaneous flow field was 0.02 s. Con-
sidering that the number of instantaneous flow field should
statistically meet the need of steady turbulent flow, 500
groups of instantaneous flow fields verified by the preexper-
iment were chosen to analyze the turbulence intensity and
Reynolds stress of flow fields.

The measuring position was along the center line on the
top surface in the working section, ranging within 50mm
× 200mm. In order to analyze and compare turbulence
characteristics in detail, the working section was divided into
8 cross-sections as shown in Figure 3 and the positions of
cross-sections are listed in Table 2. For the sake of compar-
ison, the position of cross-section was nondimensionalized
by the length of working section (L = 200mm).

3. Results and Discussion

The relative longitudinal turbulence intensity can be
expressed as

TX =
ffiffiffiffiffi

ú2
p

U
: ð1Þ

And the relative Reynolds stress can be defined as

η = �́u�́v

U2 , ð2Þ

where ú and v́ denote longitudinal and vertical fluctuating
velocities and U means velocity of orifice.

3.1. Effect of Orifice Size on Turbulence Intensity and
Reynolds Stress. The distribution of relative turbulence
intensity at cross-section 1-1 was taken for an example,
and variation in relative turbulence intensity for the 4 multi-
orifice plates, namely, side length of orifice a = 2:6, 4.0, 5.1,
and 6.7mm, is shown in Figure 4. It follows from the Figure
that there exist different extents of turbulence as a result of
shearing and mixing effects of multiple jets downstream of
multiorifice plates. The turbulence intensity for a = 4:0mm
plate exhibits obvious sawtooth-like distribution. Intense
turbulence means that the fluctuating velocity is larger,
which can induce cavitation. Variation of turbulence inten-
sity Tx with vertical height y/H is smaller, the turbulence
intensity for a = 6:7mm plate is the weakest among the 4
multiorifice plates, and the turbulence intensities for a =
2:6mm and 5.1mm plates are in between for a = 4:0mm
and a = 6:7mm plates.

Distribution of Reynolds stress for the 4 multiorifice
plates with different orifice sizes is shown in Figure 5. It
follows that variation in Reynolds stress downstream of
multiorifice plates also exhibits a sawtooth-like distribution,
which means strong shearing effect took place among the

3

3
3

3 3

1

7

3
2 2

3

6

3

3

3

Cooling water

4 45

Figure 1: Sketch of experimental setup. 1: inner solution tank,
2: centrifugal pump, 3: control valves, 4: pressure gauge, 5: working
section, 6: rotator flow meter, and 7: water cooling tank.
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high-velocity multiple jets. The sawtooth-like distribution of
Reynolds stress for a = 5:1mm plate is denser than that for
a = 6:7mm plate and exhibits alternative fluctuations
between positive and negative directions. Reynolds stress
due to a = 4:0mm plate is larger than that due to a =
5:1mm plate along the vertical line, implying that the shear-
ing effect among multiple jets downstream of the plate with
smaller orifice is stronger. The reason is that velocity gradient
between multijet and ambient fluid became larger due to the
smaller orifice, so more intense entrainment and mixing
occur, thus producing more eddies and increasing internal
disturbance and turbulence energy in cavitating flow field.

It was found through further comparison between a =
4:0mm and 2.6mm plates that the sawtooth-like distribu-
tion of Reynolds stress due to the latter was denser, but
variation in the values was within a smaller range. Also,

(a) Plate 1 (b) Plate 2 (c) Plate 3

(d) Plate 4 (e) Plate 5

Figure 2: Triangular multiorifice plates.

Table 1: Geometric parameters of triangular multiorifice plates.

Orifice number Orifice arrangement Side length of orifice, mm

9 Checkerboard-type 6.7

16 Checkerboard-type 5.1

25 Checkerboard-type 4.0

64 Checkerboard-type 2.6

25 Staggered 4.0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 3: Cross-section positions downstream of multiorifice plate.

Table 2: Dimensionless cross-section positions behind multiorifice
plates.

Cross-section x/L Cross-section x/L
1-1 0.05 5-5 0.25

2-2 0.1 6-6 0.35

3-3 0.15 7-7 0.5

4-4 0.2 8-8 0.75

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

y
/
H

Tx

a = 6.7 mm
a = 5.1 mm

a = 4.0 mm
a = 2.6 mm

Figure 4: Effect of orifice size on turbulence intensity.
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Reynolds stress for the latter was basically smaller than
that for the former. It means the intense shearing effect
could not occur for the minimum orifice in this
experiment.

3.2. Effect of Orifice Number on Turbulence Intensity and
Reynolds Stress. The variation of relative turbulence intensity
for 4 multiorifice plates with different orifice numbers is
shown in Figure 6. It can be seen from Figure 6 that the tur-
bulence intensity for 9-orifice plate approximates a straight-
line, and for 16-orifice and 64-orifice plates, the intensities
exhibit sawtooth-like distributions. However, there are some
larger values of turbulence intensity for 25-orifice plate, it
means that a more intense turbulent shearing field occurred,
and that numerous high-frequency and small-size eddies
were generated in the field, which contributed to transfer
of turbulence energy and increased pressure fluctuation.
Therefore, an appropriate increase in orifice number could
contribute to intensifying interjet mixing and to prompting
formation, growth, and collapse of cavitation bubble, leading
to intense cavitation effect.

Distribution of Reynolds stress due to multiorifice plates
with different orifice numbers is shown in Figure 7. As can
been seen in Figure 7, Reynolds stress downstream of 16-
orifice plate changes between positive and negative range,
which is more intense than that downstream of 9-orifice
plate. In addition, the value of Reynolds stress due to 25-
orifice plate is larger than that due to 16-orifice plate. All
of these implied that the more the orifice number, the stron-
ger the turbulence exchange and shearing effect, which could
prompt the formation, growth, and collapse of cavitation
bubbles. It was found based on the further comparison
between 25-orifice and 64-orifice plates that the sawtooth-
like distribution of Reynolds stress due to the latter was
denser. However, the value of Reynolds stress due to 64-
orifice plate only fluctuated within a smaller range, which

was probably the weakening effect of combined jets due to
more orifice numbers.

3.3. Effect of Orifice Layout on Turbulence Intensity and
Reynolds Stress. Two multiorifice plates with the same
size and number of orifice but different layouts of
checkerboard-type and staggered orifices were taken for the
effect on layout. The distribution of turbulence intensity is
shown in Figure 8. It follows from the figure that variation
in turbulence intensity for the checkerboard-type layout is
relatively mild; however, the variation for the staggered lay-
out is steeper. The reason is that the flow field due to the stag-
gered layout was of more intense entraining and mixing
effects of multiorifice plates.

0
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0.8

1

–0.8 –0.5 –0.2 0.1 0.4 0.7
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/
H

a = 6.7 mm
a = 5.1 mm

a = 4.0 mm
a = 2.6 mm

𝜂

Figure 5: Effect of orifice size on Reynolds stress.
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Figure 6: Effect of orifice number on turbulence intensity.
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Figure 7: Effect of orifice number of Reynolds stress.
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The distribution of Reynolds stress due to two plates
with the same size and number of orifice but different
layouts of the checkerboard-type and staggered orifices is
shown in Figure 9. We can easily see the variation in Reyn-
olds stress due to the two plates is similar.

4. Conclusion

There existed different turbulence due to shearing and
mixing effects of multiple jets downstream of different mul-
tiorifice plates. The turbulence intensity for a = 4:0mm and
25-orifice plates exhibited apparent sawtooth-like distribu-
tion, which contributed to transfer of turbulence energy
and increase in pressure fluctuation. Also, the variation in

turbulence intensity for the staggered layout plate was
steeper than that for the checkerboard-type one; Reynolds
stress downstream of different multiorifice plates also
exhibited sawtooth-like profiles. Appropriately decreasing
the orifice size (a = 4:0mm), increasing the orifice number
(n = 25), and taking staggered layout could contribute to
intensifying turbulence mixing and shearing effects of multi-
ple jets downstream of multiorifice plates, thus resulting in
an expected cavitation effect. Improving the velocity of
orifice and designing the various shapes of orifice will be
considered in the following study.
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